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Early B blasts acquire a capacity for Ig class switch
recombination that is lost as they become plasmablasts

Jennifer L. Marshall, Yang Zhang, Lalit Pallan, Mei-Chi Hsu,

Mahmood Khan, Adam F. Cunningham, Ian C. M. MacLennan

and Kai-Michael Toellner

MRC Centre for Immune Regulation, the School of Immunity and Infection, University of

Birmingham, Birmingham, UK

Rapid production of neutralizing antibody can be critical for limiting the spread of infec-

tion. Such early antibody results when B-cell blasts mature directly to plasmablasts

without forming germinal centers. These extrafollicular responses can involve Ig class

switch recombination (CSR), producing antibody that can readily disseminate through

infected tissues. The present study identifies the differentiation stage where CSR occurs in

an extrafollicular response induced by 4-hydroxy-3-nitrophenyl acetyl (NP) conjugated to

Ficoll (NP-Ficoll). To do this, we took advantage of the antigen dose dependency

of CSR in this response. Thus, while both 30 and 1 lg NP-Ficoll induce plasmablasts, only

the higher antigen dose induces CSR. Activation-induce cytidine deaminase (AID) is

critical for CSR and in keeping with this a proportion of NP-specific B-cell blasts induced by

30 lg NP-Ficoll express AID. None of the B blasts responding to the non-CSR-inducing 1 lg

dose of NP-Ficoll express AID. We confirmed that CSR occurs in B blasts by demonstrating

the presence of rearranged heavy-chain transcripts in B blasts in the 30 lg response.

CSR in this extrafollicular response is confined to B blasts, because NP-specific plasma-

blasts, identified by expressing CD138 and Blimp-1, no longer express AID and cannot

undergo CSR.
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Introduction

The rapid induction of neutralizing antibody can be a critical

factor in limiting the spread of the extracellular infection [1–3].

This is achieved by direct antigen-driven differentiation of B cells

into B blasts and then plasmablasts and plasma cells without

going through an affinity maturation stage in germinal centers

[4–6]. For this reason, the rapid route to antibody production is

commonly referred to as the extrafollicular response, and these

lead to the production of nonswitched and switched antibodies.

While the induction of class switch recombination (CSR) seems to

happen at the follicle – T-zone interphase [6], the earliest class-

switched B cells have been observed in follicles [7]. The object of

the present study is to identify differentiation stages during

extrafollicular antibody responses when CSR occurs, and whether

these relate to germinal center (GC) or plasmablast differentia-

tion. To do this, we have studied B cells responding in vivo to the

thymus-independent type 2 (TI-2) antigen 4-hydroxy-3-nitro-

phenyl acetyl conjugated to Ficoll (NP-Ficoll). The characteriza-

tion of cells at the single-cell level early in the response has been

facilitated by the use of F1 hybrids of QM and C57BL/6 mice

(QMxB6 mice). These hybrids have one copy of a targeted
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insertion of a rearranged NP-specific Ig heavy chain [8]. The 5%

of B cells that have a productive lambda light chain rearrange-

ment in these mice are specific for NP [9].

NP-Ficoll induces an impressive extrafollicular antibody

response in QMxB6 mice. In addition, at high antigen doses, it

can induce GCs [10]. These GCs, however, are abortive, for the

GC B cells enter apoptosis at the stage when their continued

survival depends on antigen-specific selection by T cells. In this

study, we use a combination of flow cytometry with single-cell

sorting and real-time RT-PCR to identify responding B blasts from

plasmablasts and GC-founding cells. Differentiation of B blasts

toward plasmablasts or GC B cells is tightly regulated by a

network of transcription factors. We used the expression of three

of these to distinguish B blasts, plasmablasts, and GC-founding

cells. The main transcription factor associated with confirmed

differentiation toward the plasmablast phenotype is Blimp-1,

encoded by the gene Prdm1 [11]. Blimp-1 in combination with

surface expression of CD138 is used to identify plasmablasts. The

master regulator of GC B-cell commitment is Bcl6. Bcl6 and

Blimp-1 mutually repress each other [12–14]. The coexpression

of activation-induced cytidine deaminase (AID) with Bcl6 is used

to identify GC-founding cells. AID is essential for CSR and is

required for Ig V-region hypermutation in GCs [15]. It is well

documented that CSR occurs in GCs [16]. The question addressed

below is whether AID is expressed in B blasts or plasmablasts or

both of these cell types as they develop along the extrafollicular

pathway, and whether this expression is associated with CSR.

Results and discussion

CSR occurs in B blasts rather than plasmablasts
responding to NP-Ficoll

To identify where and when CSR occurs in the response to NP-

Ficoll, it is necessary to summarize the pattern of migration and

differentiation of NP-specific B cells in responses to NP-Ficoll. As

in WT mice [17] NP-specific cells from QMxB6 mice move from

the marginal zone and follicles to the T zone within 8 h of

immunization with 30 mg NP-Ficoll (Fig. 1A, top two panels). The

responding cells enter cell cycle by 24 h after immunization (data

not shown). By 48 h postimmunization proliferation has

increased the number of NP-specific cells (Fig. 1B, top) and B

blasts are spread throughout the white pulp (Fig. 1A, lower left).

The white arrowheads in this photomicrograph identify the first

CD1381 plasmablasts, which have appeared where the red

pulp abuts to the T zone. This is reflected by an increase in

NP1CD1381 cells seen by flow cytometry (Fig. 1B, bottom). By

72 h large accumulations of CD1381 plasmablasts fill the red

pulp, although there are still many B blasts in the white pulp

(Fig. 1A, center bottom panel). Clusters of Bcl61 NP-specific

GC-founding B blasts first appear in the center of follicles

at 72 h, whereas Bcl6 expression is not seen prior to immuniza-

tion or in nonresponding naı̈ve B cells (Fig. 1A, bottom right).

Quantitative immunohistology shows that by 72 h a significant

proportion of the plasmablasts have switched to IgG3 (Fig. 1D,

left panel).

To determine whether CSR induced by 30 mg NP-Ficoll takes

place in the B blasts, or plasmablasts, or both of these cell types,

responding B cells were sorted by flow cytometry (Fig. 1C). NP-

specific B cells were identified as B2201 cells that bind NP-

conjugated to phycoerythrin (PE). At 24 h after immunization,

NP-PE binding by NP-specific cells is markedly reduced, probably

due to competition for BCR ligation with the immunogen and/or

BCR internalization. To detect NP-specific cells at this time point,

mice were immunized with NP-FITC-Ficoll and FITC-positive cells

were sorted (cells shown in red in Fig. 1B inset). The expression

of CD138 (blue gate) was used to distinguish plasmablasts from

B blasts (red gate, which includes GC founding cells).

Bulk sorts of NP-specific cells at 24 h intervals post-

immunization were analyzed to identify the appearance of heavy-

chain transcripts containing Im apposed to IgG3 heavy-chain

genes (Fig. 1D, center panel). These rearranged heavy-chain

transcripts can only be expressed in cells that have completed

CSR to IgG3 [18], and are a good indicator of the frequency of

class-switched cells, as the Im exon is constitutively active [19].

There is a significant accumulation of the Im-Cg3 transcripts in the

B-blast population sorted at 48 h. Both the plasmablast and the

B-blast populations have higher levels of these transcripts at 72 h

(Fig. 1D, center).

These observations indicate that CSR does occur in B blasts in

this response but not if this process continues in plasmablasts. To

probe this, the same bulk sorts were tested for the expression of

Aicda transcripts. This shows that some cells in the B-blast frac-

tions at 48 and 72 h express AID, whereas the plasmablast frac-

tion does not (Fig. 1D, right panel). At this time, UNG mRNA has

also been induced (Supporting Information Fig. 1), but blasts still

express Pax5 mRNA, the main transcription factor associated

with B-cell phenotype, and do not express XBP1 mRNA, which

drives Ig secretion in plasma cells (Supporting Information Fig. 1)

These results show that by the time cells responding to NP-Ficoll

express CD138 they have lost the capacity to initiate further CSR.

At 48 h after immunization, B blasts are found in all compart-

ments of the white pulp. Class-switched B blasts, as opposed to

GC blasts, have also been identified in follicles and T zones at the

early stages of T-dependent responses [7, 20]. The precise

features of the microenvironments within the white pulp where

CSR occurs in B blasts remain to be determined.

Single-cell analysis confirms that a proportion of
extrafollicular B blasts express AID, while
plasmablasts do not

To determine the proportion of B blasts that express AID

transcripts and whether these have transcriptional regulation

similar to emerging extrafollicular plasmablasts or GC founding

cells, multiplex real-time RT-PCR was carried out on single cells.

Figure 2A–D show representative individual experiments in

which single NP-specific cells were sorted into the wells of
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Figure 1. The emergence of plasmablasts, GC-founding cells, and Ig class switching. QMxB6 mice were immunized i.p. with 30mg NP-Ficoll. (A) The
location and differentiation of NP-specific B cells in the spleen are shown by immunohistology. Before immunization (top left, 0 h), NP-binding
B cells (blue) are located mainly in the marginal zone (MZ) and follicles (F). Follicles are identified by the presence of IgD1 B cells (brown). By 8 h (top
right), the NP-specific B cells are located in the outer T zone (T). At 48 h (bottom left) NP-binding cells fill the white pulp; arrowheads indicate
darker-staining plasmablasts at the red pulp (RP)-T zone junction. At 72 h CD1381 red pulp plasmablasts (PB) stained for CD138 (blue) crowd the red
pulp (bottom center) and clusters of Bcl61 germinal center-founding cells fill the follicle centers (bottom right). (B) Total numbers of NP-binding
cells and CD1381 NP-binding plasmablasts and plasma cells, determined by flow cytometry. Boxes represent median and lower and upper quartile,
whiskers represent minimum and maximum values. (C) Flow cytometric sorting of NP-binding B cells responding to NP-Ficoll. In all, 5% of
C57B6xQM mouse B cells are NP-specific preimmunization (left); 24 h after immunization B cells bind NP-PE less efficiently (middle left), and are
detected via NP-FITC-Ficoll staining used as immunogen (red, inset); 72 h after immunization NP-binding B cells are divided into two fractions
(right): CD138– B2201 and CD1381. (A–C) In total, 4–12 animals were used per time point in three independent experiments. (D) Increase in the
number of IgG3 expressing cells, assessed by immunohistochemistry (left). The relative amounts of recombined Im-Cg3 heavy-chain transcripts
(center) or Aicda mRNA (right) assessed by real-time RT-PCR in NP-binding cells sorted using the gates shown in (B). The colors of the diamonds
correspond to the colors of the gates in (C). Each diamond represents data from sorted cells of one mouse from three independent experiments.
Statistics indicate Mann–Whitney U-test results.
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384-well plates on the left hand side. They were then assessed for

the expression of mRNA for AID with Bcl6, or AID with Blimp-1.

To exclude empty wells, each well was assessed for the

constitutively expressed b2-microglobulin – as described in the

Materials and methods. Graphs on the right-hand side show a

summary of the single-cell RT-PCR results from all the individual

experiments.

Neither AID nor Blimp-1 was expressed in NP-PE-binding

B2201 cells before immunization (Fig. 2B and C, right side). By

contrast, some 40% of these cells express Bcl6 message (Fig. 2A).

Despite the presence of Bcl6 mRNA, naı̈ve B cells express little or

no Bcl6 protein at levels detectable by immunoenzymatic staining

(Fig. 1A and [21]). Bcl6 mRNA is progressively lost following

immunization (Fig. 2A), and is only re-expressed in germinal

center-founding cells 72 h after immunization (Fig. 2D). The

appearance of cells coexpressing Bcl6 and AID mRNA at high

levels (median 10� higher) coincides with the appearance of

clusters of NP-specific cells in follicle centers that express Bcl6

protein, as shown by immunohistology (Fig. 1A, bottom right).

Figure 2B confirms that AID is induced in B blasts. AID mRNA is

first found in B blasts 48 h post-NP-Ficoll. At this stage, when no

AID1/Bcl61 coexpressing GC-founding cells are present (Fig. 2D,

right), AID mRNA is expressed in the absence of Bcl6 mRNA in

around 10% of B blasts. Cells with this phenotype are still present at

72 h (Fig. 2B, right). In striking contrast, CD1381 NP-binding cells

do not express AID. This even applies to the small number of early

plasmablasts that are present at 48 h after immunization. At this

stage, a median of 80% of the CD1381 cells express Blimp-1 mRNA,

whereas 495% of these cells express Blimp-1 at 72 h. The presence

of a significant minority of CD1381 cells that do not express Blimp-

1 raises the question whether this regulator of plasmablast differ-

entiation is the sole repressor of AID. Out of 683 cells studied in

total, only 3 showed coexpression of Bcl6 and Blimp-1.

The antigen dose dependency of AID induction and
switching induced by NP-Ficoll

We have previously reported that higher doses of NP-Ficoll are

required to induce the NP-specific B cells of QM mice to produce

GCs than are needed to induce the production of extrafollicular

plasmablasts [10]. Serendipitously, on reviewing this earlier

study, we identified an effect of antigen dose on CSR. While 1 mg

of NP-Ficoll is sufficient to induce a significant number of NP-

specific B blasts to mature into plasmablasts (Fig. 3A, B and

Supporting Information Fig. 2), it does not induce CSR (Fig. 3D).

The expression of the proliferation marker Ki-67 distinguishes the

plasmablasts induced by 1 mg NP-Ficoll from the background

plasma cells seen in QMxB6 mice, which typically are not

proliferating (Fig. 3A and C). NP-binding plasmablasts and B

blasts were sorted from mice 48 h after immunizing with 1 or

30 mg of NP-Ficoll and the expression of AID message was again

assessed by single-cell real-time RT-PCR (Fig. 3E). AID was

expressed by a proportion of the B blasts from mice immunized

with 30 mg of NP-Ficoll, but was not expressed in any cells from

mice immunized with 1mg of NP-Ficoll, confirming that early

expression of AID is related to CSR in extrafollicular B

differentiation.
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Figure 2. Transcriptional differentiation of B blasts, plasmablasts, and
GC-founding cells. Single cells from the spleens of QMxB6 mice
immunized with 30 mg NP-Ficoll were FACS-sorted into 384-well plates
using the gates shown in Fig. 1C. The mRNA levels for AID and Bcl6, or
AID and Blimp-1 in each cell were determined by real-time RT-PCR.
(A) Left: Bcl6 and AID mRNA expression in nonimmune NP-binding
B cells. Each diamond corresponds to one cell. Data are from one
representative animal. Right: the percentage of cells that are Bcl61

AID� in individual mice (each diamond corresponds to one mouse,
derived from three independent experiments. Color of diamond
indicates population as in Fig. 1C and D. (B) Left: Bcl6 and AID mRNA
expression at 48 h in NP-binding B cells. Right: the percentage of cells
from different sorted subsets that are AID1 Bcl6�. (C) Left: AID and
Blimp-1 mRNA expression at 72 h in individual NP-binding CD1381

cells. Right: percentage of cells in each subset expressing Blimp-1 and
no AID mRNA. (D) Left: expression of Bcl6 and AID mRNA in
NP-binding B2201 CD138� cells. Right: The percentage of cells from
the sorted cell subsets that are AID1 and Bcl61. Numbers on the
horizontal and vertical axes in the single-cell PCR plots (left graphs)
represent the PCR cycle when signal above threshold was reached (Ct),
which corresponds to a log2 scale of mRNA quantity per cell.
Percentages indicate the proportion of cells in each quadrant.
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Concluding remarks

Although CSR is associated with B-cell proliferation and

differentiation in germinal centers [22, 23], CSR is also

induced during extrafollicular plasmablast differentiation. During

the initial response to T-dependent antigens [6], and in

responses to thymus-independent type 2 antigens, it is the only

pathway of productive B-cell differentiation and CSR [17].

We show here that AID induced by NP-Ficoll is expressed at

lower levels than in GC blasts and is not coexpressed with

Bcl6. Germinal center independent class switching may

represent an ancient pathway of AID induction that developed

before proper germinal centers evolved, as is seen in lower

vertebrates that develop plasma cells and undergo CSR in the

absence of germinal centers [24]. CSR occurring before affinity

maturation happens may seem counterproductive, as a switch

from IgM to IgG leads to a loss of avidity of the resulting

antibody. On the other hand, infections often induce efficient

extrafollicular plasmablast differentiation, whereas germinal

center development is delayed. The gain of additional effector

function from switched immunoglobulin may be critical

in providing early protective immunity from life-threatening

infections [25].

Materials and methods

Animals and immunizations

QM mice [8] (backcrossed to C57BL/6J for 410 generations)

were bred under specific pathogen-free conditions in the

Biomedical Services Unit, University of Birmingham. QMxB6

mice were generated by crossing mice homozygous for the NP-

specific (VH17.2.25-DSP2.3-JH4) Ig heavy-chain segment of QM

mice and k light chain deficient with C57BL/6 mice to generate

mice with one copy of the NP-specific QM IgH and k light-chain

genes. Animal experiments were licensed by the British Home
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Figure 3. The antigen dose dependency of AID-induction and switching induced by NP-Ficoll. QMxB6 mice were immunized i.p. with either 30 or
1 mg of NP-Ficoll. (A) The induction of NP-specific plasmablasts (blue) in the red pulp of mice by 1mg NP-Ficoll either before immunization (left), or
96 h after immunization (right) is shown. Red boxes show magnifications of the same clusters of plasma cells or plasmablasts in serial sections
stained for the proliferation-associated marker – Ki-76 (brown) and NP-binding (blue). (B) Flow cytometric quantification of numbers of CD1381

NP-binding cells in the spleen of mice immunized 72 h after immunization with 1 or 30mg NP-Ficoll. (C) The proportion of NP-specific plasmablasts
that are Ki-671 in spleen sections 96 h after immunization with 1 mg NP-Ficoll, as shown in (A). Data are mean1SD of n 5 4 mice. (D) Assessment of
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Office according to the Animals Scientific Procedures Act 1986

and approved by the University of Birmingham Biomedical

Ethical Review Subcommittee.

Immunizations

Mice were immunized i.p. with either 30 or 1mg NP40-Ficoll or,

when 24 h time points were taken, 30 mg NP-fluorescein-Ficoll

(Biosearch Technologies, Novato, CA, USA).

Antigen-specific B-cell staining and isolation

Location of antigen-specific idiotype-positive B cells in frozen

spleen sections was detected by immunohistology as described

previously [6]. Briefly, acetone-fixed frozen spleen sections

(6 mm) were stained using rat anti-mouse IgM, IgD, or CD138

(BD Biosciences, Oxford, UK), rat anti-mouse IgG3 (Serotec,

Oxford, UK), sheep anti-mouse IgD (The Binding site, Birming-

ham, UK), rabbit anti-mouse Bcl6 1/30 (Santa Cruz Biotechnol-

ogy, CA, USA), or NP conjugated to rabbit Ig. Secondary

antibodies conjugated to biotin or horseradish peroxidase were

applied. The biotinylated secondary antibodies were detected

using biotin-conjugated StreptABComplex-alkaline phosphatase

complex (Dako, Ely, UK).

Immunostaining of single-cell splenocyte suspensions following

immunization with NP-Ficoll used B220-FITC (eBioscience),

CD138-APC, or CD138-biotin, followed by streptavidin-PerCpCy5.5

or streptavidin-APC (BD Biosciences), and NP-PE (Biosearch Tech-

nologies). Antigen-specific B cells 24 h after immunization with NP-

FITC-Ficoll were identified by their FITC uptake and NP-PE plus

B220-APC staining. Cell sorting was carried out on a MoFlo cell

sorter (DakoCytomation). Sorted populations were checked for

purity and frozen at �801C immediately after sorting.

Real-time RT-PCR

RNA was extracted from frozen cell pellets. Im-Cg3 transcript was

detected by real-time RT-PCR with primers TCTGGACCTCTCC-

GAAACCA and ACCGAGGATCCAGATGTGTCA together with the

FAM-BHQ-labeled probe CTGTCTATCCCTTGGTCCCTGGCTGC

(Eurogentec, Southampton, UK) in multiplex with b-actin-specific

primers as described previously [25]. AID, Pax5, UNG, and XBP1

were detected using TaqMan gene expression assays

Mm00507774_m1, Mm00435501_m1, Mm00449156_m1, and

Mm00457359_m1 (Applied Biosystems, Foster City, CA, USA).

Single-cell RT-PCR

Single cells were sorted into wells, containing 1mL nuclease-free

water, of 384-well PCR plates using an automatic cell cloning unit

of a MoFlo cell sorter. Serial dilutions of 0–32 cells per well served

as positive and one row without cells as negative controls. After

sorting, plates were stored and frozen at �801C. Triplex real-time

RT-PCR used primers in limiting concentrations with QuantiTect

Multiplex RT-PCR buffer (Qiagen, Crawley, UK) in a final volume

of 6mL. The following primers and probes were used:

b2-microglobulin (CTGCAGAGTTAAGCATGCCAGTAT 100 nM,

ATCACATGTCTCGATCCCAGTAGA 100 nM, NED-CGAGCCCAA-

GACC-MGB, Applied Biosystems). Blimp-1 (CAAGAATGCCAACAG-

GAAGTATTTT 80 nM, CCATCAATGAAGTGGTGGAACTC 100 nM,

FAM-TCTCTGGAATAGATCCGCCA-MGB, Applied Biosystems),

Aicda (GTCCGGCTAACCAGACAACTTC 60 nM, GCTTTCAAAATCC-

CAACATACGA 100 nM, TET-TGCATCTCGCAAGTCATCGACTT

CGT-BHQ1, Eurogentec). Bcl6 was detected with primers (CAGA

CGCACAGTGACAAACCA, 60 nM, ACTGCGCTCCACAAATGTTACA

300 nM) and probe FAM-CAGCCACAAGACTGTCCACACGGGT-

BHQ1 (Eurogentec) in multiplex with Aicda, or CalFluor560-

CAGCCACAAGACTGTCCACACGGGT-BHQ1 (BioSearch Techno-

logies) in multiplex with Blimp-1. Reactions were run for 40 cycles

in a 7900 Real-Time PCR System (Applied Biosystems). Data from

wells that were positive for b2-microglobulin mRNA were plotted

as cycle number at which target gene was higher than threshold

(Ct) in reverse order, which corresponds to mRNA quantity per cell

on a log2 scale. Preliminary experiments showed that this setup

produced semi-quantitative results with good negative correlation

between Ct and log2 of the amount of template mRNA (Supporting

Information Fig. 3).
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