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ORIGINAL ARTICLE

Endocrine Care

Mitotane Therapy in Adrenocortical Cancer Induces
CYP3A4 and Inhibits 5a-Reductase, Explaining the
Need for Personalized Glucocorticoid and Androgen
Replacement

Vasileios Chortis,* Angela E. Taylor,* Petra Schneider, Jeremy W. Tomlinson,
Beverly A. Hughes, Donna M. O’Neil, Rossella Libé, Bruno Allolio,

Xavier Bertagna, Jérdbme Bertherat, Felix Beuschlein, Martin Fassnacht,

Niki Karavitaki, Massimo Mannelli, Franco Mantero, Giuseppe Opocher,
Emilio Porfiri, Marcus Quinkler, Mark Sherlock, Massimo Terzolo,

Peter Nightingale, Cedric H. L. Shackleton, Paul M. Stewart, Stefanie Hahner,
and Wiebke Arlt"

Context: Mitotane [1-(2-chlorophenyl)-1-(4-chlorophenyl)-2,2-dichloroethane] is the first-line treat-
ment for metastatic adrenocortical carcinoma (ACC) and is also regularly used in the adjuvant setting
after presumed complete removal of the primary tumor. Mitotane is considered an adrenolytic sub-
stance, but there is limited information on distinct effects on steroidogenesis. However, adrenal in-
sufficiency and male hypogonadism are widely recognized side effects of mitotane treatment.

Objective: Our objective was to define the impact of mitotane treatment on in vivo steroidogenesis
in patients with ACC.

Setting and Design: At seven European specialist referral centers for adrenal tumors, we analyzed
24-h urine samples (n = 127) collected from patients with ACCbefore and during mitotane therapy
in the adjuvant setting (n = 23) or for metastatic ACC (n = 104). Urinary steroid metabolite
excretion was profiled by gas chromatography/mass spectrometry in comparison with healthy
controls (n = 88).

Results: We found a sharp increase in the excretion of 63-hydroxycortisol over cortisol (P < 0.001),
indicative of a strong induction of the major drug-metabolizing enzyme cytochrome P450 3A4. The
contribution of 63-hydroxycortisol to total glucocorticoid metabolites increased from 2% (median,
interquartile range 1-4%) to 56% (39-71%) during mitotane treatment. Furthermore, we docu-
mented strong inhibition of systemic 5a-reductase activity, indicated by a significant decrease in
S5a-reduced steroids, including 5a-tetrahydrocortisol, 5a-tetrahydrocorticosterone, and andros-
terone (all P < 0.001). The degree of inhibition was similar to that in patients with inactivating
Sa-reductase type 2 mutations (n = 23) and patients receiving finasteride (n = 5), but cluster
analysis of steroid data revealed a pattern of inhibition distinct from these two groups. Longitu-
dinal data showed rapid onset and long-lasting duration of the observed effects.

Conclusions: Cytochrome P450 3A4 induction by mitotane resultsin rapidinactivation of more than
50% of administered hydrocortisone, explaining the need for doubling hydrocortisone replace-
ment in mitotane-treated patients. Strong inhibition of 5a-reductase activity is in line with the
clinical observation of relative inefficiency of testosterone replacement in mitotane-treated men,
calling for replacement by 5a-reduced androgens. (J Clin Endocrinol Metab 98: 161-171, 2013)

ISSN Print 0021-972X  ISSN Online 1945-7197 *V.C. and A.E.T. are equal first authors.

Printed in U.S.A. t Author affiliations are shown at the bottom of the next page.

Copyright © 2013 by The Endocrine Society Abbreviations: ACC, Adrenocortical carcinoma; An/Et, ratio of androsterone to etio-
doi: 10.1210/jc.2012-2851 Received July 23, 2012. Accepted October 23, 2012. cholanolone; Cl, confidence interval; CYP, cytochrome P450; GC, gas chromatography;

First Published Online November 16, 2012

LDA, linear discriminant analysis; MS, mass spectrometry; 6BOHF/F, ratio of 68-hydroxy-
cortisol to cortisol; PCA, principal component analysis; Q1, quartile 1; 5a-THB/THB, ratio
of 5a-tetrahydrocorticosterone/tetrahydrocorticosterone; 5a-THF/THF, ratio of Sa-tetra-
hydrocortisol to tetrahydrocortisol.
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drenocortical carcinoma (ACC) is a rare cancer,
A with an incidence of one to two cases per million
per year and a poor prognosis, mostly due to a high risk
of recurrence and limited therapeutic options (1). Mi-
totane [1-(2-chlorophenyl)-1-(4-chlorophenyl)-2,2-di-
chloroethane (o,p’-DDD)], an analog of the insecticide
dichlorodiphenyltrichloroethane (DDT), has been used
in the treatment of ACC since 1959 (2). Mitotane alone
or in combination with cytotoxic chemotherapy is now
established as the first-line treatment for metastatic
ACC (3-8) and is also widely used as adjuvant therapy
in patients with apparently complete surgical removal
of the primary tumor, especially if considered at high
risk of recurrence (9).

Despite the widespread use of mitotane in adrenal
cancer, there is limited knowledge regarding the mech-
anisms underlying its antitumor activity, usually de-
scribed as adrenolytic, i.e. a direct cytotoxic effect on
the adrenal cortex (3, 10-12). There is also a paucity of
information on distinct effects of mitotane on steroid-
ogenesis, although it has been noted early on as an ef-
ficient treatment for Cushing’s syndrome (13-16), and
in patients with normal adrenal function, mitotane ther-
apy invariably results in adrenal insufficiency. There is
in vivo evidence of enhanced production of cortisol-
binding globulin and SHBG in mitotane-treated pa-
tients (17, 18). Notably, glucocorticoid replacement
has to be administered in higher doses than usual in the
general context of adrenal insufficiency to prevent ad-
renal crisis (3, 19). Mitotane-induced hypogonadism is
frequently observed in male patients (18), but testos-
terone replacement often lacks clinical efficacy.

We have recently shown that urine steroid metabo-
lomics, i.e. the combination of steroid profiling by gas
chromatography (GC)/mass spectrometry (MS) and
computational data analysis, is a highly promising di-
agnostic tool for the detection of adrenocortical malig-
nancy (20). Here we investigated the effects of mitotane
on in vivo steroid production employing urinary steroid
metabolomics for the analysis of 24-h urine samples
from patients with adrenal cancer receiving mitotane
for adjuvant treatment or metastatic disease.

J Clin Endocrinol Metab, January 2013, 98(1):161-171

Subjects and Methods

Subjects

The 24-h urine samples from ACC patients were collected
between 2006 and 2010 in seven specialist endocrine referral
centers participating in the European Network for the Study of
Adrenal Tumors (ENSAT; www.ensat.org), with approval of
local ethical review boards and after obtaining written informed
patient consent. We included 24-h urines from 100 patients (53
women, 47 men; median age 52, range 16—80 yr) with histo-
logically confirmed ACC who provided a total of 127 samples
including 46 paired samples. Samples were collected before
(ADJ,n = 12) and during (ADJ+M, n = 11) adjuvant mitotane
therapy or before (MET, n = 57) and during (MET+M, n = 47)
mitotane treatment for metastatic ACC. Samples during mito-
tane treatment were collected 3—4 months after initiation of ther-
apy, i.e. ata time when therapeutic-range plasma mitotane levels
(14-20 mg/liter) (21) generally had been achieved. None of the
patients on adjuvant therapy had documented recurrence during
this initial treatment period, and there were no major changes in
tumor burden as documented by imaging in the metastatic group
patients. Plasma mitotane levels were available for 50 of the 58
patients on mitotane, all of them measured by HPLC (Lysosafe,
Paris, France). Exclusion criteria included pregnancy and expo-
sure to drugs known to induce expression and activity of hepatic
cytochrome P450 (CYP) enzymes or to alter steroid secretion in
any way, with the exception of glucocorticoid replacement ther-
apy, which was routinely commenced in all mitotane-treated
patients.

For comparison, we employed 24-h urine samples of 88
healthy controls (62 females, 26 males, age range 18-60 yr). In
addition, for the assessment of Sa-reductase activity, we also
compared the results with 24-h urine samples from patients with
inactivating mutations in SRDSA2 encoding 5a-reductase type
2 (n = 23) and patients treated with the Sa-reductase type 2
inhibitor finasteride (n = 3).

GC/MS urinary steroid metabolome analysis
Measurement of 24-h urinary steroid metabolite excretion
was carried out by GC/MS as previously described (20). In sum-
mary, free and conjugated steroids were extracted from urine by
solid-phase extraction. Steroid conjugates were enzymatically
hydrolyzed, reextracted, and chemically derivatized to form
methyloxime trimethyl silyl ethers. GC/MS analysis of the urine
samples was carried out on an Agilent (Santa Clara, CA) 5973
instrument operating in selected-ion-monitoring (SIM) mode.
This achieved sensitive and specific detection and quantification
of 32 selected steroid metabolites chosen to include important
representatives of steroid groups such as androgen metabolites,
glucocorticoid metabolites, mineralocorticoid metabolites, and
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M.F.), Department of Medicine I, University Hospital, University of Wrzburg, D-97080 W(rzburg, Germany; Endocrine Research Unit (F.B., M.F.), Medizinische Klinik und Poliklinik IV, Klinikum
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3B-hydroxy-A (5) steroid metabolites (for details of the steroid
metabolite profile see Ref. 20).

After analysis of the entire profile, we calculated substrate
metabolite to product metabolite ratios to assess the effects of
mitotane on the iz vivo net activity of distinct steroidogenic en-
zymes. This included Sa-reductase indicated by the ratio of Sa-
tetrahydrocortisol to tetrahydrocortisol (5a-THF/THF), ratio of
androsterone to etiocholanolone (An/Et), and ratio of Sa-tetra-
hydrocorticosterone/tetrahydrocorticosterone (5a-THB/THB).
As a measure of the activity of the major drug-metabolizing en-
zyme CYP3A4, we calculated the ratio of 63-hydroxycortisol to
cortisol (6 BOHF/F) (22). Total steroid output was calculated as
the sum of all quantified steroid metabolites with the exception
of glucocorticoid metabolites because these also reflected exog-
enously administered glucocorticoid replacement. Total when
used in this paper relates to the targeted compounds measured,
which are dominant metabolites of hormonal steroids and their
precursors. It does not include a multitude of minor metabolites.

Statistical analysis

Diagnostic ratios were presented as median and interquartile
ranges [quartile 1 (Q1)-Q3]. In a first analysis, we considered all
samples to be independent and employed nonparametric
Kruskal-Wallis test and Dunn’s post hoc test to detect significant
differences of individual ratios among the treatment groups. To
take the paired nature of a subset of samples into account, we
provided a separate analysis of the data employing Wilcoxon
signed rank test. These analyses were carried employing Sigma-
Plot (Systat Software Inc., Chicago, IL).

Furthermore, we analyzed the influence of mitotane on Sa-
reductase activity by performing multivariate analyses of the
ratios reflecting Sa-reductase activity, An/Et, 5o-THF/THF, and
5a-THB/THB. We performed principal component analysis
(PCA) and linear discriminant analysis (LDA) (23) to generate
two-dimensional representations of the data. Prior to analysis,
the values of the ratios were log-transformed and normalized to
zero mean and unit variance. The generated scatter plots allowed
identification of clusters of similar ratio profiles. These analyses
were done using the software MATLAB (Mathwork Inc.,
Natick, MA).

Finally, we analyzed the association between plasma mito-
tane levels and the values of the steroid ratios indicative of Sa-
reductase and CYP3A4 activities by computing Spearman’s rank
correlation coefficient, thereby accounting for the lack of normal
distribution of the data. This analysis was carried out employing
MATLAB.

Results

Mitotane down-regulates overall steroidogenesis
First, we analyzed total steroid excretion to assess
whether mitotane has an impact on the initial steps of
steroidogenesis, namely CYP11A1 activity converting
cholesterol to pregnenolone. For this analysis, we dis-
regarded active glucocorticoid metabolites because the
mitotane-treated patients invariably received hydrocor-
tisone replacement therapy, which prevented a compre-
hensive assessment of endogenous glucocorticoid pro-
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duction. Comparing the remainder of total steroid
excretion, we found that mitotane led to a significant
down-regulation of overall steroidogenesis in meta-
static ACC patients, as documented by a significant
decrease in the sum of total androgen and mineralocor-
ticoid metabolites (Fig. 1A and Table 1). This down-
regulation was significant for the larger group of met-
astatic ACC patients, decreasing both androgen and
mineralocorticoid excretion to the level found in
healthy controls, but failed to reach significance for the
smaller adjuvant therapy group (Fig. 1A and Table 1).
Of note, we found that the excretion of the 11-deoxy-
cortisol metabolite tetrahydro-11-deoxycortisol did not
differ when comparing steroid excretion before and after
the initiation of mitotane therapy (Fig. 1B and Table 1),
indicating that mitotane had no effect on 118-hydroxylase
activity, which converts 11-deoxycortisol to cortisol.

Mitotane induces CYP3A4 activity and
glucocorticoid inactivation

After the initiation of mitotane treatment, 6 3OHF/F
showed a significant increase in both patients with meta-
static disease and patients receiving adjuvant therapy (Fig.
1, C and D, and Table 1 and Supplemental Table 1, pub-
lished on The Endocrine Society’s Journals Online web site
at http://jcem.endojournals.org), which was due to large
increases in 63-OHF excretion, indicative of a highly en-
hanced rate of inactivation of cortisol to 6 80OHF, a con-
version predominantly catalyzed by CYP3A4 (24-26).
Before mitotane treatment, 68OHF represented only
1.3% (ADJ; Q1-Q3 1.0-2.6%) and 1.8% (MET; Q1-Q3
0.8-4.2%), respectively, of total measured glucocorticoid
metabolite excretion. By contrast, during mitotane treat-
ment, 63.8% (AD]J+M; Q1-Q3 48.9-70.2%) and 52.5%
(MET+M; Q1-Q3 38.8-69.1%), respectively, of mea-
sured glucocorticoids were excreted as 6 80OHF (Fig. 1E),
suggesting rapid inactivation of exogenously adminis-
tered hydrocortisone in the mitotane-treated patients.

To exclude a significant contribution of the concurrent
hydrocortisone replacement on the induction of CYP3A4
observed in the mitotane-treated patients, we also studied
the percentage of 6B0OHEF as part of total glucocorticoid
excretion in patients with adrenal insufficiency, specifi-
cally 30 patients on a regular-dose hydrocortisone re-
placement (10-30 mg/d) and 10 patients who received
400 mg hydrocortisone during the 24-h period of urine
collection. Results revealed that 68OHF on regular hy-
drocortisone dose did not differ from healthy controls,
whereas high-dose hydrocortisone slightly increased the
median percentage of 6 30HF to just under 5% (Fig. 1E),
confirming an only very minor contribution of hydrocor-
tisone to the observed effect.
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FIG. 1. Comparison of steroid concentrations and ratios in patients before and during mitotane treatment for metastatic ACC (MET; MET+M)
and patients before and during adjuvant mitotane therapy (ADJ; ADJ+M) in comparison with healthy controls. A, Total androgen and
mineralocorticoid metabolite excretion; B, excretion of the 11-deoxycortisol metabolite tetrahydro-11-deoxycortisol; C and D, linear scale and log
scale representations of 6BOHF/F that is reflective of CYP3A4 activity; E, percentage of total glucocorticoid metabolites excreted as 6B0OHF in ACC
patients before and during mitotane treatment in comparison with healthy controls (HC) and with patients with adrenal insufficiency (Al) on
hydrocortisone replacement with 10-30 mg/24 h (n = 30) and 400 mg/24 h (n = 10). *, P < 0.05; **, P < 0.01; ***, P < 0.001 for comparison

of MET vs. MET+M and ADJ vs. ADJ+M, respectively.

GC/MS analysis of urine also showed a major increase
in the excretion of normally minor metabolites formed
through CYP3A4 activity but not selected for quantitation
in this study, notably 6a- and 18-hydroxylated metabo-
lites of tetrahydrocortisone and the cortolones. We did not
find an effect of mitotane on the steroid ratios reflective of
11B-hydroxysteroid dehydrogenase type 1 or 2 activity.

Mitotane inhibits 5«-reductase activity and
androgen activation

Introduction of mitotane therapy resulted in a highly
significant decrease of several steroid metabolite ratios
reflective of systemic Sa-reductase activity (Fig. 2 and Ta-
ble 1 and Supplemental Table 1). The degree of inhibition
of Sa-reductase activity appeared to be similar to that

The Endocrine Society. Downloaded from press.endocrine.org by [${individua User.displayName}] on 03 March 2014. at 04:04 For personal use only. No other uses without permission. . All rights reserved.



J Clin Endocrinol Metab, January 2013, 98(1):161-171 jcem.endojournals.org 165

TABLE 1. Sums of steroid metabolites and steroid metabolite ratios in healthy controls and patients with
adrenocortical cancer receiving treatment for metastatic disease (MET) or in the adjuvant setting (ADJ) before and
after initiation of mitotane therapy (+M)

Controls MET MET+M ADJ ADJ+M
(n = 88) (n =57) (n =47) (n =12) (n=11)
Total steroid excretion (steroid metabolites
1-19 without active glucocorticoid
metabolites 20-32)
Median 5,579 22,468 6,494 2,908 1,137
Q1-Q3 3,702-7,982  9,470-88,311 1,660-22,130 1,849-6,472 548-22,208
P, <0.0001 1.0 0.60 <0.01
P, <0.0001 0.97
Tetrahydro-11-deoxycortisol
(THS)-11-deoxycortisol metabolite
Median 47 402 356 79 90
Q1-Q3 33-63 88-4539 108-3515 60-107 41-184
P, <0.0001 <0.0001 0.14 0.74
P, 1.0 1.0
6B-OHF/F — CYP3A4 activity
Median 2.38 1.53 21.7 2.34 29.1
Q1-Q3 1.83-3.11 0.53-2.17 13.0-26.4 1.90-2.93 28.3-33.8
P, 0.77 <0.0001 1.00 <0.0001
P, <0.0001 <0.0001
5a-THF/THF — 5a-reductase activity
Median 0.70 0.58 0.02 0.34 0.02
Q1-Q3 0.52-0.95 0.18-4.54 0.01-0.05 0.26-0.93 0.01-0.03
P, 1.00 <0.0001 1.00 <0.0001
P, <0.0001 <0.01
An/Et — Sa-reductase activity
Median 0.88 0.45 0.20 0.50 0.20
Q1-Q3 0.67-1.21 0.22-0.79 0.13-0.34 0.41-0.82 0.14-0.53
P, <0.0001 <0.0001 0.25 <0.0001
P, <0.01 0.53
5a-THB/THB — 5a-reductase activity
Median 2.01 1.27 0.01 1.52 0.01
Q1-Q3 1.48-2.66 0.49-3.22 0.00-0.33 0.95-2.36 0.00-0.03
P, 0.20 <0.0001 1.00 <0.0001
P, <0.0001 <0.01

For the calculation of differences in total steroid excretion, glucocorticoids were excluded because mitotane therapy requires concurrent
hydrocortisone replacement, which obscures any differences in endogenous glucocorticoid secretion. Results are presented as median and the
range of the 25-75th percentile (Q1-Q3). Statistical analysis was performed employing Kruskal-Wallis nonparametric testing and Dunn'’s post hoc
test. P,, Comparison vs. controls; P,, comparison of MET vs. MET+M and ADJ vs. ADJ+M, respectively. ADJ, Before adjuvant mitotane therapy;

ADJ+M, during adjuvant mitotane therapy; MET, before mitotane treatment for metastatic ACC; MET+M, during mitotane treatment for

metastatic ACC.

observed in patients receiving treatment with the estab-
lished Sa-reductase type 2 inhibitor finasteride (n = 5) and
patients with inactivating Sa-reductase type 2 (SRD5A2)
mutations (n = 25) (Fig. 2 and Table 2). However, of note,
the 5a-THB/THB ratio was more significantly inhibited
by mitotane than observed in finasteride-treated or
SRDSA2 mutant patients (Fig. 2 and Table 2).

To examine the pattern of inhibition of 5a-reductase in
further detail, we carried out cluster analysis employing
both LDA and PCA; for this analysis, we considered all
three ratios reflective of Sa-reductase activity and selected
the patients receiving mitotane in the adjuvant setting to
exclude any influence of tumor-related steroid produc-
tion. Visualization of the data convincingly demonstrated
strongly overlapping clustering of finasteride-treated pa-
tients and SRDSA2 mutant patients, who both have selec-

tive loss of Sa-reductase type 2 activity (Fig. 3A), indicative
of similar ratio profiles in these two groups. By contrast,
patients receiving mitotane are clearly separate in a second
cluster (Fig. 3A). These findings were confirmed by an inde-
pendent cluster analysis employing LDA (Fig. 3B).

Longitudinal studies

We analyzed the longitudinal course of the steroid ra-
tios indicative of CYP3A4 activity (Fig. 4A) and Sa-re-
ductase activity (Fig. 4, B and C) in five patients receiving
adjuvant mitotane therapy for adrenocortical cancer. Re-
sults demonstrate a rapid onset of the effects of mitotane
on the enzymatic activities of CYP3A4 and Sa-reductase,
with the full extent of the effect already documented
shortly after initiation of mitotane treatment (Fig. 4, A-C).
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FIG. 2. Comparison of steroid ratios indicative of 5a-reductase activity (5aTHF/THF, An/Et, and 5aTHB/THB) represented in linear and log scale for
healthy controls, patients with metastatic ACC before (MET) and during mitotane treatment (MET+M), and patients after apparently complete
removal of ACC before (ADJ) and during adjuvant mitotane treatment (ADJ+M). *, P < 0.05; **, P < 0.01; ***, P < 0.001 for comparison of
MET vs. MET+M and ADJ vs. ADJ+M, respectively. 5AR2, 5a-reductase type 2; FIN, finasteride.

We had the opportunity to document the diagnostic
steroid ratios in one patient throughout 2 yr of adjuvant
mitotane treatment followed by 2 yr of posttreatment ob-
servation (Fig. 4D). Plasma mitotane levels oscillated
within the suggested therapeutic range (14-20 mg/liter)
throughout the treatment period and only became unde-
tectable 1 yr after the last administration of mitotane.
Concurrently, the steroid ratios indicative of CYP3A4 and
Sa-reductase activity started to recover but had not re-
turned to pretreatment levels even 2 yr after the end of
treatment (Fig. 4D), suggestive of long-lasting effects.

Plasma mitotane levels and observed effects on
steroidogenesis

We analyzed the correlation between circulating
plasma mitotane levels and the severity of CYP3A4 in-
duction and Sa-reductase inhibition, respectively (Supple-
mental Fig. 1). This revealed a significant correlation be-
tween plasma mitotane levels and the induction of

CYP3A4 [r = 0.328, 95% confidence interval (CI) =
0.055-0.556, P = 0.02] but not with the steroid ratios
indicative of Sa-reductase activity (r = —0.053,95% CI =
—0.327-0.229, P = 0.71 for S« THF/THF; r = 0.106,
95% CI = —0.178-0.373, P = 0.46 for An/Et) (Supple-
mental Fig. 1). Significant effects on the enzymatic activ-
ities were already observed at very low plasma mitotane
levels and clearly below the suggested therapeutic range of
14-20 mg/liter (21) (Supplemental Fig. 1). These findings
are in line with the above-described observation that urine
metabolite excretion showed the full effects as early as 1-2
months after initiation of mitotane treatment (Fig. 4,
A-C), when in most instances, plasma mitotane levels
would not have reached the therapeutic range.

Discussion

This study documented comprehensive iz vivo evidence
for a strong inhibition of Sa-reductase activities and a
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TABLE 2. Steroid metabolite ratios reflecting systemic 5a-reductase activity in patients receiving mitotane for
metastatic adrenocortical cancer (MET+M) and adjuvant therapy in adrenal cancer (ADJ+M) in comparison with
patients treated with the 5a-reductase type 2 inhibitor finasteride (FIN) or patients with inactivating mutations in the

gene encoding 5a-reductase type 2 (SRD5A2)

Steroid ratio reflective MET+M ADJ+M FIN SRD5A2
of 5a-reductase activity (n = 49) (n =11) (n =5) (n = 25)
S5a-THF/THF
Median 0.02 0.02 0.02 0.02
Q1-Q3 0.01-0.05 0.01-0.03 0.01-0.02 0.02-0.03
P, 0.25 1.0
P, 1.0 0.52
An/Et
Median 0.20 0.20 0.16 0.23
Q1-Q3 0.13-0.34 0.14-0.53 0.10-0.21 0.16-0.267
P, 0.79 1.0
P, 0.75 1.0
5a-THB/THB
Median 0.01 0.01 0.15 0.14
Q1-Q3 0.00-0.33 0.00-0.03 0.12-0.51 0.09-0.50
P, 0.35 <0.01
P, 0.05 <0.01

Results are presented as median and the range of the 25-75th percentile (Q1-Q3). Statistical analysis was performed employing Kruskal-Wallis
nonparametric testing and Dunn's post hoc test. P,, Comparisons vs. MET+M; P,, comparisons vs. ADJ+M. ADJ, Before adjuvant mitotane
therapy; ADJ+M, during adjuvant mitotane therapy; MET, before mitotane treatment for metastatic ACC; MET+M, during mitotane treatment for

metastatic ACC.

significant induction of hepatic CYP3A4/5 activities in
mitotane-treated patients, with an obvious and impor-
tant impact on the requirements for glucocorticoid and
androgen replacement during mitotane therapy.
Evidence for alterations of cortisol metabolism and a
link to hepatic enzyme activity was documented shortly
after the introduction of mitotane for the treatment of
adrenal cancer in 1959 (2). In 1964, two groups re-
ported on altered cortisol metabolism resulting in in-
creased urinary excretion of 6B0OHF in guinea pig (27)
and humans (28), respectively. Following up on these
reports, two groups documented increased metabolism
of pentobarbital (29) and hexobarbital and cortisol (30)
by mitotane, postulating the induction of microsomal
drug-metabolizing liver enzymes as the underlying
cause. Work in the late 1980s demonstrated that the
major drug-metabolizing enzyme CYP3A4 and to a
lesser degree also CYP3AS were the enzymes responsi-
ble for 6B3-hydroxylation in liver and kidney (24-26).
Subsequently, the urinary 6 BOHF/F has been widely
implemented as a relative measure of CYP3A4/5 in vivo
activity and several studies demonstrated a 4- to 7-fold
increase in 630OHF excretion in patients treated with
rifampicin (25) or anticonvulsants (31). This study an-
alyzing 24-h urine samples from 127 patients collected
before and during mitotane treatment demonstrated a
10- to 15-fold increase in 6 BOHF/F excretion, estab-
lishing mitotane as one of the strongest inducers of
CYP3A4 activity. This convincingly corroborates a re-

cent report on accelerated midazolam metabolism in
four mitotane-treated patients suggestive of induction
of CYP3A4 (and CYP3AS) activity (32).

Early reports on hepatic enzyme induction by mitotane
and also the invariable finding of highly increased cortisol-
binding globulin levels during mitotane treatment (17)
suggested an increased dose requirement for glucocorti-
coid replacement in mitotane-induced adrenal insuffi-
ciency. However, this has been widely recognized only in
recent years, after a number of reports on adrenal crisis
during mitotane treatment covered only with standard
glucocorticoid replacement doses (19, 33). Consequently,
the perceived rate of reported gastrointestinal toxicity dur-
ing mitotane treatment has declined over recent years, be-
cause many of these signs and symptoms may have been
reflective of incipient adrenal crisis. However, currently,
there is no uniformly agreed dose regimen for glucocor-
ticoid replacement during mitotane therapy and reported
doses have varied widely (17, 18), with lower doses often
reported as associated with a high incidence of vomiting
and severe fatigue (18, 34). Our findings provide for the
first time a reliable quantification of 63-hydroxylation by
mitotane, documenting the rapid excretion of 55-65% of
glucocorticoids in the form of 68OHF.

Of note, CYP3A4/5 are responsible for not only the con-
version of cortisol to 680HF but also for the 63-hydroxy-
lation of testosterone. Hypogonadism in mitotane-treated
men initially manifests with a decreased free androgen index
due to significantly increased SHBG levels that cannot be
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FIG. 3. Cluster analysis of the inhibitory effect of mitotane on 5a-
reductase activities comparing patients receiving adjuvant mitotane
treatment (ADJ+M) to patients treated with the 5a-reductase type 2
inhibitor finasteride (FIN; n = 5) and patients with inactivating 5a-
reductase type 2 (5AR2) mutations (SRD5A2; n = 25). Each patient is
characterized by the three ratios reflective of systemic Sa-reductase
activities (5a-THF/THF, An/Et, and 5«-THB/THB). PCA (A) and LDA (B)
were employed to generate a two-dimensional representation of each
patient. When employing PCA, the first principal component explained
42% of the total data variance, whereas the second principal
component explained 32%.

compensated for by up-regulated testosterone production as
documented by increased total testosterone and LH levels
(35). With time, gonadal testosterone production ex-
hausts itself and circulating testosterone levels drop, ac-
companied by clinical manifestations of low testosterone
including erectile dysfunction. However, testosterone re-
placement is often clinically ineffective and is complicated
by an increased rate of gynecomastia (18).

This study has yielded comprehensive evidence for a strong
inhibition of Sa-reductase activities by mitotane. Importantly,
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the strong inhibition of Sa-reductase has significant conse-
quences for androgen bioactivity, because the conversion of
testosterone to the most potent androgen, 5a-dihydrotestos-
terone, will be greatly reduced. Consequently, this may result
in enhanced conversion of testosterone to 17g-estradiol by
widespread CYP19A1 (P450 aromatase) activity, which
could explain the high incidence of gynecomastia in mito-
tane-treated patients. The lack of conversion of testosterone
to Sa-dihydrotestosterone also represents a logical explana-
tion for the frequent clinical observation of relative ineffi-
ciency of testosterone replacement with regard to erectile
dysfunction. Our computational analysis of the ratios of Sa-
to 5B-reduced steroids revealed a distinct pattern of global
Sa-reductase inhibition by mitotane compared with patients
treated with a selective Sa-reductase type 2 inhibitor or pa-
tients with inactivating Sa-reductase type 2 mutations. These
results could indicate preferential inhibition of Sa-reductase
type 1 by mitotane. Sa-Reductase inhibition could also have
beneficial consequences in the context of androgen-produc-
ing ACC, where it would be likely to help ameliorate the
clinical manifestations of androgen excess.

A number of early studies addressed the impact of mi-
totane on adrenal steroidogenesis, reporting inhibitory ef-
fects of mitotane on 11B-hydroxylase, 3B8-hydroxysteroid
dehydrogenase, and 18-hydroxylase activities (36-39).
However, in vivo studies by labeled isotope infusion were
very limited in numbers, whereas in vitro studies were
somewhat limited in their methodological approach. In
our study, we found no evidence for distinct enzyme in-
hibition other than the above described strong inhibition
of Sa-reductase activities and the induction of CYP3A4/5.
Specifically, there was no change in 11-deoxycortisol me-
tabolite excretion, rendering a significant change in 113-
hydroxylase (CYP11B1) enzymatic activity highly un-
likely. However, we observed a down-regulation of
overall steroidogenesis as quantified by the sum of total
androgen and mineralocorticoid excretion; glucocorticoid
metabolites were excluded for that analysis as altered due to
the mandatory exogenous hydrocortisone replacement in
mitotane-treated patients. These findings could indicate an
inhibition of CYP11A1, i.e. P450 side-chain cleavage en-
zyme, as previously described in vitro (40), which would
resultin decreased conversion of cholesterol to pregnenolone
and thus a decreased substrate entry flow into the steroido-
genic pathways. This could contribute to the hypercholes-
terolemia that is a widely documented side effect of mitotane
treatment and that has been previously suggested to be due
to increased cholesterol synthesis as a consequence of mito-
tane-induced up-regulation of 3-hydroxy-3-methyl-glutaryl-
coenzyme A-reductase activity (41, 42).

Our study provides a quantifiable measure for the
strong induction of CYP3A4/5 activities by mitotane,
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FIG. 4. Longitudinal course of CYP3A4 induction and 5a-reductase inhibition during the first
12 months of adjuvant mitotane therapy in six patients (A) and five patients (B and C) and
CYP3A4 and 5a-reductase activities in relation to plasma mitotane levels in a patient during 24
months of adjuvant mitotane treatment and another 24 months of posttreatment follow-up (D).

which has the clinically most relevant consequences, in-
cluding potential drug interactions in mitotane-treated pa-
tients, nicely summarized in a recent review (43). This has
an impact not only on drugs needed for the treatment of
mitotane-related side effects but, importantly, also on an-
titumor drugs including tyrosine kinase and mammalian
target of rapamycin inhibitors and also chemothera-

coid underreplacement. Importantly,
we should consider the use of Sa-re-
duced androgens, including synthetic
androgens, for androgen replacement
in mitotane-induced male hypogonad-
ism, which may prove more effective
and less prone to unwanted side effects than testosterone
replacement therapy. Pregnancy needs to be added to the
list of contraindications for mitotane therapy, and patients
should have safe contraception in place because the strong
inhibition of Sa-reductase activity would have a major
impact on sexual differentiation, with a high likelihood of
disordered sex development in the male fetus.
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