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a  b  s  t  r  a  c  t

The  current  study  aimed  to examine  the  gene  specific  mechanisms  by  which  the  actions  of  the  vita-
min  D  receptor  (VDR)  are  distorted  in prostate  cancer.  Transcriptional  responses  toward  the  VDR  ligand,
1�,25(OH)2D3,  were  examined  in non-malignant  prostate  epithelial  cells  (RWPE-1)  and  compared  to
the  1�,25(OH)2D3-recalcitrant  prostate  cancer  cells  (PC-3).  Time  resolved  transcriptional  studies  for  two
VDR  target  genes  revealed  selective  attenuation  and  repression  of VDR  transcriptional  responses  in  PC-
3  cells.  For  example,  responses  in  PC-3  cells  revealed  suppressed  responsiveness  of IGFBP3  and  G0S2.
Furthermore,  Chromatin  Immunoprecipitation  (ChIP)  assays  revealed  that  suppressed  transcriptional
responses  in  PC-3  cells  of  IGFBP3  and  G0S2  were  associated  with  selective  VDR-induced  NCOR1  enrich-
pigenetics
DR

ment  at  VDR-binding  regions  on  target-gene  promoter  regions.  We  propose  that  VDR  inappropriately
recruits  co-repressors  in prostate  cancer  cells.  Subsequent  direct  and  indirect  mechanisms  may  induce
local  DNA  methylation  and  stable  transcriptional  silencing.  Thus  a  transient  epigenetic  process  medi-
ated  by  co-repressor  binding,  namely,  the  control  of  H3K9  acetylation,  is  distorted  to  favor  a  more  stable
epigenetic  event,  namely  DNA  methylation.

This  article  is  part  of  a  Special  Issue  entitled  ‘Vitamin  D Workshop’.

© 2012 Elsevier Ltd. All rights reserved.
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. Introduction

Epigenetic mechanisms are central to the evolution of malig-

process of androgen withdrawal was exploited to define apopto-
sis [2]. The AR co-operates with WNT  and mTOR pathways [3,4] to
induce prostate epithelial cell proliferation. Equally, other nuclear
ant phenotypes. The androgen receptor (AR) [1] exerts a profound
ontrol on the growth and differentiation of normal prostate. Its
ellular actions have been studied extensively; for example the

∗ Corresponding author. Tel.: +1 7168453037; fax: +1 7168458857.
E-mail  address: Moray.Campbell@RoswellPark.org (M.J. Campbell).

960-0760/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.jsbmb.2012.10.002
receptors, such VDR, PPARs, and RARs, exert mitotic restraint,
at least in part by antagonizing WNT  signaling and activation
of cell cycle arrest through regulation of gene targets such as
CDKN1A (encodes p21(waf1/cip1)), IGFBP3 [5–11] and G0S2 [12,13].

In prostate cancer (CaP) the central actions of the AR are exploited
in androgen deprivation therapy (ADT) to derive significant clini-
cal benefit. Ultimately this is not sustained and treatment failure

dx.doi.org/10.1016/j.jsbmb.2012.10.002
http://www.sciencedirect.com/science/journal/09600760
http://www.elsevier.com/locate/jsbmb
mailto:Moray.Campbell@RoswellPark.org
dx.doi.org/10.1016/j.jsbmb.2012.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsbmb.2012.10.002&domain=pdf
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ollowing ADT is characterized by ADT-recurrent CaP (ADT-RCaP),
hich is invariably lethal.

The impact of ADT on the malignant cell presents a formidable
nvironment that cancer cells must adapt to. This process is mul-
ifaceted and includes loss of mitogenic signals downstream of
he AR, triggering apoptosis, hypoxia (due to endothelial cell col-
apse) and inflammation that has an associated mileu of cytokine
nd other signals. Central aspects of the escape mechanisms to
his restraint include increasing intrinsic AR ligand production
nd AR signaling capacity. However the transcriptional actions of
he AR in ADT-RCaP are not merely a re-iteration of the normal
R transcriptome, but rather represent a fundamentally different

ranscriptome. Epigenetic events are central to the evolution of the
ltered AR signaling capacity.

The  AR transcriptional program evolves toward increased tar-
eting of proliferative gene promoters and decreased targeting
f pro-differentiation genes [14,15]. For example, the oncogenic
ctions of the TMPRSS2/ETS fusion, a common event in CaP [16],
re critical precisely because the TMPRSS2 promoter is sustained in
n AR responsive state. More recently genome-wide ChIP-chip and
hIP-Seq approaches have revealed considerable variability in the
argeted transcriptional networks [17–19]. For example in CaP, as
he disease progresses, there are altered levels of H3K4me1 and 2
n gene enhancer regions in the ADT-RCaP state, where cells have
volved resistance to anti-androgen therapies. In this new state the
argeted increase of H3K4me1 and 2 at different enhancer regions
llows the cells to initiate a different AR transcriptional program
20].

These events are not unique to CaP. In a range of solid tumors and
yeloid leukemia, nuclear receptors that normally exert mitotic

estraint, such as the VDR, RARs and PPARs, become skewed,
ith selective suppression of gene targets associated with anti-
roliferative actions [21–26]. Thus RARs, PPARs and the VDR display
ltered transcriptomes in CaP as a result of distorted epigenetic
vents (reviewed in Ref. [27]). Dissecting and exploiting the epige-
etic mechanisms contributing to altered nuclear receptor function
ffer significant therapeutic promise. Therefore the development of
aP provides a key system to study the evolution of the malignant
pi-genome, and defining these mechanisms is of clinical signifi-
ance.

Loss and gain of function of transcriptional co-activators and
o-repressors associates with transcriptional rigidity. Co-activators
nd co-repressors each display both loss and gain of function, and
an result in similar phenotypes. Thus the loss of a co-activator can
ead to suppressed ability of a transcription factor to trans-activate

 given target. Similarly the gain of function of co-repressors can
imit transactivation ability and enhance trans-repression. The
pposite patterns will in turn enhance the trans-activation func-
ion. Compared to their co-activator cousins, the co-repressors are
omewhat under-explored. Ambiguity remains over how and to
hat extent these actions are distorted in cancer (reviewed in Ref.

27]). The sheer diversity of transcription factors and co-repressors
nteractions contributes significantly to this uncertainty. This in
urn is compounded by the fact that there are functionally different
o-repressor isoforms [28–30] and that co-repressor actions appear
pecific to each phase of the cell cycle [31–33].

The proto-typical co-repressors NCOR1 and NCOR2/SMRT were
loned in 1995 using nuclear receptor as bait [34,35], and both
roteins exist in large multimeric complexes (∼2.0 MDa) [36]
ith histone deacetylases and other histone modifying enzymes

reviewed in Ref. [37]). These complexes are recruited to many
ifferent transcription factors, to repress gene activity. The impor-

ance of targeted basal repression by co-repressors is evident in the
ethality of the Ncor1−/− and Ncor2/Smrt−/− mice [38].

Evidence has also emerged that NCOR1 and NCOR2/SMRT com-
lexes are dynamically recruited to activated transcription factors
& Molecular Biology 136 (2013) 258– 263 259

leading  to active transrepression [39], for example associated with
suppression of inflammation [40]. Similarly, co-repressor induced
transrepression of the glucocorticoid receptor has been established
on a genome-wide scale [41]. Finally, de-repression occurs whereby
loss of co-repressor association, following activated transcription
factor, leads to up-regulation of target genes independently of the
sustained presence of the transcription factor [42]. The first direct
measurement of the genome-wide distribution of NCOR2/SMRT
has established basal and activated distribution during adipogene-
sis and identified repression of key differentiation programs and
hinted at more dynamic interactions with euchromatic regions
than hitherto suspected [43,44].

Well-established oncogenic roles for NCOR1 and NCOR2/SMRT
have been elucidated in acute promyelocytic leukemia that results
from a fusion between RAR�, and either the promyelocytic
leukemia (PML) or promyelocytic leukemia zinc finger (PLZF)
genes [23]. Both chimeric proteins sustain NCOR1 interactions
and consequently RAR�-mediated cell differentiation is blocked,
in part, as a result of maintaining a condensed chromatin structure
around the promoters of RAR� target genes that govern normal
hematopoietic differentiation [45,46]. The importance of inappro-
priate NCOR1 binding in these disease states has been exploited
to stratify patients to tailored therapies. Furthermore the ability of
steroidal nuclear receptor such as the AR and ER� to bind NCOR1
and NCOR2/SMRT is important to therapeutic exploitation with
receptor antagonists in prostate and breast cancer. Therefore co-
repressors appear to play roles in firstly driving critical oncogenic
events, but secondly providing a rational targeted strategy toward
the key histone modifying enzymes contained within the complex.

Expression profiling in solid tumors has revealed altered NCOR1
and NCOR2/SMRT expression and localization, for example in
breast, bladder, and prostate cancers [21,24,26,47,48]. However, to
date, uncertainty remains over their precise role in solid tumors,
especially in the case of breast and prostate cancers where the
etiology of disease is intimately driven by the actions of steroid
nuclear receptors. In CaP cells, elevated levels of NCOR2/SMRT have
been detected and suppress VDR responsiveness [21]. Similarly,
PPAR actions are disrupted and can be targeted selectively by using
HDAC inhibitor co-treatments [32,49]. More specifically, elevated
NCOR1, and to a lesser extent NCOR2/SMRT correlated with, and
functionally drove, the selective insensitivity of PPAR�,� recep-
tors toward dietary derived and therapeutic ligands most clearly
in ADT-RCaP cells [32]. Elevated levels of NCOR1 occur in ER� neg-
ative breast cancer cells and in turn attenuate anti-mitotic actions
of VDR. Again, this molecular lesion can be targeted in ER� neg-
ative breast cancer cell lines with co-treatments of VDR ligand
(e.g. 1�,25(OH)2D3) plus HDAC inhibitors resulting in selective
re-expression of VDR target genes, notably VDUP1 and GADD45A
[24]. Together, the studies in breast and prostate cancer suggest
that NR shows specificity in their interactions with co-repressors.
NCOR1 appears to be involved in the regulation of receptors such
as the VDR and PPARs and NCOR2/SMRT with steroid nuclear
receptors; this may  reflect the emergent specificities of recep-
tor interactions observed in the murine co-repressor knockout
models [50,38,51,52].

In  contrast, a parallel literature has revealed loss of NCOR1
and NCOR2/SMRT is associated with the ADT-RCaP phenotype and
enhances AR transcriptional programs [53,54]. Similar roles for
NCOR1 and NCOR2/SMRT appear in the development of breast can-
cer and Tamoxifen resistance [47]. In contrast, increased NCOR1
and NCOR2/SMRT expression in CaP suppresses the responsiveness
of other nuclear receptors that usually exert mitotic restraint, such

as VDR and PPAR�,� [32,47–49]. Thus, in CaP progression, there
are conflicting selection pressures on co-repressor expression and
recruitment. To address this conflict we examined the kinetics of
NCOR1 recruitment to genes that display differing transcriptional
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Fig. 1. Dynamic regulation of VDR target genes. Panel A. RWPE-1 and PC-3 cells
were  treated with 1�,25(OH)2D3 (100 nM)  or EtOH and mRNA was  extracted at the
indicated time points, and accumulation of IGFBP3 and G0S2 was  measured using
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Fig. 2. NCOR1 differentially associates with target genes. RWPE-1 and PC-3 cells
were treated with 1�,25(OH)2D3 (100 nM)  or EtOH for indicated time points. Asso-
ciation  of NCOR1 was measured at each region using X-ChIP with ChIP grade
antibodies  and normalized, and given as fold enrichment over input [31]. Enrich-
ment  was  measured using Q-PCR with primers specific to these regions that
aqMan Q-RT-PCR. Accumulation of each target is given as log2 (fold change). Each
ata point represented the mean of triplicate experiments in triplicate wells ±S.E.M.
*p < 0.05, **p < 0.01, ***p < 0.001).

esponsiveness toward 1�,25(OH)2D3 in non-malignant and malig-
ant prostate epithelial cells.

. Results

.1. Altered regulation of IGFBP3 and G0S2 in prostate epithelial
ells

Non-malignant and malignant prostate cell lines display a
ange of anti-proliferative responses toward 1�,25(OH)2D3. Non-
alignant prostate epithelial RWPE-1 cell is highly responsive

oward 1�,25(OH)2D3 [31] whereas the PC-3 CaP cell line, derived
rom a metastasis [55], is recalcitrant to the anti-proliferative
ctions of 1�,25(OH)2D3 [21,32,56].

As a functional indicator of 1�,25(OH)2D3 actions, VDR-
ediated gene regulatory actions were examined in RWPE-1 and

C-3 cells. Time-resolved regulation studies were undertaken with
GFBP3 and G0S2. The time-resolved kinetics in RWPE-1 and PC-

 cells for the genes are shown in Fig. 1. The kinetics of IGFBP3
nd G0S2 mRNA regulation were highly pronounced in RWPE-1
ells. In contrast, the mRNA was significantly reduced in PC-3 at
ultiple time points. Together these data indicate that gene regu-

ation by 1�,25(OH)2D3 was most dynamic in cells that were most
esponsive to the anti-proliferative effects (RWPE-1 cells). By com-
arison, in PC-3 cells, the mRNA regulation profiles were selectively
ttenuated.

.2. Temporal distribution of NCOR1 to target genes is altered in

˛,25(OH)2D3-recalcitrant cells

Q-ChIP was undertaken to examine recruitment of NCOR1
o the TSS of G0S2 and a well-characterized VDRE on IGFBP3
amplified  products <150 bp. All measurements were performed in technical dupli-
cate and biological triplicate (*p < 0.05, **p < 0.01, ***p < 0.001).

[57] in PC-3 cells compared to RWPE-1 cells (Fig. 2). Enhanced
1�,25(OH)2D3-regulated NCOR1 recruitment was  evident in
1�,25(OH)2D3-recalcitrant PC-3 cells compared to 1�,25(OH)2D3-
sensitive RWPE-1 at these regions examined. This occurred rapidly
on both genes in PC-3 cells within the first hour of exposure to
1�,25(OH)2D3, compared to RWPE-1 cells, NCOR1 appeared to
cycle off and be subsequently recruited back at later time points; at
24 h on the IGFBP3 response element and at 2 and 12 h on the TSS
of G0S2 (data not shown). These findings suggest the underlying
mechanisms of recruitment of NCOR1 in response to VDR activation
differ significantly between the two cell types.

3. Discussion

The VDR governs and influences anti-mitotic and pro-
differentiation transcriptional programs and these actions are
distorted in CaP cells [10]. Therefore dissecting the 1�,25(OH)2D3-
recalcitrant phenotype is of potential clinical significance. To
address this aim, we  examined whether the co-repressor protein
NCOR1 was  differentially recruited to target genes that are known
to regulate these anti-mitotic transcriptional programs.

As  a starting point to these questions the current study exam-
ined differential mRNA regulation of two  VDR target genes in
different prostate cell models. These approaches revealed that
1�,25(OH)2D3 regulated expression was  attenuated and even
repressed compared to vehicle controls in PC-3 cells that are
recalcitrant to the anti-mitotic actions of 1�,25(OH)2D3, com-

pared to RWPE-1 cells. Building on these studies, we  examined
the binding of NCOR1 following VDR activation and revealed that
1�,25(OH)2D3 induced greater NCOR1 association on the IGFBP3
and G0S2 promoters in PC-3 cells, compared to RWPE-1 cells. Thus
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COR1 was sustained and enriched at VDR binding sites to differ-
nt extents and at different time points. Probably reflecting looping
vents, the TSS showed sustained NCOR1 enrichment throughout
he time course [58].

It  is now over 30 years since the initial reports demonstrated
he anticancer actions of 1�,25(OH)2D3 [59–61]. Following these
tudies, anti-proliferative effects were demonstrated in a wide vari-
ty of cancer cell lines, including those from prostate [5,62–64],
s well as xenograft and transgenic CaP models [65,66]. As the
nti-cancer effects of the ligand emerged, large-scale epidemi-
logical studies found inverse associations between circulating
5(OH)D3 and cancer risk and advanced disease [67–75]. How-
ver, while in vitro, in vivo and epidemiological data support links
etween replete VDR signaling, growth restraint and broad anti-
ancer activities, clinical exploitation of this receptor has been
imited. A significant impediment to translation remains the inabil-
ty to predict accurately which patients will respond to either
hemoprevention or chemotherapy strategies centered on vitamin

 compounds. The mechanisms that drive this resistant pheno-
ype are often illusive and probably involve multiple aspects of
isruption. Key mechanisms include gene amplification of the
�,25(OH)2D3 metabolizing enzyme CYP24A1 [76] and repression
f the VDR by more general repressors such as SNAIL [77]. The pro-
ess of inappropriate co-repressor recruitment leading to stable
ene silencing also contributes to this phenotype and in particu-
ar may  shed light on why the VDR and other nuclear receptors
re often expressed in non-malignant and retained in malignant
rostate epithelial cells [32].

The process of inappropriate co-repressor recruitment may  lead
o stable gene silencing and in turn shed light on why  the VDR
nd other nuclear receptors are expressed in non-malignant and
etained in malignant prostate epithelial cells seemingly indepen-
ent of the antiproliferative response [32].

The differential recruitment of co-repressors also addresses
nother ambiguity in their cancer biology, namely the impact
f altered expression of co-repressors. Increased NCOR1 and
COR2/SMRT expression occurs also in breast and bladder cancer
nd suppressed the responsiveness of nuclear receptors that exert
itotic restraint, such as VDR and PPAR�,� [21,24,26,32,47–49,78].

n  contrast, other studies have shown that down-regulated NCOR1
nd NCOR2/SMRT enhanced AR transcriptional programs in CaP
53,54,79]. The current study suggests that distorted co-repressor
ecruitment may  provide a route for the selective silencing of criti-
al transcriptional programs and thereby allow CaP cells to escape
DR-regulated mitotic restraint.

There is compelling evidence that histone and DNA methylation
rocesses disrupt transcriptional actions, both alone and together.
or example, one consequence of NCOR1 and NCOR2/SMRT asso-
iation at target genes is the loss of H3K9ac and accumulation
f H3K9me2, allowing the potential for hypermethylation at
djacent CpG regions. Further links exist between NCOR1 and
NA methylation through its interaction with KAISO [80]. Simi-

arly regions of H3K9 and −K27 methylation, have the potential
o recruit heterochromatin binding protein 1 (HP1) [81]. The
ecruitment of HP1 in turn re-enforces the recruitment of H3K9
ethylase (KMT1A/SUV39H1) [82] and DNA methyltransferases

DNMTs) [83]; enzymes that add and sustain repressive methyl-
tion marks to histones and CpG (reviewed in Ref. [84]). Thus the
rocesses of repressive histone modifications and DNA methylation
ecome self-reinforcing. To complement stable DNA methylation
f genomic regions, transcription by nuclear receptors appears to
e associated with dynamic changes in DNA methylation [85–87].

t therefore seems possible that one consequence of increased
o-repressor recruitment to target genes is the loss of H3K9ac
nd the accumulation of H3K9me2 that may  facilitate hyper-
ethylation at adjacent CpG regions. Thus co-repressor actions
& Molecular Biology 136 (2013) 258– 263 261

can  direct DNA methylation either through the histone modifica-
tions that they drive or through the physical association of DNA
methyltransferases. In this manner the inappropriate recruitment
of co-repressors may  attract the DNA methylation machinery and
drive selective and stable gene silencing. It is interesting to note
also that the VDR has also been shown to regulate specific histone
demethylases [88] adding a further layer of complexity to these
relationships and the specificity of gene locus targeting.

4.  Materials and methods

4.1.  Agents

1�,25(OH)2D3 (gift of Dr. Milan Uskokovic, BioXell S.p.A., Italy)
stored as 1 mM stocks in ethanol.

4.2. Q-RT-PCR

RNA was  isolated using TRizol (Invitrogen). Target gene expres-
sion was quantitated on an ABI 7900 (Applied Biosystems®)
machine using TaqMan assays. Measurements were performed in
technical and biological triplicate. The statistical significance was
calculated using Student’s t-test.

4.3. ChIP protocols

X-ChIP  was used to measure the association of NCOR1 bind-
ing as described previously [31]. Briefly, chromatin from 1.5 × 106

mid-exponential cells was  cross-linked. Pre-cleared inputs were
immunoprecipited with NCOR1 (Abcam ab24552). Complexes
were recovered using magnetic beads, washed, cross-linking was
reversed and further cleared DNA was recovered by standard pre-
cipitation approaches. 25 ng DNA was  used per Q-PCR reaction
using SYBRgreen with pre-optimized primers as described previ-
ously [31]. Student’s t-test was  used to calculate the significant
enrichment.
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