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Abstract: B-lymphocyte-induced maturation protein 1 (BLIMP1) exists as two major 

isoforms, α and β, which arise from alternate promoters. Inactivation of the full length 

BLIMP1α isoform is thought to contribute to B cell lymphomagenesis by blocking  

post-germinal centre (GC) B cell differentiation. In contrast, the shorter β isoform is 

functionally
 

impaired and over-expressed in several haematological malignancies, 
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including diffuse large B cell lymphomas (DLBCL). We have studied the influence on 

BLIMP1β expression of the Epstein-Barr virus (EBV), a human herpesvirus that is 

implicated in the pathogenesis of several GC-derived lymphomas, including a subset of 

DLBCL and Hodgkin’s lymphoma (HL). We show that BLIMP1β expression is increased 

following the EBV infection of normal human tonsillar GC B cells. We also show that this 

change in expression is accompanied by hypomethylation of the BLIMP1β-specific 

promoter. Furthermore, we confirmed previous reports that the BLIMP1β promoter is 

hypomethylated in DLBCL cell lines and show for the first time that BLIMP1β is 

hypomethylated in the Hodgkin/Reed-Sternberg (HRS) cells of HL. Our results provide 

evidence in support of a role for BLIMP1β in the pathogenesis of EBV-associated B  

cell lymphomas. 

Keywords: BLIMP1; Epstein-Barr virus; hypomethylation; Hodgkin’s lymphoma 

 

1. Introduction 

The PRDM1 gene encodes two major isoforms, designated BLIMP1α and BLIMP1β, which arise 

from alternate promoters [1]. The full-length BLIMP1α protein orchestrates plasma cell differentiation 

by repressing genetic programs associated with the germinal centre (GC) stages, while at the same 

time activating those programs associated with plasma cell functions [2,3]. In contrast, BLIMP1β is 

transcribed from a promoter and exon located upstream of exon 4 of the PRDM1 gene [1]. The 

BLIMP1β protein lacks the first 101 amino acids of BLIMP1α and instead contains three amino acids 

fused to amino acids 102–789 of BLIMP1α. BLIMP1β, which lacks most of the positive regulatory 

(PR) domain and N-terminal acidic region, has a diminished capacity to repress target genes [1]. Since 

BLIMP1β contains the DNA-binding domain but bears a disrupted regulatory domain it has been 

suggested that it behaves as an inhibitor of BLIMP1α [1]. 

Other members of the PRDM family, including PRDM2
 
(RIZ), PRDM3 (MDS1-EVI1) and 

PRDM16 (MEL1) can also express a full-length protein containing the PR domain as well as a 

truncated protein
 
missing the PR domain [4]. The balance of expression of these different PRDM 

isoforms is disrupted in many cancers and results from both the over-expression of the truncated 

proteins as well as the loss of expression of the full-length proteins [5–12]. For example, RIZ1, the 

full-length product of PRDM2, is a tumour suppressor protein because it demonstrates a loss of 

function in many types of human cancers with genomic deletions or point mutations and because 

RIZ1-deficient mice have been shown to develop diffuse large B cell lymphomas (DLBCL) [5–7]. In 

contrast, RIZ2, which lacks the PR domain, is over-expressed in breast cancer and in acute 

lymphoblastic leukaemias [8,9]. The transcript of the long form of the MDS1-EVI1/PRDM3 gene is 

expressed at very low levels in leukaemia cells, whereas the short form of the EVI1 gene is over-

expressed in murine leukaemia cells with viral integration in the EVI1 locus and in human leukaemias 

with chromosome 3q abnormalities [10–15]. The human MEL1/PRDM16 also has two alternative 

protein forms, a long form, MEL1, and a short form, MEL1S. The latter is over-expressed in 

leukaemia cells carrying the t(1;3) translocation [16,17].  
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Inactivation of the PRDM1 gene leading to loss of BLIMP1α function occurs in a subset of DLBCL 

of the activated B-cell type and is believed to contribute to lymphomagenesis by blocking post-GC  

B cell differentiation [18,19]. In contrast, the over-expression of BLIMP1β has been reported in 

multiple myeloma, DLBCL and in some T cell lymphomas [1,20–22]. BLIMP1β over-expression is 

associated with advanced Ann Arbor stage and
 
a high-risk International Prognostic Index in T cell 

lymphomas and with shorter patient survival in both DLBCL and T cell lymphoma patients [21,22]. In 

DLBCL, the increased BLIMP1β mRNA levels are associated with hypomethylation of the BLIMP1β 

promoter [23]. In both B- and T-cell lymphomas, BLIMP1β expression might also be associated with 

in vitro resistance to chemotherapeutic agents [21,22]. 

The Epstein-Barr virus (EBV) is a human herpesvirus that has been shown to be involved in the 

pathogenesis of several GC-derived lymphomas, including classical Hodgkin’s lymphoma (HL) and 

more recently a subset of DLBCL [24,25]. A previous study reported that EBV infection of myeloma 

cells decreased BLIMP1 expression, but this study was not able to differentiate between the different 

isoforms [26]. Recently we showed that EBV infection of GC B cells resulted in the down-regulation 

of the BLIMP1α isoform [27]. Here we have investigated the influence of EBV on the expression and 

methylation status of the BLIMP1β isoform.  

2. Results and Discussion 

2.1. Induction of BLIMP1β Expression Following EBV Infection of Primary Human B cells 

We first explored the impact of EBV infection on BLIMP1β expression in B cells. We studied 

BLIMP1β expression in three LCLs derived from GC B cells as well as in five LCLs established  

by the PBMCs of healthy donors. The generation of the GC-derived LCLs has been described 

previously [28]; these LCLs were examined six weeks following infection, at which time these cells 

were shown to be polyclonal in nature and to express the typical Latency III pattern of EBV viral 

genes [28]. We found that when compared to normal un-infected GC B cells, the LCLs showed 

increased expression of BLIMP1β mRNA (Figure 1A). Because we had previously shown that EBV 

infection of B cells was accompanied by the decreased expression of the BLIMP1α isoform [27], we 

next compared the relative levels of each isoform in GC B cells and GC-derived LCLs. Figure 1B 

shows that EBV infection of GC B cells dramatically reduced the BLIMP1α:BLIMP1β ratio. For 

example, in the matched pair, GC#1 and SL1-LCL, the BLIMP1α:BLIMP1β ratio fell from 25 (1/0.04) 

in normal GC B cells to 1.47 (1/0.68) in EBV-transformed GC B cells.  

We then used an antibody that recognizes both BLIMP1α and BLIMP1β isoforms to study 

BLIMP1β protein expression in these samples by immunoblotting. Figure 1C shows that while normal 

GC B cells expressed only the BLIMP1α isoform, the GC B cell-derived LCLs expressed both 

BLIMP1α and BLIMP1β protein. The BLIMP1β protein consistently ran at a slightly higher molecular 

weight than in U266 cells which we used as a positive control. In U266 cells and in one LCL, we also 

observed a slightly heavier band running above the BLIMP1α isoforms (marked with *); this could 

represent the recently described sumoylated form of BLIMP1 [29,30]. Shorter exposure of these blots 

also revealed that whereas the BLIMP1α protein separated as a single sharp band in GC B cells, it 

appeared as a weaker double band in the GC-derived LCLs (data not shown). A further band migrating 
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at approximately 88 kDa was also seen in the GC-derived LCLs and U266 cells, but not in GC B cells. 

This is likely to correspond to the recently reported BLIMP1Δ6 isoform, which migrates at this 

molecular weight [31,32]. We also studied BLIMP1β protein expression in four LCLs established from 

the PBMCs of healthy donors. Figure 1D shows that BLIMP1β was detectable in all the studied LCLs. 

Although BLIMP1β protein levels varied between these PBMCs-derived LCLs, they correlated well 

with the mRNA levels (shown in Figure 1A). The BLIMP1β protein was not detectable in normal B 

cells isolated from peripheral blood (data not shown). 

Figure 1. Induction of B-lymphocyte-induced maturation protein 1 (BLIMP1β) expression 

following Epstein-Barr virus (EBV) infection of primary human B cells. 
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Figure 1. Cont. 

 

(A) Q-RT-PCR analysis shows increased expression of the BLIMP1β isoform in three 

lymphoblastoid cell lines derived from GC B cells (SL1-3-LCL) and in five LCLs established from 

PBMCs, compared to normal GC B cells isolated from nine donors. SL1-LCL and GC#1 are a 

matched pair from the same patient. (B) Relative levels of BLIMP1α and BLIMP1β isoforms in 

GC B cells and GC B cell-derived LCLs; the BLIMP1α:BLIMP1β ratio is decreased in the LCLs.  

(C) Immunoblotting revealed that while normal GC B cells expressed only the BLIMP1α isoform, 

all GC B cells-derived LCLs expressed BLIMP1β as well as the presumed BLIMP1Δ isoform. A 

slightly heavier band running above the BLIMP1α isoforms was observed in U266 and SL3-LCL 

(marked with *); possibly representing the recently described sumoylated form of BLIMP1α. U266 

cells were used as a positive control. (D) LCLs derived from PBMCs expressed variable levels of 

BLIMP1β protein.  

2.2. The BLIMP1β-specific Promoter is Hypomethylated in EBV-infected Human Germinal Center B cells 

Because it has recently been shown that the increased expression of BLIMP1β observed in DLBCL 

is accompanied by the hypo-methylation of the BLIMP1β-specific promoter [23], we used 

pyrosequencing to investigate the methylation status of BLIMP1β in EBV-infected GC B cells. Figure 2 

shows that relative to normal GC B cells, all 11 CpGs within the BLIMP1β-specific promoter were 

hypomethylated in the GC-derived LCLs. We conclude that the over-expression of BLIMP1β in  

EBV-infected primary human GC B cells is accompanied by the hypomethylation of the BLIMP1β-

specific promoter. 
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Figure 2. The BLIMP1β-specific promoter is hypomethylated in EBV-infected primary 

human germinal center B cells.  

 

(A) Schematic of part of the BLIMP1β-specific promoter analysed by pyrosequencing. The 

transcriptional start site (TSS) is indicated with an arrow and the analysed CpG sites are numbered 

1–11. The promoter region analyzed using methylation specific PCR (MSP) is indicated with an 

arrow which overlapped CpG 4–8. (B) Pyrosequencing reveals that compared to GC B cells, the 

BLIMP1β-specific promoter is hypomethylated in the GC-derived LCLs.  

2.3. Hypomethylation and Increased Expression of BLIMP1β in Hodgkin’s Lymphoma 

We next used pyrosequencing to investigate the methylation status of the BLIMP1β-specific 

promoter in HL-derived cell lines. Figure 3A shows that the BLIMP1β-specific promoter was 

hypomethylated in the three HL cell lines examined (L591, L428, KMH2). We used MSP to confirm 

loss of methylation of the BLIMP1β-specific promoter in these three HL cell lines as well as in a 

further two HL cell lines (L540 and L1236) and in several DLBCL lines and T cell lymphoma-derived 

lines (Supplementary Figure 1). We observed that in the HL cell lines, the hypomethylation of 

BLIMP1β was accompanied by an increase in BLIMP1β mRNA and in most cases by an increase in 

BLIMP1β protein (Figure 3B, 3C). Although we found hypomethylation of BLIMP1β in KMH2 cells, 

these cells showed only low levels of BLIMP1β mRNA and barely detectable BLIMP1β protein 

(Figure 3B and 3C), suggesting that the hypomethylation of BLIMP1β is alone insufficient for 

BLIMP1β protein expression in this cell line. Furthermore although EBV infection of KMH2 cells 

increased BLIMP1β mRNA levels, there was no discernible increase in BLIMP1β protein. We also 

found that the Burkitt lymphoma cell lines BL2 and Rael did not express BLIMP1β mRNA (Figure 3B). 

Consistent with this, we found the BLIMP1β isoform to be methylated in Rael cells  

(Supplementary Figure 1).  
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Figure 3. Hypomethylation of BLIMP1β in Hodgkin’s lymphoma. 

 

 

     

(A) Pyrosequencing reveals that compared to GC B cells (Figure 2B), the BLIMP1β-specific 

promoter is hypomethylated in representative HL-derived cell lines (KMH2, L591, L428). Results 

from un-methylated (UC) and methylated controls (MC) are included. (B) and (C) Detection of 

BLIMP1β mRNA and protein in HL cell lines. (D) Nested MSP analysis shows that the BLIMP1β 

promoter is hypo-methylated in micro-dissected HRS cells in six of seven cases. Both methylated 

and un-methylated bands were detected in normal GC cells (GC3) micro-dissected from lymph 

nodes. HEK293 cells were used as a positive control for both MSP and USP. 
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Finally, we examined the methylation status of the BLIMP1β-specific promoter in primary HRS 

cells which we micro-dissected from seven cases of HL. We used MSP for this analysis because 

conventional pyrosequencing is not sufficiently sensitive to detect methylation in small numbers  

of microdissected cells. Figure 3D shows that the BLIMP1β promoter was hypo-methylated in HRS 

cells in six of seven cases. Both methylated and un-methylated bands were detected in normal GC B 

cells micro-dissected from reactive lymph nodes. However, it should be noted that we observed that 

the BLIMP1β promoter was hypomethylated in HRS cells from both EBV-positive and EBV-negative 

cases of HL (Supplementary Table 3).  

2.4. Discussion of Results 

Plasma cell differentiation is regulated by the coordinated expression of a number of transcription 

factors. Among these is BLIMP1, which can exist as two major isoforms, designated BLIMP1α and 

BLIMP1β [1]. BLIMP1α is essential for plasma cell differentiation because it extinguishes the gene-

expression program of germinal center B cells, while at the same time inducing genes required for 

terminal differentiation [2,3]. In contrast, the truncated BLIMP1β protein has a functional DNA-

binding domain but contains a disrupted regulatory domain [1]. In a previous study we reported that 

EBV could down-regulate BLIMP1α expression in primary human GC B cells [27]. In the present 

study, we show that EBV infection of primary human GC B cells is followed by the increased 

expression of BLIMP1β. Although we previously showed that the EBV-encoded LMP1 was sufficient 

to down-regulate BLIMP1α in GC B cells, we found that this viral gene does not up-regulate 

BLIMP1β in these cells (data not shown).  

The up-regulation of BLIMP1β in EBV-infected B cells could be of functional importance. Other 

truncated PRDM family members when over-expressed can act as inhibitors of their respective full-

length isoform. For example, the effects of MDS1-EVI1, a PR domain containing form of the MDS1-EVI1 

gene, can be reversed by over-expressing EVI1, the PR lacking isoform [11]. Furthermore, EVI1 has 

been shown to repress TGF-β signaling, through interaction with Smad3, while MDS1-EVI1 augments 

the response to the growth inhibitory effect of TGF-β [12–15]. Moreover, the truncated form of the 

PRDM2 gene (RIZ2), which lacks the PR domain, has been shown to inhibit trans-activation activity 

of the oestrogen receptor by RIZ1, the full length product of PRDM2 [33].  

We observed that the up-regulation of BLIMP1β was accompanied by reduced expression of 

BLIMP1α resulting in similar levels of expression of these two isoforms in EBV infected GC-derived 

cells. BLIMP1β has been shown to have only 20% of the transcriptional repressive activity of 

BLIMP1α and can form hetero-dimers with BLIMP1α [1]. Therefore, we suppose that BLIMP1β may 

counteract the ability of BLIMP1α to drive plasma cell differentiation and in turn prevent induction of 

the EBV lytic cycle. This could be important for the subsequent development of EBV-associated 

lymphomas because viral replication usually leads to cell death, an event which is presumably 

incompatible with lymphomagenesis.  

Apart from the up-regulation of BLIMP1β, additional mechanisms might contribute to the 

inactivation of BLIMP1α. Our immunoblotting analysis revealed the presence of a slightly heavier 

protein running above the BLIMP1α isoforms in U266 cells and in several of the LCLs. This is likely 

to represent the recently described sumoylated form of BLIMP1α, which is rapidly degraded and could 
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be impaired in its ability to induce plasma cell differentiation [29,30]. We also observed an 

intermediate band running between BLIMP1α and BLIMP1β which most likely corresponds to  

the BLIMP1Δ isoform created by an alternative splicing of PRDM1 exon 6 in humans or exon 7 in 

mice [31,32,34]. The resulting BLIMP1Δ protein lacks the first 3 zinc fingers and is therefore 

predicted to be non-functional [34]. However, despite having impaired DNA binding activity, the 

BLIMP1Δ form was shown to interfere with the activity of full-length BLIMP1α, presumably by 

forming non-functional heterodimers [31].  

We also observed that the increased expression of BLIMP1β in EBV-transformed GC B cells was 

accompanied by hypomethylation of the BLIMP1β-specific promoter. These results are consistent with 

a previous report showing that in DLBCL, increased BLIMP1β mRNA levels are associated with 

BLIMP1β promoter hypomethylation [23], and also with our previous report that EBV infection of GC 

B cells is followed by the widespread hypomethylation of cellular genes [28]. In the latter study we 

showed that EBV infection of GC B cells was followed shortly afterwards by the up-regulation of the 

DNA methyltransferase, DNMT3A and by the down-regulation of DNMT3B and DNMT1, a pattern of 

expression which was recapitulated in HL [28]. It remains to be established which, if any, of the 

DNMTs are involved in regulating the BLIMP1β-specific promoter in EBV-transformed B cells. 

However, we also found that in HL cell lines, BLIMP1β promoter hypomethylation was not always 

accompanied by BLIMP1β protein expression suggesting that in some cases promoter 

hypomethylation alone may not be sufficient for protein expression.  

EBV is implicated in the pathogenesis of several GC-derived lymphomas, which include HL and a 

subset of DLBCL of the elderly and immunosuppressed [24,25]. In the present study, we not only 

confirmed previous reports that the BLIMP1β promoter is hypomethylated in DLBCL cell lines [23] 

but we also showed that BLIMP1β is frequently hypomethylated in the HRS cells of HL. 

Immunohistochemistry has been used previously to show that BLIMP1 protein is expressed in HRS 

cells in some cases of HL [35–38]. Although, it would be of interest to know which BLIMP1 isoform 

is expressed in primary HRS cells, an antibody, which can differentiate between the different BLIMP1 

isoforms is not available at the present time. 

We observed BLIMP1β promoter hypomethylation in HRS cells from both EBV-positive and  

EBV-negative cases of HL. These data suggest that the over-expression of BLIMP1β could be 

involved in the pathogenesis of both EBV-positive and EBV-negative tumours; BLIMP1β might be 

required for the arrest of terminal differentiation which is generally regarded as an important 

component in the pathogenesis of most, if not all, GC-derived B cell lymphomas. However, an 

alternative possibility is that the induction of BLIMP1β expression is a tumor- or cell cycle-related 

phenomenon and occurs independently of EBV infection in HRS cells. Further studies are required to 

determine if and how BLIMP1β contributes to B cell lymphomagenesis and also to identify the 

mechanisms responsible for the regulation of BLIMP1β hypomethylation and expression in Hodgkin’s 

lymphoma. 
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3. Experimental Section  

3.1. Cells 

The GC B cells were obtained from patients undergoing routine tonsillectomy. The peripheral blood 

mononuclear cells were obtained from healthy volunteers. LCLs were established by infecting tonsillar 

GC B cells isolated from three separate donors with 2089 wild type EBV [28] and are referred to 

throughout as SL1-LCL, SL2-LCL, and SL3-LCL. LCLs derived from peripheral blood mononuclear 

B cells (PBMCs) PER213-LCL, PER219-LCL, PER165-LCL, A4-LCL, HK-LCL were established 

using the reference EBV strain B95.8 and were a gift of Dr Heather Long and Dr Nikki Smith 

(University of Birmingham, United Kingdom). KMH2, L428, HDLM2, HD-My-Z, L1236, L540 are 

EBV-negative HL cell lines [39–44]. L591 is EBV-positive HL cell line [45]. KMH2 EBV is derived 

from EBV-negative KMH2 cells infected with Akata-derived recombinant virus and maintained under 

geneticin selection [24]. BL2, CA46 and BJAB are EBV-negative BL cell lines [46–48]. Rael, Raji, 

Ag876 and Namalwa are EBV-positive BL cell lines [49–52]. OCI-Ly1, 3, 7, 8, and-18  

are EBV-negative DLBCL lines [53]. OCI-Ly17 and Oci-Ly13.2 are EBV-negative T cell lymphoma 

lines [53]. U266 are multiple myeloma cells which served as a positive control for BLIMP1  

expression [54]. All cell lines were cultured at 37 °C in 5% CO2 in RPMI1640 growth media 

supplemented with 10% foetal calf serum, 2mM L-glutamine and 1% penicillin-streptomycin solution.  

3.2. Reverse-Transcriptase-PCR  

RNA was extracted using RNeasy Mini Kit or Micro Kit including removal of genomic DNA with 

RNase-Free DNase Set (QIAGEN). cDNA was generated in a reaction consisting of 400 ng of RNA, 

250 ng of random primers (Promega), 10 mM dNTP Mix (Roche Diagnostics) and SuperScript® III 

Reverse Transcriptase (Invitrogen) following the protocol supplied by the manufacturer. If required, 

cDNA was purified using GenEluteTM PCR Clean-Up kit (Sigma-Aldrich). 

3.3. Quantitative PCR  

All real-time PCR assays were performed using an ABI Prism 7700 sequence detection system 

(Applied Biosystems). A final reaction volume of 25 µL contained 1× TaqMan universal PCR 

mastermix (Applied Biosystems), 2.5–25.0 pmol primers, 5 pmol probe, 1.5 µL of house-keeping 

assay and 5 µL cDNA (equivalent to required ng input of RNA). Thermal-cycling conditions were: 2 

minutes at 50 °C, 12 minutes at 95 °C and 40–50 rounds of 15 seconds at 95 °C and 1 minute at 60 °C. 

All test samples were run in triplicate and template-negative reactions served as controls. The probe 

targeting BLIMP1β isoform was published elsewhere [20], but for our study it was re-labelled with 

minor groove binder (MGB™) reporter dye at the 5’ end and non-fluorescent quencher (NFQ) at the 3’ 

end and purchased from Applied Biosystems. All other real-time PCRs were performed using 

commercially available assays (Supplementary Table 1). The 2-Delta-Delta CT method was used to 

quantify expression relative to the housekeeping control. The normalized values were expressed 

relative to the reference sample, which was set to a relative quantity value of 1 [55]. 
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3.4. Bisulphite Modification and Pyrosequencing  

Genomic DNA (500 ng) was bisulphite converted using the EZ DNA methylation kit (Zymo 

Research). All pyrosequencing primers were designed using Biotage PSQ primer design software. 

Biotinylated, non-biotinylated and sequencing primers are listed in Supplementary Table 2. The PCR 

was performed in a total volume of 50 µL using 25 µL hotstart taq master mix (Thermo Scientific),  

5 pmol biotinylated primer, 10 pmol non-biotinylated primer and 10 µL bisulphite modified DNA. The 

pyrosequencing reactions were performed on a Pyromark ID system (Biotage) and analysed using Pyro 

Q-CpG software (Biotage). 100ng unmethylated control (UC) and methylated control (MC) DNA 

(Millipore) was bisulphite modified and run with each pyrosequencing reaction. 

3.5. Methylation-Specific PCR (MSP)  

Genomic DNA was treated with sodium meta-bisulphite (Sigma) as previously described [56], but 

without restriction endonuclease digestion. MSP was performed according to our previous method [57]. 

Methylation-specific primers were: for methylated promoter (221-bp product), PRDM1bm1  

(5’-ATTTAGTTTGACGTCGTTAGTC-3’) and PRDM1bm3 (5’-TTATCGTCTTTTCATATTCG-3’); 

for unmethylated promoter (227-bp product), PRDM1bu1 (5’-GATTTAGTTTGATGTTGTTAGTT-3’) 

and PRDM1bu3 (5’-CAATTTTATCATCTTTTCATATTCA-3’). The MSP primers amplified a 

product overlapping CpG 4–8 as indicated on Figure 2. They did not amplify any DNA without 

bisulphite treatment and therefore were shown to be specific. For each sample, 0.5 µL of bisulphite-

treated DNA (~25 ng measured before bisulphite treatment) was PCR amplified using 0.3125 U of 

AmpliTaq Gold (Perkin Elmer, Norwalk, CT) for cell line DNA (or 0.46875 U of AmpliTaq Gold for 

normal PBMCs, lymph node, and primary HL DNA), with 2 mmol/L MgCl2, 0.2 mmol/L dNTP and 

0.6 umol/L each primer in a 12.5 µL reaction volume. MSP was conducted with hotstart taq master 

mix at 95 °C for 10 min, then 41 cycles (94 °C, 30s; 58 °C, 30s; 72 °C, 30s) for MSP, or 40 cycles (94 °C, 

30s; 58 °C, 30s; 7 °C, 30s) for USP, followed by 72 °C for 5 mins. MSP products were analyzed on 

2% agarose gel. A normally methylated gene, ANKRD30A, was also used as a positive control for 

those samples in which BLIMP1β methylation was undetectable.  

3.6. Methylation Analysis of Micro-dissected HRS Cells by Nested-MSP 

Two hundred HRS cells were micro-dissected from CD30-stained cryosections of each HL case 

using the PALM Microbeam (Carl Zeiss MicroImaging GmbH). Only CD30 positive cells with HRS 

morphology were microdissected. DNA was extracted from these cells using the QIAamp DNA Mini 

kit. DNA was then bisulphite-treated and amplified. For nested-MSP detecting methylated alleles,  

first-round PCR was performed using methylation-specific primers PRDM1bm1 and PRDM1bm3  

(95 °C for 10 min, 40 cycles (94 °C, 30 s; 58 °C, 30 s; 72 °C, 30 s), followed by 72 °C for 5 mins), 

using 0.3125 U of AmpliTaq Gold in a 6.25 ml reaction. 3 ml of 10x diluted PCR products were used 

for a nested-MSP detecting methylated product (113-bp) with PRDM1bm1 and PRDM1bm2  

(5’-TACTACAATAAATAACAAATAAACG-3’), 0.625 U of AmpliTaq Gold in a 12.5 µL reaction. 

PCR was performed at 95 °C for 10 min, 65 cycles (94 °C, 30 s; 53 °C, 30 s; 72 °C, 30 s), followed by 

72 °C for 5 mins. For nested-MSP detecting unmethylated alleles, primers PRDM1bu1 and PRDM1bu3 
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were used for the first-round PCR (40 cycles, with 0.3125 U of AmpliTaq Gold in a 6.25 µL reaction).  

3 mL of 10× diluted PCR products was used in nested-MSP (114-bp product) with unmethylation-

specific primers PRDM1bu1 and PRDM1bu2 (5’-TACTACAATAAATAACAAA TAAACA-3’)  

(65 cycles, with 0.625 U of AmpliTaq Gold in a 12.5 µL reaction).  

3.7. Immunoblotting 

Cells lysates were prepared in RIPA buffer (10 mM Tris-HCL (pH 8.0); 140 mM NaCl; 1 mM 

EDTA; 1% triton, 0.1% SDS, 0.1% Sodium deoxycholate, protease inhibitors) and briefly sonicated. 

Protein was quantified using Bio-Rad DC Protein Assay Kit (Bio-Rad). 30 ug of U266 lysate or 75 ug 

of LCLs and GC B cells lysates were combined with 2× Laemmli sample buffer before SDS-PAGE 

(8% gel) and transferred to 0.45 m nitrocellulose transfer membrane (Protan BA85 membrane). The 

membrane was incubated with BLIMP1 antibody (Cell Signalling, 9115, rabbit polyclonal) diluted in 

5% non-fat milk powder in TBS-Tween-20 (1:1,000) at 4 °C overnight. After a PBS-Tween-20 (0.1%) 

wash, blots were incubated for 30 minutes with anti-rabbit HRP-conjugated secondary IgG (Dako, 

1:2,000). Anti-beta Tubulin (HRP-conjugated) antibody (Abcam, ab21058, rabbit polyclonal) or  

anti-Mcm-7 (Sigma-Aldrich, M7931, mouse monoclonal), both diluted in 5% non-fat milk powder in 

TBS-Tween-20 (1:2,000) were applied at room temperature for 1 hour. After a PBS-Tween-20 (0.1%) 

wash, detection was performed with enhanced chemiluminescence (GE Healthcare). 

4. Conclusions  

EBV infection leads not only to the down-regulation of BLIMP1α but also to the up-regulation of 

BLIMP1β. The up-regulation of BLIMP1β is associated with hypomethylation of the BLIMP1β 

specific promoter.  
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Supplementary Figure 1. Methylation-specific PCR (MSP) analysis of the BLIMP1β-

promoter in normal tissues and lymphoma cell lines.  

 
As expected both methylated and un-methylated forms are detectable in most normal adult tissues 

(A), including normal PBMCs and normal lymph nodes (B). In contrast, only un-methylated forms 

are detectable in the four B-cell derived HL cell lines (L1236, L428, L591 and KMH2), and in one 

of two T cell-derived HL cell lines (L540) (C). Only un-methylated BLIMP1β was detected in all 

five DLBCL lines (OCI-Ly1, 3, 7, 8, and-18) and in one T cell lymphoma line (OCI-Ly17).  

Supplementary Table 1. Commercial Real-time-PCR assays. 

Gene name Applied Biosystem Gene expression 

assay  

BLIMP1 (PRDM1) α isoform Hs01068508_m1 

GAPDH 4310886E 

β2m 4310884E 
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Supplementary Table 2. Primers used in pyrosequencing. 

primer sequence 

PCR forward biotinylated primer (region 1) TAGGTTTGGTTAGTGA 

PCR reverse non biotinylated primer (region 1) CACTTTTATCTTTCCA 

Sequencing primer (region 1) TTTTATCAATTTTTCC 

PCR forward non biotinylated primer (region 2) GGTGGAGGATAGTTGA 

PCR reverse biotinylated primer (region 2) AAATAAACCAAATTCC 

Sequencing primer (region 2) TGTATAGTTGTTTGGG 

Supplementary Table 3. EBV status of primary HL cases micro-dissected for analysis of 

BLIMP1β methylation in HRS cells. 

LCM case No. Original MD HRS case 

No. 

EBV status BLIMP1βmethylation 

LCM1 4/054 − U 

LCM2 4/133 − M 

LCM3 05/452 − W 

LCM4 05/363 + W 

LCM5 05/009 − W 

LCM6 05/092 + U 

LCM7 05/494 − U 

Key: U = unmethylated; M = methylated; W = weakly methylated. 


