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Abstract: 

Background & Objective: Periodontal diseases are the most common chronic inflammatory 

diseases of humans and a major cause of tooth loss. Inflammatory periodontitis is also a 

complex multi-factorial disease involving many cell types, cell products and interactions. It is 

associated with a dysregulated inflammatory response, which fails to resolve, and which also 

fails to re-establish a beneficial periodontal microbiota. There is a rich history of biomarker 

research within the field of periodontology, but exemplary improvements in analytical 

platform technologies offer exciting opportunities for discovery. These include the ‘omic 

technologies, genomics, transcriptomics, proteomics and metabolomics, which provide 

information on global scales that can match the complexity of the disease. This narrative 

review focuses on the recent advances made in in vivo human periodontal research by use 

of ‘omic technologies. 

Methods: The Medline database was searched to identify articles currently available on 

‘omic technologies in regard to periodontal research 

Results:  144 articles focusing on biomarkers of and ‘omic advances in periodontal research 

were analyzed for their contributions to the understanding of periodontal diseases.  

Conclusion: The data generated by the use of ‘omic technologies have huge potential to 

inform paradigm shifts in our understanding of periodontal diseases, but data management, 

analysis and interpretation require a thoughtful and systematic bioinformatics approach, to 

ensure meaningful conclusions can be made.  

 



 

Introduction 

Periodontal diseases are the most common chronic inflammatory diseases of humans and a 

major cause of tooth loss (1). Diagnosis requires training, knowledge and dedicated clinical 

facilities, creating a need for those in non-specialist and/or non-dental environments (e.g. 

medical practice) for simple, objective diagnostic tools, to help identify patients with 

periodontitis. These would help in early diagnosis of disease onset, progression, or indeed 

resolution following treatment and may reduce both the healthcare and economic burdens 

arising from periodontitis, estimated as £2.78 billion in the UK in 2008 (2). Moreover, they 

may positively impact upon systemic inflammatory diseases, where periodontitis is 

recognised as a risk factor. The identification of biomarkers using ‘omic’ technologies, such 

as genomics, transcriptomics, proteomics and metabolomics, could deliver such diagnostic 

tests.  

The official National Institute of Health (NIH, USA) definition of a biomarker is ‘a 

characteristic that is objectively measured and evaluated as an indicator of normal biologic 

processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention’. Although this could be a physical trait, such as hair colour, for the purpose of 

this focussed review of in vivo biomarkers of human periodontitis only molecular biomarkers, 

and those determined in a genetic, proteomic or metabolomic profile will be discussed. As 

Bensalah et al (3) have recently documented, six different types of biomarker can be 

differentiated. These are: 

• early detection of disease; 

• diagnosis of presence or absence of disease; 

• prognosis of disease outcome and possible patient stratification allowing for personalized 

medical interventions; 



• prediction of treatment outcome; 

• identification of patients who will respond well to a particular treatment; 

• surrogate end points. 

In addition for a biomarker, or a panel of biomarkers, to be successfully employed within the 

clinical environment, they must also be: objective; reproducible; easy to use; cheaper and; 

with greater sensitivity, specificity and diagnostic accuracy than existing tests (3-5). These 

hurdles are made higher still by the need for potential biomarkers to achieve a status akin to 

the rigorous governance processes through which drugs must pass for licensing; there is, 

however, currently no such mechanism in place for such evaluations(3).  

In the past, the most useful biomarkers have either been found serendipitously or through 

careful evaluation of candidates generated through hypothesis driven research (6). Many 

potential biomarkers are developed using pre-clinical in vitro models and a few go onto the 

development of assays used in the evaluation of a small number of patients in the equivalent 

of phase 1 trials. Proof of biomarker efficacy cannot be established solely by statistics, there 

needs to be an evaluation akin to structured, phased trial testing (3, 6). Such independent 

validation and efficacy determination in large community dwelling populations, in the 

equivalent of phase 2 and 3 trials, is even scarcer than phase 1 studies. Thus to mine the 

proverbial biomarker iceberg and to leverage these novel biomarker technologies, larger 

multi-centre multi-‘omic systems biology trials need to be performed. 

Samples available for in vivo studies of periodontal diseases include: GCF, plaque, saliva, 

biopsies, peripheral blood cells and plasma (figure 1).  Several excellent reviews discuss 

these compartments for targeted approaches to biomarker discovery (5, 7-10). In particular 

Loos & Tjoa (5) undertook a critical review of biomarkers in GCF and found only 8 out of 94, 

in the literature of the time, fulfilled any of the criteria for biomarker status. These included: 

alkaline phosphatase (11-17) , beta glucuronidase (15, 18-26) , cathepsin B (27-32) , MMP-8 

&-9 (15, 33-45) , dipeptidyl peptidase II & IV (28, 29, 31, 46), neutrophil elastase (15, 24, 26-



29, 39, 47-66). Potential novel biomarkers have been described since using ‘omics driven 

discoveries as are discussed below. 

The ‘omic technologies include genomics, transcriptomics, proteomics and metabolomics 

(figure 1) and each is discussed below. It should be noted that, in contrast to genomics, 

transcriptomics, proteomics and metabolomics assess the temporal expression of genes 

rather than the static encoding of the genome. Thus they take into account environmental 

influences, nurture as well as nature. As we progress from genomics, to transcriptomics, 

proteomics and metabolomics we also progress from what might happen to what actually did 

happen: with transcriptomics being influenced by translation and activation; proteomics 

elucidating changes to global protein expression, splice variants of proteins and post-

translational modifications; and metabolomics demonstrating end products of reactions. All 

these technologies and assessments can be applied to both the host and the microbiota in 

periodontitis. Here, only the host contributions are discussed.  

Drawbacks of all the functional genomics technologies include confounding issues such as 

age, gender, diet, smoking and likely many more. Where dynamic range is a problem the 

technology may be affected by the ‘usual suspects’ phenomenon (67) where similar species 

are found in a variety of unrelated studies and reflect the fact that some situations/treatments 

affect central signalling or metabolic hubs within cells, for example affecting energy 

generation. This is a problem that can mask less obvious biological perturbations, but can be 

overcome with much larger study populations where general “noise” can be removed and 

small changes can gain statistical significance due to increasing study power. 

 

Genomics  

Genomics is the study of whole genomes, i.e. all the DNA of a single organism. With 

improvements in sequencing, the dawn of genome-driven individualised medicine has 

arrived, where changes to multiple genes may be taken into account for diagnosis and 



treatment. But with differences in more than 3 million nucleotides (0.1% of the whole 

genome) evident when comparing 2 individual genomes, it will likely take many years before 

such differences can be mapped to disease correlations (68, 69). However, for some time, 

changes in individual genes (gene polymorphisms) have been studied with reference to 

disease risk, severity and therapeutic outcome. These gene polymorphisms are highly 

prevalent in the population (70) and the most common type is the single nucleotide 

polymorphism (SNP) where an individual base pair is affected, by alteration within, insertion 

into, or deletion from the DNA sequence. Where these changes fall in promoter regions, 

exons, introns or untranslated regions, will differentially affect gene products (69).  

The influence of SNPs on periodontal disease was reviewed in 2006 by Takashiba & 

Naruishi (69). They highlighted that nearly half of the research in this area has focused upon 

cytokines, with the rest investigating human leukocyte antigens, immuno-receptors, 

proteases, structural molecules and other proteins. However, of the 140 papers they used 

for their review the majority focused on only 6 genes: (Interleukin (IL) 1, Tumour necrosis 

factor (TNF) α, Fcγ receptors, matrix metalloproteins, cathepsin C and vitamin D receptor), 

indicating that this field is still in its infancy. IL-1 SNPs were suggested to be more 

associated with environmental interactions, such as with smoking, than with susceptibility to 

periodontitis, whereas TNFα showed a lack of association with inflammatory periodontal 

disease. However, polymorphisms in Fcγ receptors tend to be associated with both 

aggressive and chronic forms of periodontitis. For the other genes mentioned above, limited 

evidence makes it difficult to relate SNPs to periodontitis. In the past 5 years since the 

review by Takashiba & Naruishi (69), there have been at least an additional 37 articles 

published concerning SNPs in cytokines (71-107) . These small scale studies of individual 

SNPs are no longer in a position to contribute anything new to the literature and are of 

limited value.  

 Moving into wider ranging analysis, Suzuki et al (108) examined 637 SNPs in 19 healthy 

and 22 severe periodontitis cases, revealing 5 previously untargeted genes as potential 



markers for periodontitis. Using an ab initio bioinformatic approach, Covani et al (109) 

predicted five leader genes from an investigation of 61 genes potentially involved in 

periodontitis, using published articles as the source of data. These genes were NFkB1, CBL, 

GRB2, PIK3R1 and RELA, and are predominantly involved receptor-mediated signalling and 

may reflect the stimulation of the host inflammatory-immune system by bacteria in 

periodontitis.  

Overall the genetic basis of periodontitis accounts for approximately half the population 

variance in chronic periodontitis (110, 111). There is a need to progress to large scale 

genome wide association studies (GWAS) and the first of these has been published (111). 

Comparison of two cohorts of aggressive periodontitis patients independently identified 197 

and 244 quality controlled SNPs from 141 and 142 patients respectively, examining 500,568 

potential SNPs. However, when the results from both sets were compared only one 

remained significant, which was subsequently validated in a third set of patients (n=164). 

The gene identified was GLT6D1, which encodes for a glycosyltransferase 6 family protein. 

These enzymes are single pass transmembrane proteins which contribute to the synthesis of 

histo-blood related antigens in the golgi. GLT6D1 was found to be highly expressed in the 

gingival connective tissues and may influence immune responses. Future studies using 

greater numbers of patients and controls may yield more associations, however the 

acquisition of even one unknown gene that may predict periodontal disease is potentially of 

great value.  

 

Transcriptomics  

The field of transcriptomics involves the study of messenger RNA (mRNA) production by 

cells under particular conditions. Unlike proteomics and metabolomics (below), this is 

typically studied in cell populations and thus in periodontal investigations either utilises 

biopsies of relevant oral tissues or peripheral blood leukocytes rather than oral fluids such as 



GCF and saliva, which can be studied using proteomic and metabolomic platforms. There 

are two major advantages that this technique provides: 1) the ability to amplify the expressed 

gene products; and 2) the stability and uniformity of the platforms employed in identification 

of interesting and/or novel species. This is reflected in the far greater number of articles 

reporting transcriptomic studies than proteomic and metabolomic studies. Over the last 5 

years Papapanou and colleagues have analysed whole tissue transcriptomes from the 

excised papillae of healthy and diseased patients in an attempt to re-classify periodontal 

disease biologically rather than clinically (112-114). A pilot study however could not 

differentiate between chronic and aggressive forms of periodontitis (112) but comparison of 

diseased and healthy papillae from patients with advanced periodontitis did detect 

differences in gene ontology groups for apoptosis, antimicrobial humoral responses, antigen 

presentation, regulation of metabolic groups, signal transduction and angiogenesis. The 

authors commented that the papillae are composed of a variety of cell types, these 

differences in composition may give rise to different transcriptome profiles and contribute to 

the heterogeneity of results. However, it was possible to identify genes that have not 

previously been linked with periodontal diseases, such as CXCL6 (granulocyte 

chemoattractant protein 6 (112, 115). In their latest paper, Papapanou et al (114) correlated 

the transcriptomes of chronic periodontitis patients with the subgingival microflora in those 

patients/sites. This interesting study coupled the two key drivers of periodontal disease 

expression, the host and microbial factors, to determine whether species of bacteria can 

cluster the large number of genes differentially expressed in periodontal disease, thus 

yielding information on how bacterial species might influence host gene expression. Gingival 

biopsies were also taken by Offenbacher et al (116) to investigate the temporal changes in 

gene expression during experimental gingivitis. Again, large numbers of genes were 

differentially expressed and novel gene ontology groups were reported including those of 

neural process, epithelial defences, angiogenesis and wound healing.  



Beikler et al (117) investigated gene expression changes in periodontal tissues before and 

after treatment using a semi-targeted human inflammation microarray. They concluded that 

those gene profiles that were altered the most indicated an activation of pathways that 

regulate tissue damage and repair. Kim et al (118) examined sub-epithelial connective 

tissues from healthy controls and periodontal patients. They found these tissues also 

demonstrated transcriptomic increases in the immune response, tissue remodelling and 

apoptosis genes.  

Looking at how periodontitis affects the peripheral blood system, Papapanou et al (119) took 

monocytes from periodontal patients undergoing treatment and examined mRNA expression 

using Affymetrix arrays. They found that a third of patients had substantial changes in genes 

relevant to innate immunity, apoptosis and cell signalling; and concluded that periodontal 

therapy had a systemic anti-inflammatory effect. Matthews et al (120, 121) have previously 

reported that neutrophils from periodontitis patients are both hyper-reactive to stimulation by 

F.nucleatum or Fcγ-receptors and also show baseline hyperactivity with respect to reactive 

oxygen species (ROS) production. Following these discoveries, the same group (122) 

utilised neutrophils from periodontitis patients to determine what genes were affected. They 

found significant increases in type-1 interferon-stimulated genes and this led to the discovery 

that patients had significantly greater concentrations of circulating interferon-alpha, which, 

upon successful periodontal treatment, decreased to the same levels as non-diseased 

controls. They concluded that periodontitis is a complex disease where increases in 

interferon-alpha may be one component of a distinct molecular phenotype in neutrophils, 

triggered potentially by viral priming or autoimmune responses. This latter concept is new to 

periodontology and may help explain the association between periodontitis and rheumatoid 

arthritis (123-125).  

Advances have been made using transcriptomic approaches but there is a need to bring 

together the established datasets and also to conduct much larger, wide ranging studies that 

can take into account possible changes in cell type within periodontal tissues, to pinpoint 



genes that may be useful in differentiating between disease types and address the criteria 

for biomarker research previously stated.  

 

Proteomics  

Proteomics, the study of all the proteins in a given sample, was revolutionised by advances 

in mass spectrometry in the 1990s. It became possible to identify the constituent protein 

species within biological samples and now many studies have used an ever expanding and 

complex array of techniques that are both qualitative and quantitative in their outputs. A 

feature of many biological/clinical samples is that they exhibit a very wide dynamic range of 

constituent protein species, for instance in plasma that range is 6 orders of magnitude. 

Without the advantages that DNA and RNA amplification strategies offer, it is often not 

possible to examine the entire proteome, and it is frequently necessary to try and remove or 

separate the most abundant proteins from a sample (e.g. albumin) prior to analysis. 

However, proteomics does address changes to proteins such as splice variants and post 

translational modifications. Targeted approaches to look at panels of cytokines, such as 

using the bead based Luminex platform, allow examination of proteins of low concentration, 

but such presumptive approaches are not discussed here. 

In the study of periodontal diseases many proteomic approaches have been used. Top-down 

whole protein approaches to identify small molecular weight proteins have investigated the 

presence of human neutrophil peptides (HNPs) (126-128) in gingival crevicular fluid. 

However, the use of bottom-up approaches, where proteins are digested to individual 

peptides prior to identification by tandem mass spectrometry techniques, has yielded many 

more novel insights into the periodontitis proteome. Kojima et al (129) separated GCF 

proteins by 2-dimensional electrophoresis (2DE) and then identified proteins of interest by 

mass spectrometry. The addition of 2DE introduced a way to quantitatively assess protein 

levels between diseased and healthy subjects, although intra-individual variation swamped 



the slight trend for more calprotectin subunits in periodontitis patients. Use of liquid 

chromatography (LC) mass spectrometry techniques to study periodontitis has recently been 

reported. Ngo et al (130) examined GCF samples by electrophoresis and LC-MS/MS to 

identify 66 proteins, which included a large number of serum and cell derived proteins 

reflecting the dual origin of the fluid.  Wu et al (131) compared saliva proteomes from 

generalised aggressive periodontitis patients and controls using a similar technique. Whole 

saliva yielded differences in highly abundant proteins, such as albumin and amylase which 

were increased in the diseased samples, illustrating perhaps the need for prefractionation to 

dissect deeper down into the proteome. Quantitative LC-MS/MS has been used by Bostanci 

et al (132) and by Grant et al (133) to investigate GCF profiles from patients with generalized 

aggressive periodontitis and volunteers undergoing experimental gingivitis, respectively. 

Both studies, as with Ngo et al (130), found proteins of both serum and tissue origins, and 

more specifically found changes in common previously uninvestigated proteins, such as 

neutrophil Plastin-2, an actin bundling protein involved in Fcγ−receptor stimulation. With the 

inclusion of a quantitative aspect these studies allow for a more detailed investigation, where 

bioinformatic tools may be able to find composites of proteins that could be used as 

biomarkers. However, to date these biomarkers have not been validated. 

 

Metabolomics 

Metabolomics is a discipline that studies the quantities of all chemicals except DNA, RNA 

and proteins within a sample. No one experimental technique can analyse all chemical 

structures. Thus samples need to be analysed by a battery of techniques and separated by 

their chemical and physical properties and identified, principally, by nuclear magnetic 

resonance (NMR) and mass spectrometry. There is a vast number of potential metabolites 

and targeted approaches have elucidated some changes (22, 134-136), but there are very 

few articles that report on tackling the global metabolome in periodontal disease. Barnes et 



al (137) used gas and liquid chromatographic separations coupled to mass spectrometry to 

investigate GCF samples from 22 chronic periodontitis patients, stratified for healthy, 

gingivitis and periodontitis sites. They identified 103 metabolites in comparison to a chemical 

reference library, finding that levels of metabolites from gingivitis sites fell between healthy 

and periodontitis sites. At disease sites, in comparison to healthy sites, antioxidant, 

glutamine and di-and tri-sacchride levels were decreased whereas amino acids (except 

glutamine), choline, glucose, polyamines, and purine degradation and urea cycle metabolites 

were increased. This study has expanded our knowledge of the sources of oxidative stress, 

which is already acknowledged as being of particular importance, in periodontal disease by 

the potential increase in activity of the xanthine oxidase-reactive oxygen species axis (137). 

NMR based approaches have not, as yet, been described for human GCF. This may be due 

to the larger concentrations of samples required. 

Lipidomics is a particular subgroup of metabolomics that investigates the role of lipids in 

cellular function, because they integrate signalling and metabolic processes. The most 

common technique employs mass spectrometry, particularly using MSn where n>1.  

Recently, Gronert et al (138) used a lipidomics approach to identify and quantify diacyl 

glycerol species in neutrophils from LAP patients, following a transcriptomics analysis that 

had identified DAG kinase from neutrophils as not being expressed, in comparison to 

disease free controls. Metabolomics is an area that could and should see intensive research 

to provide a clearer understanding of periodontitis. It will be able to reveal information about 

host and host-microflora interactions which may yield specific small molecule targets that 

have been over looked by other techniques.  

 

Systems Biology 

Systems biology is the integration of multiple omics platforms and data through the 

reconstruction of the complex networks involved (139). These complex networks 



characterise particular systems, often cells, but in periodontitis it would need to address the 

whole disease – interactions not of one cell type, but many and also with the micro-

organisms present in the disease state. Advances in network inference and analysis in other 

diseases, such as obesity, diabetes and atherosclerosis, are already highlighting that it may 

be necessary to target multiple (10-50) genes, in different tissues, simultaneously to treat a 

disease effectively(140). Such an approach would yield a holistic overview of the disease 

milieu. The complementary information from the different ‘omic technologies needs to be 

coordinated and integrated, and several strategies are being progressed in other research 

areas (141). This still remains a major challenge to the periodontal field and there is still the 

requirement for fundamental understanding of the mechanisms taking place so that the data 

can be appropriately modelled. Using holistic approaches will have the advantage that they 

will address the synergistic qualities of multiple bacterial challenges and multiple cell types 

present at the diseased lesion. The bacterial challenge in particular should not be 

overlooked, with so many so called unculturable bacteria being present (142). Microbiome 

strategies to study the thousands of bacteria present will unite with the ‘omic technologies 

(143). Nibali et al (144) have already termed the interaction between host genetic factors, 

such as SNPs, and the oral microbiome as “infectogenomics”.  

 

To conclude, as yet ‘omic technologies have not yielded validated biomarkers for periodontal 

disease but they are identifying new routes for research to follow in relation to disease 

pathogenesis. It is unrealistic to think that one biomarker will be found, there is no more “low 

hanging fruit” (5). Periodontitis is acknowledged as a complex inflammatory disease, initiated 

by a plaque biofilm and with multiple component causes, and it is therefore much more likely 

that there is a multiplicity of biomarkers which together can: differentiate between health and 

disease; between disease onset and progression; improve the prognosis of disease 

outcomes and possible patient stratification allowing for personalized medical interventions; 

identify disease resolution/healing; predict treatment outcomes; identify patients who will 



respond well to a particular treatment; or provide surrogate end points. The use of use ‘omic 

techniques will play an important role in their discovery.  
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Figure 2. The compartments available for studying periodontal disease using ‘omic 
technologies 
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Figure 1. The path through which biomarkers must travel to be useful for the 
clinician. ‘Omic technologies can be used at all stages but have most impact on 
the initial stages. 
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Figure 3. The interplay of the different compartments studied by ‘omic 
technologies. 



 

Approach Study population(s) Platform of 
evaluation 

Number of 
species 
investigated  

Source of 
biological 
samples 

Number of 
subjects in study 

Conclusion Reference  

Genomics Severe periodontitis 
comparison to healthy 
subjects  

 

TaqMan PCR 

 

637 SNPs  

 

whole 
peripheral 
blood 

 

n=22 severe 
periodontitis 
patients, n=19 
controls 

GNRH1, PIK3R1, DPP4, 
FGL2, and CALCR 
significantly associated 
with disease 

114 

 

 Aggressive periodontitis  Affymetrix 

Gene Chip 
Human 
Mapping 500K 
Array Set 

GWAS of 
500,000 SNPs   

whole 
peripheral   
blood & 

gingival tissue 

n=141, 142, 164 
assessment in two 
cohorts by GWAS 
and validated in a 
third cohort 
(affected teeth 2-
6%) 

GLT6D1 was significantly 
associated with disease 

116 

Transcriptomics Chronic & aggressive 
periodontitis  

 

 

 

 

Affymetrix 
Human 
Genome U-133 
A arrays 

22,000 
transcripts 

 

 

 

 

Biopsies of 
gingival tissue 

 

 

 

 

n=1 localised 
chronic 
periodontitis, n=6 
generalised 
chronic 
periodontitis n=1 
localised 
aggressive 
periodontitis, n=6 
generalised 

Patients were clustered 
by pathogen presence 
rather than by disease 
type 

 

117 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

aggressive 
periodontitis 

  Chronic & aggressive 
periodontitis  

 

Affymetrix 
Human 
Genome U-133 
Plus 

2.0 arrays 

47,000 
transcripts 

Biopsies of 
gingival tissue 

 

n=90 (63 chronic & 
27 aggressive) 
periodontitis 
patients 

 

Gene ontology groups 
increased included 
apoptosis, antimicrobial 
humoral 

response, antigen 
presentation, regulation 
of metabolic processes, 
signal transduction, and 

angiogenesis 

118 

 Chronic & aggressive 
periodontitis  

 

Affymetrix 
Human 
Genome U-133 
Plus 

2.0 arrays 

47,000 
transcripts 

Biopsies of  

gingival tissue 

 

n=120 (65 chronic 
& 55 aggressive) 
patients 

 

Commonalities & 
differences were found 
between gene expression 
and bacterial species 
present 

119 

 

 Experimental gingivitis 

 

Affymetrix 
Human 
Genome U-133 

47,000 
transcripts 

Biopsies of 
gingival tissue 

n=14 healthy 
volunteers 

Differences in GO groups: 
neural processes, 
epithelial defences, 

121 

 



Plus 2.0 arrays   angiogenesis & wound 
healing 

 Periodontal disease 

compared with control  

Agilent 2100 

Bioanalyzer 
and a human 

inflammation 
microarray 

160 genes 

 

Biopsies of 
gingival tissue 

 

n=12 severe 

generalized 
chronic 
periodontitis, 
n=11controls 

Activation of pathways 
regulating tissue damage 
& repair after treatment 

 

122 

 

 Refractory periodontitis 

 

Affymetrix 
Human 
Genome U-133 
A arrays 

22,000 
transcripts 

 

Subepithelial 
connective 
tissue 

 

n=7 refractory 
periodontitis 

& n=7 
periodontally well-
maintained 
patients 

Increases in immune 
response, tissue 
modelling & apoptosis in 
disease in refactory 
patients 

 

123 

 

 Periodontitis patients 
undergoing treatment 

 

Affymetrix 
Human 
Genome U-133 
Plus 2.0 arrays 

47,000 
transcripts 

Peripheral 
monocytes 

 

n=15 patients Changes in innate 
immunity, apoptosis & 
cell signalling were seen 

 

124 

 

 Periodontitis Affymetrix 
Human 
Genome U-133 
A arrays 

22,000 
transcripts 

 

Peripheral 
neutrophils 

n=19 patients Type-1 interferon 
stimulated genes were 
increased 

127 

Proteomics Periodontitis in Electrophoresis Not given GCF, serum & n=10 periodontitis 
patients, n=4 

S100A8 and S100A9 
represented major 

134 



comparison to control 

 

& MS 

 

saliva 

 

controls differences between GCF 
and saliva 

 

 Periodontitis patients in 
maintenance phase  

Electrophoresis 
& MS 

66 proteins 
identified 

GCF 

 

n=12 patients Identification of serum 
and cell derived proteins  

135 

 

 Aggressive periodontitis 
in comparison to  control 

 

Electrophoresis 
& MS 

 

Not given Saliva 

 

n=5 aggressive 
periodontitis 
patients, n=5 
controls 

6 proteins were increased 
in saliva of periodontitis 
subjects, while 5 were 
decreased 

136 

 

 Generalized aggressive 
periodontitis 

 

Quantitative 
MS 

 

154 human, 
bacterial, 
fungal & viral 
proteins 

GCF 

 

n=5 aggressive 
periodontitis 
patients, n=5 
controls 

 

Human plastin-2 and 
Microbial proteins 
increased in disease, 
Annexin A1 increased in 
health 

137 

 

 Experimental gingivitis Quantitative 
MS 

202 human 
and bacterial 
proteins 

GCF n=10 healthy 
volunteers 

 

Identification of 186 
proteins including serum 
and cell derived species 
including plastin-2. Novel 
structural proteins for 
cilia and ribbon synapses 
found. 

138 

Metabolomics Chronic periodontitis  

 

MS 

 

103 
metabolites 
identified 

GCF n=22 patients 

samples collected 
included diseased 

At diseased sites 
antioxidant, glutamine, di-
&trisaccharide levels 

147 

 



and healthy sites decreased; amino acids 
(except glutamine), 
choline, glucose, 
polyamines, purine 
degradation & urea cycle 
metabolites increased 

 

 

 

 

 

 Localised aggressive 
periodontitis 

MS 7 
diacylglycerol 
species 

Neutrophils n=11 localised 
aggressive 
periodontitis, n=4 
asymptomatic 
family members 

Increased diacylglycerol 
species in disease 
compared to control  

148 

Systems Biology Periodontitis Data mining 
and cluster 
analysis  

61 genes In silico Not relevant 5leader genes (or hubs) 
(NFkB1, CBL, GRB2, 
PIK3R1, RELA) identified 

152 

 

Table 1. Summary of data rich ‘omics studies. Abbreviations: MS mass spectrometry; GCF gingival crevicular fluid. 

 


