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Behavioral/Systems/Cognitive

Action Reprogramming in Parkinson’s Disease: Response to
Prediction Error Is Modulated by Levels of Dopamine

Joseph M. Galea,* Sven Bestmann,* Mazda Beigi, Marjan Jahanshahi, and John C. Rothwell
Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom

Humans are able to use knowledge of previous events to estimate the probability of future actions. Consequently, an unexpected event will
elicit a prediction error as the prepared action has to be replaced by an unprepared option in a process known as “action reprogramming”
(AR). Here we show that people with Parkinson’s disease (PD) have a dopamine-sensitive deficit in AR that is proportional to the size of
the prediction error. Participants performed a probabilistic reaction time (RT) task in the context of either a predictable or unpredictable
environment. For an overall predictable sequence, PD patients, on and off dopamine medication, and healthy controls showed similar
improvements in RT. However, in the context of a generally predictable sequence, PD patients off medication were impaired in reacting
to unexpected events that elicit large prediction errors and require AR. Critically, this deficit in AR was modulated by the prediction error
associated with the upcoming event. The prolongation of RT was not observed during an overall unpredictable sequence, in which
relatively unexpected events evoke little prediction error and the requirement for AR should be minimal, given the context. The data are
compatible with recent theoretical accounts suggesting that levels of dopamine encode the reliability, i.e., precision, of sensory informa-
tion. In this scheme, PD patients off medication have low dopamine levels and may therefore be less confident about incoming sensory
information and more reliant on top-down predictions. Consequently, when these internal predictions are incorrect, PD patients take
longer to respond appropriately to unexpected sensory information.

Introduction
Anticipatory knowledge of an impending action improves the
speed and accuracy of its performance (Requin and Granjon,
1969). Work using probabilistic reaction time (RT) cues has
shown that the motor system uses past experience to prepare
motor output by an amount that is proportional to the probabil-
ity of a future event (Bestmann et al., 2008). Such preparation is
advantageous when a predictable event occurs. However, when
an unexpected event happens, RTs suffer because the prepared
response has to be replaced by an unprepared option. We can say
that the sensorimotor system has made a “prediction error,” and
the greater the error, the greater the effect on RT (Bestmann et al.,
2008). Here we refer to the process of switching from an expected
to less expected movement as “action reprogramming” (AR)
(Neubert et al., 2010).

The dopamine-rich basal ganglia (BG) are considered to play a
major role in prediction error and AR. In monkeys, AR of saccadic
eye movements is associated with neural activity in presupplemen-
tary motor area (preSMA) and subthalamic nucleus (Isoda and

Hikosaka, 2008); in humans, the BG mediate the interactions be-
tween preSMA and motor cortex during AR; and in the striatum, the
blood oxygenated level-dependent signal is modulated by predic-
tion error (den Ouden et al., 2010). BG involvement is also evi-
dent from clinical studies. Patients with Parkinson’s disease
(PD), a disorder associated with nigrostriatal dopamine deple-
tion, are well known to have deficits in tests of cognitive set shift-
ing, such as the Wisconsin card sorting test (Beatty and Monson,
1990). When tested off dopamine medication, PD patients are
also impaired in simpler, non-rule-based versions of set shifting
similar to AR as defined here, and treatment with dopamine re-
stores performance (Cools et al., 2001a).

The latter result implies that the behavioral consequences of a
prediction error, i.e., increased RT during AR, can be modulated
by dopamine, which is strikingly similar to the theoretical conse-
quences of the “active inference” framework of Friston et al.
(2010, 2012). This proposes that actions are performed in re-
sponse to sensory prediction errors and that dopamine levels
encode the reliability or precision of sensory information. In the
present context, a deficit in dopamine should reduce the per-
ceived value of the prediction error and thus slow AR.

We tested this idea by examining AR during a probabilistic RT
task in patients with PD assessed on and off dopaminergic ther-
apy. We quantified the unexpectedness of the stimulus using the
information theory measure of surprise (Harrison et al., 2006)
and tested whether this provided a quantitative measure of the
AR deficit in PD. Our prediction was that unmedicated PD pa-
tients would be impaired in reacting to surprising events in the
context of a generally predictable environment. Importantly, the
more unexpected the event, the greater should be the AR deficit.
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In contrast, in unpredictable environments, surprising events oc-
cur but against an overall low expectation for any event. In such a
case, a deficit in dopamine should not significantly impair per-
formance because there should be little prediction error and con-
sequently minimal requirement for AR.

Materials and Methods
Participants. Ten patients with PD and 12 healthy controls participated in
the study. The study was approved by the joint research ethics committee
of the National Hospital for Neurology and Neurosurgery and the Insti-
tute of Neurology at University College London. Written, informed con-
sent was obtained from all participants.

PD patients. Ten PD patients (eight males, nine right-handed) aged
between 45 and 85 years old (69 � 3 years) participated in the study. All
patients met the United Kingdom Brain Bank criteria for idiopathic PD
(Hughes et al., 1992). For all patients, there was no history of any other
neurological disease, head injury, psychiatric illness, or drug/alcohol
abuse. The demographic and clinical details of the patients are provided
in Table 1. Duration of PD varied between 4 and 16 years (mean: 7 � 1.1
years) from the initial diagnosis. All patients were treated with levodopa
and assessed twice, one on normal medication (PD-on) and also after
overnight withdrawal of dopamine medication (PD-off). The average
duration of medication withdrawal was 14.2 � 2.5 hours. Patients were
in the mild to moderate stages of the disease, with average scores on the
Hoehn and Yahr (1967) scale of 1.4 � 0.2 when assessed on and 2.6 � 0.3
when assessed off dopamine medication ( p � 0.03). In addition, the
motor section of the unified Parkinson’s disease rating scale (UPDRS)
(Fahn and Elton, 1987) yielded an average score of 21 � 3 for PD-on and
34 � 5 for PD-off ( p � 0.004; Table 1). Therefore, clinical symptoms
were significantly worsened after the withdrawal of dopamine medica-
tion. However, for PD-on and PD-off, similar scores were obtained on
the Mini-Mental State Examination (MMSE; p � 0.7) (Folstein et al.,
1975), the Beck Depression Inventory (BDI; p � 0.8) (Beck et al., 1961),
and the digit-span subtest of the Wechsler adult intelligence scale
(WAISIII) (Cools et al., 2010) ( p � 0.1). This indicated that all patients
were non-demented (MMSE score � 26), did not suffer from clinical
depression (BDI score � 15), and that short-term memory was similar
between on and off medication states.

Healthy controls. Twelve control subjects (seven males, 10 right-
handed) aged between 50 and 84 years old (68 � 2 years) with no current
health problems or history of neurological/psychiatric illness partici-
pated in the study. Details of the controls are presented in Table 1. PD
patients and controls did not differ significantly in age ( p � 0.8), years of
education ( p � 0.1), or the MMSE ( p � 0.2). In contrast, the control
group had a significantly lower mean depression score than PD patients
on the BDI ( p � 0.01) and a significantly higher short-term memory
score on the digit-span task ( p � 0.05).

Finally, participants reported their attention, fatigue, and quality and
amount of sleep for the previous night using a self-scored visual analog
scale in which 1 represented poorest attention, quality of sleep, and max-
imal fatigue, and 7 represented maximal attention, quality of sleep, and
least fatigue (Stefan et al., 2005). For all ratings, there was no significant
difference between PD-on and PD-off ( p � 0.1; Table 1). The only sig-
nificant difference between controls and PD patients was for hours of
sleep in which controls reported to have an additional 2 h compared with
both PD-on and PD-off ( p � 0.04; Table 1).

General procedure. PD patients completed two test sessions: once after
they had taken their regular dopaminergic medication (PD-on), and
once after overnight withdrawal from dopaminergic medication (PD-
off). The session order was counterbalanced across patients, and the two
sessions were separated by at least 7 d. Control participants completed
one session (control). In all sessions, participants performed the proba-
bilistic task first and then all other tests and questionnaires subsequently.

Probabilistic RT task. Participants sat in front of a computer screen
�30 cm away. A custom button box with four buttons was placed in front
of the dominant hand. The participants were instructed to place each one
of their fingers on each of the four buttons and to maintain this position
throughout the task.

Events on a single trial were then demonstrated to the participant (Fig.
1a). Initially, an un-informative warning cue (“!”) was displayed for 250
ms. After a fixation cross was presented for 1000 ms, one of the four
imperative stimuli (IS) was shown in the center of the screen for 250 ms
(Fig. 1a). The fixation cross then reappeared during the response period
(2500 ms). During this time, the participant was required to respond to
the IS as fast as possible but not at the expense of accuracy. Each IS image
was associated with pressing a specific button. The stimulus–response

Table 1. Demographic and clinical characteristics of the PD and control groups

Age Schooling Attention Fatigue Hours of sleep Quality of sleep Digit span MMSE BDI Disease duration UPDRS III Hoehn and Yahr score

PD-on (n � 10) 69 � 3 13 � 0.4 5 � 0.5 3 � 0.6 5 � 0.4 5 � 0.6 20 � 1.5 29 � 0.4 7 � 1.1 7 � 1.1 21 � 3 1.4 � 0.2
PD-off (n � 10) 69 � 3 13 � 0.4 6 � 0.2 3 � 0.6 5 � 0.6 4 � 0.4 19 � 3.3 29 � 0.9 7 � 2.4 7 � 1.1 34 � 5 2.6 � 0.3
Controls (n � 12) 68 � 2 14 � 0.7 6 � 0.3 2 � 0.3 7 � 0.2 5 � 0.5 24 � 0.8 30 � 0.1 4 � 0.5

All data are mean � SEM.

Figure 1. Experimental design. a, Schematic representation of a single trial. A visual warning signal was followed by one of four novel IS. Participants were told to react as fast as possible to the
IS. The order of the visual stimuli could either be unpredictable (b; blocks 1, 4) or predictable (c; blocks 2, 3). Predictable sequences were generated from a first-order Markov sequence in which there
were 16 combinations that determined the relationship between the IS on trial t and on trial t � 1. Numbers within the probability matrices represent the transition probabilities. The overall
probability of each IS on trial t was equal across all blocks.
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mapping was acquired through trial and error. During this training pe-
riod of 200 trials, participants received error feedback as to whether their
response was correct. Importantly, by the end of the training period, all
participants had successfully learned the correct stimulus–response as-
sociations (see below, error section of Results).

During the main experiment, error feedback was removed, and par-
ticipants conducted four blocks of 100 trials with short rest periods be-
tween blocks. In the first and last blocks, stimulus sequences were
unpredictable, with a 0.25 probability of each IS being presented on trial
t (Fig. 1b). In contrast, in the middle two blocks, the IS was drawn from a
predictable first-order Markov sequence. This created a sequence with a
simple structure in which the current stimulus on trial t was condition-
ally dependent on the stimulus of the previous trial, t � 1. Therefore,
there were 16 possible combinations (events) that determined the rela-
tionship between the IS on trial t and on trial t � 1. Specifically, sampling
from the distribution specified in the transition matrix, which quantified
the dependence among consecutive stimuli, generated predictable sequences
in which the IS order 1-2-3-4 occurred with high probability (Fig. 1c). Im-
portantly, the overall probability of each IS was equal across all blocks.

This design created a probabilistic context that allowed participants to
reduce the uncertainty about events before they occurred (Harrison et
al., 2006). Moreover, because of the probabilistic nature of these se-
quences, occasional violations occurred in the form of surprising or un-
expected stimuli that were not anticipated by the predictability of the
sequence. When these unexpected or surprising events occurred, partic-
ipants had to respond against their prior expectation about the forth-
coming stimulus. In contrast, in the unpredictable sequences of blocks 1
and 4, specific stimuli would be surprising because of the random sam-
pling, but these will occur against an overall low prior expectation for any
stimulus. Importantly, no explicit information about the underlying pat-
terns in each block was provided to participants. Participants were simply
instructed to react with speed and accuracy.

Behavioral analysis and statistics. For all correct responses, RT was
calculated as the time between IS onset and the subsequent button press.
Initially, we sought to quantify the average RT for each group during
unpredictable and predictable sequence blocks. Therefore, an average RT
was calculated across the two blocks of unpredictable sequence perfor-
mance. Because there were clear differences between PD patients and
controls (see Fig. 3a), this average was subtracted from both probable
and improbable responses during the predictable sequence blocks, re-
sulting in a difference RT (�RT) for both trial types. This allowed a
simple comparison between groups for the highly probable (�0.75) and
improbable (�0.11) trial types during the predictable sequence (Fig. 1b)
and enabled us to quantify the cost of a violation of the predictable
sequence. Remember that participants responded against their prior ex-
pectation about the forthcoming stimulus for improbable trial types.
Therefore, for each participant, an average �RT was calculated for prob-
able and improbable trial types during the predictable sequence.

Statistically, we compared the percentage of incorrect button re-
sponses (error), average RT during the unpredictable sequence, and av-
erage �RT for probable and improbable trial types during the predictable
sequence. Importantly, we compared the groups in a pairwise manner
because the PD (on vs off) comparison was a within-subject design,
whereas control versus PD was a between-subject design. Therefore,
repeated-measures ANOVAs (ANOVA-rm) compared medication
(within-subject design: PD-on vs PD-off) or group (between subject
design: PD-on/PD-off vs controls). Because the error data were not nor-
mally distributed, we used nonparametric equivalents. Estimates of effect
size are given as � 2, with 0 shown if � 2 � 0.05. Post hoc paired (within-
subject) or independent (between-subject) t tests explored significant
effects, with two-tailed scores being presented unless otherwise specified.
The threshold for all statistical comparisons was p � 0.05.

Estimating surprise and mutual information. In the current task, par-
ticipants were required to respond as fast as possible but would always
have some degree of uncertainty about the upcoming IS. This uncertainty
could be reduced with new observations, and learning would lead to the
establishment of prior expectations about upcoming IS. Because of the
probabilistic nature of the sequences, occasional violations would occur
in the form of unexpected IS. For these surprising IS, participants had to

respond against their prior expectation. Change of RTs to such surprising
IS correspond to the magnitude of the prediction error during predictable
sequences. In contrast, during unpredictable sequences, when prior expec-
tations would be overall small, occasionally more surprising IS occur against
an overall unpredictable context, with little or no prediction error.

We quantified the surprise enacted by a particular IS on a trial-by-trial
basis, using the assumption of an “ideal” observer. Several studies have
shown previously that human observers can compute the predictability
of sensory events and perform close to the performance of an ideal ob-
server (Carpenter and Williams, 1995; Reddi et al., 2003; Carpenter,
2004; Najemnik and Geisler, 2005; Behrens et al., 2007). Therefore, we
estimated the conditional probability using a Bayesian update scheme
(Strange et al., 2005; Harrison et al., 2006) in which we assumed that, at
the beginning of each block, participants started with the prior expecta-
tion of all IS being equally likely, as in previous work (Strange et al., 2005;
Harrison et al., 2006).

For each trial (t), there were four possible IS. Therefore, the conditional
probability of IS E at trial t, p(Et), was estimated from the number of occur-
rences of IS i up to trial t (written as ni

t, where i indexes the current IS type and
t the trial number). Thus, the estimate at trial t is given by the following:

pt	Et � i
 �
ni

t � 1

�i	ni
t � 1


, � p0	E0 � i
 �
1

4� .

As a result of the first-order Markov sequence, the IS occurring on the
previous trial, E(t � 1), could be used to form predictions for the IS
on trial t (Fig. 1c). An approximation of the joint probability distri-
bution can be estimated from a count of IS pairs up to trial t (written
as nij

t , where i and j index the current and previous IS type) and is
given by the following:

pt	Et � i, Et�1 � j
 �
nij

t � 1

�i, j	nij
t � 1


.

The degree of surprise conveyed by a particular IS pair is then quantified
as follows:

S	Et � i, Et�1 � j
 � �log2	p	Et � i, Et�1 � j

.

The surprise ( S) of observing IS type i on trial t after experiencing IS type
j on trial t � 1 is given by the negative log of its predicted joint probability.
Therefore, surprise is a stimulus-specific measure that reflects the unex-
pectedness of the current IS, given the previous IS, i.e., prediction error.
The amount of surprise conveyed by the occurrence of an IS is high when
an IS pair is infrequent. Accordingly, during predictable sequence blocks,
surprise will be overall low, but occasional violations occur in the form of
highly surprising infrequent IS pairs (see Fig. 4a). Surprising trials also
occur in the unpredictable sequence blocks, but in this case, such IS
appear in the context of an overall absence of predictability (see Fig. 4a).
We anticipated that PD patients off dopamine medication may have
particular problems with surprise during predictable but not unpredict-
able sequence blocks.

We also quantified the predictability of the current trial, ti, based on
the IS presented on the previous trial, ti � 1, given by the mutual infor-
mation (MI) between consecutive IS (Harrison et al., 2006). MI is the
reduction in uncertainty of the IS on the current trial t as a result of the
knowledge of the IS on the previous trial t � 1. Therefore, MI is a measure
of uncertainty that pertains to the overall context established by the
sequence (Harrison et al., 2006):

MI	Et � i, Et�1 � j
 � �Et
�Et�1

p	Et, Et�1
log
p	Et, Et�1


p	Et
p	Et�1

.

During the predictable blocks, MI steadily increases as the uncertainty of
IS type i on trial t, which is afforded by IS type j on trial t � 1, decreases
(see Fig. 4b). In contrast, during the unpredictable blocks, MI remains
low (see Fig. 4b). Therefore, with increased sampling during a predictable
sequence, an observer will learn and become more confident about the
conditional dependencies among pairs of IS. In contrast, MI will remain
low for unpredictable sequences because even with increased sampling,
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participants will not gain any confidence about the forthcoming IS, given
the previous one.

Data analysis. To assess how RT was associated with MI and surprise
on a trial-by-trial basis, a robust multiple regression was performed with
RT as the dependent variable and MI and surprise as independent vari-
ables. For each participant, independent regressions were performed on
each of the four blocks. The � values were then averaged across predict-
able and unpredictable blocks. Note that PD patients performance on
and off medication remained separate. Again, we compared the groups in
a pairwise manner because the PD (on vs off) comparison was a within-
subject design, whereas control versus PD was a between-subject design.
Therefore, ANOVA-rm compared � values across block type (unpredict-
able, predictable) and either medication (within subject design: PD-on vs
PD-off) or group (between-subject design: PD-on/PD-off vs controls).
Estimates of effect size are given as � 2. Post hoc paired (within-subject) or
independent (between-subject) t tests explored significant effects, with
two-tailed scores being presented unless otherwise specified. The thresh-
old for all statistical comparisons was p � 0.05. All data presented repre-
sent mean � SEM.

Results
Behavioral results
All groups were able to perform the task without difficulty, with
low error rates observed for the entire experiment. Across all trial
types, the percentage of errors did not significantly differ between
medication state (PD-on vs PD-off: Friedman’s test, �2 � 8, df �
5, p � 0.2) or group (PD-on/PD-off vs control: Kruskal–Wallis
test, �2 � 0.6, df � 1, p � 0.4) and were �6% (Table 2).

Figure 2 shows the average RT for each of the 16 possible
combinations of IS on the previous and the current trial, during
predictable blocks. It is clear that participants were able to learn
the relative probabilities between consecutive IS, as shown by
faster RTs to the highly probable combinations (gray boxes).
However, we were unable to perform statistics on these data be-
cause the probabilistic nature of the task meant that participants
often did not experience all 16 combinations. At a purely observa-
tionally basis, there is a general RT difference between controls and
PD patients (Fig. 2). In addition, the differences between PD-on and
PD-off appear greater for the improbable combinations (Fig. 2b).

To explore these results, we created average RTs for unpre-
dictable and predictable blocks. Therefore, for each participant,
an average RT was calculated for their performance during the
two unpredictable blocks. RT was similar for PD-on and PD-off,
but controls were on average faster (Fig. 3a). This is represented
by the nonsignificant difference between PD-on (956 � 76 ms)
and PD-off (975 � 77 ms; paired t test, t(9) � 0.5, p � 0.7,
Bonferroni’s corrected). In contrast, controls were on average
faster (814 � 27 ms) compared with PD patients both on (inde-
pendent t test, t(20) � 1.7, p � 0.05) and off (t(20) � 2, p � 0.03;
Fig. 3a) medication. Consequently, to compensate for this gen-
eral slowing of responses in PD and to allow the comparison
between PD patients and controls, we subtracted this value from
all RTs during the two blocks of predictable sequences (�RT).

During predictable sequences, there were highly probable
(�0.75; Fig. 2, gray boxes) and improbable (�0.11; Fig. 2, no
markers) IS combinations for trial t and t � 1. Therefore, an
average �RT was calculated for probable and improbable trial

types for each block of the predictable sequence. We found that
PD-off and PD-on showed similar improvements in RT for prob-
able trial types. In contrast, PD-off displayed a selective slowing
in RT to improbable trials (Fig. 3b). We compared �RT across
medication (PD-on, PD-off), trial type (probable, improbable),
and block (two). There was no main effect of medication
(ANOVA-rm, F(1,9) � 5, p � 0.054, � 2 � 0.08) or block (F(1,9) �
1, p � 0.3, � 2 � 0.02). However, the main effect of trial type
(F(1,9) � 82, p � 0.0005, � 2 � 0.67; Fig. 3b) and the interaction
between medication and trial type (F(1,9) � 5, p � 0.048, � 2 �
0.10) were significant. Because the interaction between medica-
tion, block, and trial type was not significant (F(1,9) � 0.02, p � 0.8,
�2 � 0), data were collapsed across blocks. For both PD-on and
PD-off, �RTs for probable trial types were significantly faster than
for improbable trial types (PD-on probable, �60 � 9 ms; improb-
able, 3 � 16, t(9) � 6, p � 0.0005; PD-off: probable, �54 � 20;
improbable, 62 � 14, t(9) � 5, p � 0.0005). Patients responded
equally well to probable trials (t(9) � 0.3, p � 0.7) but showed a
selective slowing of RTs to improbable trials when off medication
(t(9) � 3, p � 0.015; Fig. 3b).

A comparison between PD-on and control showed that perfor-
mance was similar across probable and improbable trial types (Fig.
3b). We compared the �RT of the group across trial type (probable,
improbable) and block (2). The main effect of group (ANOVA-rm,

Table 2. Percentage of error (incorrect button responses) for probable (Prob) and improbable (Improb) trial types during the predictable sequence and for the
unpredictable (Unpred) sequence

Control PD-on PD-off

Prob Improb Unpred Prob Improb Unpred Prob Improb Unpred

0.8 � 0:3 2.6 � 0:8 3.5 � 0:8.5 0.8 � 0:1 2.2 � 0:20 4 � 0:15 1 � 0:15 4.8 � 0:9 2 � 0:14

All data are median � range.

Figure 2. Faster RT for predictable stimuli. Average � SEM group RT for each of the 16
possible combinations between the IS on trial t and t � 1 for control (a) and PD patients (b) on
(black) and off (gray) dopamine medication. Gray boxes indicate IS combinations with a high
transition probability.
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F(1,20) � 0.03, p � 0.8, �2 � 0) was not significant, but there was a
significant main effect for both block (F(1,20) �9, p�0.007, �2 �0.10)
and trial type (F(1,20) �57, p�0.0005,�2 �0.55; Fig. 3b). Importantly,
all interactions were nonsignificant (F(1,20) � 0.4, p � 0.06, �2 �0.04).

Finally, PD-off showed similar RT improvements as control
during probable trial types but were slower to respond to im-
probable trials (Fig. 3b). We compared �RT between the PD-off
and control groups across trial type (probable, improbable) and
block (two). The main effect of group (ANOVA-rm, F(1,20) � 5, p �
0.04, �2 � 0.2) and trial type (F(1,20) � 10, p � 0.0005, �2 � 0.7; Fig.
3b) was significant, whereas the main effect of block was not signif-
icant (F(1,20) � 0.9, p � 0.3, � 2 � 0.01). In contrast to PD-on
versus control, the interaction between group, trial type, and
block was significant (F(1,20) � 4.8, p � 0.04, � 2 � 0.03). Inde-
pendent t tests showed that, for both blocks 1 and 2, PD-off
responded similarly to control participants for probable trial
types (PD-off: block 1 � �35 � 15 ms; block 2 � �74 � 26;
control: block 1 � �48 � 10; block 2 � �66 � 10; t(20) � 0.7, p �
0.5; Fig. 3b). In contrast and as predicted, for improbable trial
types, patients off medication were slower to respond (block 1:
PD-off � 48 � 18 ms; control � 6 � 13; t(20) � 1.8, p � 0.08;
block 2: PD-off � 75 � 22; control � �16 � 12; t(20) � 3.6, p �
0.002; Fig. 3b).

Model-based trial-by-trial analysis
These results suggest that PD-off have a specific deficit, evident as
a significant prolongation of RTs on trials that require AR. How-
ever, this analysis does not assess the effect of trial-by-trial
changes in the surprise (unexpectedness) of events, nor the pos-

sible differences between predictable and unpredictable environ-
ments. Therefore, we quantified the degree to which an IS
violated participants’ expectations (surprise) and the extent to
which an IS on the current trial could be predicted based on the IS
of the previous trial (MI) (Strange et al., 2005; Harrison et al.,
2006; Bestmann et al., 2008; Mars et al., 2008). To clarify, here
surprise is a stimulus-specific measure that reflects the unexpect-
edness of the current IS, given the previous IS (i.e., prediction
error). In contrast, here MI quantifies the uncertainty that relates
to the overall context established by the sequence (Harrison et al.,
2006). We obtained � values by regressing surprise and MI
against RT for each participant, separately for predictable and
unpredictable blocks.

Across all participants, increasing surprise was related to
slower RT in both predictable and unpredictable blocks. PD pa-
tients, on and off medication, and controls displayed a similar RT
deficit to surprise during the unpredictable sequence (� value:
control � 0.09 � 0.03; PD-on � 0.09 � 0.03; PD-off � 0.08 �
0.02). In contrast, PD-off showed an enhanced RT response to
surprise during the predictable sequence (control � 0.08 � 0.02;
PD-on � 0.10 � 0.03; PD-off � 0.18 � 0.02; Fig. 4a,c). There was
no significant within-subject effect of medication between PD-
off and PD-on (ANOVA-rm, F(1,9) � 4.5, p � 0.06, � 2 � 0.18) or
between-subject group effect for PD-off and control (F(1,20) �
4.1, p � 0.056, � 2 � 0.17). However, the interaction between
medication and block-type (F(1,9) � 11.8, p � 0.007, � 2 � 0.26)
as well as group (PD-off vs control) and block type (F(1,20) � 4.4,
p � 0.049, � 2 � 0.16) were significant. A paired post hoc t test
revealed a significant difference between PD-off and PD-on for
predictable blocks (t(9) � 4.6, p � 0.001). In addition, an inde-
pendent t test showed a similar difference between PD-off and
control (t(20) � 3, p � 0.007; Fig. 4a). Given that the degree of
dopamine depletion is strongly correlated with disease severity,
we investigated whether the change in PD patient UPDRS score
was correlated with the altered response to surprise (� values)
during a predictable sequence from on to off medication. How-
ever, the correlation was not significant (r � 0.2, n � 10, p � 0.5).
This result may be attributable to the homogeneity of our PD
patients; the range of disease severity was restricted because pa-
tients were required to press four buttons in a timely manner
while off dopamine medication. The main effect of group be-
tween PD-on and control (F(1,20) � 0.1, p � 0.7, � 2 � 0) and the
interaction between group and trial-type (F(1,20) � 0.08, p � 0.8,
� 2 � 0.04) were both nonsignificant. Because of the relatively
small number of participants, we performed a power analysis on
this critical result. With a partial � 2 value of 0.004 and effect size
of 0.08, power equates to 0.09. Importantly, adding an additional
100 participants would only increase the power to 0.2, suggesting
that the nonsignificant result between PD-on and control is reli-
able. Note that this power analysis can be generalized to all null
results with similar � 2 and effect size values.

Conversely, increasing MI was associated with faster RTs
across all participants for predictable blocks. Such a relationship
was not expected for unpredictable blocks, in which MI was min-
imal. Therefore, � values were negative during predictable blocks
(control � �0.1 � 0.01; PD-on � �0.1 � 0.03; PD-off �
�0.09 � 0.02) and near 0 for unpredictable blocks (control �
0.01 � 0.03; PD-on � 0.02 � 0.03; PD-off � �0.03 � 0.02; Fig.
4b,c). This shows that all three groups displayed faster RTs during
the predictable sequence by learning the predictable relationship
between consecutive IS. There was no significant main effect of
medication (ANOVA-rm, F(1,9) � 0.01, p � 0.9, � 2 � 0) or group
(F(1,20) � 0.1, p � 0.7, � 2 � 0), and the interaction between

Figure 3. PD-off show a prolongation of RTs to improbable trial types occurring within a
predictable sequence. a, Average � SEM RTs (milliseconds) for controls (green), PD-on (red),
and PD-off (blue) during unpredictable sequences. b, Difference between RTs during unpredict-
able versus predictable sequences (�RT). The probable and improbable trial types (events)
within the first and second block of the predictable sequence are shown.
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medication and block type (F(1,9) � 0.01, p � 0.9, � 2 � 0) and
group and block type (F(1,20) � 0.08, p � 0.7, � 2 � 0) were
nonsignificant. However, for all comparisons, there was a signif-
icant main effect of block type (F(1,9)�(1,20) � 22, p � 0.0005, � 2 �
0.55; Fig. 4b).

Model assumptions and model comparison
Our main result was the differential effect surprise had on RT
during the predictable sequence across the three groups. We note
that our analysis made several untested assumptions: first, that
participants act as an ideal observer who perfectly integrate past
observations within a block, with recent IS pairs having the same
influence on surprise as earlier observations (Strange et al., 2005;
Harrison et al., 2006; Bestmann et al., 2008; Mars et al., 2008). To
reiterate, several studies have shown previously that such ideal

observer models can provide accurate
estimates about the responses of human
observers to sensory events (Carpenter
and Williams, 1995; Reddi et al., 2003;
Carpenter, 2004; Najemnik and Geisler,
2005; Behrens et al., 2007). However,
discarding distant information can be
useful and release, for example, working
memory resources. Recent work sug-
gests that primary and executive brain
regions can be distinguished by the
number of past observations they repre-
sent (Harrison et al., 2011).

Based on such considerations, we ex-
plored whether our assumptions could in-
deed be adapted, by focusing on four
models that included the extreme scenarios
of no forgetting across the 100 trials of a pre-
dictable block (mforget_100), near-maximal
forgetting with the memory of previous
events lasting four trials (mforget_4), and two
intermediate stages in which the memory of
previous events lasted either 16 (mforget_16)
or 32 trials (mforget_32). This is similar to pre-
viously used approaches to model the im-
pact of surprise on corticospinal excitability
during action selection (Bestmann et al.,
2008). This allowed us to assess whether the
differences found in our initial analysis were
still present when considering a model that
evokes little or no surprise (mforget_4) and
also when the magnitude of surprise evoked
by the stimulus series is changed by integrat-
ing over more or less trials.

Figure 5a shows an example of the
trial-by-trial surprise obtained from each
of these four forgetting scenarios. For
each group, we performed a formal model
comparison between forgetting scenarios
using Bayesian model selection (Stephan
et al., 2009). Initially, for each participant
and model, a parametric empirical Bayes
estimate of the log evidence, p( y�m), was
calculated (Dempster et al., 1981). In
short, given these log evidences from all
subjects, we treated each model as a ran-
dom variable and estimated the parame-
ters of a Dirichlet distribution, which

describes the probabilities for all models considered (Stephan et
al., 2009), which then defines a multinomial distribution over the
model space. This allows for computing how likely it is that a
specific model caused the observed data of a randomly chosen
subject and, furthermore, the exceedance probability of one
model being more likely than any other model (Stephan et al.,
2009). Put simply, this approach can be viewed as a random-
effects analysis in which a (potentially different) model is as-
signed to each member of the group (Rosa et al., 2010). We used
the conditional model probability to quantify an exceedance
probability, i.e., our belief that a particular model is more likely
than any other model, given the data from all participants
(Stephan et al., 2009; Rosa et al., 2010).

For control, PD-on, and PD-off, the exceedance probabilities,
p(ri�yi), show that mforget_100 provides the most parsimonious expla-

Figure 4. PD-off display greater RT prolongation to surprising (unexpected) IS during a predictable sequence. For each block,
surprise (a) and MI (b) were regressed against RT. The � values were then averaged across the unpredictable and predictable
blocks and compared between control (green), PD-on (red), and PD-off (blue). For surprise, a positive � value indicated that RT was
positively correlated with surprise. For MI, a negative � value indicated that RT was negatively correlated with MI. a, Inset,
Trial-by-trial surprise (bits) was modeled for unpredictable (orange) and predictable (black) sequences. The amount of surprise
conveyed by the occurrence of an IS is high when an IS pair is infrequent. Accordingly, during predictable sequence blocks, surprise
will be overall low, but occasional violations occur in the form of highly surprising infrequent IS pairs. Surprising trials also occur in
the unpredictable sequence blocks, but, in this case, such events appear against an overall absence of predictability. Therefore,
during predictable sequences, surprise represented the size of the prediction error, whereas it simply represented the rarity of
stimuli during unpredictable sequences. Scatter plot of RT against surprise in the predictable blocks for a representative participant
in PD-off. b, Inset, Trial-by-trial MI (bits) was modeled for the unpredictable (orange) and predictable (black) sequences. For all
blocks, MI is the reduction in uncertainty of the IS on the current trial t attributable to the knowledge of the IS on the previous trial
t�1. To clarify, surprise is a stimulus-specific measure that reflects the unexpectedness of the current IS, given the previous IS (i.e.,
prediction error). Although MI is a measure of uncertainty that pertains to the overall context established by the sequence (Harrison
et al., 2006), during the predictable sequences, MI will gradually increase as the observer learns and becomes more confident about
the conditional dependencies among pairs of IS. In contrast, MI will remain low for unpredictable sequences because, even with
increased sampling, participants will not gain any confidence about the forthcoming stimulus, given the previous one. Scatter plot
of RT against MI in the predictable blocks for a representative participant in PD-off.
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nation of the data (control � 0.83; PD-on � 0.92; PD-off � 0.88;
Fig. 5b) relative to the other three models (control � mforget_32: 0.16,
mforget_16: 0.005, mforget_4: 0.005; PD-on � mforget_32: 0.05, mforget_16:
0.01, mforget_4: 0.008; PD-off � mforget_32: 0.008, mforget_16: 0.05,
mforget_4: 0.06). In Figure 5c, we illustrate the distribution of log-
evidence differences for models mforget_4 and mforget_100. Positive val-
ues indicate stronger evidence for mforget_100 compared with the
alternative model, here shown for each participant. Therefore, Fig-
ure 5c shows that, given the data, there was consistently more evi-
dence for mforget_100, regardless of experimental group. Importantly,
this analysis provides credence to our model assumptions that par-
ticipants act as ideal observers across a single block.

A second assumption was uniform priors, i.e., the prior expec-
tation of all events being equally likely, at the beginning of each
block. However, carryover effects are observed in the form of
larger RT improvements in the second predictable block (Fig.
3b). Therefore, surprise and MI were estimated by integrating
across the 200 trials of the predictable blocks. Once again, we
observed similar results in which all groups showed a comparable
RT response to MI (� value: control � �0.09 � 0.02; PD-on �
�0.1 � 0.07; PD-off � �0.11 � 0.04), but PD-off displayed an
enhanced RT response to surprise (control � 0.09 � 0.03; PD-
on � 0.11 � 0.03; PD-off � 0.19 � 0.02). There was no signifi-
cant difference for the � values obtained for MI across
medication or group (t tests; t(9�20) � 0.5, p � 0.6, Bonferroni’s
corrected). In contrast, there was a significant difference for sur-
prise between PD-off and either PD-on (paired t test, t(9) � 3, p �
0.015) or control (independent t test, t(20) � 2.1, p � 0.05).

Finally, we compared responses to surprise in the first unpre-
dictable and second predictable block. These could be regarded as
measures of unpredictable and predictable performance that
were uncontaminated by carryover effects. Interestingly, the dif-
ferences among groups were enhanced by this analysis. Although
the regression of surprise against RT obtained similar � values in
block 1 (unpredictable: control � 0.1 � 0.04; PD-on � 0.06 �
0.04; PD-off � 0.06 � 0.03), PD-off had greater � values in block
3 (predictable: control � 0.1 � 0.04; PD-on � 0.1 � 0.03; PD-
off � 0.27 � 0.05). There was a significant interaction between
group/medication and block for PD-off and either PD-on
(F(1,9) � 5.7, p � 0.04, � 2 � 0.4) or control (F(1,20) � 10, p �
0.005, � 2 � 0.3). t tests revealed, specifically in block 3, a signif-
icant difference between PD-off and either PD-on (paired t test,
t(9) � 3.4, p � 0.008) or control (independent t test, t(20) � 2.5,
p � 0.019). Importantly, these additional results are similar to the
original analysis and suggest that the assumption of uniform pri-
ors (i.e., the prior expectation of all events being equally likely) at
the beginning of each block did not spuriously cause our ob-
served results.

Discussion
In an informative environment, such as a predictable sequence,
PD patients off dopaminergic medication were able to learn the
overall predictability of events but were impaired in reacting to
violations of their predictions that required AR. In contrast, when
having overall low expectations for any event, as in the unpredict-
able sequence, rare and surprising events did not involve AR, and
unmedicated PD patients did not show a behavioral deficit com-
pared with medicated PD patients and healthy controls. This
suggests that PD patients off dopaminergic medication displayed
a specific deficit in AR that was driven by the prediction error
(unexpectedness) of the upcoming action.

Although previous research has investigated the role of dopa-
mine in reward prediction error (Schultz, 1997), probabilistic
sequence learning (Seo et al., 2010), and unexpected set shifting
(Cools et al., 2001b), there is little work on the contribution of
dopamine to prediction error during predictable and unpredict-
able sequences. It has been shown that PD patients have difficulty
in changing motor or cognitive “set” (Cools et al., 1984, 2001b;
Brown and Marsden, 1988) and that dopaminergic medication
remediates impairments in task switching (Cools et al., 2001a).
These results were explained by the role dopamine plays in facil-
itating the “focusing function” of the BG (Redgrave et al., 1999;
Cools et al., 2001b; Frank, 2005). Specifically, during behavioral
switching, dopamine facilitates the initiation of the unexpected
action and suppresses the unwanted expected action (Gerfen and

Figure 5. The influence of forgetting. a, Examples of trial-by-trial surprise (bits) obtained
from a model without forgetting across the 100 trials of a predictable block (mforget_100), near-
maximal forgetting with the memory of previous events lasting four trials (mforget_4), and two
intermediate stages in which the memory of previous events lasted either 16 (mforget_16) or 32
(mforget_32) trials. b, For each group, we performed a formal model comparison between for-
getting scenarios using Bayesian model selection: control (green), PD-on (red), and PD-off
(blue). Given log evidences, p( y�m), from all subjects, we treated each model as a random
variable and estimated the parameters of a Dirichlet distribution that describes the probabilities
for all models considered. We used the conditional model probability to quantify an exceedance
probability, p(ri�yi), i.e., our belief that a particular model is more likely than any other model. c,
Distribution of differences in log-evidence for models mforget_4 and mforget_100, for each partic-
ipant and all three groups. Positive values indicate stronger evidence, given the data, for
mforget_100.

548 • J. Neurosci., January 11, 2012 • 32(2):542–550 Galea et al. • Dopamine, Prediction Error, and Action Reprogramming



Engber, 1992; Cohen and Servan-Schreiber, 1993; Mirenowicz
and Schultz, 1996; Cools et al., 2001b; Frank, 2005; Isoda and
Hikosaka, 2007; Hikosaka and Isoda, 2010). However, the BG
appears to be more involved when switching from an automatic
to a more difficult task than vice versa (Cameron et al., 2009).
This suggests that it may have a specific role in boosting
weaker response signals to override dominant response signals
(Cameron et al., 2009). Therefore, the relative weighting of
these signals could be important in terms of the switching cost.
In fact, our results support this view because both healthy con-
trols and PD patients exhibit an AR deficit that was modulated by
the unexpectedness of the upcoming action. Interestingly, this
impairment is enhanced in PD patients off medication.

The active inference model, proposed by Friston et al. (2006,
2010), provides a possible explanation for these effects. Within
this framework, dopamine is important for balancing bottom-up
sensory information with top-down prior beliefs when making
inferences about sensory cues that have affordance. In other
words, dopamine encodes the value of the sensory prediction
error (Krugel et al., 2009; Friston et al., 2010, 2012). Therefore,
when we experience unexpected sensory information with high
precision, we are prepared to make fast corrections of the pre-
potent but incorrect action. In contrast, low precision of sensory
information causes slower responses to prediction error and an
increased requirement for sensory information. This is an intui-
tive consequence of decreasing precision, which causes the infer-
ence to be over-reliant on incorrect top-down predictions and
less confident about correct sensory information.

Reduced dopamine, as in unmedicated PD patients, would
result in low precision of sensory information (Friston et al.,
2010). This could explain the specific deficit to surprising events
that occur within an overall predictable environment. First, when
a violation occurs in such an environment, it causes a sensory
prediction error. To respond to this prediction error, one has to
reprogram the selected action based on the correct sensory infor-
mation. With low precision, the value of this is diminished and so
it will take longer for AR to occur because there is a need for a
greater accumulation of sensory information before bottom-up
information overcomes top-down predictions. As the sensory
prediction error increases with the surprise of the upcoming ac-
tion, so would the action selection deficit associated with low
precision. Second, in an unpredictable environment, surprising
events occur but against an overall low expectation for any event.
In this case, there is little sensory prediction and consequently
minimal AR. Therefore, the reduced value of sensory informa-
tion, originating from low precision, should have a reduced in-
fluence on action selection in an overall unpredictable context
because strong top-down predictions would not exist.

The established view of dopamine is that its activity represents
reward prediction error (Schultz, 1998). This is in contrast to our
current hypothesis that states that dopamine encodes the reliabil-
ity of the prediction error rather than the prediction error itself
(Friston et al., 2010).The critical difference between these hy-
potheses is that, if dopamine codes reward prediction error, then
the prediction itself will be lost. In contrast, if dopamine encodes
reliability or precision, then the prediction error will be intact,
but its reliability will be diminished. If the actual prediction error
is lost, then one may predict that PD patients would never re-
spond to an unexpected event but continue with the expected
action, i.e., produce an error. However, this is not the case because
error rates were similar; it simply took longer for patients to respond
to the unexpected event. We suggest that the present results provide

evidence that dopamine may encode the precision of the sensory
prediction error rather than the prediction error itself.

Physiologically, this scheme is compatible with the current
notion that dopamine bursts in the BG are not related solely to
unexpected rewards but also occur at short latency after any salient
event, whether rewarding or not (Redgrave et al., 1999; Redgrave and
Gurney, 2006). In the present experiments, we propose that bursts
would occur in response to unexpected visual cues and that the size
of the burst would be proportional to the prediction error. Animal
experiments show that high levels of dopamine shift striatal neurons
into an “up state” in which they respond more readily to corticos-
triatal inputs (Plotkin et al., 2011). We suggest that this is a way in
which the system can highlight the relevance of the cortical inputs
that occur during surprising events.

In the active interference framework, these bursts could rep-
resent the high levels of dopamine and would effectively be ac-
cording high precision to incoming information. When patients
are off levodopa therapy, dopamine bursts are reduced and sa-
liency information is lost; administration of levodopa, which is a
precursor to dopamine, increases presynaptic and extrasynaptic
dopamine levels and restores phasic dopaminergic activity (Fox
et al., 2006; Voon et al., 2010). It is important to note that the
restoration of phasic dopamine with levodopa in PD patients is
only possible if there are surviving dopamine neurons whose
phasic release can be enhanced. This scenario could exist in the
present study because the patients were mild/moderate and able
to complete the task, suggesting that at least some remaining
dopamine innervation existed. Alternatively, patients off medi-
cation could have reduced tonic levels of dopamine that were
restored with medication. Once again, high levels of dopamine
may represent increased precision. However, it is unclear how the
fast-acting but long-lasting changes observed with tonic dopa-
mine could underlie such a trial-by-trial behavioral effect ob-
served in the present study.

Importantly for this task, PD patients, on and off dopaminer-
gic medication, were able to learn the stimulus–response associ-
ations. Recently, it has been suggested that the ventral striatum is
important for the general learning of stimulus–response associa-
tions, whereas the dorsal striatum promotes integration of vari-
ous influences on action selection (MacDonald et al., 2011).
Because dopamine depletion is not uniform but more pro-
nounced in the dorsal striatum compared with the ventral stria-
tum in the early stages of PD (Bernheimer et al., 1973; Frey et al.,
1996; Kwak et al., 2010), it may not be surprising that we specif-
ically observed a deficit in trial-by-trial AR that was ameliorated
by dopamine medication. In addition, the clear separation be-
tween the ability of PD patients off medication to learn the pre-
dictable information and inability to appropriately react to
violations of this prediction suggests that distinct brain regions
were involved. Previous research suggests that learning such
structure or regularities is hippocampal dependent (Strange et al.,
2005; Harrison et al., 2006), whereas responding to violations or
prediction errors appear to involve the striatum (McClure et al.,
2003; den Ouden et al., 2010).

In conclusion, PD patients off medication showed an en-
hanced action selection deficit to unexpected events that
evoked a prediction error and required AR. To our knowledge,
this study is the first to demonstrate that prediction error
modulates the AR impairment observed in PD patients. We
propose that dopamine encodes the reliability, or precision, of
sensory information. In this framework, PD patients off med-
ication have low dopamine levels and are therefore less confi-
dent about incoming sensory information and more reliant on
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top-down predictions. As a consequence, when these internal
predictions are incorrect, i.e., prediction error, PD patients
take longer to respond appropriately to the unexpected but
correct sensory information.
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