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Abstract: The injectability of Portland cement (PC) with calcium

chloride and calcium nitrate additives was investigated using a

syringe with a 2 mm aperture for potential clinical applications

such as vertebroplasty. Addition of either additive at 10 wt %

increased the quantity of cement extruded through the syringe

from approximately 25 wt % for the PC standard, to over 95 wt

%. 10 wt % additions of either additive also decreased setting

times from over 2 h to below 25 min. The compressive strength

of the modified cements was all greater than the compressive

strength of a human vertebral body. Decreasing either additive

to 5 wt % generated compressive strengths after 24 h setting

equal to polymethylmethacrylate, the cement used for the ma-

jority of vertebroplasty procedures. An initial early exotherm in

the chloride cements was coupled with an X-ray diffraction

(XRD) peak that indicated the early formation of the ettringite

cement phase. In contrast, Fourier transform infrared (FTIR)

spectroscopy and XRD data indicated that calcium nitrate may

have stimulated early calcium silicate hydrate (CASAH) produc-

tion (the main strength producing phase of PC). Combining the

two additives produced a synergistic effect with cements having

increased injectabilities and compressive strengths compared

with either addition used individually. This study has demon-

strated that by modifying PC with nonproprietary chemicals it

was possible to significantly increase cement injectability and

reduce setting times whilst maintaining compressive strengths,

making PC suitable for potential orthopedic applications. VC 2012

Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B:

2213–2221, 2012.

Key Words: Portland cement, orthopedic, injectability, com-

pressive strength, setting times, surface charge, infrared

spectroscopy, X-ray diffraction, calorimetry

How to cite this article: Wynn-Jones G, Shelton RM, Hofmann MP. 2012. Development of Portland cement for orthopedic
applications, establishing injectability and decreasing setting times. J Biomed Mater Res Part B 2012:100B:2213–2221.

INTRODUCTION

Portland cement (PC) is known for its numerous applica-
tions in the construction industry.1 However, as mineral tri-
oxide aggregate (MTA), a PC-based root filling material,
obtained FDA approval in the late 90s there has been an
increased interest in the use of the cement for other in vivo
applications.2–4 For example, fibroblasts have been reported
to demonstrate enhanced proliferation in the presence of
PC5 while PC-based materials placed in vivo have also been
reported to promote calcification serving as a nidus for
ossification.6

As PC possesses high compressive strengths and has
demonstrated biocompatibility as an endodontic filling ma-
terial when in contact with soft and hard tissue in the form
of MTA, so its potential to stabilize vertebral compression
fractures (VCFs) has been investigated as another potential
application.7 VCFs are caused by the collapse of a vertebra
due to diseases such as osteoporosis or vertebral myelo-
mas.8–12 Vertebroplasty is the minimally invasive surgical
procedure which stabilizes a fractured vertebral body by
the injection of bone cement into the fracture.13 At present,
the cement used in the majority of these procedures is poly-

methylmethacrylate (PMMA).14 PMMA has a compressive
strength in the region of 79 MPa and a setting time of
approximately 12 to 20 min, which permits complete immo-
bilization of vertebrae while the patient is in the operating
theatre and allows the patient to be discharged on the same
day.15 However, the use of PMMA is associated with several
disadvantages including the highly exothermic polymeriza-
tion of the methyl methacrylate monomer which may lead
to localized tissue necrosis.16 In contrast, PCs setting reac-
tion is only weakly exothermic and has been shown not to
increase localized tissue temperature during setting.17 The
toxic PMMA monomer has also been shown to diffuse from
the site of application and has been linked to increased
morbidity for patients through pulmonary embolism.18 PCs
allow the incorporation of radiopacifiers enabling monitor-
ing of the cement during placement and postoperatively as
is the case for PMMA.19

Calcium silicate-based PC is composed of at least two-
thirds by mass of calcium silicates alite (Ca3SiO5) and belite
(Ca2SiO4), the remainder consisting of aluminum- and iron-
containing clinker phases.20 Multiple reactions occur simul-
taneously during the cements hydraulic setting; the calcium
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silicate groups hydrate to become the main strengthening
phase of the cement calcium-silicate-hydrate (CASAH), the
aluminate phase reacts with calcium sulfate hydrate to form
ettringite (an alumina, ferric oxide, tri-sulphate (Aft) phase)
and the ferric phases react to form aluminoferrite-based
phases.21 This complex set of reactions contrasts with other
ceramic cements such as calcium phosphates which set
according to one major reaction.22

There are two key challenges that need to be overcome
before PCs can be considered as suitable cements for verte-
broplasty. First, the freshly mixed cement needs to be made
injectable through the aperture of an orthopedic syringe
with a diameter of approximately 2 mm. Second, the long
setting time needs to be decreased to allow early stabiliza-
tion of the vertebrae. Low cement injectabilities can be
overcome by the addition of liquefiers to the cement pow-
der. The setting time of PC is 3–4 h at a typical powder-to-
liquid ratio (PLR) of 3 g mL�1.23 Setting times can be
decreased by the addition of setting accelerators and there
are many types available from building industry sources. 24–
28 However, these additives were not developed for in vivo
use and often contain biologically harmful chemicals such
as formaldehyde.29 The chloride and nitrate anions have
both demonstrated PC setting acceleration to around 20
min which would be suitable during the vertebroplasty pro-
cedure.30 Chloride and nitrate additions to MTA have also
generated similar relatively low levels of inflammatory
responses compared with MTA alone when used in vivo. 31

To date the effects of chloride and nitrate ions as liquefiers
for PC cement systems has not been documented. The aim
of this study was to investigate the suitability of chloride
and nitrate anions in modifying the extrusion, setting times,
and compressive strengths of PC.

EXPERIMENTAL

Materials
PC (Lafarge, UK) was prepared by sieving through a 250
lm steel mesh to minimize the presence of agglomerates in
the powder. Calcium chloride and calcium nitrate (Sigma,
UK) were added at either 5 or 10 wt % into the powder
phase. Double distilled water was added to the cement at a
PLR of 4.5 g mL�1 and samples were hand mixed for 1 min
to produce cement slurries. This particular PLR was chosen
as it combined high compressive strength of the set cement
with good workability of the cement paste.

Injectability studies
Five grams of prepared PC slurry were transferred into a 5
mL disposable syringe and extruded through an outlet
diameter of 2 mm (for each admixture at 5 or 10 wt % n ¼
4). A mechanical testing machine (Instron 1185, High
Wycombe Bucks, UK) was used to apply a cross-head speed
of 30 mm min�1 and a maximum force of 100 N to the sy-
ringe plunger. The force and crosshead speed were selected
to mimic the maximum force and typical rate of extrusion
used during manual injection. Any remaining cement within
the syringe was weighed and the injectability (I) was calcu-
lated according to Eq. (1):

Iðwt %Þ

¼ mass of cement paste infected through syringe� 100

original mass of cement in syringe
ð1Þ

Initial cement setting time, compressive strengths,
and density measurements
The initial setting times of the cements were measured in a
normal laboratory atmosphere (20–23�C and 50–60% hu-
midity) using the Gilmore needles test with a needle of 113.9
g and 2.11 mm diameter according to the ASTM standard.32

For the compressive mechanical testing, the hand mixed
slurries were placed into polytetrafluoroethylene molds pro-
ducing cylindrical samples of 12 mm height and 6 mm di-
ameter. After 24 h and 30-days immersion in water at 37�C
the wet compressive strength of the cement samples (n �
30) was measured using a universal testing machine (Ins-
tron 5544, High Wycombe Bucks, UK) at a crosshead speed
of 1 mm min�1. The strut densities of the dried set cement
sample fragments were determined using helium pcynome-
try (10 runs; Accupyc 1330, Micromeritics, UK). The relative
porosity (RP) of each cement variation was obtained from
calculations using the dry density (mass / volume) and
measured strut densities according to the formula: RP ¼ 1–
(dry density/ strut density).

Surface charge investigations by zeta
potential measurements
The effective surface charge of PC with various additives
was measured using a Zeta-Sizer 3000 (Malvern Instru-
ments, UK). Suspensions of 0.1 g L�1 solid to liquid ratio of
PC were hydrated just prior to the zeta potential measure-
ments. Calcium chloride and nitrate were added at 0.2 g
L�1 resulting in an excess of chloride and nitrate anions to
bind with the PC particles. The Zeta-Sizer calculated zeta
potential by determining electrophoretic mobility using
Henry’s equation. For each suspension, the average zeta
potential value was obtained from five measurements.

Cement enthalpy changes investigations by differential
scanning calorimetry
After sample preparation between 80–120 mg of material was
transferred to an aluminum crucible before being inserted into
the sample compartment of a differential scanning calorimeter
(DSC 7, Perkin-Elmer,UK). The enthalpy change of the cement
was then recorded for the next 2 h and calculated by integrat-
ing the DSC-curves from the heat capacity base line using the
PyrisTM DSC software (n ¼ 3 for each variation).

Infrared spectroscopy (IR) via attenuated total
reflectance
After the PC samples were prepared 1 g of was placed on
the diamond window of an attenuated total reflectance FTIR
(Nicolet 6700, Thermo scientific) at 23�C and covered with
a glass slide with spectra recorded at 0 and 120 min. At
each time point the samples were scanned 32 times with a
resolution of 2.0 cm�1

.The calcium hydroxide peaks were
assigned according to established reference spectra.33,34
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Phase analysis using X-ray diffraction (XRD)
Data sets were collected from 2y ¼ 5–30� with a step size
of 0.02 and the count time was normalized to 1 s/step. The
phase compositions of the cements were determined
according to the inorganic crystal structure database, cal-
cium hydroxide (PDF Ref. 04-010-3117), calcium silicate
18�y (PDF Ref. 04-011-1393), calcium sulfate anhydrous
25�y (PDF Ref. 00-037-1496), and ettringite 9 and 16�y
(PDF 00-041-1451). The calcium silicate hydrate standard
was described by Chang et al.35

Statistical analysis
Data was analyzed for statistical significance using 1-way
Analysis of Variance (ANOVA) at a significance of p < 0.001
using SPSS statistics v19, IBM, UK).

RESULTS

Injectability studies
Both calcium chloride and calcium nitrate acted as liquefy-
ing agents for PC. A 5 wt % addition of either salt or an
equal 2.5 wt % combination of the two significantly
increased cement extrusion compared with the PC standard
(p < 0.001) (Figure 1). There was a further significant
increase in extrusion when the total additive wt % was
increased to 10 wt % (p < 0.001). Combining the additives
also had a positive effect on the injectability of the cement
increasing extrusion by 10 wt %. The apparent limit on
injectability was 98 wt % extrusion with 2 wt % of the
cement remaining in the tip of the syringe.

For cements containing calcium chloride and/or calcium
nitrate either individually or in combination addition of the
liquefiers only a relatively low initial force of between 3 to
30 N was required to extrude the majority of the cement
from the 2 mm syringe aperture. An increase in force
was required only when the syringe was nearly empty
(Figure 2). In contrast, PC without a liquefier demonstrated

FIGURE 1. Graph demonstrating the significant increase in cement extrusion (injectability) when calcium chloride, calcium nitrate or a combina-

tion of the two was added to PC. There was a significant increase in extrusion with a 5 wt % addition of any additive to PC, there was also a sig-

nificant increase in injectability when the additions were increased to 10 wt %.

FIGURE 2. A typical force/displacement graph recorded during the

injectability experiments. Adding 5 wt % of calcium chloride, calcium

nitrate or a 2.5 wt % combination of the two reduced the force

required to displace the syringe plunger during cement injection.

Increasing the additive content to 10 wt % further reduced the force

to a point where less than 5 N was required to extrude over 90 wt %

of the cement.

ORIGINAL RESEARCH REPORT

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH B: APPLIED BIOMATERIALS | NOV 2012 VOL 100B, ISSUE 8 2215



no characteristic force plateau but exhibited a sharp
increase in force necessary for displacement as the cement
failed to be extruded from the syringe.

Initial cement setting time, compressive strength, and
density measurements
The two additives both acted as setting accelerants when
added individually or in combination. The addition of cal-
cium chloride or calcium nitrate significantly decreased set-
ting times from over 2 h to below 60 min with 5 wt %
additions and to below 22 minutes for the 10 wt % addi-
tions (p < 0.001) (Figure 3).

After 24 h setting cements containing 5 wt % additions
of calcium chloride, calcium nitrate or 2.5 wt % combina-
tion of the two produced compressive strengths which were
comparable or higher than the PC standard. In contrast,
cements containing 10 wt % additions had significantly
lower compressive strengths (p < 0.001). After 30 days
cements 5 wt % additions all possessed significantly higher
compressive strengths than the standard cements (p <

0.001). The compressive strengths of the 10 wt % additions
of calcium chloride and nitrate were still lower than the
standard cements but the 5 wt % combination of the two
produced comparable values with the standard.

After both 1 and 30-days the relative porosities of the
cements containing 5 wt % calcium chloride or nitrate or a
2.5 wt % combination of the two all possessed lower rela-
tive porosities than the PC standard. In contrast, after 24 h
cements containing a total of 10 wt % additive addition all
had lower porosities, but after 30-days the porosities were

comparable with the standard cement. The specific density
of the cement in the presence of chloride and nitrate was
consistently lower than the standard regardless of the wt %
used. As the specific density of cement decreases with
adsorption of water this indicated that in the presence
of chloride and nitrates the cements were more
hydrated (Table 1).

Surface charge investigations by zeta potential
measurements
The surface charge of the standard cement particles was
approximately �12 mV. Calcium nitrate and calcium chlo-
ride addition reduced the negative charge of the cement
resulting in charge neutralization of the cements (Figure 4).

Cement enthalpy changes investigations by DSC
An addition of 5 wt % calcium chloride to PC produced a
similar overall exotherm with the standard cement, 25 and
29 J g�1 cement, respectively. The profile of the chloride
cements heat signature indicated that the exotherm was
predominantly generated within the first 10 min of setting,
which coincided with the setting time of the cement as
determined via the Gilmore needles test. On closer inspec-
tion the peak appeared to be composed of three distinct
shoulders. The PC standard and cements containing 5 wt %
calcium nitrate both possessed similar heat signatures
where the exotherm was released in a single asymmetric
peak over 2 h. However, addition of calcium nitrate pro-
duced a significantly higher exotherm, 50 J g�1 cement,

FIGURE 3. Graph showing the influence of different admixtures on the setting time compared with PC. The addition of 5 wt % calcium chloride,

calcium nitrate or a combination of the two significantly decreased cement setting times compared with the PC standard. There was also a

decrease in setting times when increasing additive addition to 10 wt %
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compared with the PC standard of 23 J g�1 cement (p <

0.001) (Figure 5)

FTIR analysis
The absorbance peak at 3640 cm�1 appears to correspond
with calcium hydroxide the major by-product of the hydra-
tion phase CASAH. Therefore, this peak may indicate the
early presence of this essential setting phase in the cements
containing calcium nitrate (Figure 6).

Phase analysis using XRD
After 2 h setting cements containing 5 wt % calcium chlo-
ride possessed peaks at 9� and 16�y corresponding with the
set cement phase ettringite. Whereas, cements containing 5
wt % calcium nitrate had a small peak at 18�y correspond-
ing with calcium hydroxide. The only noticeable PC standard
peak was at 25�y corresponding with anhydrous calcium
sulfate. After 24 h all of the cements contained ettringite
and calcium hydroxide peak in addition to a small peak at
29�y corresponding with CASAH formation. After 30-days
of setting the calcium hydroxide peak in all the cements

TABLE I. Compressive Strength, Relative Porosities, and Specific Densities for Cements Containing Additions of Either

Calcium Chloride, Calcium Nitrate, or a Combination of the Two

Admixture

wt % of
admixture

added

Compressive
strength/MPa

(1-day)

Compressive
strength/MPa

(30-day)

Relative
porosities
% (1-day)

Relative
porosities
% (30-day)

Specific
densities

g/cm3 (1-day)

Specific
densities

g/cm3 (30-day)

PC standard 56 6 4 73 6 7 23 6 1 20 6 1 2.55 6 0.05 2.44 6 0.05
Calcium chloride 5 57 6 7 88 6 8 19 6 1 15 6 1 2.45 6 0.05 2.38 6 0.05

10 43 6 6 63 6 7 25 6 1 19 6 1 2.43 6 0.05 2.32 6 0.05
Calcium nitrate 5 66 6 7 89 6 8 18 6 1 13 6 1 2.47 6 0.05 2.37 6 0.05

10 45 6 6 62 6 6 26 6 1 22 6 6 2.43 6 0.05 2.33 6 0.05
Calcium chloride/nitrate

combination
2.5 67 6 7 99 6 6 17 6 1 13 6 1 2.47 6 0.05 2.36 6 0.05
5 44 6 7 73 6 7 27 6 1 19 6 1 2.43 6 0.05 2.32 6 0.05

After both 1 and 30-days setting, cements containing 5 wt % calcium nitrate or 2.5 wt % combinations of calcium chloride and calcium nitrate

possessed significantly higher compressive strengths than the PC standard. In contrast, cements containing a total additive addition of 10 wt %

possessed significantly lower compressive strengths than the PC standard. The relative porosities of the cements containing 5 wt % additions

were lower than the PC standard, whereas the cements containing 10 wt % additions were consistently higher. Adding 5 or 10 wt % of any addi-

tive reduced the specific densities of the set cements. Standard deviation (compressive strength) and minimum error of method (specific den-

sity, porosity) are given as error.

FIGURE 4. Zeta potential measurements of hydrating PC in the pres-

ence of calcium chloride and calcium nitrate. Inclusion of the addi-

tives to PC caused an inflection in the surface charge of the hydrating

cement.

FIGURE 5. (a) Graphs illustrating the isothermal calorimetry traces of

PC standard and cements containing either 5 wt % calcium nitrate or

5 wt % calcium chloride during the first 120 minutes of cement set-

ting. The addition of calcium chloride produced a similar overall

energy release with the standard cement except that the majority of

energy with the chlorides was released early during the setting reac-

tion. In contrast, cements containing nitrate had a similar trace profile

with the standard cements but released significantly more energy. (b)

When the chloride exotherm was investigated more closely the trace

appeared to comprise three distinct exotherms which all occurred

within the first 10 minutes of the start of the setting reaction.

ORIGINAL RESEARCH REPORT

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH B: APPLIED BIOMATERIALS | NOV 2012 VOL 100B, ISSUE 8 2217



appeared significantly higher than the 1-day set cements
(Figure 7).

DISCUSSION

Injectability studies
Each hydrated phase of PC carries a different surface charge
with Portlandite and Friedel salts being positive whereas
ettringite and monosulfate possess negative surface charges.36

The final charge is a combination of all of the various cement
phases. However, the overall slight negative surface charge can
be explained by ionization of the silanol groups of CASAH, the
major hydration product of PC [Eq. (2)].36–39

> SiOH ! SiO� þ Hþ (2)

The �12 mV value observed for the PC standard was close to
the theoretical surface charge range for CASAH (�9.2 to
�12.7 mV) in a low calcium environment.38,39 This may have
been an indication that the surface charge of the hydrating PC
was also determined by the calcium silicate phase. Cement
agglomerates which reduce cement flowability and possibly
injectablity of cement pastes are caused by attraction of oppo-

sitely charged surface particles.40 Typically, commercial lique-
fiers are large negatively charged polyvalent compounds which
function by binding to the surface of PC creating an electro-
static repulsion force between the cement particles which dis-
perses the aggregates, leading to the liquefying effect.41–43 In
contrast, chloride in the presence of Ca2þ, appeared to neutral-
ize the cement surface through a series of reactions. First, neu-
tralization occurs through the adsorption of Ca2þ onto dissoci-
ated silanol groups [Eq. (3) and (4).35,36

> SiOHþ Ca2 ! SiOCaþ þ Hþ (3)

> SiOHþ Ca2þ þ Cl
� ! SiOCaClþ Hþ (4)

FIGURE 6. (a) FTIR of PC standard and cements containing either 5

wt % calcium chloride or calcium nitrate 2 minutes after cement mix-

ing. 6 (b) After 120 min the calcium nitrate cements had developed a

peak at 3640 cm�1 indicating the presence of calcium hydroxide.

FIGURE 7. X-ray diffraction patterns of set cements after 2 h (a), 24 h

(b) and 30-days (c). After 2 h calcium chloride developed peaks at 9�

and 16�y corresponding with the set cement phase ettringite. Cements

containing calcium nitrate possessed a calcium hydroxide peak at 18�y.

In contrast, after 2 h the only discernable peak for the PC standard was

calcium sulfate dihydrate at 25�y. After 24 h all of the cements had devel-

oped ettringite peaks in addition to those corresponding with C-S-H for-

mation at 29�y. After 30-days setting the peaks corresponding with

calcium hydroxide were significantly higher.
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Second, chloride has also been shown to neutralize posi-
tively charged Portlandite [Eq. (5)].36

½CaOH�þ þ Cl
� ! CaOHCl (5)

Last, both chloride and nitrate neutralize the forming Friedel
salts of the hydrating aluminate phase [Eq. (6) and (7)].36,44

½Ca2AlðOHÞ6�
þ þ CaCl2 þ 2H2O! ½Ca2AlðOHÞ6�Cl:2H2Oþ Ca2þ

(6)

2½Ca2AlðOHÞ6�
þ þ 2CaðNO3Þ2 þ 6H2O

! ½Ca2AlðOHÞ6�ðNO3Þ2:6H2Oþ Ca2þ ð7Þ

This leads to a neutralization of the cement particles that
may reduce agglomeration as there are less oppositely
charged particles.36 Therefore, the liquefying effect of chlo-
ride and nitrate may be based on charge neutralization as
opposed to other liquefiers which function through charge
and steric repulsion of cement particles.45

Acceleration of the setting reaction
Previous calorimetry studies have indicated that the acceler-
ating effect of calcium chloride on PC setting may be due to
an increased early rate of heat evolution in the presence of
the additive.46 The heat signature obtained during this
study indicated that the accelerating effect of chloride may
be due to early energy generation that was not present in
the PC standard. This initial exotherm appeared to be com-
posed of three distinct sections which may have corre-
sponded with three unique reactions, or, a single reaction
with multiple exotherm stages. The early presence of the
set cement phase ettringite within the first 2 h of cement
setting indicated that at least a portion of this initial exo-
therm in cements with the chloride additive was due to
early ettringite formation. It has been inferred from previ-
ous infrared spectroscopy studies that calcium chloride
modified PCs also demonstrated increased silicate polymer-
ization to produce a more structured CASAH bond forma-
tion compared with standard PCs leading to the increased
cement strength in the presence of the additive.47 The pres-
ence of a peak corresponding with CASAH in the XRD
phase analysis studies indicated that CASAH was present
within the first 24 h of setting. However, as the peak was
not present after the first 2 h of setting the primary mode
of acceleration by calcium chloride appeared to be ettringite
formation which is a known cause for early cement
strength.48 In civil engineering, early formation of ettringite
is minimized in order to avoid the ettringite reacting under
sulfate attack leading to expansion and subsequent crum-
bling of the cement.49 However, for an orthopedic applica-
tion sulfate attack is not an issue.

The rate of the setting reaction for cements containing
calcium nitrate has previously been linked to the belite
(C2S) content in the clinker phase.24 Belite dissolves slowly
to form short CASAH fibers which provide long term
strength for the cement and the short CASAH bonds possi-
bly contributed to the high cement strengths for the 5 wt %

nitrate modified cements.50 The early presence of calcium
hydroxide was observed in both the XRD and FTIR studies
as a by-product of CASAH formation, possibly indicating
calcium silicate dissolution that led to early CASAH devel-
opment.22,33 Even though the heat signatures of the PC
standard and cements containing 5 wt % calcium nitrate
were similar, the exotherms for nitrate containing cements
were significantly higher (p < 0.001). This may have indi-
cated an increased rate of reaction of PC in the presence of
5 wt % calcium nitrate. After 24 h, both the PC standard
and calcium nitrate possessed crystalline peaks correspond-
ing with CASAH.

Decreased cement strength with increasing addition of
supplements correlated with increased cement porosities.
Increased porosity may have been an indication of a higher
proportion of nitrate and chloride being washed out from
the pores of the forming cements as additive addition
increased.19 As water became adsorbed into the structure of
cement the specific density of the material decreased.51

Therefore, the decreased strut densities of PC in the pres-
ence of chloride and nitrate compared with standard PC
indicated the additives may have been accelerating the
cement hydration reaction.

When combining additives a synergistic effect could be
achieved with cements being more injectable and possessing
higher compressive strengths. Increased injectability may be
due to a degree of complementary surface binding of the
two additives leading to a greater degree of surface charge
neutralization. The increased compressive strength may
have been as a result of chloride stimulating ettringite for-
mation, whereas nitrate enhances CASAH production.

PMMA is the bone cement used in the majority of verte-
broplasty operations.52 However, the material possesses sev-
eral major disadvantages, it cures at temperatures up to
90�C, 53 the methylacrylate monomer is toxic and has been
shown to damage osteocytes54 and leakage of the monomer
has also been linked to pulmonary embolism.18 Viable alter-
natives are actively being researched and several calcium
phosphate cements have been approved for clinical use.55

For PC ceramic materials this is first study to fully address
all the issues associated with using the material for verte-
broplasty, i.e., poor injectability and long setting time. With
addition of simple organic chemicals the material is now
injectable, has setting times and compressive strengths
equivalent to PMMA. The material also demonstrates clinical
equivalence as it is the major constituent of MTA, a material
used for dental applications.3 After clinical trials it may
therefore be a viable alternative cement for use in the verte-
broplasty procedure.

CONCLUSIONS

Calcium chloride and calcium nitrate both acted as liquefy-
ing agents and setting accelerants producing cements which
had compressive strengths equal to or greater than the PC
standard. Calcium chloride appeared to accelerate the set-
ting reaction through an early exotherm which was respon-
sible for early ettringite formation. In contrast, calcium ni-
trate stimulated early CASAH formation. Combining the
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additives had a synergistic effect increasing injectabilities
while also improving compressive strengths.

ACKNOWLEDGMENTS

The authors thank Advantage West Midlands for access to the
University of Birmingham’s XRD facilities.

REFERENCES
1. Leung CKY. Concrete as a Building Material. In: Buschow KHJ,

Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, Patrick

V, editors. Encyclopedia of Materials: Science and Technology.

Oxford: Elsevier; 2001. pp 1471–1479.

2. Lee S-J, Monsef M, Torabinejad M. Sealing ability of a mineral tri-

oxide aggregate for repair of lateral root perforations. J Endod

1993;19:541–544.

3. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and

chemical properties of a new root-end filling material. J Endod

1995;21:349–353.

4. Maroto M, Barberia E, Vera V, Garcia-Godoy F. Mineral trioxide

aggregate as pulp dressing agent in pulpotomy treatment of pri-

mary molars: 42-month clinical study. Am J Dent 2007;20:

283–286.

5. Bonson S, Jeansonne BG, Lallier TE. Root-end filling materials al-

ter fibroblast differentiation. J Dent Res 2004;83:408–413.

6. Yaltirik M, Ozbas H, Bilgic B, Issever H. Reactions of connective

tissue to mineral trioxide aggregate and amalgam. J Endod 2004;

30:95–99.

7. Ramaswamy Y, Wu C, Van Hummel A, Combes V, Grau G, Zreiqat

H. The responses of osteoblasts, osteoclasts and endothelial cells

to zirconium modified calcium-silicate-based ceramic. Biomateri-

als 2008;29:4392–4402.

8. Yu HF, Sun W, Zhang YS, Guo LP, Li M. Durability of concrete

subjected to the combined actions of flexural stress, freeze-thaw

cycles and bittern solutions. J Wuhan Univ Technol 2008;23:

893–900.
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