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Abstract 

A key contribution of environmental economics to policy making has been to provide 

empirical indicators of sustainable economic development. An economy is (weakly) 

sustainable if it saves more than the combined depreciation of its stocks of natural 

capital and produced capital. Thus, these indicators allow trade-offs where, for example, 

natural capital might be depreciated in order to build up other forms of capital, such as 

in the built environment or in the form of human capital. As an application of this 

general idea, this thesis focuses on the trade-offs between ecosystem services, provided 

by natural capital, and certain land use and land cover changes (LUCC) in China. With 

better understanding of these trade-offs, this thesis contributes to optimum management 

for sustaining ecosystem services and supporting socio-economic development. 

The three case study areas are Hebei, Qinghai and Shandong provinces. I study 

trade-offs between landscape diversity and crop production, between grassland quality 

and livestock production, and between net primary productivity (NPP, a measure of the 

energy that enters ecosystems) and urbanization. After reviewing trade-off analyses of 

ecosystem services for sustainable land-use management (Chapter 2), the case studies 

are presented, with two chapters on Hebei, one on Qinghai, and three on Shandong. 

These chapters have econometric models for monitoring and assessing LUCC-induced 

ecosystem service changes, to enable quantitative analysis of the mechanisms available 

for policy-oriented optimum land-use management. 

The case study areas each have different policy interventions that are designed 

to preserve or restore natural capital. For example, Hebei has ecological restoration 
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programs, such as the Green for Grain program, that are implemented in an attempt to 

conserve landscape diversity. Qinghai province has policies of enhancing ecological 

restoration for grassland conservation, in order to improve livestock production. 

Shandong province has enforced a prime cropland preservation policy in order to ensure 

high cropland productivity. Collectively, the case studies add to the literature on the use 

of sustainable land-use management strategies, while helping to illustrate some of the 

trade-offs that are central to environmental economics.  

The results highlight issues created by conversion of cultivated land to urban 

use, in both Hebei and Shandong. In Qinghai province, grassland degradation, livestock 

production and farmers’ income interact and affect LUCC and changes in ecosystem 

services. Restorative interventions, such as nature reserves, seem to have a positive 

effect on NPP, as a measure of ecosystem productivity. On the other hand, in Shandong 

province there is relatively low land productivity, as measured by the NPP, in regions 

covered by built-up area. While this thesis does not calculate a value for the produced 

capital and human capital in built-up areas, the reduction in the value of natural capital 

as a result of urbanization highlights the potential trade-offs and the need for careful 

measurement to help whether China is on a sustainable development path. In summary, 

the research in this thesis examines various land-use practices and management regimes 

for conserving ecosystem services, and contributes to the literature on how management 

of land use change and land cover change can influence ecosystem services in rapidly 

urbanizing China.  
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Chapter 1: Introduction 

  



2 
 

A key contribution of environmental economics to policy making has been to provide 

empirical indicators of sustainable economic development. The notion of ‘Genuine 

Savings’, which focuses on a nation’s extended capital stock (i.e., natural capital, 

produced capital, and human capital), has become an indicator used by governments 

and agencies like the World Bank (Hanley, Dupuy, & McLaughlin, 2015). In particular, 

an economy is (weakly) sustainable if it saves more than the combined depreciation of 

its stocks of natural capital and produced capital (Pearce & Atkinson, 1993). Thus, these 

indicators allow trade-offs where, for example, natural capital might be depreciated in 

order to build up other forms of capital, such as the built environment or human capital. 

In this thesis I focus on trade-offs between ecosystem services, which are 

provided by natural capital, and activities that cause land use and land cover changes 

(LUCC) in China. The trade-offs that I study are an application of the general idea of 

substitution between types of capital, which environmental economics has contributed 

as a way to empirically monitor sustainability. Of course, the literature on LUCC goes 

well beyond economics because it is one of the central themes of global change research 

(Lambin et al., 2001; Turner et al., 2007; Lambin et al., 2008). With the development 

of theory and methodology for studying the dynamics of land system change (Costanza 

et al., 2014; Sutton et al., 2016; Wunder et al., 2018) and the establishment of the Global 

Land Project (GLP, 2005), researchers have increasingly noted the close relationships 

among natural environmental evolution, terrestrial ecosystem processes, human 

production activities and the dynamics of land system change (Deng, 2011a; Deng et 

al. 2014a; Deng & Gibson, 2018a; Deng & Gibson, 2018b). In particular, the interaction 

between LUCC and ecosystems has brought growing attention to those relationships 

(Deng et al., 2014b; Deng et al., 2015a; Deng et al., 2015b).  

This thesis aims to contribute to the optimum management for sustaining 

ecosystem services and supporting socio-economic development. It does so by focusing 

on three case study areas in China: Hebei province, Qinghai province, and Shandong 

province. These areas have different policy interventions that are designed to preserve 

or restore natural capital. For example, Hebei has ecological restoration programs, such 

as the Green for Grain program, implemented in an attempt to conserve landscape 
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diversity. Qinghai province has policies to enhance ecological restoration for grassland 

conservation, in order to improve livestock production. Shandong has enforced a prime 

cropland preservation policy in order to ensure high cropland productivity. Collectively, 

the case studies add to the literature on the use of sustainable land-use management 

strategies, by looking at the impacts on the socio-economy from the dynamics of LUCC 

and by examining how policies or regulations adopted by central or regional 

governments in China may affect the trade-offs between natural capital, in terms of 

ecosystem services, and other forms of capital, such as the built environment. 

Dynamics of land system changes and their effects on ecosystems are core 

issues studied by the International Geosphere-Biosphere Programme (IGBP) and 

the International Human Dimensions Programme (IHDP) (Costanza et al., 1997; GLP, 

2005; Crossman et al., 2013; Deng et al., 2013; Li et al., 2013; White et al., 2016). It is 

worth recalling that an ecosystem is a dynamic intricate system of plant, animal and 

micro-organism communities and the non-living environment interacting as a 

functional unit, and that people are integral parts of ecosystems (MEA, 2003). Also 

important are the “ecosystem services”, which are the direct and indirect benefits that 

people obtain from ecosystems (de Groot et al., 2002; Gascoigne et al., 2011). Amongst 

these ecosystem services are: provisioning services, such as providing food, water, 

timber and fiber; regulating services, such as the regulation of climate, flood, disease, 

wastes and water quality; cultural services, such as offering recreational, aesthetic and 

spiritual benefits; and supporting services, such as soil formation, photosynthesis and 

nutrient cycling. 

There can be tension between socio-economic development and the provision 

of ecosystem services. For example, the UK National Ecosystem Assessment reported 

that about 30% of ecosystem services were currently declining and many others were 

in a reduced or degraded state. The globalization of economies, flows of people, 

growing population, intensification and diversification of land use and advances in 

technology are all crucial driving forces for the decline of ecosystem services (Lambin 

et al., 2001; Farber et al., 2002; Rindfuss et al., 2004; Olivia et al., 2011; van 

Oudenhoven et al., 2012). On the other hand, the urgent demand of conserving 
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ecosystem services for sustainable development places great pressure on reasonable 

land resource allocation (Wu et al., 2013). Therefore, international organizations, 

individual countries and scholars are increasingly aware of the environmental impacts 

of LUCC (de Groot et al., 2006; Salzman et al., 2018). 

Land use is a key human activity, which is able to foster socio-economic 

development, and alter structures and processes in the environment through the 

exploitation of natural resources (Helming et al., 2008). People everywhere depend on 

ecosystems to provide necessary services for their livelihoods and their well-being 

through various ecosystem services, which directly or indirectly sustain the quality of 

human life. Meanwhile, ecosystems are increasingly subject to multiple human uses 

and pressures which are projected to compromise their ability to deliver ecosystem 

services necessary to support mankind; while LUCC also exerts certain effects on those 

various ecosystem services over space and time (Deng et al., 2011b). This trade-off can 

especially be seen in agricultural ecosystems and grassland ecosystems. From the 

perspective of agricultural ecosystem services, these would definitely be weakened if 

the cultivated land was degenerated or occupied, which would result in the loss of food 

production. A similar situation applies to grassland ecosystem services (Deng et al., 

2013).  

This thesis focuses on the trade-offs between ecosystem services, and certain 

land use and land cover changes (LUCC) in China. In terms of the broader notion of 

weak sustainability from environmental economics that is noted above, the trade-offs 

that I examine in this thesis are, broadly speaking, between natural capital and produced 

capital, particularly in the form of built urban environment. With better understanding 

of these trade-offs, and of the effect of land-use practices and management for 

conserving ecosystem services, it is hoped that the research in this thesis will contribute 

to optimum management for sustaining ecosystem services while balancing the need to 

use some natural capital to support socio-economic development. 

The remainder of the thesis is constructed as follows. Chapter 2 provides a 

review of trade-off analyses of ecosystem services for sustainable land-use 

management. Chapter 3 explores the relationship between landscape diversity and crop 
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production through a case study in Hebei province. In Chapter 4, sustainable land use 

management for improving regional eco-efficiency is studied, again for Hebei. Chapter 

5 quantitatively measures the interaction between net primary productivity and 

livestock production in Qinghai province. In the following three chapters - Chapter 6 

to 8, studies on the dynamics of land use and land cover changes and their impacts on 

ecosystem services for Shandong province are reported. Chapter 6 analyzes the 

managements of trade-offs between the conversion of cultivated land and changes in 

land productivity. In Chapter 7 I examine a specific type of trade-off between natural 

and produced capital, which is the question of whether expressways consume more of 

the agricultural production base. In Chapter 8, there is an exploration of how to improve 

eco-efficiency for the sustainable agricultural production. The final chapter concludes 

and discusses the limitation of the research included in this thesis. The following 

paragraphs are a relatively detailed introduction to each chapter.  

The focus of chapter 2 is on reviewing analysis tools and approaches to trade-

offs in ecology, economics and other fields. The objective of this chapter is to explore 

the most frequent ecosystem services trade-offs associated with land-use practices and 

management, and to compare techniques that measure trade-offs among ecosystem 

services across spatial and temporal scale. Major barriers to effective resource planning 

and management that contribute to ecosystem service trade-offs at different temporal 

and spatial scale include stakeholders’ preferences and the degree of irreversibility. The 

analytical tools and approaches that have been developed and applied to management 

decisions include the assessments that explicitly link spatial information on service 

supply to conduct correlation or cluster analysis, the integrated modeling framework 

for the systemic assessment, and approaches based on the multi-criteria decision theory 

and economic production theory. Evaluation of trade-offs is complex due to the 

multiple dimensions, interactions, variations and uncertainties with different physical 

units across time and space. Quantifying the non-linear dynamics of trade-offs between 

ecosystem services in the social-ecological systems that are driven by both biophysical 

drivers and management decisions remains a big challenge for sustainable land-use 
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management. A version of Chapter 2 of this thesis has been published in the Journal of 

Geographical Sciences (Deng, Li, & Gibson, 2016). 

Chapter 3 explores the relationship between landscape diversity and crop 

production for the case of Hebei province. Quantitative analysis shows the ratio of 

cultivated land tends to decrease with the increase in landscape diversity (as revealed 

using Shannon’s Index). The apparent contribution of landscape diversity to crop 

production could be regarded as an ecological effect supplied by landscape, although 

the magnitude of this effect is small. Thus, policies to pursue crop production might 

take the advantages of landscape diversity into account, along with the more typical 

agricultural inputs such as agricultural machinery, fertilizer and electricity, and the 

construction of infrastructure, as feasible and practical ways for advancing crop 

production. A version of Chapter 3 of this thesis has been published in the Journal of 

Cleaner Production (Deng, Gibson, & Wang, 2017a).  

 Chapter 4 explores the sustainable land use management for improving 

regional eco-efficiency in the case study area of Hebei province, where the issue of 

conversion of cultivated land, which is expected to impact on crop yields and ecosystem 

services, has been brought to prominence by recent urban expansion. In this chapter, I 

first explore the relationship between land use conversion, the ratio of cultivated land 

to total land, and crop production using scatter plots. Next, an econometric analysis was 

performed to examine the relationship between land use conversion and changes in 

cultivated land. Subsequently, quantitative analysis was performed to assess the 

regional eco-efficiency and ecological performance of prefectural cities in Hebei 

province. Chapter 4 indicates that crop production is positively related to the ratio of 

cultivated land to total land, with a nonlinear relationship. The results for the 

distribution of eco-efficiency show that the excessive consumption of ecological 

resources has not occurred during the urbanization process in Hebei province. A version 

of Chapter 4 of this thesis has been published in Annals of Operations Research (Deng 

& Gibson, 2018a).  

In Chapter 5, the focus is placed on quantitative measurement of the interaction 

between net primary productivity (NPP), which provides one way to measure the health 
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of an ecosystem, and livestock production in Qinghai province. The case study reveals 

that there is a positive relationship between the value of livestock production and NPP. 

The results indicate that NPP in a county-level region with nature reserves was about 

6% higher than in equivalent regions without nature reserves when all other factors are 

kept the same (with the effect statistically significant at the 99% level). Thus, there may 

be a small indirect effect of nature reserves on the value of livestock production via 

NPP. Given that higher grazing density negatively affects NPP, establishing appropriate 

grazing density as a first priority, and then establishing natural reserves as a second one 

is practical actions to sustain livestock farming in this region. Sets of effective measures 

for sustainable resource management have also been put forward in this chapter. A 

version of Chapter 5 of this thesis has been published in the Journal of Cleaner 

Production (Deng, Gibson, & Wang, 2017b).  

In Chapters 6 to 8 the thesis examines Shandong province, which is China’s 

largest agricultural exporter. The first case study is of management of trade-offs 

between land productivity and the conversion of cultivated land to non-agricultural 

(industrial and urban) use. I use the Estimation System of Land Productivity (ESLP) 

approach to calculate potential productivity for each 1km  1km grid cell, where ESLP 

is based on agro-ecological zones through considering common characters, inclusive of 

climate conditions, soil properties and other geographic features affecting crop growth. 

This measure takes account of photosynthetic productivity, light and temperature 

productivity, climatic productivity, soil productivity, and land productivity. The land 

productivity is lower in the regions of the province where cultivated land was converted 

to other uses over the 1985-2010 study period. A version of Chapter 6 of this thesis has 

been published in the Journal of Cleaner Production (Deng, Gibson, & Wang, 2017c).  

In Chapter 7, I look at the potential trade-off between one form of built capital 

– transport infrastructure, and specifically, expressways, and one form of natural capital, 

in the form of agricultural land that is suitable for cultivation. Prior research elsewhere 

in China (Jiangxi) claims that roads are more like “pressure values” in the sense that 

they release pressure on one form of natural capital – forests – by enabling the 

population to switch to less forest-demanding activities, rather than acting like 
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“pressure cookers” as would occur if roads increase the rate of forest loss (Deng et al, 

2011c). A related question is examined in this chapter, by testing whether the existence 

of a nearby expressway in 2005 (where nearby is in terms of whether it enters the 

watershed that a land pixel is located in) affected the level of cultivated land in 2010, 

and the rate of change in cultivated land from 2005 to 2010. The main strategy in this 

analysis is to start by looking at the simple relationship between the presence of 

expressways and cultivated land loss, then adding 24 additional covariates to measure 

the net effect of expressways on cultivated land changes, and finally using matching 

methods to at least in part control for observed and unobserved differences between 

pixels that have different degrees of access to expressways in order to obtain unbiased 

treatment effects estimates. The analysis suggests that that there is no adverse impact 

of roads on causing cultivated land in Shandong province to decline. Given that roads 

are important to socio-economic development strategies, and that roads are a form of 

produced capital, the lack of trade-off implies that in this particular instance China is 

not depleting natural capital faster than it is generating produced capital (although other 

forms of natural capital may be affected by road building). A version of Chapter 7 of 

this thesis has been published in Computational Economics (Deng, Gibson, & Jia, 

2017d). 

In Chapter 8 I consider another way to examine trade-offs related to 

urbanization and land productivity, using Stochastic Frontier Analysis (SFA). In this 

chapter I also introduce two additional indicators, the Ecological Performance Indicator 

(EPI) and the Eco-efficiency (EE) indicator. The EPI is defined as the ratio of the 

distance function values obtained from the production function that incorporates the 

ecological inputs to those from the production function without ecological inputs. The 

EE is defined as the ratio of minimum feasible ecological input use to observed 

ecological input use, conditional on the observed levels of the other inputs and outputs 

(Reinhard et al., 1999). The eco-efficiency results for the ratio of built-up area within 

Shandong imply presence of a trade-off between urbanization and land productivity. 

The trade-offs between land productivity and cropping returns, and between 

urbanization and cropping returns can also be embodied by net primary production 



9 
 

(NPP). This means that the EE can be calculated in another way to explain different 

trade-offs based on the ESLP. In line with the findings in Chapter 6, land productivity 

appears to be unevenly distributed in Shandong province, with relatively lower values 

in regions covered by built-up area. The regional eco-efficiency in Shandong was 

mostly over 0.9, except for prefectures located far from the main political or economic 

centers. A version of Chapter 8 of this thesis has been published in Technological 

Forecasting and Social Change (Deng & Gibson, 2018b).  

To summarize the thesis as a whole, some of the driving forces for, and impacts 

of, land use and land cover change in China, and related ecosystem service changes, 

are analyzed. To make the study manageable, I look at cases in three regions—Hebei, 

Qinghai and Shandong provinces—to specifically analyze particular trade-offs where 

changes in ecosystem services are likely to be caused by the local LUCC. In Hebei 

province, as in much of coastal China, urban expansion has highlighted issues of 

cultivated land conversion. Crop yield is influenced by landscape diversity and by the 

services provided by ecosystems. At the same time, agricultural income generated by 

crop yield is a large component of farmers’ income. Therefore, in Hebei province, 

landscape diversity loss caused by the rapid urbanization is threatening the food 

production, which also influences the farmers’ income.  

In Qinghai province, grassland degradation, livestock production and farmers’ 

income interact, as part of the land use and land cover change. Natural grasslands are 

on the decline on a global scale and this loss of ecosystem services is also apparent in 

Qinghai. More optimistically, my research indicates that there is a weak positive effect 

on net primary productivity (as a measure of the health of ecosystems) in the county-

level regions that have nature reserves and so conservation efforts may help to reduce 

the decline in productivity due to grassland degradation. Higher grazing density 

negatively affects net primary productivity, so promoting appropriate grazing density 

regimes and creating natural reserves are practical actions to sustain livestock farming.  

In Shandong province, there exists interaction between urbanization, crop 

production and conservation of forestry and grassland covers. Urbanization has 

highlighted the issue of built-up land expansion with the decreasing area of cultivated 
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land and forest, which could affect the land productivity measured by the net primary 

productivity (NPP) of terrestrial ecosystems. Based on the estimation of effects on land 

productivity, and on the analyses of eco-efficiency of agricultural production, the results 

indicated existence of trade-offs between agricultural production and urbanization. 

Consequently, it is necessary to adjust the agricultural technological measures in use, 

according to specific local conditions, in order to improve land productivity measured 

by the NPP, if there is to be any attempt to make up for the effects of urbanization on 

the sustainable agricultural development in Shandong province.  

To sum up, this thesis focuses on the trade-offs between ecosystem services, 

provided by natural capital, and certain land use and land cover changes (LUCC) in 

China. With better understanding of these trade-offs in the three case study areas (Hebei, 

Qinghai and Shandong provinces), this thesis contributes to optimum management for 

sustaining ecosystem services and supporting socio-economic development. The case 

study areas each have different policy interventions that are designed to preserve or 

restore natural capital, such as the Green for Grain program for conserving landscape 

diversity in Hebei, the enhancement of ecological restoration for grassland conservation 

in Qinghai and the enforcement of prime cropland preservation for ensuring high 

cropland productivity in Shandong, respectively. Other areas in China, and indeed in 

other countries that are undergoing some of the transformations seen so dramatically in 

China, have other policies for preserving or restoring natural capital. It is possible that 

some of the techniques drawn upon in this thesis could be applied in these other settings. 

In this manner, this thesis aims to add to the existing literature on the use of sustainable 

land-use management strategies in China, while more broadly helping to illustrate some 

of the trade-offs that are central to environmental economics.  
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Abstract 

Ecosystem services are substantial elements for human society. The central challenge 

to meet the human needs from ecosystems while sustain the Earth’s life support 

systems makes it urgent to enhance efficient natural resource management for 

sustainable ecological and socioeconomic development. Trade-off analysis of 

ecosystem service can help to identify optimal decision points to balance the costs and 

benefits of the diverse human uses of ecosystems. In this case, the aim of this paper is 

to present key insights into ecosystem services trade-off analysis at different scales 

from a land-use perspective, by comprehensively reviewing the trade-offs analysis 

tools and approaches that addressed in ecology, economics and other fields. The 

review will significantly contribute to future research on a trade-off analysis to avoid 

inferior management options and offer a win-win solution based on comprehensive 

and efficient planning for interacting multiple ecosystem services.  

Keywords: ecosystem services; trade-offs; land-use management; scale; integrated 

modeling; multi-criteria analysis; efficiency frontier 

1 Introduction  

Ecosystem services, which are broadly defined and extensively identified as the 

benefits obtained either directly or indirectly from ecosystems, are of great 

significance to human well-beings. Ecosystem services flow into human society and 

provide fundamental life-support for human civilization. From clean water supply to 

erosion control, from food provision to climate regulation, from recreation to scenic 

beauty, all humans’ life needed are provided by Earth’s ecosystems (Daily et al., 
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1997). Since the concept of ecological system being put forward by Tansley (1935), 

the study of ecological system has gradually become a scientific framework, and has 

been further strengthened since the end of 20th century. With varying attentions and 

perspectives, from the biological basis to economic concerns, the concepts and 

evaluations of ecosystem services have evolved through various research projects 

(Costanza et al., 1998; MEA, 2005a; TEEB, 2010; de Groot et al., 2010a). Most of 

these research efforts were concentrated on the evaluation and mapping of the 

biophysical or economic values of ecosystem services at different scales, and the 

impact mechanisms of human activities and natural changes (Li et al., 2013; Deng et 

al., 2013), shedding lights on the identification of the benefits that human society 

receive from the nature and providing information for decision making. Clarifying the 

current situation of ecosystem services is a prerequisite for further analysis and 

solutions identification. 

In real word contexts, as a kind of human civilization, the land-use 

management activities profoundly altered the ecosystems. Currently, there is a trend 

that an ever-large amount of ecosystem goods and services have greatly benefited 

humans. However, the capacity of global ecosystems for sustainable development is 

simultaneously degrading, leading to unintended environmental consequences that 

will potentially jeopardize the future land-use options (World Bank, 2008). 

Confronting the global challenges that land use changes substantially affect and alter 

ecosystem services, trade-off analysis on ecosystem services associated with decisions 

between land use alternatives has become the focus of land-use management (Ryffel 
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et al., 2014). In order to avoid unwanted and possibly irreversible effects of land-use 

change, sustainable land-use management should assess and manage inherent 

trade-offs between the site-specific immediate human needs and maintaining the 

long-term ecosystem services provisions. Trade-offs will arise if particular land-use 

management decisions are made, which will result in changes of the types, 

magnitudes, and relative mix of services provided by ecosystems. In addition, since 

each ecosystem service is not independent, but instead exhibits complex interactions, 

which will further lead to different environmental or socioeconomic outcomes related 

to different individuals or groups (Rodríguez et al., 2006). Over time, in spite of the 

great progress and success in the assessment of the ecosystem services trade-offs, the 

practical application in land-use management decision is limited (Daily et al., 2009). 

The underlying reason is that most studies have been focused on one or a few services 

without considering the interdependence and highly non-linear relationships among 

the ecosystem services (Ring et al., 2010). Land-use management and decision 

makings with focus only on one type of ecosystem services without considering 

others will result in policy failure. In this sense, the understanding and knowledge 

about inter-linkages and potential trade-offs among different ecosystem services 

should be deepened and expanded to explore new insights in innovations related to 

institutions and governance (Elmqvist et al., 2013).  

Although trade-offs analysis has become a hot topic in ecosystem services 

researches, few studies were conducted across disciplines. This study aims to explore 

the most frequent ecosystem services trade-offs associated with land-use practices and 
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management, and compare techniques that measure trade-offs among ecosystem 

services across spatial and temporal scale based on comprehensive revisits to relevant 

research. Firstly, we summarize the definitions and characteristics of ecosystem 

services trade-offs, then recognize trade-offs among ecosystem services at different 

scales. Subsequently, we elaborate the technics in different disciplines that are applied 

to investigate and measure the trade-offs for decision makings. Based on the review 

works, it will provide a comprehensive framework for future researches on ecosystem 

services trade-offs, which is critical to decision making for sustainable land-use 

management. 

2 Trade-offs of ecosystem services 

2.1 Definitions of trade-offs 

Trade-off is a fundamental concept in economics, while being especially applied in an 

evolutionary context (Garland, 2014). In economic context, a trade-off is commonly 

expressed as the opportunity cost which is the preferred alternative when taking an 

economic decision, deriving from the idea that resources are scare, which means to 

obtain more of one scarce resource, an individual or group collectively must give up 

some amount of another scarce good (de Groot et al., 2010b). In the ecosystem 

services context, the definition of trade-offs is mainly derived from the Millennium 

Ecosystem Assessment (MEA), which is defined as management choices that 

intentionally change the services provided by ecosystems (MEA, 2005b). In addition, 

The Economics of Ecosystems and Biodiversity (TEEB) described the trade-offs of 

ecosystem services as the way in which one ecosystem service responds to the 
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changes in another service (TEEB, 2010). There are also some refined definitions of 

trade-offs, indicating the interactions among ecosystem services that result in the 

increasing provision of one ecosystem service at the cost of reducing other services 

(Haase et al., 2012). Generally, trade-offs of ecosystem services occur when human 

interventions enhance the output of an ecosystem services while negatively affect the 

provision of other services (de Groot et al., 2010b; Elmqvist et al., 2013). 

2.2 Recognitions of trade-offs  

Over time, socioeconomic development and human well-beings are heavily relying on 

the provision of natural ecosystem services. On one hand, some of the ecosystem 

services functions are treated with priority and are intentionally modified due to their 

critical and important roles in the delivery of goods and services to support the human 

society, on the other hand, however, some of other services are ignored and damaged 

(Deng et al., 2011; Seppelt et al., 2013). Ecosystem is of extreme complexity and of 

great spatial and temporal variation in different ecological context. Identifying the 

specific trade-offs among different types of ecosystem services at different scales 

would help to convey information in a clear manner and provide decision-making 

framework about ecosystem services across geographic, ecological and 

socioeconomic dimensions (Ruhl et al., 2007; Tallis et al., 2008). In addition, it can 

also facilitate scientists and policy makers a better understanding of the potential 

consequences of unbalanced treatment of the ecosystem services functions in the 

process of land-use management (Haase et al., 2012). 
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2.2.1 Trade-offs in ecosystems 

Considering the complexity and interactions of the ecosystem services for the human 

society, researches on the trade-off analysis between the provisioning and regulating 

services and the investigation on the relationship of multiple ecosystem services and 

biodiversity are provoking. Agroecosystem is a good example in this case (Bennett 

and Balvanera, 2007; Nelson et al., 2008; Ring et al., 2010; TEEB, 2010; Elmqvist et 

al., 2013). 

Agricultural land covers about 35% of the Earth’s terrestrial surface (MA, 

2005d), providing a series of provisioning (e.g., food, wood, and water), regulating 

(e.g., climate, carbon, and erosion), supporting (e.g., pollination, biodiversity/habitat), 

and cultural (e.g., recreation and education) services (Power, 2010). Over the past 

decades, humans changed the Earth’s surface extensively for agriculture activities to 

meet the increasingly demand for provisioning services, which severely affect the 

current and future generation of many regulating services and biodiversity (Bennett 

and Balvanera, 2007). For agroecosystem, the typical problem is that agricultural 

intensification and centralization related to the provisioning ecosystem services for 

higher macro-economic output usually reduce or damage the other ecosystem services 

related to the ecosystem regulation and maintenance, as well as cultural services 

(Kirchner et al., 2015). 

There are several studies explicitly analyzed the possible trade-offs among 

various ecosystem services for agroecosystems. Specific trade-offs have been 

identified, such as the interactions between agricultural production and regulating 
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services, e.g. sediment yield (Swallow et al., 2009) and carbon sequestration 

(Crossman et al., 2011). Biodiversity conservation is also commonly viewed as 

trade-off with agricultural production. Biodiversity is not equated to a specific 

ecosystem service or bundle. Most studies tried to investigate the trade-offs between 

biodiversity conservation and bundles of ecosystem services in agroecosystems. 

Barraquand and Martinet (2011) analyzed the trade-offs between agricultural 

production and biological conservation at the landscape scale. Mason et al. (2012) 

revealed that the investment directed into mitigating the impacts of agriculture on 

ecosystem services rather than biodiversity restoration would result in lower 

biodiversity. One research examined the potential trade-offs between agricultural 

production and biodiversity benefits, revealed that the benefit gained from an increase 

in biodiversity would outweigh the loss of returns from agricultural production 

(Dymond et al., 2012).  

Little evidence and quantitative analysis on the interactions and linkages 

among ecosystem services bundles had been recognized as a major research gap 

regarding ecosystem services(Carpenter et al., 2009) and resulted in mixed 

conclusions (Bohensky et al., 2006). Recently, in order to provide implications for 

sustainable land-use management, researches on the types of interactions and the 

corresponding feedbacks among different ecosystem services are stimulated. For 

example, Brauman et al. (2007) revealed that water quality regulation services with 

other services, such as habit for biodiversity and climate regulation, can be 

co-delivered by vegetation, requiring the analysis of trade-offs among multiple 
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services (Butler et al., 2013). It has been a major research priority to consider 

biodiversity conservation bundles and ecosystem services bundles during payment 

implementation (Wendland et al., 2010). In addition, some studies have revealed that 

when taking multiple services into consideration, the outcomes with maximized net 

gains of land-use management will be achieved more efficiently (Crossman and 

Bryan, 2009).  

Intensive land-use change and management have been recognized as the 

major drivers that alter ecosystem services provision from agroecosystems (Sheng et 

al., 2011; Bryan, 2013). Wang et al. (2015) quantified the multiple ecosystem services 

in the Sanjiang Plain of China and concluded that the significant loss of ecosystem 

carbon stocks and natural habitats with grown food production was due to the 

extensive land conversion from natural wetlands to cultivated land. Similarly, 

Haines-Yong et al. (2012) confirmed a trade-off between the provisioning services 

(“crop-based production”) and regulating services (“habitat diversity”). Also, during 

the process of ecological restoration, which converted he agricultural land back to 

natural ecosystems, trade-offs can be found among different ecosystem services, such 

as trade-off between biodiversity and salinity mitigation (Maron and Cockfield, 2008), 

between carbon sequestration and species conservation (Nelson et al., 2008), food 

production (Paterson and Bryan, 2012), and water supply (Chisholm, 2010). While, as 

humans play a critical role in managing the agroecosystem, political practices, 

socioeconomic incentives and technological progresses are likely to influence the 

quantity and quality of ecosystem services, which will further affect the direction of 
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trade-offs (Nelson et al., 2009). Compared to the results of the research conducted by 

Wang et al. (2015), the study in the Loess Plateau of China by Lü et al. (2012) showed 

an opposite result, indicating synergy between food production and ecosystem carbon 

stocks with the conversions of farmland to woodland and grassland, which can be 

contributed to agricultural technological growth, improvement of agricultural 

management and production efficiency. Nelson et al. (2009) also identified that policy 

interventions could modify the negative trade-offs between commodity production 

and other ecosystem services and biodiversity conversions. Maes et al. (2012) 

confirmed that there exist trade-offs among provisioning ecosystem services, 

regulation services and biodiversity conservation from agroecosystems, while he 

emphasized that trade-offs can be mitigated through specific management measures, 

such as increase cropping diversities and plant buffer strips. In this sense, trade-offs 

between agricultural production and other ecosystem services are not inevitable. 

Analysis on yields from agroecosystems indicated that with efforts on practice to 

conserve ecosystem services through measures, such as conservation tillage, crop 

diversification and biological control, ecosystem services trade-offs would be 

mitigated, with even improvements in yields (Badgley et al., 2007). These analyses 

suggest trade-off analysis should be incorporated into the land-use management 

decision making process, which can make a ‘win-win’ situation possible, where 

provisioning services are maintained and enhanced whilst other ecosystem services 

are supported. 
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2.2.2 Trade-offs of ecosystem services at different scales 

The recognition of trade-offs should be conducted at different scales. It is commonly 

acknowledged that ecosystem services trade-offs occur at different spatial and 

temporal scale (Rodríguez et al., 2006; Power, 2010) and vary across both space and 

time (Holland et al., 2011), which increase more uncertainty to be managed. In 

addition, trade-off analysis from other perspectives are also proposed to be of great 

significance to land-use management and decision making, such as trade-offs among 

different stakeholders (Ring et al., 2010) and the reversibility of ecosystem services 

(Rodríguez et al., 2006). 

Trade-offs at time scale. Trade-offs at time scale arises when policy-makers 

make choices between current and future benefits. Identifying such trade-offs can help 

policy-makers understand that management decisions should consider the long-term 

effects of preferring the short-term provision of one ecosystem services at the expense 

of future use of this same ecosystem service or other services (Rodríguez et al., 2006). 

Rodríguez et al. (2005) elaborated a broad topic about the temporal trade-offs during 

decision makings, which revealed that there would be many important trade-offs 

between current use of nonrenewable resources and their future use. It was pointed 

out that that slowly natural processes, such as soil formation, groundwater supply and 

genetic diversity generation that underlay supporting services, were always being 

ignored since that they were difficult to be detected and quantified, which would 

seriously damage the long-run sustainable provision of ecosystem services. For 

example, the collective activities of farmers to replace the original woody vegetation 
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with pasture and corps for the short-term increase in agricultural production led to the 

water table being moved toward the surface, bring salt upward through the soil, which 

finally result in land salinization in the long-term future (Greiner and Cacho, 2001; 

Briggs and Taws, 2003). During the natural processes, there exist a great deal of 

uncertainties associated with large time lags in the feedback between changes in 

ecosystem process and other factors, posing much more difficulties in forecasting 

eventual outcomes and identifying the critical thresholds of ecosystem services 

(Holling, 1973; Rockström et al., 2009). For a balanced feedback loop during the 

resource management, the ability to recognize the trade-offs between current and 

future desirable states and ‘time preferences’ for ecosystem services becomes 

important and critical to make better decisions on land-use management (van den Belt 

et al., 2013).  

Trade-offs at spatial scale. Spatial trade-offs could be simply recognized as 

benefits here while cost there (Ring et al., 2010), it occurs spatially between different 

landscapes, ecosystems, communities and even countries. For example, the 

improvement in water productivity with more agricultural inputs in the upstream will 

consequentially impact the water quality regulation services and incur costs in the 

downstream (Pattanayak, 2004). Such trade-offs have been illustrated specifically in 

the agricultural production in the USA, where the highly intensive agriculture relied 

greatly on artificial fertilization and finally led to massive negative impacts on the 

fisheries in the Gulf of Mexico (Tilman et al., 2002; Cumming, 2005). Spatial 

trade-offs are also well-known in economics, the environmental economists use 
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spatial externality to indicate the positive or negative effects of land-use management 

decisions on ecosystem services in extended areas than those ecosystem services of 

where the decisions incurred that cost or benefit (Tietenberg, 1988). For example, the 

extensive division of water from rivers for drinking or agriculture irrigation in the 

upper regions will trigger water scarcity in the regions lower down the watershed 

(Falkenmark, 2003), while the local cost to conserve the biodiversity will benefit the 

global (Ring, 2008). The need to account for the spatial effects outside traditional 

geopolitical boundaries when facing ecosystem services decisions has been 

recognized by many managers, while practically it was rare that managers would give 

consideration to large-scale benefit at the cost of local wellbeing. It implies that 

incentives are needed to encourage managers think broadly to integrate experiences of 

small-scale ‘‘win-win’’ solutions to solve large-scale and macro problems (Rodríguez 

et al., 2005). 

Trade-offs among stakeholders. Ecosystem services trade-offs among 

stakeholders means some stakeholders win while other lose, that is, one benefit from a 

particular ecosystem service at the cost of other individuals (Rodríguez et al., 2006). 

The UK National Ecosystem Assessment (UKNEA) defined such trade-offs as two 

outcomes: one is that the quality or quantity of an ecosystem service being utilized by 

one stakeholder was reduced or deteriorated due to others’ utilization of that or other 

ecosystem services; the other one is that the utilization of ecosystem services by one 

stakeholder would lead to the decline of others’ wellbeing (UKNEA, 2011). Different 

stakeholders derive wellbeing from a variety of ecosystem services based on their 
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choices of development and management of particular services, which are strongly 

influenced by lots of factors, such as their beliefs, preferences, and experiences over 

time (McShane et al., 2011). Trade-offs occur among different ecosystem services due 

to inherent biophysical constraints in time and over space, then the divergent 

preferences on ecosystem services of different stakeholders will trigger conflicts 

(Martín-López et al., 2012). For instance, land use activities in terrestrial ecosystems 

impact the water regulation services through hydrological processes, then it will arise 

the conflicts among a range of associated stakeholders  that depend on terrestrial 

ecosystems and aquatic ecosystems (Silvestri and Kershaw, 2010). In this case, 

reconciling stakeholders’ divergent preferences over ecosystem services with explicit 

recognition of the nature of biophysically based trade-offs is crucial to identify 

sustainable solutions (King et al., 2015). With stakeholders’ preferences being valued 

and added into the trade-off analysis, it makes the values intrinsic to ecosystem 

services (Brauman et al., 2007), and most researchers recently thought that the values 

as sources of conflicts that should be separated with biophysical constraints (Mouchet 

et al., 2014; Yahdjian et al., 2015). Especially, Cavender-Bares et al. (2015) presented 

a sustainability framework that characterizes ecosystem service trade-offs in terms of 

two dimensions of ecosystem service conflicts: biophysical constraints, and divergent 

preferences and values of stakeholders. The framework enables the identification of 

driving factors of and direct visualization of trade-offs due to stakeholders’ 

preferences at spatial or temporal scale (Cavender-Bares et al., 2015). King et al. 

(2015) further evaluated the utility of the framework for ecosystem services trade-off 
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analysis with critical insights to clarify conflicts among stakeholders under different 

scenarios. 

Trade-offs in terms of reversibility. Reversibility of ecosystem services 

means the possibility of disturbed ecosystem service being reversed back to its 

original state once the perturbation ceased (Rodríguez et al., 2005). Trade-offs effects 

can be felt over time and spatial scale, indeed, some trade-offs may be irreversible. 

Regarding that the ecosystem services may be changed irreversibly, the importance of 

thresholds has been highlighted in the Millennium Ecosystem Assessment (MA, 

2005c). When a system crosses a threshold due to persistent or strong environmental 

or socio-economic drivers, it will trigger great costs to society due to the irreversible 

loss of critical natural capital (Farley, 2012). Ring et al. (2010) interpreted the 

thresholds as resilience, which stands for a system’s ability to adapt to the 

perturbations and stay persistent without changes. Further, considering the thresholds, 

they put forward four types of non-linear dynamics in ecosystems. It includes: a 

system with ‘no-threshold effect’, where it is revisable no matter how the changes in 

the controlling variables; a system with ‘threshold, no alternate attractors’, where 

slight change in controlling variable will significantly alter the system while it is still 

revisable if changes pass the threshold; and a system with ‘threshold, alternate stable 

state’, where it may be irreversible with large changes in the controlling variables that 

pass the thresholds; and a system with ‘irreversible threshold change’, where the 

changes shall not exceed thresholds to avoid irreversible situations (Ring et al., 2010). 

The existing of thresholds and relevant irreversible dynamic changes may curse 
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various problems for sustainable development of socioecological systems, e.g. 

application of fertilizer in agricultural production that exceeds the thresholds will pose 

negative impacts on water quality. While with recognition of the thresholds, such as 

that precise agriculture will achieve greater crop yield with same inputs, while with 

less damages to ecosystems (Cavender-Bares et al., 2015). Thus, being aware of how 

far-reaching the effects, whether the effects is reversible, and how quickly can it be 

reversed, managers can make decisions appropriately to mitigate any negative effects 

and achieve “win-win” solutions (Rodríguez et al., 2005).  

In dealing with the trade-offs in the context of ecosystem services, there exist 

multiple interactions and linkages among services at different scales that should be 

taken into consideration at first place, such as processes and management 

interventions of different stakeholders across various spatial and temporal scale. In 

addition, variations in the thresholds of ecosystems are closely related with the 

reversibility, making it is difficult to estimate the ecological issues. Facing the above 

issues, managers should complement their decisions with trade-offs at multiple spatial, 

temporal and stakeholder scale into consideration, with recognition of the threshold to 

minimize the negative effects of trade-offs.  

3. Quantification analysis of trade-offs 

Management of the complex social-ecological system requires tools to depict 

trade-offs among ecosystem services. As reviewed above, the major barriers to 

effective management contribute to that services trade-offs differ across time and 

space, and that different group of stakeholders possess different preferences for 
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services. To deal with the barriers, researches in different disciplines have applied a 

variety of tools and approaches to quantitatively analyze these ecosystem service 

trade-offs. For a comprehensive knowledge of tools and approaches, we conduct a 

review of how ecosystem services trade-offs being analyzed at different scale from 

various perspectives.  

3.1 Mapping trade-offs via correlation analysis and cluster analysis 

GIS-based spatial mapping analysis are frequently applied to provide detailed 

information on ecosystem services indicators and further assist begin to understand 

and visualize potential trade-offs (Kirchner et al., 2015). For example, Maes et al. 

(2012) confirmed trade-offs between multiple ecosystem services and biodiversity 

with GIS-based spatial mapping and correlation analysis in Europe. Similarly, 

Maskell et al. (2013) identified intensive trade-offs between soil carbon storage and 

above-ground net primary production based on maps and pairwise correlations. The 

two examples above just investigated the trade-offs among multiple ecosystem 

services across space with no changes at time scale. While in practical terms, 

trade-offs are usually identified in response to land-use changes under particular 

management actions and measures or designed scenarios over time. Jiang et al. (2013) 

mapped changes in agricultural production, carbon storage and biodiversity, and 

further conducted spatial statistical analysis on the trade-offs at landscape scale in the 

UK during 1930-2000. In addition, trade-off analysis is mostly conducted from the 

perspective of biophysical supply side, while studies are scarcely conducted to assess 

and map ecosystem services trade-offs from the aspects of social demand side. To 
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address both biophysical supply and social demand sides, Castro et al. (2014) 

identified ecosystem services trade-offs based on correlation analysis, both on the 

supply and the social demand sides, and analyzed spatial mismatches among the 

ecosystem services on biophysical, socio-cultural and economic dimensions within a 

spatial unit.  

Correlation analysis on the trade-offs based on mapping simply identifies the 

interactions between pairs of ecosystem services, while trade-offs and synergies are 

more generally found  within the bundles of services, indicating that a more 

integrated perspective on bundles of services is required for trade-off analysis among 

ecosystem services (Haines-Young et al., 2012). Regarding the interactions among 

ecosystem services bundles, cluster analysis was mostly applied. Cluster analysis 

based on mapping is a powerful tool to identify ecosystem service bundle types and 

analyze ecosystem service  trade-offs and synergies (Raudsepp-Hearne et al., 2010). 

Especially, it is a more appropriate way when prior knowledge about what the 

trade-offs involve is not available (Medcalf et al., 2014). Raudsepp-Hearne et al. 

(2010) applied the concept of ecosystem service bundles to analyze interactions 

among ecosystem services, in which cluster analysis determined the provision of all 

12 ecosystem services grouped the 137 municipalities into six data clusters. Also, 

Haines-Young et al (2012) explored the trade-offs between the selected services with 

cluster analysis, in which seven spatially explicit clusters were distinguished with 

distinct evolutionary trajectories of ecosystem services. 

GIS-based spatial mapping with accompanied correlation or cluster analysis 
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on the interactions among ecosystem services is a useful tool to provide specific 

information for trade-off analysis. Nonetheless, it was criticized that there are some 

shortcomings, such as less focused on biodiversity, mostly dominated at regional scale, 

and rarely considered detailed bottom-up economic modeling of land-use 

management (Kirchner et al., 2015). 

3.2 Integrated modeling for trade-off analysis 

In comparison with the widely applied GIS-based tool for spatial ecosystem services 

trade-off mapping analysis, integrated modeling approach can deal with some 

shortcomings raised above, which not only allows for a spatially explicit 

quantification of the ecosystem services changes over time and space (Huber et al., 

2013), but also can link disciplinary data and models to clarify complex interactions 

between the human society and the ecosystems (Falloon and Betts, 2010; Laniak et al., 

2013). Recently, the integrated modeling approach has been widely applied in the 

assessment of trade-offs in ecosystem services (Nelson et al., 2009; Polasky et al., 

2011; Willemen et al., 2012). For example, Briner et al. (2012) designed an 

integrative modeling framework-Alpine Land Use Allocation Model (ALUAM), 

which not only specifically considers the spatial scale at which decisions are made, 

but also the economic interdependencies among ecosystem services. Further, they 

applied the ALUAM to evaluate spatially explicit trade-offs among food provision, 

protection against natural hazards, carbon sequestration, and biodiversity in a 

mountain region in the Swiss Alps within designed scenarios (Briner et al., 2013).  

Among the integrated modeling tools, the most currently available and applied tool is 
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the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) (Nelson et 

al., 2009; Tallis et al., 2011), which was designed to inform decisions about resources 

management and planning. Nelson et al. (2009) applied InVEST to investigate the 

trade-offs between biodiversity conservation and ecosystem services under 

stakeholder-defined scenarios of land-use/land-cover change in the Willamette Basin. 

It showed that such trade-offs varied in different scenarios, suggesting that analyzing 

trade-offs between ecosystem services did great favor in more effective, efficient, and 

defensible decision makings (Nelson et al., 2009). Goldstein et al. (2012) revealed the 

trade-offs between carbon storage and water quality and also between environmental 

improvement and financial returns under seven land-use planning scenarios based on 

InVEST, which support the implement of the plan for diversified agriculture and 

forestry management. However, Jackson et al. (2013) pointed out that InVEST was 

widely applied at large scale and with coarse resolution, in comparison they designed 

the Polyscape tool, which can be used to disentangle spatially explicit ecosystem 

services trade-offs to support landscape management, from individual field scale 

through to catchments scale. Further, they compared the similarities and 

dissimilarities among different tools, such as Artificial Intelligence for Ecosystem 

Services (ARIES) tool, Envision Visualization System (EnVision) tool, and the 

framework and models developed within Multiscale Integrated Earth Systems project 

(MIMES). 

There has been great advances in the development and application of 

integrated modeling approach for ecosystem services and trade-off analysis, while 
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comparing the dissimilarities among the integrated modeling tools, it can be noted 

that, considering the spatial differences and regional heterogeneities, there still exist 

space and opportunities for innovations on multi-scale and multi-regional integrated 

modeling frameworks for ecosystem services trade-off analysis at a higher spatial 

resolution (Crossman et al., 2013). 

3.3 Multi-criteria analysis of trade-offs 

Ecosystem management will inevitably involve conflicting objectives, trade-offs, 

uncertainties and conflicting value judgments (Sanon et al., 2012), making it a 

complex process for policy design for ecosystem management. To address above 

interdisciplinary and complex problems, multi-criteria analysis, as a tool that can take 

both ecological and socioeconomic criteria into consideration, is mostly applied to 

conduct ecological economic analysis (Huang et al., 2011; Fontana et al., 2013). 

Multi-criteria analysis had been applied in various disciplinary researches and 

recently been broadly introduced and utilized to solve the problems in ecosystem 

services management (Daily et al., 2009; Nelson et al., 2009). For example, Cheung 

and Sumaila (2008) applied the multi-criteria analysis to explore the trade-offs 

between conflicting conservation and socioeconomic objectives for tropical marine 

ecosystems management.  

Traditional multi-criteria analysis deals with only the implicit trade-offs 

through introducing the weights expressed by the stakeholders (van Huylenbroeck, 

1997), to enhance the transparency, Sanon et al. (2012) assigned numerical values for 

ecosystem services to elaborate and quantify the trade-offs between the stakeholder’s 



36 
 

objectives based on a participatory approach. In addition, combining the Geographical 

Information System (GIS) with multi-criteria analysis, Nguyen et al. (2015) proposed 

a spatial multi-criteria analysis, which integrates ecological aptitude, environmental 

impact and socio-economic feasibility criteria in a step-wise procedure to analyze 

objectives that affected by spatially-distributed diagnostic factors. Further, Vollmer et 

al. (2015) demonstrated an application of a four-step spatial multi-criteria analytical 

approach that involves scenario development, ecosystem service quantification and 

mapping, preference weighting, and optimization to maximize preferred ecosystem 

services while minimizing cost, which can support decision making for efficient 

polices to manage ecosystem services. 

3.4 Trade-off analysis based on production theory 

Multi-criteria analysis has a long history of being applied to analyze the trade-offs in 

ecosystem services, in parallel, the production theory developed by the economics 

discipline has also been applied to production of ecosystem services (Barbier, 2007) 

and to examine trade-offs of ecosystem services (Naidoo and Ricketts, 2006). 

Production theory is a subfield of microeconomics that concerns trade-offs between 

different inputs for production, i.e. considering the process of different inputs being 

converted into different outputs (Varian and Repcheck, 2010). A production theory 

analysis can be linked not only to the ecosystem services with market value as inputs 

in the production function, but also to the others not connected to market output (Chee, 

2004; Barbier, 2007). As that not all services can be simultaneously maximally 

delivered to humans, thus stakeholders must make decisions according to their 



37 
 

preferences, then when applying production theory to ecosystem services trade-off 

analysis for decision making, the key principle is to achieve the sustainable and 

efficient delivery of multiple interacting services to human society (Tallis et al., 

2008).  

The Cobb-Douglas Production functions are the most widely used types to 

depicts the production theory (Chisasa and Makina, 2013), while it cannot cope with 

the complex systems that with multiple inputs/multiple outputs production systems 

that influenced by natural resources, external environmental attributes, and the 

preferences of land managers. To address the multiple-inputs/multiple outputs 

production functions, the efficiency frontier method has become popular (Grosskopf 

et al., 1992), which can be traced back to the ideas put forward by Farrell (1957). 

Specifically, the productive efficiency is treated as a relative concept, which can be 

illustrated as Pareto-efficient options for optimal utilization of two or more services, 

where the system cannot increase one service without sacrificing other services 

(Nelson et al., 2008; Polasky et al., 2008).  

In recent years, the efficiency frontier analysis has been utilized in a variety 

of researches to examine trade-offs between different ecosystem services, especially 

in agro-ecosystems (Bekele et al., 2013; Balbi et al., 2015; Mastrangelo and Laterra, 

2015). Lester et al. (2013) conducted a review on the ecosystem services trade-off 

analysis framework that based on economic theory, and summarized six common 

types of ecosystem service interactions based on the insights gained from frontier 

shapes, including non-interacting services, direct trade-off, convex trade-off, concave 
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trade-off, non-monotonic concave trade-off, and backward S trade-off. All the frontier 

shapes focus on two dimensions, which are the easiest ways to visualize, while the 

concept and logit can be applied to trade-offs in multiple dimensions as well 

(Cavender-Bares et al., 2015). For example, to deal with the conflicts between the 

production of marketable ecosystem goods and the provision of non-marketed 

ecosystem services in agro-ecosystems, Bekele et al. (2013) combined the Soil and 

Water Assessment Tool (SWAT) model and the productive frontier analysis to analyze 

a 6-dimensional trade-offs between three provisioning services and three regulating 

services, which confirmed that provisioning and regulatory services aggregately 

formed a linear to convex ecological-economic production possibilities frontiers. The 

efficiency frontier is an effective method to judge the biophysical constraints of the 

ecosystem services production system, which combines with the information about 

value of services from stakeholders’ perspective, and further identifies optimal 

management approaches that yield the greatest net benefits, while the problem that 

there may exist uncertainty about the production frontier and values still remains to be 

dealt with (Cavender-Bares et al., 2015). 

4 Conclusions 

For ensuring sustainable land-use management, it is critical to conduct trade-off 

analysis of ecosystem services closely associated with land-uses, which allows the 

decision-makers to better understand the corresponding consequences of different 

choices and achieve a solution to long-run sustainable development of 

socio-ecological systems. 
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Trade-offs arise when biophysical constrains change or humans make 

management interventions, which will change the types, magnitudes and interactions 

among services provided by ecosystems. Investigations on the trade-offs among 

individual ecosystem services and biodiversity are mostly provoked, further analysis 

on the interactions among ecosystem services bundles has also gained great 

achievements. On one hand, intensive land-use change and management are 

recognized as the major factors affecting ecosystem services provisions and incurring 

trade-offs, on the other hand, the major barriers that inhabit the sustainable resource 

planning and management contribute to ecosystem services trade-offs at different 

scales, which can be classified in terms of temporal and spatial scale, stakeholders’ 

preference, and the degree of irreversibility. Thus, taking the ecosystem services 

trade-offs at different scales into consideration during decision-making is important 

for sustainable land use management to avoid negative effects and achieve synergetic 

outcomes.  

In dealing with the problem of ecosystem services trade-offs, a wide variety 

of analytical tools and approaches have been developed and applied for management 

decisions, including the assessments that explicitly linked spatial information on 

service supply to conduct correlation or cluster analysis, the integrated modeling 

framework for the systemic assessment, and also approaches based on the 

multi-criteria decision theory and economic production theory. While, evaluation of 

trade-offs is complex due to the multiple dimensions, interactions, variations and 

uncertainties with different physical units across time and space, thus quantifying the 
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non-linear dynamics of trade-offs between ecosystem services in the social-ecological 

systems driven by both biophysical drivers and management decisions still remains a 

big challenge for sustainable land-use management. 
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Abstract 

This paper explores the relationship between landscape diversity and crop production 

using big data techniques. In the case study area of Hebei province, China, there is a 

positive ecological effect of landscape diversity on crop production (coefficient of H 

(Shannon’s index) and H2 on crop production are 7.9665 and -2.2388, respectively), 

and a negative effect via operating cultivated land change (coefficient of H and H2 on 

cultivated land change are -5.4253 and 1.5520, respectively). This negative effect is 

measured with big data techniques and is explained by variables such as the ratio of 

cultivated land and other basic local conditions. The net effect of landscape diversity 

on crop production is negative, all else the same, reflecting the strength of the impact 

through cultivated land change. Thus, it is important to adhere to a certain level of 

landscape diversity if crop production is to be sustained.  

Keywords: landscape diversity, crop production, big data, data fusion, Shannon’s 

index 

1 Introduction 

Urbanization and economic growth cause remarkable changes of landscape patterns 

which are identified by the mosaics of cropland, woodland, built-up land, forests, 

meadows, and so forth (Palacios et al., 2013). Landscape change and cultivated land 

conversion due to urbanization and industrial transformation can lead to severe habitat 

destruction as chequered landscapes are formed (Fu and Chen, 1996; Schindler et al., 

2013). Dynamics of landscape patterns may alter a variety of natural flows and 

wildlife abundance (Romme and Knight, 1982), and also may affect crop production 

(Boreux et al., 2013). The phenomena seem to be more obvious in major agricultural 
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production regions. 

The Hebei province of China, located on the periphery of Beijing and Tianjin 

and north of the lower reaches of the Yellow River with Bohai Sea to the east 

(113°27'-119° 50'E, 36°05'-42°40'N), is a salient case study of these processes (Fig. 1). 

Hebei province, with an area of 190,000 km2 and a population of 71.85 million in 

2010 (10.16 million of them live in the capital city, Shijiazhuang), is one of China’s 

major bases of agricultural production. It has a continental monsoon climate, with 

cold, dry winters, and hot, humid summers. The temperature is −16 to −3 °C in 

January and 20 to 27 °C in July, with annual precipitation ranging from 400 to 800 

millimetres, concentrated heavily in summer. Favourable climate and land resources 

contribute to the historical and current agriculture development, with over 80% of 

cropland in wheat, corn, broomcorn, millet, etc. Recent rapid urbanization witnesses 

the growth of the population living in urban areas in Hebei province, which increased 

by 10.5 percent from 2006 to 2014. Even though it has the same increasing percentage 

with the entire China, Hebei province has a faster rate since it started with a lower 

proportion of urban dwellers (38.8% compared with 44.3% for China, calculated by 

urban population divided by total population of Hebei province) (NBSC, 2007- 2015). 

The resulting land conversion changed landscape patterns and threatened crop 

production at both local and regional level. 
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Fig. 1. The location of the study area and the patterns of land use/cover in 2008  

 

While rapid urbanization and land conversion are common throughout 

eastern China, Hebei province is of special interest as an experimental site for 

industrial transformation, new urbanization and environmentally friendly 

development (the Plan for Cooperative Development of Beijing-Tianjin-Hebei 

(Jing-Jin-Ji)). The evolution of the industrial structure is shown by the declining 

importance of the primary and secondary sectors and the rise of the tertiary (services) 

sector; in 2010 the contribution percentage of the three sectors were 12.6%, 52.5% 

and 34.9%, separately, while in 2014 they were 11.7%, 51.1%, and 37.2%, separately 

(NBSC, 2011, 2015). Considering the fundamental character of the primary sector, 

crop production is emphasized due to the limited cultivated land resources. 

Meanwhile, the Grain for Green Program implemented in Hebei province has resulted 

in 6313 km2 (over three percent of total land area) of cultivated land transformed to 

forestry land since the program launch in 2002. This ecological restoration project 
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also affects the dynamics of landscape in Hebei province. 

1.1 Overview of the impact of landscape diversity on crop production 

The impact of landscape diversity on crop production is ambiguous (Le Féon et al., 

2010; Benoît et al., 2012; Sayer et al., 2013). On the one hand, loss of landscape 

diversity affects the environment due to the loss of biodiversity and the declining 

function of other ecosystem services (Kareiva and Wennergren, 1995; Guerry and 

Hunter, 2002; Midgley, 2012). The Millennium Ecosystem Assessment (MA) noted 

that ecosystem changes affecting food production, freshwater, timber, fuel supply that 

are induced by land use and land cover change (LUCC) may harm human well-being 

(MEA, 2005), while the Global Land Project (GLP) declared that there is a close 

relationship between land use change, ecosystem evolution and human production 

activities (GLP, 2005). The Pan-European biological and landscape diversity strategy 

(PEBLDS) and FAO's paradigm for enhancing productivity and sustainability all call 

for ecosystem approach drawing on natural contribution to agriculture (Council of 

Europe, 1996; FAO, 2011; Naeem et al., 2012). Peterjohn and Correll (1984) notes 

that landscape diversity that helps retain or transform nutrients through underground 

water is an essential driver of crop production. Furthermore, as nutrient flows are 

altered by landscape change, the crop production is affected in tandem. Petersen and 

Nault (2014) highlight the role of bees as mediators between landscape features and 

crop production. A fair summary of these studies is that the evolving landscape 

diversity associated with land use change influences on crop production via 

ecosystem services (Solan et al., 2008; Mace et al., 2012). 
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On the other hand, a loss of landscape diversity may occur with expansion of 

a certain type of land. Moreover, it is difficult to capture all aspects of diversity in a 

single statistic (Gorelick, 2013; Rocchini et al., 2013). For example, in Fig. 2, the 

landscape A is comprised of cultivated land and land use/cover type i, and these two 

types of land cover each account for 50%, separately. In contrast, landscape B has five 

land use/land cover types, with cultivated land accounting for 90%, and the other four 

combining accounting for 10%. According to the landscape metrics, commonly used 

to measure the landscape diversity in terms of richness and evenness (Nagendra, 

2002), the landscape A is more diverse than B. Yet, landscape B may be capable of 

producing more grain because of the large amount of the cultivated land and the 

expanding tendency. Thus, it is important to empirically estimate the relationship 

between the landscape diversity and crop production for an effective landscape 

management. 

Asides from the possible ambiguity between landscape diversity and crop 

production shown in Fig. 2, researchers also need to recognize that the relationship 

may change over time and may be context-specific with regional character. The 

effects of landscape diversity on crop production may occur through two pathways: an 

ecological effect and an economic effect. The ecological effect can be considered as a 

direct effect on the land quality while the economic effect preforms indirectly by 

influencing crop production through changing the amount of cultivated land. The net 

effects of landscape diversity on crop production depend on whether the economic 

effect outweighs the ecological effect. 
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                 Region A                         Region B 

Fig. 2. The assumed landscape patterns for comparing landscape diversity and potential crop 

production. 

 

1.2 Big data techniques 

We study the relationship between landscape diversity and crop production in Hebei 

province using big data techniques. These refer to integrated techniques for handling 

and applying multi-source and multi-scale data for scientific research (Waltz and 

Llinas, 1990; Hall and McMullen, 2004). The idea of data fusion and linked technical 

protocols originated in the 1970s, and has developed remarkably in recent years. For 

example, integration of spatial data with socio-economic data achieved the geographic 

positioning of multi-source information, which is known as “socializing the pixels”, 

the technology can be dated back to the 1990s (Geoghegan et al., 1998; Deng et al., 

2008). A specific case related to management of resources and the environment is the 

development of 1-km area percentage data, combining the advantages of grid data 

with vector data, by fusing global or regional multi-source data (Liu et al., 2003; 

Deng et al., 2010). We follow these developments in this paper, by combining 

multiple data sources from geophysical and socio-economic domains, to explore how 

landscape diversity affects crop production in Hebei province.  
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Due to the uncertainty of the net effects of landscape diversity on crop 

production, we first explore relationships between landscape diversity, the cultivated 

land ratio and crop production using scatter plots. Next, the relationship between 

landscape diversity and cultivated land change is further examined by econometric 

analysis. Then quantitative analysis is carried out to identify tradeoffs from how 

landscape diversity influences crop production. Finally, the lessons from the 

relationship between landscape diversity and crop production in Hebei province are 

summarized and the paths for future research are discussed. 

2 Methods 

2.1 Data 

Previous research on determinants of crop production is abundant due to pressing 

issues on food waste, food security, the increasing demand for food, and for 

sustainable agriculture (FAO, 2015). A prior contribution by Xie (1999) notes that 

crop production is affected by ten major factors--labor, sown area, irrigated area, 

mechanic tillage area, fertilizer use, pesticide use, rural electricity consumption, total 

power of agricultural machinery, total power for irrigation, and drainage and plastic 

mulch. More variables, in term of biophysical and socio-economic domains, were 

included in a study of China's counties (Huang et al., 2010). Here, we take the 

following factors into consideration: the number of agricultural labors, the ratio of 

cultivated land, fertilizer usage, electricity for rural use, the agricultural machinery, 

and landscape diversity. The statistics summary of these variables and the related total 

crop production (y) are shown in Table 1 for all counties in Hebei province with 

non-missing values of these variables in each of the studied five years. 
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Table 1: The description of variables used in this study. 

Variables Unit Obs. Min Max 

Crop production (y) Tonne 745 12275 679916 

Agricultural labors (agrlbr) Person 745 17504 393973 

Electricity for rural use 

(ElecRurUse) 
10,000 kWh 745 310 285390 

Fertilizer use (fertUse) Tonne 745 442 74109 

Agricultural machinery 

(agrMach) 
Kilowatt 745 7.8 2171100 

Ratio of cultivated land (R)  745 0.0567 0.7340 

Landscape diversity (H)  745 0.8645 2.2803 

The first data sources, the cultivated land ratio and landscape diversity are 

calculated from 1-km area percentage data in the year of 1988, 1995, 2000, 2005 and 

2008, which were derived from Landsat Thematic Mapper (TM) or Enhanced 

Thematic Mapper(ETM) and China–Brazil Earth Resources Satellite (CBERS) digital 

imagines, with an interpreted accuracy of 94.3% (Liu et al., 2013). The second source, 

for the crop production, agricultural labors, fertilizer use, agricultural machinery and 

electricity for rural use, came from provincial and county statistic yearbooks for 

Hebei province in the same time period. We selected 149 of out of the entire 172 

counties of Hebei province and collected the above-mentioned dataset. 

2.2 Indicators  

2.2.1 Ratio of cultivated land 

In this study, cultivated land refers to both paddy field and dry land, which obey the 

land use classification system of remote sensing data provided by the USGS Landsat 

TM/ETM with an original spatial resolution of 30 m. And the ratio of cultivated land 

here is incorporated as an essential control variable in the econometric analysis on 

landscape diversity and crop production. These were aggregated to the total amount 
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for each county (Sc), expressed as a percentage of the county’s total land area (Sland): 

R =
𝑆𝑐

𝑆𝑙𝑎𝑛𝑑
 

2.2.2 Landscape diversity 

Landscape diversity metrics are designed to capture richness and evenness, where 

richness refers to the number of different landscape types in an area; more diverse 

areas have more landscape types. Landscape evenness reflects the percentage (of total 

area) distribution amongst different landscape types and it would be higher when 

there is a more balanced distribution. We used Shannon-Wiener index (H) to measure 

these aspects of landscape diversity in Hebei province, noting that other aspects of a 

landscape such as size, perimeter and shape also may be used (Zhou et al., 2014; 

Duflot et al., 2015). Shannon’s index was developed to show variance in species 

abundance distributions, and we adopt it to show variance in the proportion of area 

covered by each of 25 land use types (Gardiner et al., 2009). The Shannon diversity 

index (H) is expressed as:  

H = −∑𝑃𝑖

𝑚

𝑖

𝑙𝑛𝑃𝑖 

where Pi is the proportion of an area in land-use type i, and m is the total number of 

land-use types. The Shannon diversity index indicates the heterogeneity of landscape, 

and as the value of H rises, a landscape is getting more diverse and the degree of 

evenness will also be increasing (Nagendra, 2002). At the extreme situation, when m 

equals to 1, there is only one type of landscape in an area and H would be valued as 

zero. 

2.3 Modeling 

2.3.1 Potential trade-offs of landscape diversity versus cultivated land change 
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We use panel data with up to five observations on each county to model three 

relationships: the relationship between landscape diversity and the cultivated land 

ratio; the relationship between the cultivated land ratio and crop production; and 

finally, the relationship between landscape diversity and crop production while 

controlling for other factors (including the cultivated land ratio). The first relationship 

can be written in general as: 

𝑅𝑖𝑡 = 𝑔(𝐻) + 𝑣𝑖𝑡                                          (1) 

where Rit is the ratio of cultivated land in county i and year t, H is landscape diversity 

for that county and year and vit is a random error term. 

The empirical relationship between landscape diversity and the cultivated 

land ratio should reflect the following conditions: 

(i) There is always some cultivated land in a county, so that is, R>0, 

(ii) As landscape diversity increases from a more even distribution, then the cultivated 

land area approaches zero (Fu et al., 1996): H → ∞ ⇒ 𝑅 → 0, 

(iii) As cultivated land rises and approaches the total land area, landscape diversity 

approaches zero, that is: R → 1 ⇒ 𝐻 → 0. 

The conditions match features of exponential or logarithmic functions, so 

equation (1) could be estimated in either of two forms: 

𝑅𝑖𝑡 = 𝛼0 + 𝛼1𝐻𝑖𝑡 + 𝛼2𝐻𝑖𝑡
2                                 (2) 

or 

ln(R𝑖𝑡) = β0 + β1H𝑖𝑡                                 (3) 

A comparison of R2 values after the predictions from equation (3) were 
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transformed to levels to be comparable to the predictions from equation (2) suggested 

the quadratic form was slightly more consistent with the data (R2=0.546 compared 

with 0.478 for the transformed equation (3)), so equation (2) is used. 

In terms of the second relationship, between crop production and the 

cultivated land ratio, Liu et al. (2013) and Xu et al. (2014) have proved that cultivated 

area is related with crop production, this can be expressed as: 

ln(y𝑖𝑡) = θ0 + θ1𝑅𝑖𝑡 + θ2𝑍𝑖𝑡                                           (4) 

where Zit refers to the other control variables. The recursive effect of landscape 

diversity on cultivated land (via equation (2)) and then of cultivated land on crop 

production provides an indirect pathway of influence from changes in landscape 

diversity. 

2.3.2 Multivariate relationship between landscape diversity and crop production 

In addition to the direct effect of landscape diversity on crop production, and the 

indirect effect via the cultivated land ratio, we also control for human, chemical, and 

power inputs into crop production. These inputs are: agrlbr which is agricultural 

sector employees, fertUse is total fertilizer use, agrMach is total power of agricultural 

machinery, and ElecRurUse is electricity consumption for rural areas which are all 

reported at county level by China’s statistics agency:  

y𝑖𝑡 = 𝑓(𝑎𝑔𝑟𝑙𝑏𝑟𝑖𝑡, 𝑎𝑔𝑟𝑀𝑎𝑐ℎ𝑖𝑡, 𝐸𝑙𝑒𝑐𝑅𝑢𝑟𝑈𝑠𝑒𝑖𝑡, 𝑓𝑒𝑟𝑡𝑈𝑠𝑒𝑖𝑡, 𝑅𝑖𝑡, 𝐻𝑖𝑡, 𝐻𝑖𝑡
2)          (5) 

From equation (5), 
𝜕𝑓

𝜕𝐻𝑖𝑡
 is the direct effect of landscape diversity on crop 

production, and the indirect effect operating through Rit, denoted as 
𝜕𝑓

𝜕𝑅𝑖𝑡

𝜕𝑅𝑖𝑡

𝜕𝐻𝑖𝑡
. Using 

logarithms for all variables except Rit (which lies between zero and one) and also for 

landscape diversity whether the quadratic relationship was established above, we 
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have: 

ln 𝑦𝑖𝑡 = 𝛾0 + 𝛾1 ln 𝑎𝑔𝑟𝑙𝑏𝑟𝑖𝑡 + 𝛾2 ln 𝑎𝑔𝑟𝑀𝑎𝑐ℎ𝑖𝑡 + 𝛾3 ln 𝑓𝑒𝑟𝑡𝑈𝑠𝑒𝑖𝑡 +

𝛾4 ln 𝐸𝑙𝑒𝑐𝑅𝑢𝑟𝑈𝑠𝑒𝑖𝑡 + 𝛾5𝑅𝑖𝑡 + 𝛾6𝐻𝑖𝑡 + 𝛾7𝐻𝑖𝑡
2 + 𝑢𝑖𝑡                      (6) 

where variables are noted above and uit presents the random error term. 

3 Results 

3.1 Relationship between landscape diversity and cultivated land ratio 

As shown in Fig. 3, the tendency of cultivated land ratio is to decrease with the 

increase of landscape diversity. As described above, the research on landscape 

diversity concludes landscape patch diversity, landscape type diversity and landscape 

pattern diversity (Jha and Kremen, 2013). While landscape diversity attaches to 

ecosystem via its richness and evenness, the size of each landscape has an influence 

on the distribution of energy and nutrients affecting the species’ growth (Hansen and 

DiCastri, 2012; Paudel and Yuan, 2012). Therefore, landscape diversity interprets both 

of the ecological significance and land use pattern in a certain region. And the impact 

of landscape diversity upon crop production could be sensed and represented as 

ecological effect which is shown directly and the indirect effects of economic 

production associated closely with cultivated land changes. These two connotations 

should be separated if we determine to figure out its ecological impact. 
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Fig. 3. The relationship between the ratio of cultivated land (R) and the landscape diversity 

(Shannon’s index, H) of Hebei province in 1988, 1995, 2000, 2005, and 2008. Both of them were 

calculated by land use data interpreted from remote sensing (see Methods: Indicators). Each color 

of the spots corresponded to the samples of each year. 

Quantitative analysis illustrates that the tendency of the ratio of cultivated 

land is to decrease with the increase of landscape diversity. Considering the attributes 

of the data set, panel data model is adopted to quantify the relationship between 

landscape diversity and cultivated land ratio. The panel data model could be classified 

into two types in the light of the heterogeneity of the sample, namely the fixed effects 

model and random effects model. Therefore, we choose the model in the light of the 

results of the Hausman test. Most econometrics analysis made the choice between 

random effects model and fixed effects model were based upon the standard Hausman 

test (Baltagi, 2008; Hahn et al., 2011). If the standard Hausman test rejects the null 

hypothesis that the conditional mean of the disturbances given the regressor is zero, 

the applied researcher adopts the FE estimator. Otherwise, it is quite often to adopt the 

RE estimator (Baltagi et al., 2003). The estimation result of Hausman test indicates 

that fixed effects model seems to be more appropriate for clarifying their interaction 
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(P>chi2=0.00). 

Then, according to equation (2), the equation (8) is generated: 

R𝑖𝑡 = 9.1420 − 5.4253𝐻𝑖𝑡 + 1.5520𝐻𝑖𝑡
2                                  (8) 

Equation (9) is generated in the light of equation (3). 

lnR𝑖𝑡 = 1.5336 − 0.05076𝐻𝑖𝑡                                          (9) 

Compared with equation (9), the equation (8) specification better fitted the 

distribution of samples, which shows that there exists a non-linear relationship between 

the ratio of cultivated land and landscape diversity, which generally indicates that 

cultivated land will decrease with increase in landscape diversity. In addition, we mapped 

the spatial variation in landscape diversity onto that of ratio of cultivated land, using GIS 

technology (Fig. 4). The spatially explicit pattern of landscape diversity and ratio of 

cultivated land with county administrative zoning also demonstrates their relationships. 

 
              Panel A                              Panel B 
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              Panel C                              Panel D 

Fig. 4. Distribution of landscape diversity (H) and ratio of cultivated land (R) in county level of 

Hebei province in 1995 (panel A), 2000 (panel B), 2005 (panel C), 2008 (panel D). The landscape 

presents more diverse with the color goes deeper, the ratio of cultivated land is higher as the spot 

goes larger. The lightly colored region possessed spots which were larger than those of the deep 

colored region. 

3.2 Specification of the relationship between cultivated land and crop production 

As shown in Fig. 5, both growth of ratio of cultivated land and crop production are 

increasing. This relationship is in accord with the previous studies (Matson et al., 

1997; Boserup et al., 2005; Deng et al., 2006; Ray et al., 2013). Their researches 

maintain a consistent perspective that cultivated land is one of essential elements for 

crop production and links with food security (Fader et al., 2013). 

In summary, both model (8) and model (9) indicate there is a nonlinear 

relationship between landscape diversity and cultivated land change. Fig. 5 also 

shows that crop production is positively related with ratio of cultivated land. All these 

support our perception that landscape diversity apparently affects crop production in 
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our case study area of Hebei province. 

 

Fig. 5. Relationship between ratio of cultivated land (R) and crop production (in logs) of Hebei 

province in 1988, 1995, 2000, 2005, 2008. 

3.3 Quantitatively measured effects of landscape diversity on crop production 

Fig. 6 presents the overall effects of landscape diversity on crop production, of which 

actually originates from two path as the analysis indicates, one is its ecological impact 

as the loss of landscape diversity which remind us the issue of biodiversity loss and 

ecosystem degradation. The other is that landscape change which is represented as the 

variation of Shannon’s index is closely related with area change of cultivated land 

area, which actually considered as one of the critical factors affecting crop production.  

 

Fig. 6. The overall effects of landscape diversity (H) on crop production of Hebei province in 

1988, 1995, 2000, 2005, 2008.  
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In order to catch both of these effects, equation (6) is estimated at first. Here 

is the result shown in Table 2. 

Table 2: Regression results of fixed effects model based on equation (6) for identifying the 

relationship between landscape diversity and crop production by controlling variables. 

 Equation (1’) Equation (2’) Equation (3’) Equation (4’) Equation (5’) 

H 
3.0912 

(5.20)*** 

12.5816 

(5.93)*** 

10.6051 

(4.97)*** 

10.8573 

(5.11)*** 

7.9665 

(5.31)*** 

H2  
-3.5854 

(-4.57)*** 

-3.0200 

(-3.86)*** 

-3.0269 

(-3.89)*** 

-2.2388 

(-3.90)*** 

R   
-0.3643 

(-4.45)*** 

-0.3451 

(-4.22)*** 

0.0248 

(0.26)  

ln(agrlbr)    
0.1635 

(2.73)*** 

0.0757 

(1.13)  

ln(fertUse)     
0.2718 

(5.08)*** 

ln(EleRurUse)     
0.0549 

(2.36)**  

ln(agrMach)     
0.0082 

(1.87)*  

Constant 
7.6420 

(8.96)*** 

1.9386 

(1.39)  

5.2692 

(3.37)*** 

2.9487 

(1.67)*  

1.4442 

(0.81)  

Hausman test 

(equation 5’) 

Chi2(8)=(b-B)’[(V_b-V_b)^(-1)](b-B)=195.58 

Prob>chi2=0.0000 

Note: * p<0.05; ** p<0.01. And the result of equation (6) indicates that agricultural labours and 
cultivated land ratio is insignificant in fixed effects model, but these two variables cannot remove 
because of their crucial contribution to crop production. Result of Hausman test indicates fixed 
effects model is better. 

The model for evaluating the effect of landscape diversity could be written as: 

lny𝑖𝑡 = 1.4442 + 0.0757𝑙𝑛𝑎𝑔𝑟𝑙𝑏𝑟𝑖𝑡 + 0.2718𝑙𝑛𝑓𝑒𝑟𝑡𝑈𝑠𝑒𝑖𝑡 +

0.0549𝑙𝑛𝐸𝑙𝑒𝑅𝑢𝑟𝑈𝑠𝑒𝑖𝑡 + 0.0082𝑙𝑛𝑎𝑔𝑟𝑀𝑎𝑐ℎ𝑖𝑡 + 0.0248𝑅𝑖𝑡 + 7.9665𝐻𝑖𝑡 −

2.2388𝐻𝑖𝑡
2                 (11) 

As equation (11) indicates, there is a considerable contribution of landscape 

diversity on crop production as could be regarded as an ecological effect supplied by 

landscape. It is noticeable that the effects identified by the magnitude of the estimated 

elasticity is quite small which further indicated the potential contribution of landscape 

diversity on crop production is marginal via supplying the so-called ecological effects. 
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4 Conclusions and discussion 

4.1 Conclusions 

This paper contributes to quantitatively measure and present the effects of landscape 

diversity on crop production in terms of direct and indirect impact by using the 

Shannon’s index. Based on the multi-source data of 1988, 1995, 2000, 2005 and 2008, 

we screened agricultural labors, ratio of cultivated land, agricultural machinery, 

fertilizer use, electricity for rural use, and landscape diversity as the independent 

variables to explain crop production. Then, the explicit interaction of landscape 

diversity and crop production is extracted in the light of the results run by the model. 

(i)Landscape diversity influence crop production from two separate aspects, namely 

the ecological impact and the impact of cultivated land change induced by landscape 

variation, the former one is directly reflected in the index of Shannon’s index, and the 

latter one is accounted with the change of landscape diversity. 

(ii) Ecological impact induced by landscape diversity is positively associated with the 

crop production. 

(iii)Landscape diversity does not correlate linearly with cultivated land change 

(equation (8), Fig. 4, Fig. 5). And cultivated land is performed as one of the essential 

factors influence the crop production significantly (equation (10)). 

(iv)Landscape diversity is positively correlated with crop production as the marginal 

ecological impact is larger than the marginal impact of cultivated land change. Then, 

it negatively affects crop production when it is out of the premise. 

Lessons of Hebei province imply that maintaining a certain number of 

landscape diversity benefits the crop production, nevertheless, it is adverse as the 
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landscape diversity exceeds the certain range. But landscape diversity possesses the 

priority for enriching the biodiversity enhanced the competition between pests and 

their predators. Pursuing crop production should take the advantages of landscape 

diversity into account. The agricultural input such as agricultural machinery, fertilizer 

and electricity could also increase the crop production, strengthening the construction 

of infrastructure is the feasible and practical way for advancing crop production. 

4.2 Discussion 

Given that there is quite few of relevant studies focusing on evaluation of significance 

of landscape pattern to crop production, most of the researches listed in literature 

review part are focused on the ecological effects of landscape diversity. And we 

design and conduct an empirical study to explore the relationship between landscape 

diversity and crop production from two sides, namely ecological effects and economic 

effects. Calling for the concern of landscape diversity as it highlights ecological 

preservation, while the increased landscape diversity may reduce the cultivated land 

area threatening the crop production is seldom mentioned. Moreover, the data fusion 

of landscape diversity, ratio of cultivated land and regional information of Hebei 

province has visualized the internal junction of the two indicators by the big data 

technology. It provides the basic evidence for exploring the further links of landscape 

diversity and crop production. 

Apart from that, this study has not answered the question on how much 

extent the landscape diversity impact the crop production, where the threshold of the 

growth of crop production with landscape diversity. We have just adopted Shannon’s 

index to represent landscape diversity, which has been proved defective and cannot 
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express the spatial dynamics of landscape very well. Thus, further research is still 

needed to meet the research needs. 
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Abstract 

Land cover is being continuously transformed at an accelerating pace because of 

urbanization and economic development, which is, in turn, impacting ecosystem 

services and human well-being. Consequently, there is a need to enhance sustainable 

land use management to achieve high levels of land eco-efficiency across different 

regions in China. Accomplishing this entails adjustments not only in terms of the spatial 

layout of land but also in land use management. The relationship between land use 

management and land eco-efficiency was explored taking Hebei, a province of China, 

as a case study. With the help of Stochastic Frontier Analysis (SFA) and other statistical 

analysis, we analyzed land use conversions and land eco-efficiency in Hebei, China. In 

this study, we first explored the relationship between land use conversion, ratio of 

cultivated land, and crop production using scatter plots. Further, we analyzed the land 

eco-efficiency and ecological performance of cities in Hebei based on SFA. The 

findings of the study revealed that land use output is the key factor linking land use 

management and land eco-efficiency. Spatial differences of land eco-efficiency are 

clearly apparent in Hebei, and the results of the study showed a corresponding decrease 

in land eco-efficiency with a reduction in the distance to the city center. In conclusion, 

a step-by-step regulatory process for improving land eco-efficiency within China’s land 

use management scheme is proposed. 

Keywords: Land use management · Land use conversion · Land eco-

efficiency · Stochastic Frontier Analysis · Hebei 
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1 Introduction 

Current processes of urbanization and economic development are inducing marked 

changes in land use (Palacios et al. 2013). Land use change and the cultivated land 

conversion caused by urbanization and industrial transformation are leading to severe 

habitat destruction (Schindler et al. 2013), affecting a variety of natural flows and 

wildlife abundance and possibly influencing crop production (Romme and Knight 1982; 

Boreux et al. 2013). These phenomena seem to be especially significant in major 

agricultural production regions (Zeng et al. 2016). The findings of comprehensive 

studies on land uses, have led to growing acknowledgment of the urgent need to address 

the key issue of land use management within studies of global environmental change 

(Deng et al. 2016; 2017). In recent decades, human activities have greatly transformed 

the terrestrial surface of the earth through changes in land use management (Foley et al. 

2005). Spatially focused studies that examine land use management and elucidate the 

interactions between human activities and natural processes will provide important 

lessons that will yield a better understanding of future changes in the earth system, 

including those related to land uses, the climate, and associated changes in human 

societies and economies (Lambin and Meyfroidt 2011). 

Land use in China have undergone dramatic changes in recent decades, with 

manifold implications for sustainable development (Jiang et al. 2013). Investigations 

and projections of land use management have therefore become critical for developing 

a deep understanding of land use processes and their interactions with ecosystems and 



84 

 

human societies. Whereas urbanization results in numerous benefits, its occurrence at 

a rapid pace also causes the intensification of resource scarcity and environmental 

degradation in developing countries, including China. According to the latest report 

released by the Ministry of Land and Resources of the People’s Republic of China, the 

total cultivated land area in China had shrunk to 123.4 million ha in 2003, which 

accounts for only 41% of the global average. At present, only 12.8% of the total 

terrestrial surface in China is available for agricultural production. In this context, the 

concept of land eco-efficiency has assumed prominence. Land eco-efficiency is closely 

linked to effective and sustainable use of land resources. The concept of ecoefficiency 

couples the concepts of “ecology” and “economy”. There is no absolute standard for 

measuring land eco-efficiency, but land eco-efficiency will change with socioeconomic 

activities that related to land-based production. With the prerequisites of not affecting 

land or economic outputs, the land eco-efficiency can be improved through the 

reduction of land resource inputs. 

Land use conditions can have various effects on eco-efficiency in different 

regions, especially on land eco-efficiency of agricultural production. This is because 

the inputs and outputs of agricultural production are closely associated with eco-

efficiency (Deng et al. 2016; Bai et al. 2017). Although ecologists and conservation 

biologists focus primarily on biodiversity conservation in non-agricultural lands, a 

strictly conservation focus is acknowledged to be limited in scope, particularly in terms 

of fulfilling production requirements (Godfray et al. 2010; Chappell and LaValle 2011). 
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To achieve greater economic benefits, large stretches of unused land have been 

converted into areas subjected to intensive forms of commercial use, leading to 

increasing homogenization of natural land uses (Sunderland 2011). Scientists are now 

increasingly attending to impacts of land uses on the biodiversity of agricultural crops 

and fauna within farmland as well as on the biodiversity of entire regional land uses for 

food production (Sonter et al. 2015). Typically, farmers’ incomes from food production 

that are influenced by land use conversion have been analyzed at three levels: 

ecosystems, species, and genetic diversity (Verburg et al. 2011). The development of 

techniques for assessing the value of ecosystems may enable the impacts of land use 

change on food production to be evaluated (Verburg et al., 2013). The conventional 

model applied to achieve this goal is a comparative analysis of trends in land use change 

and food production (Díaz et al., 2015).  

In Hebei Province of China, the issue of cultivated land conversion, which is 

expected to impact on crop yields and ecosystem services, has been brought to 

prominence by urban expansion. In particular, many genetic resources are contained 

within farming systems and within the broader landscape (Song et al., 2014; Díaz et al., 

2015). At the same time, agricultural incomes constitute a large component of farmers’ 

incomes. Consequently, in Hebei, land use conversion caused by rapid urbanization is 

threatening food production, which directly influences farmers’ incomes. However, 

questions of the extent to which farmers’ incomes are influenced and the effectiveness 

of policies that have been implemented to improve the status of farmers remain to be 
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answered. Thus, it would be advantageous to develop a better understanding of the 

process of managing land use conversion. This study addresses these questions, and 

offers solutions and suggestions derived from the application of economic models. 

In this study, we used Stochastic Frontier Analysis (SFA) to calculate land 

eco-efficiency, which is a useful analysis tool to measure efficiency. SFA analysis 

allows random shocks and measurement error, and it is also possible to analyse the 

structure and the determinants of producer performance. Based on the above advantages, 

we selected this method to conduct the efficiency measurement, which is one of the 

most significant advancements of this study. Because of the prevailing uncertainty 

about the net effects of land use conversion on crop production, we first explored the 

relationship between land use conversion, the ratio of cultivated land, and crop 

production using scatter plots. Further, the land eco-efficiency and ecological 

performance of cities in Hebei were quantitatively assessed. Last, implications from the 

analysis on conversion of land use and crop production in Hebei for future research are 

discussed. 

2 Study Area 

Hebei is one of China’s main agricultural production bases, evidencing high levels of 

population and economic growth and traditional agricultural production. However, a 

lack of congruence between land use management and cropping returns for farmers in 

the province is becoming increasingly apparent. Hebei is located in the North China 

Plain (113°27'–119°50'E 36°05'–42°40'N) and covers an area of 190,000 km2(Fig.1). 
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The climate in Hebei is characterized as temperate continental. January is the coldest 

month, with temperatures ranging between -22 and -3 ºC. The annual average 

precipitation ranges between 400 mm and 800 mm. 

 
Fig. 1 Geographical location of Hebei Province 

Rapid urbanization and industrial development have led to extensive land use 

conversion in Hebei. During the period 1988–2015, the built-up area of the province 

increased by more than 10% (3536 km2), while the area of cultivated land decreased by 

4% (2655 km2). The conversion of cultivated land and the expansion of built-up land 

clearly indicate that urbanization is propelling the demand for built-up land at the 

expense of other types of land uses. The Grain for Green Program implemented in 

Hebei has resulted in the transformation of 6313 km2 of cultivated land into forest land 

since 200 2(Xu et al., 2006; Deng et al., 2014). During the period 2010–2015, the 

percentages of the three industrial sectors changed from 12.6, 52.5, and 34.9% to 11.7, 

51.1, and 37.2% for the primary, secondary, and tertiary sectors, respectively (NSBC 

2011-2016). The decreasing percentages of the output values of the primary and 

secondary industrial sectors demonstrate the pattern of evolution of the industrial 
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structure. Considering that the primary industrial sector is the core sector, and that 

cultivated land resources are limited, crop production is emphasized by the government. 

Both the urbanization process and the ecological restoration project are affecting land 

use management and threatening crop production at local and regional levels. 

3 Data and Methodology 

3.1 Data 

(1) Geophysical data  

The geophysical data used for the study mainly comprised land use and meteorological 

data. A dataset on land use covering 5 years (1988, 1995, 2000, 2005, and 2008) which 

was developed by the Chinese Academy of Sciences, was used for this study (Liu et al., 

2003). Land use data were interpreted from satellite remote sensing data obtained 

through US Landsat TM/ETM images with a spatial resolution of 30 × 30 m. At a scale 

of 1:100,000, a total of 25 land cover types, identified from the images, were aggregated 

into six land use/cover types. Specific meteorological data that included annual 

precipitation, average temperatures, sunshine hours, and relative humidity were 

obtained from the China Meteorological Administration. 

(2) Socioeconomic data 

County-level socioeconomic data for the period 1990–2010 were obtained from the 

Statistics Yearbook for Hebei. The following factors were considered: crop production, 

agricultural labor, cultivated land, fertilizer use, electricity for rural use, agricultural 

machinery, and land use conversion, among which most factors are commonly 

acknowledge as key input and output factors for the analysis of land eco-efficiency 
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(Pang et al. 2016). Table 1 presents a summary of descriptive statistics for these 

variables for all of the counties in Hebei. Data on crop production, agricultural labor, 

fertilizer use, agricultural machinery and electricity for rural use for the same period 

were obtained from provincial and county-level statistic yearbooks for Hebei. This 

dataset was compiled based on data obtained from 149 counties that were selected out 

of a total of 172 counties in Hebei.  

Table 1: Descriptive statistics for county-level variables  

Variables Unit Obs. Min Max 

Crop production (y) Tonne 745 12275 679916 

Agricultural labors (agrlbr) Person 745 17504 393973 

Electricity for rural use 

(ElecRurUse) 
10,000 kWh 745 310 285390 

Fertilizer use (fertUse) Tonne 745 442 74109 

Agricultural machinery 

(agrMach) 
Kilowatt 745 7.8 2171100 

Ratio of cultivated land (R)  745 0.0567 0.7340 

Landscape diversity (H)  745 0.8645 2.2803 

(3) Data processing 

Applying the 1-km area percentage data approach entailing a combination of multiple 

sources of geophysical and socioeconomic data, we aimed to investigate the influence 

of land use conversion on crop production in Hebei. Big data technology refers to data 

processing and the application of multi-source, multi-scale, and integrated technology 

within scientific research. Protocols and concepts for the integrative technology on 

spatial data processing date back to the 1970s and have advanced significantly in recent 

years. For example, “social pixel” locations, referring to the integration of spatial 

geophysical data and socioeconomic data to obtain information from multiple sources 
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dates back to the early 1990s (Geoghegan et al., 1998; Deng et al., 2008). A specific 

application relating to the management of resources and the environment is the 

development of 1-km area percentage data (Liu et al., 2003; Deng et al., 2010), in which 

the advantages of raster and vector data are combined in the integration of global or 

regional multi-source data.  

3.2 Stochastic Frontier Analysis 

Stochastic Frontier Analysis (SFA) can be used to calculate land eco-efficiency. We 

established a multi-input and multi-output production function, incorporating the 

ecological variable as one of the inputs. The translog production function and the Cobb-

Douglas production function are frequently applied, and we assumed that for each time 

period t = 1,…T, the input vectors 
t NX R+  generated the output vectors, 

t NY R+ . 

 ( , ) :t t t t tS X Y X can produce Y=                   (1) 

Applying the distance function methodology developed by Shephard (1970), 

the input distance function was defined as: 

 ( , ) sup : ( / , )t t t t t t

ID X Y X Y S =                    (2) 

Accordingly, the output vector Yt was treated as a given, and the input vector 

Xt was adjusted, provided that the input-output vectors were still technologically 

feasible. It is noteworthy that ( , ) 1t t t

ID X Y   if, and only if, ( , )t t tX Y S . In addition, 

( , ) 1t t t

ID X Y =  if, and only if, ( , )t tX Y is on the boundary or frontier of technology. 

Thus, for the observed sample i, the following equation was derived from the SFA 

definition. 

( , , ; , , , , , )exp( ) 1t t t

I i i i iD X Y t v u      − =                  (3) 
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where , , , , ,       are all parameters to be estimated. The stochastic frontier model 

was completed with the inclusion of the term vi that captured noise, and ui was defined 

as technical inefficiency, where i.i.d vi
t ~ N(0, σu

2) and ui
t ~ N+(ui, σu

2). The following 

model for technical efficiency was constructed:  

0 *i ij ju Z = +                            (4) 

where, Zij is a vector of explanatory variables associated with technical inefficiency 

effects, 0  is the constant item of the technical inefficiency model, and 𝜏𝑖 is a vector 

of unknown parameter to be estimated (Battese and Coelli, 1988; 1995). 

Equation (3) was subsequently transformed into the following equation: 

ln( ( , , ))t t t

I i i i iD X Y t u v= −                              (5) 

The distance function was characterized by homogeneity, indicating that 

normalization of the certain input could be expressed as: 

( / , , ) ( , , ) /

ln ln( ( / , , )) ln( ( , , ))

t t t t t t

I i n i I i i n

t t t t t t

n I i n i I i i

D X x Y t D X Y t x

x D X x Y t D X Y t

=

 − = −
                   (6) 

From equations (5) and (6), the following equation was generated:  

ln ln( ( / , , ))t t t

n I i n i i ix D X x Y t u v− = − − +                              (7) 

Technical efficiency (TE), defined as the ratio of the observed output to the 

corresponding potential output, given the production frontier, was subsequently 

estimated by applying equation (7) as follows.  

( , ) exp( )i i i iY f X v u= −                          (8) 

Therefore, the following equation yielded the TE:  
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( , ) exp( ) 1
exp( )

( , )exp( ) ( , , )

i i i
i i t t t

i i I i i

f X v u
TE u

f X v D X Y t





−
= = − =                  (9) 

Two additional indicators, the ecological performance indicator (EPI) and eco-

efficiency (EE) were included in the study. EPI was defined as the ratio of the distance 

function values obtained from the production function that with ecological input to that 

without ecological input. The EPI was obtained as follows: 

( , ) ( , ) ( , ) ( , )

( , ) ( , )

t t t t t t t t t t t t

I i i I i i i i i i i i
i t t t t t t

I i i i i i

D X eco Y D X Y TE X eco Y TE X Y
EPI

D X Y TE X Y

− −
= =   (10) 

EE was defined as the ratio of the minimum feasible ecological input use to 

observed ecological input use, conditional on observed levels of other input and outputs 

(Reinhard et al., 1999). 

min. log

log
i

feasible eco ical input
EE

observed eco ical input
=                     (11) 

The output distance function was defined similarly as: 

  1( , ) (sup : ( , ) )t t t t t t

OD X Y X Y S  −=                (12) 

This function was defined as the reciprocal of the maximum proportional 

expansion of the output vector Yt, given input Xt. In light of this condition, either of the 

two functions could be selected.  

Specifically, the ecological input in Hebei was land use conversion, and land 

inputs comprised all of the cultivated land in this region. Thus, the input and output 

vectors in Hebei were expressed as follows: 

( , , , , 1, 2,...)t

HX cultivatedarea landscapediversity capital labor property property=

(13) 
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( )t

HY cropyield=                            (14) 

The following equations were generated by combining Eqs. (13) and (14): 

ln ln( ( ( ) / , , ))

ln ln( ( (est. ) / , , ))

t t t

n I i i n i i i

t t t

n I i i n i i i

x D X landscapediversity x Y t u v

x D X landscapediversity x Y t v

− = − − +

− = − − +

        (15) 

For the estimation of land eco-efficiency, we assumed that producers’ eco-

efficiency would be highest when they used the minimum optimal amount of NPP. The 

input-oriented production function of an eco-efficient producer was obtained by 

replacing observed landscapediversityi and ui with min.feasible landscapediversityi and 

i , respectively. Following from Eq. (15), an equation relating to ilandscapediversity  

and min. ifeasible landscapediversity was formulated. Last, the indicator iEE  was 

calculated using the following equation:  

. i
i

i

est landscapediversity
EE

landscapediversity
=                    (16) 

4 Results 

4.1 Land use management and landscape biodiversity 

Land use management is influenced by land use conversion as well as landscape 

biodiversity. Our quantitative analysis revealed a decreasing trend for the ratio of 

cultivated land with increased land use conversion (Fig. 2). Studies on land use 

conversion have revealed diversity relating to landscape patches as well as landscape 

types and patterns. Whereas land use conversion impacts an ecosystem via its richness 

and evenness, the area of each landscape influences the distribution of energy and 

nutrients that affect species’ growth. Therefore, land use conversion has a bearing on 

ecological significance as well as on land use in a particular region. The impact of land 
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use conversion on crop production could be conveyed and represented as an ecological 

effect, which is expressed as the direct and indirect effects of economic production that 

are, in turn, associated closely with changes in the cultivated land. Fig. 3 shows that 

crop production is positively related to the ratio of cultivated land. In sum, a nonlinear 

relationship exists between land use conversion and crop production. All of these 

analyses support the view posited in this paper that land use conversion affects crop 

production in Hebei. 

 

Fig. 2 The relationship between the ratio of cultivated land (R) and land use 

conversion (Shannon’s index, H) in Hebei in 1988, 1995, 2000, 2005, and 2008 

 

Fig. 3 The relationship between the ratio of cultivated land (R) and crop production in 

Hebei in 1988, 1995, 2000, 2005, and 2008 
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Fig. 4 depicts the overall effects of land use conversion on crop production. 

Two types of impacts relating to land use conversion can be differentiated. The first 

type of impact is ecological, as land use conversion can result in biodiversity loss and 

ecosystem degradation. The second type relates to landscape change, which is regarded 

as a critical factor affecting crop production. This type is represented as variations in 

Shannon’s index, which are closely associated with changes in the area of cultivated 

land. 

 

Fig.4 The overall effects of land use conversion (H) on crop production in Hebei in 

1988, 1995, 2000, 2005, and 2008 

The model for evaluating the effect of land use conversion can be expressed 

as: 

2

ln 1.4442 0.757 ln 0.2718ln

0.0549ln 0.0082ln

0.0248 7.96665 2.2388

it it it

it it

it it it

y agrlbr ferUse

EleRurUse agrMach

R H H

= + +

+ +

+ + −
                 (17) 

where yit denotes crop production, agrlbrit denotes agricultural sector employees, 

fertUseit denotes total fertilizer use, EleRurUseit denotes electricity consumption in 

rural areas, agrMachit denotes the total power of agricultural machinery, Rit denotes the 
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ratio of cultivated land (within a 0–1 range), and Hit denotes land use conversion 

(Shannon’s index, H). 

As indicated in equation (17), land use conversion contributes significantly to 

crop production and could be regarded as a landscape-induced ecological effect. 

Notably, the effects identified by the magnitude of the estimated elasticity are quite 

small, further indicating that the potential contribution of land use conversion 

associated with ecological effects to crop production is marginal. 

4.2 Analysis of eco-efficiency 

Table 2 shows land eco-efficiency values for 11 cities in Hebei that were calculated 

based on the SFA. The non-constrained results obtained using the SFA model were 

found to be more scientific expressions of land eco-efficiency in Hebei than those 

obtained with the constraint model. We can conclude that on average, the land eco-

efficiency of cities in Hebei fall within a range of 0.60 and 1.00, with most cities, 

including Xingtai, Shijiazhuang, Cangzhou, Zhangjiakou, Langfang, and Handan 

remaining within a range of 0.80–0.95. Land eco-efficiency in Hengshui, Chengde, and 

Tangshan was relatively high at values above 0.95, whereas land eco-efficiency values 

for Baoding and Qinhuangdao were comparatively low at just 0.64 and 0.77, 

respectively. EPI values across cities in Hebei were all positive, indicating that the loss 

of vegetation contributed significantly to urbanization and socioeconomic development. 

The results for the distribution of land eco-efficiency showed that excessive 

consumption of ecological resources did not occur during the urbanization process in 
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Hebei. The distribution of land eco-efficiency followed an ‘A’ type rule indicating a 

steady decrease in eco-efficiency from its peak value moving from east to west (Fig.5).  

Table 2: Land eco-efficiency in Hebei based on Stochastic Frontier Analysis 

Code City Eco-efficiency EPI 

1 Shijiazhuang 0.8436 0.1854 

2 Chengde 0.9803 0.0201 

3 Zhangjiakou 0.9053 0.1046 

4 Qinhuangdao 0.7753 0.2898 

5 Tangshan 0.9994 0.0006 

6 Langfang 0.9277 0.0779 

7 Baoding 0.6419 0.5579 

8 Cangzhou 0.8734 0.1450 

9 Hengshui 0.9536 0.0487 

10 Xingtai 0.8069 0.2393 

11 Handan 0.9309 0.0743 

Data source: Hebei Statistic Yearbook, 2008. 

 

Fig. 5 The distribution of land eco-efficiency in Hebei in 2008 
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Land eco-efficiency values were found to be consistently high in cities close 

to provincial or economic centers, or in those located within ecological tourism circles. 

Conversely, cities located at considerable distances from the provincial center, or those 

with underdeveloped traffic systems, consistently demonstrated relatively low land eco-

efficiency values. Land eco-efficiency is an important indicator of the degree of 

efficient use of natural goods and services within economic activities. It can be 

improved by reducing environmental impacts and the use of natural resources while 

maintaining or increasing the value of the produced output. In other words, land eco-

efficiency requires the production of more desirable outputs, such as the gross domestic 

product (GDP), along with a simultaneous reduction in the consumption of resources 

and adverse ecological impacts. To conclude, measurements of land eco-efficiency 

should include a consideration not only of environmental efficiency but also of resource 

efficiency. 

5 Conclusions and Discussion 

The contributions of this study lie in its attempt to quantitatively measure and determine 

the direct and indirect impacts of land use management on crop production by using 

Shannon’s index and to clarify land eco-efficiency condition and its relationship with 

land use management in Hebei based on SFA.  

Land use management influences crop production in two ways: through its 

impacts on landscape diversity and through land use conversion. To identify explicit 

interactions of land use management and crop production, independent variables in 
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relation to crop production, including agricultural labor, the ratio of cultivated land, 

agricultural machinery, fertilizer use, electricity for rural use, and land use conversion 

were selected for the years 1988, 1995, 2000, 2005, and 2008. Impacts on landscape 

diversity were directly reflected in Shannon’s index, and impacts on land use 

conversion were reflected in changes in cultivated land caused by its conversion to other 

uses and vice versa. Ecological impacts induced by land use conversion were found to 

be positively associated with crop production. Environmental variations in landscapes, 

including precipitation and soil quality, could also affect crop production. For instance, 

land use conversion leads to variations in carbon sequestration in soils and in the 

climate, with long-term changes eventually impacting on crop production. 

Changes in cultivated land and crop production are not linearly related. 

Cultivated land is a key factor affecting crop production, which is positively correlated 

with crop yields. Whereas a certain amount of land use conversion in relation to crop 

production is beneficial, conversion beyond a specific range is detrimental. However, 

enriching biological diversity, which enhances competition between pests and natural 

enemies, should be prioritized in land use conversion. Thus, advantageous aspects of 

land use conversion should be considered in relation to crop production. Agricultural 

inputs such as agricultural machinery, fertilizer, and electricity could also increase crop 

production. Consequently, strengthening infrastructure also affords a feasible and 

practical means of advancing crop production.  
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Land eco-efficiency is an effective indicator of sustainable land use 

management. Land eco-efficiency of 11 cities of Hebei was calculated based on SFA, 

which showed that there existed differences in the land eco-efficiency across cities, 

with consistently high values in cities close to provincial or economic centers, or in 

those located within ecological tourism circles. With the ongoing need to explore low-

carbon development modes, land eco-efficiency should be improved, and key 

technologies in major areas should be applied to ensure that urban development fits the 

requirements of ecological civilization. The land use structure and its spatial 

dimensions should be planned rationally to improve land eco-efficiency and advance 

sustainable development, which will not only result in improved land use but will also 

contribute to safeguarding the environment for a sustainable society. In this study, SFA 

is a useful tool to measure land eco-efficiency, however, there still exists some 

shortcomings in the application of SFA, including the difficult precise specification of 

error structure, or the high rick to impose a priori assumption on the production 

technology. A more advanced method and more detailed database would be helpful to 

improve further research to support sustainable land use management. 
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Abstract 

The interaction between livestock production and net primary productivity (NPP) in 

Qinghai Province, China, is estimated using simultaneous equations. The total value 

of livestock production and NPP positively influence each other, so livestock farming 

in Qinghai Province is not necessarily injurious to vegetation in this region. There is a 

weak positive effect on NPP of a county-level region having a nature reserve. There 

are positive effects of temperature, sunshine hours, relative humidity and rainfall on 

NPP, and therefore indirectly affect livestock production. Higher grazing density 

negatively affects NPP, so appropriate grazing density and establishing natural 

reserves are practical actions to sustain livestock farming. 

Keywords: livestock production; NPP; grazing density; natural reserve; Qinghai 

Province 

1 Introduction 

Livestock production is one of the most widespread human activities; 30% of global 

land is farmed for herbivores for livestock products (Havlík et al., 2014). Besides, 

rising prosperity, growing populations, and dietary change lead to increasing demand 

for meat and milk, particularly in developing countries (Alkemade et al., 2013). 

Global demand will rise 70 percent to feed a population projected to reach 9.6 billion 

by 2050. Yet the grassland that sustains livestock farming is declining and is 

threatened by degradation and climate change (Herrero et al., 2015). Most 

high-quality natural grassland has been converted to cultivate crops, mixed farming or 

other land-use types (Conant et al., 2010). While extensive grazing provides an 

opportunity for maintaining livestock production, it also provides a challenge since 
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grazing poorer rangeland aggravates the decline of grassland. Moreover, climate 

change including changes in temperature, precipitation and sunlight hours influences 

grassland productivity and livestock carrying capacity through effects on the growth 

of vegetation. These effects may be especially for fragile ecosystems, including the 

Qinghai-Tibetan Plateau (Qian et al., 2013). 

Qinghai Province is located between 31°40'- 39°19'N and 89°35′-103°04'E in 

the northeast of Qinghai-Tibet Plateau (Fig. 1). It is the fourth largest of China’s 

sub-national units, and considered as a fragile ecological environment and has 

experienced slow social and economic development. It borders Gansu, Sichuan, Tibet 

and Xinjiang province, and has an area of 7.2×105 km2–. Annual precipitation ranges 

from 50mm to 450mm and rises as one moves east. Average temperatures range from 

-5.7 ℃ to 8.5 ℃ and the total solar radiation is 690.8 to 753.6 kJ. Extreme weather 

events like drought, hail, frost, snow and wind are quite frequent.  

 

 

Fig.1 Geographical location and land use/cover pattern in 2008 of Qinghai Province of China. 

 

With an extensive area of grassland, livestock production is a major industry 

in Qinghai Province. The area for livestock grazing totals 31.6 million hectares, and 
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along with grassland set aside for ecological aims, such as natural reserves, 

accounting for 51% of the total land area. The main livestock products are beef and 

mutton, milk and dairy products and wool; Qinghai Province is one of the major 

wool-producing regions in China. The prosperity and production security of the 

livestock industry is closely bound up with the quality of pasture. So this paper uses 

simultaneous equations to quantitatively measure interaction between livestock 

production and net primary productivity (NPP) in Qinghai Province. The research 

relies on data fusion techniques to form the spatially detailed NPP measures based on 

satellite remote sensing, which are linked to county-level data on livestock 

production. 

2 Literature review 

2.1 Overview of the impact of climate change on net primary productivity 

Net primary productivity (NPP) is the net amount of carbon captured by land plants 

through photosynthesis (Vorosmarty and Schloss, 1993). It is a key ecosystem carbon 

cycle parameter, thus linking it to global change (Ruimy et al., 1994). Prior research 

found that climate change affected the NPP of the world's terrestrial ecosystems, 

which mattered to agriculture since most of our food depends on growth of vegetation 

(Melillo et al., 1990). From 1982 to 1999 global terrestrial NPP increased as a result 

of climate (Nemani et al., 2003), but this was followed by a drought induced 

reduction from 2000 to 2009 (Zhao and Running, 2010). Overall, the impact of 

climate change on NPP was ambiguous due to its complexity (Churkina and Running, 

1998; Cao and Woodward, 1998). 
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Temperature, precipitation, radiation and other factors affect the dynamics of 

NPP and understanding these driving forces may help find constraints on, and 

effective measures for, sustainable resource management. For example, a terrestrial 

biosphere simulation model found a 30% reduction of terrestrial NPP over Europe due 

to a deficiency of rainfall and extreme summer heat (Ciais et al., 2005). Similarly, Qi 

et al. (2010) found that reduced precipitation and arid climate caused the decline of 

NPP in the Naqu grassland of Tibet. In addition, based on the CASA 

(Carnegie-Ames-Stanford Approach) model, Zheng et al. (2013) found that air 

temperature was a vital driving force for grassland NPP, in their study of Qinghai 

Lake region during 2000-2010. In summary, the changes of NPP affected by climate 

elements are tightly related with the growth of vegetation, which in turn is associated 

with livestock rearing. 

2.2 Relationship between net primary productivity and livestock production 

Studies in the past decade showed a complex relationship between NPP and livestock 

production (Milchunas and Lauenroth, 1993; Anadón et al., 2014). On one hand, NPP 

was the key attribute of grassland carbon cycle and energy flux, with ambiguous 

impacts on livestock production (Pineiro et al., 2006). Oesterheld et al. (1992) studied 

managed rangelands in Argentina and found managements influenced the changes of 

livestock production that was closely associated with NPP. This research approach 

used NPP as an index to measure the ecosystem's production capacity of dry matter, 

which was needed for livestock rearing (Monterroso Rivas et al., 2011). 
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On the other hand, the effects of grazing on NPP, in general, are negative 

(Wright, 1990; Heitschmidt, 1990; Oesterheld et al., 1999), despite a few of studies 

having positive effects (Frank and McNaughton, 1993; Altesor et al., 2005). 

Oesterheld et al. (1992) noted that pressure of grassland for grazing was ten times 

higher than that in the wild. Since it was projected that global output of livestock, 

especially meat production, would be doubled by 2050, the pressure of grazing would 

threaten the environment and pose challenges for grassland productivity (Steinfeld et 

al., 2006). Wang et al. (2013) modeled NPP with a spatial panel model (for 

1986-2009), using climatic and socioeconomic variables, and concluded that diverse 

polices for sustainable development of grassland were needed to produce a positive 

relationship between NPP and livestock production. Pineiro et al. (2006) found that 

livestock grazing across the Rio de la Plata grasslands over the past 370 years affected 

dynamics of NPP negatively. 

2.3 Data fusion technique 

We analyze the interaction between net primary productivity and livestock production 

in Qinghai Province using big data techniques. Data fusion, which was been regarded 

as a crucial big data technique and originated in the 1970s, could be seen as the 

foremost attempt for scientific research with multi-source and multiscale data (Waltz 

and Llinas, 1990; Hall and McMullen, 2004). Socializing the pixels realized the 

integration of spatial data with multi-source socio-economic data (Geoghegan et al., 

1998). A further development was 1-km area percentage data technology, developed 

in the 1990s to satisfy the demand for the mass storage of resource and environmental 



113 
 

data (Liu et al., 2003, 2005; Deng et al., 2010). This technique achieved the 

positioning of global or regional multi-source data and integrates the advantages of 

the grid data with vector data. 

Big data technique has also been widely used in model-based analyses. Deng 

et al. (2008) studied the spatiotemporal characteristics of land conversions between 

forests and other land use/land cover, and between forest cover types, using a 1-km 

area percentage data model (APDM). Similarly, Zhuang et al. (2002) disaggregated 

population at county levels to one square kilometer cells across China, while Doll et 

al. (2000, 2006) mapped regional economic activity from night-time lights observed 

using satellite. These examples show that data fusion techniques are widely and so 

also used in the current research. Additionally, we integrate the advantages of grid 

data with vector data, combining multi-scale and multi-source geophysical data with 

socio-economic data, in order to explore the interaction between net primary 

productivity and livestock production in Qinghai Province.  

 

3 Data and methods 

3.1 Data 

The econometric model used to explore linkages between livestock production and 

NPP in Qinghai Province relies on geographic data, socio-economic data and 

indicators of protected areas. These multi-source data during 1990-2010 may 

originally be at different spatial resolutions but are integrated to county-level in this 

study. Descriptive statistics for the variables are in Table 1. 
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Table 1: Data description of the indicators used in the econometric model in this study 

Variable Unit Obs. Mean Std. Dev. Min Max 

Value of livestock 

production (VLP) 
10000 yuan 840 14069 157453 27 4486616 

Net primary  

productivity (NPP) 
g.C/km2 840 173 100 1.7112 366.7946 

Gross domestic 

product (GDP) 
10000 yuan 840 64687 143331 1324 2000645 

Animal (animal) head 840 137319 134273 650 2663300 

Meat production 

(meat) 
ton 840 8360 63538 530 1819180 

Agricultural  

labors (agrilbr) 
person 840 33342 40404 300 219540 

Grassland(Sg) hectare 840 942673 1150064 48926 5474706 

Grazing density 

(gden) 
head/hectare 840 0.3597 0.3311 0 2.4676 

Annual precipitation 

(rain) 
0.1 mm 840 3987 1221 1372 7655 

Temperature 

(tem) 
oC 840 2.4670 2.9058 -4.2492 8.9854 

Sunshine 

(sun) 
0.1 hours 840 743 59 586 892 

Relative humidity 

(ur) 
% 840 55 6 36 66 

Reserves 

(reserves) 
- 840 - - 0 1 

3.1.1 Geographic data 

The geographic data mainly includes land-use/land-cover data and meteorological 

data, especially including the area of grassland, annual precipitation, average 

temperature, sunshine hours, and the relative humidity. Land-use/land-cover data from 

the Data Center of the Chinese Academy of Sciences are derived from Landsat 

Thematic Mapper (TM)/ Enhanced Thematic Mapper (ETM) images in 1988, 1995, 

2000, 2005 and 2008 at a scale of 1:100,000. Field survey and random sample check 

is used to assess the accuracy of the database. The accuracy of the six classes of land 

use is above 94.3% (Liu et al., 2014). These data recognize six broad 
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land-use/land-cover types: built-up area, cultivated land, grassland, forest area, water 

area and unused land (Fig. 1).  

3.1.2 Socio-economic data 

The value of livestock production, gross domestic product (GDP), farm animal 

numbers, and agricultural labours at county level during 1990-2010 are obtained from 

the Statistics Yearbook of Qinghai Province. Notably, the Statistics Yearbook of 

Qinghai Province has 42 administrative regions, including 30 counties, 7 autonomous 

counties, 3 county-level cities (separated the Delhi city from Ulan county), Qinghai 

Lake county and municipal district of Xining city. The value of livestock production 

is used as one endogenous variable, which depends on NPP, GDP, meat production, 

grazing density, agricultural labors, and natural reserves (natural reserves are settled 

in order to protect environment by prohibiting livestock activities). Grazing density is 

calculated as the number of farm animals divided by the Landsat-derived grassland 

area of each county-level region. 

 

            Panel  A                                    Panel  B 
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            Panel  C                                     Panel  D 

Fig. 2 Distribution of NPP and grazing density in Qinghai Province in the year of 1995 (panel A), 

2000 (Panel B), 2005 (Panel C) and 2010 (Panel D). The grazing activity is concentrated on the 

area with higher NPP. 

3.1.3 Natural reserves 

Natural reserves in Qinghai Province have been set up since 2005. They are divided 

into three kinds of area in terms of protection level: core areas, experimental areas and 

buffer areas. In general, each type of natural reserve prohibits grazing activities, so we 

use a dummy variable for whether there is any type of natural reserve in the 

county-level region. 

3.2 Indicators 

3.2.1 NPP 

NPP is the amount of solar energy converted to chemical energy through the process 

of photosynthesis (production minus respiration) and represents the primary source of 

food for Earth’s heterotrophic organisms (organisms that require preformed organic 

compounds for food energy) including human beings. Measures of photosynthetic 

production—NPP—are useful as a “common currency” for quantifying the impact of 

land dynamics across a broad spectrum of issues in Earth system science and global 

change research (Imhoff et al., 2004a; Imhoff et al., 2004b; Imhoff et al., 2006). 
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The NPP estimates used here are from two sources. First, AVHRR-derived 

(advanced very high resolution radiometer) NPP is produced by the GLCF (Global 

Land Cover Facility) research group of the University of Maryland from 1981 to 2000, 

with 8km×8km spatial resolution, at annual temporal resolution. This NPP ranges 

from 0 to 1700 gCm-2year-1. Second, the MODIS-derived (moderate-resolution 

imaging spectroradiometer) NPP is from the remote sensing data product MOD17A3 

from EOS/MODIS of NASA (National Aeronautics and Space Administration) from 

2000 to 2010. The spatial resolution is 1km×1km, and the original temporal resolution 

is every 8 days (Zhao et al., 2005).  

Since these two kinds of NPP data are derived from different sensors, their 

consistency needs to be checked (Huete et al., 2011). Based on the overlapping year 

2000, we used linear regression equation approach of Zhang et al. (2011): 

NPP𝑀𝑂𝐷𝐼𝑆 = 𝑎 ∗ 𝑁𝑃𝑃𝐴𝑉𝐻𝑅𝑅 + 𝑏 

where NPPMODIS is MODIS-derived NPP, NPPAVHRR is the original AVHRR-derived 

NPP, a is the regression slope coefficient and b is the constant. Using this linear 

regression equation to normalize AVHRR-derived NPP from 1981 to 2000, we deal 

with the discrepancy of the range of NPP values from these two different sources. 

3.2.2 Grazing density 

Grazing density (gden) is the number of farm animals per unit of grassland area 

(Manning et al., 2013). The grassland area (Sg) of each county is calculated from 

Landsat TM/ETM (Thematic mapper/Enhanced Thematic Mapper) satellite remotely 

sensed digital images, originally for 30 by 30 m pixels which are here aggregated to 
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county level. The total number of farm animals (animal) is reported in the Statistics 

Yearbook for Qinghai Province, and is divided by Sg so that livestock grazing density 

can be written as: 

𝑔𝑑𝑒𝑛 = 𝑎𝑛𝑖𝑚𝑎𝑙 𝑆𝑔⁄  

3.3 Modelling 

Based on the research reviewed, climate change is one of the main factors influencing 

the spatio-temporal variation in NPP. Livestock farming is another factor likely to 

cause changes in NPP, for grassland bearing the whole livestock production system. 

Therefore, the value of livestock production, the climate factors (precipitation, 

temperature, sunshine, and humidity), grazing density, and a dummy variable for 

county-level regions with nature reserves are used as explanatory variables: 

𝑁𝑃𝑃𝑖𝑡 = 𝑓(𝑉𝐿𝑃𝑖𝑡, 𝐺𝐷𝑃𝑖𝑡, 𝑟𝑎𝑖𝑛𝑖𝑡, 𝑡𝑒𝑚𝑖𝑡, 𝑠𝑢𝑛𝑖𝑡 , 𝑢𝑟𝑖𝑡, 𝑔𝑑𝑒𝑛𝑖𝑡 , 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑖𝑡)        (1) 

where NPPit refers to the net primary production in the county-level region i in the 

year of t, VLPit is the value of livestock production, GDPit is gross domestic product, 

rainit is the annual precipitation, temit is the average temperature, sunit is gross 

sunshine hours, urit is relative humidity, and grazing density is denoted as gdenit, and 

reserveit is a dummy variable that equals 1 when a county-level region has natural 

reserves. We take the logarithm of each variable (except dummy variable, grazing 

density and average temperature) to allow unit-free interpretation of regression 

coefficients: 

𝑙𝑛𝑁𝑃𝑃𝑖𝑡 = 𝑓(𝑙𝑛𝑉𝐿𝑃𝑖𝑡, 𝑙𝑛𝐺𝐷𝑃𝑖𝑡, 𝑙𝑛𝑟𝑎𝑖𝑛𝑖𝑡, 𝑡𝑒𝑚𝑖𝑡, 𝑙𝑛𝑠𝑢𝑛𝑖𝑡 , 𝑙𝑛𝑢𝑟𝑖𝑡 , 𝑔𝑑𝑒𝑛𝑖𝑡, 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑖𝑡)      (2) 

In addition to influencing NPP, the value of livestock production in turn 

relies on NPP. We assert that GDP, grazing density, meat production, agricultural 
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workers are other determinants of the value of livestock production, and a dummy 

variable for counties with nature reserves, conditional on NPP a higher meat 

production should increase the value of livestock production, as seen in equation (3): 

𝑙𝑛𝑉𝐿𝑃𝑖𝑡 = 𝑓(𝑙𝑛𝑁𝑃𝑃𝑖𝑡, 𝑙𝑛𝐺𝐷𝑃𝑖𝑡, 𝑙𝑛𝑚𝑒𝑎𝑡𝑖𝑡, 𝑙𝑛𝑎𝑟𝑔𝑙𝑏𝑟𝑖𝑡, 𝑙𝑛𝑆𝑖𝑡)                            (3) 

where GDPit is gross domestic product in county-level region i in year t. meatit is meat 

production, containing beef, mutton, etc., Sit is grassland area, arglbrit is the number 

of agricultural workers, and reserveit is a dummy variable that equals 1 when a 

county-level region has natural reserves. 

Our interest in estimating equations (2) and (3), is based on the theoretical 

framework shown in Fig. 3 that traces the various pathways for interaction between 

livestock production and NPP.   

 

 

Fig. 3 Analytical framework for exploring the interaction between livestock production and NPP 

in Qinghai Province. 

In order to account for the linkage between the two equations, the Two-stage 

Least Square (2SLS) method is used to estimate parameters of the models. Thus, 

model (4) can be expressed as: 
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{
 

 
𝑙𝑛𝑁𝑃𝑃𝑖𝑡 = 𝛼0𝑙𝑛𝑉𝐿𝑃𝑖𝑡 + 𝛼1𝑙𝑛𝐺𝐷𝑃 + 𝛼2𝑙𝑛𝑟𝑎𝑖𝑛𝑖𝑡 + 𝛼3𝑡𝑒𝑚𝑖𝑡

+𝛼4𝑙𝑛𝑠𝑢𝑛𝑖𝑡 + 𝛼5𝑙𝑛𝑢𝑟𝑖𝑡 + 𝛼6𝑔𝑑𝑒𝑛𝑖𝑡 + 𝛼7𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑖𝑡 + 𝜀1
𝑙𝑛𝑉𝐿𝑃𝑖𝑡 = 𝛽

0
𝑙𝑛𝑁𝑃𝑃𝑖𝑡 + 𝛽1𝑙𝑛𝐺𝐷𝑃 + 𝛽2𝑙𝑛𝑚𝑒𝑎𝑡𝑖𝑡

+ 𝛽
3
𝑙𝑛𝑆𝑔𝑖𝑡

+𝛽
4
𝑙𝑛𝑎𝑟𝑔𝑙𝑏𝑟

𝑖𝑡
+ 𝜀2

                         (4) 

4 Results 

4.1 Interaction between livestock production and NPP 

The estimation result of model (4) (Table 2) and its related tests, involving Granger 

Causality test for panel data (Table 3), autocorrelation test (Table 4), Hausman test 

(Table 5) and identification test (Table 6) are given. Granger Causality test indicates 

that there is an interaction between NPP and livestock production. Autocorrelation 

test shows that lag variable of NPP and livestock production should be incorporated in 

model (4). Most important, under identification tests of both equations in model (4) 

indicates that null hypothesis—there is a under identification problem—should be 

rejected with p values are zero. And over identification test indicates that null 

hypothesis—instruments are valid for employment—fails to reject. In summary, all 

these tests show that model (5) is stable and performs well. 

The relationship between the value of livestock production and NPP is 

positive (Fig. 4), and it is still statistically significant once other variables are included 

in the model, as seen in Table 2 and equation (5). Thus, the development of livestock 

farming affects NPP to some extent, but sustaining the environment, at least in terms 

of NPP, can promote livestock production (If NPP of last year is 1% higher, it will 

contribute to 0.23% of the increase of livestock production). 
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Fig. 4 Relationship between NPP and livestock production of Qinghai Province during 1990-2010. 

 

 

Table 2: Estimation results of simultaneous equation model for identifying the interaction 

between livestock production and NPP in Qinghai Province. 

variables Equation (1’) variables Equation (2’) 

Independent variable: ln(NPP) Independent variable: ln(VLP) 

ln(VLP) 0.03 

(1.65*) 

ln(NPP) 0.49 

(1.28) 

ln(rain) 0.06 

(2.21**) 

ln(meat) 0.16 

(2.8***) 

ln(sun) 0.80 

(7.45***) 

ln(Sg) -10.31 

(-2.80**) 

ln(ur) 0.62 

(6.42***) 

ln(agrlbr) -0.09 

(-1.55) 

tem 0.09 

(13.71***) 

ln(GDP) 0.11 

(2.17**) 

gden -0.01 

(-1.42) 

ln(LVPi,t-1) 0.24 

(3.33***) 

reserve 0.06 

(5.64***) 

ln(LVPi,t-2) 0.15 

(2.1**) 

ln(GDP) 0.04 

(4.04***) 

ln(LVPi,t-3) 0.08 

(1.34) 

ln(NPPi,t-1) 0.24 

(3.71***) 

ln(NPPi,t-1) 0.66 

(3.99***) 
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Table 3: Granger Causality Tests 

Null Hypothesis  lag(1) lag(2) lag(3) lag(4) lag(5) 

NPP does not Granger 

Cause livestock 

production 

W 1.51 3.34 5.13 6.15 9.07 

P 0.18 0.02 0.02 0.39 0.75 

 - reject reject reject - 

Livestock production 

does not Granger Cause 

NPP 

W 4.27 5.63 6.19 7.00 8.72 

P 0.00 0.05 0.00 0.08 0.87 

 - reject reject reject - 

 

 

Table 4: Wooldridge test for autocorrelation in panel data 

Null Hypothesis  
Equation 

(1’) 

Equation 

(2’)  

No first-order 

autocorrelation 

F 30.36 3.904 

P 0.00 0.06 

 reject reject 

Note: Here we list first-order autocorrelation. The Arellano-Bond estimation also shows that, 

equation 3’ exists third-order autocorrelation, when we add LVPi,t-2, LVPi,t-3, the model also 

performs well. 

 

 

Table 5: Hausman test for NPP model 

 (b) (B) (b-B) sqrt(diag(V_b-V_B)) 

 fe re Difference S.E. 

ln(livestock) 0.03 0.002 0.03 0.01 

ln(rain) 0.06 0.17 -0.10 - 

ln(sun) 0.80 0.99 -0.19 - 

ln(ur) 0.62 0.88 -0.26 - 

tem 0.09 0.15 -0.05 - 

gden -0.01 -0.03 0.01 - 

ln(GDP) 0.04 0.01 0.03 0.01 

reserve 0.06 0.03 0.030 0..01 

ln(NPP)(1) 0.24 0.99 -0.74 0.04 

chi2(8) = (b-B)'[(V_b-V_B)^(-1)](b-B)= 328.34 

Prob>chi2 =0.00 

Note: The result of Hausman test indicates that fixed effects model should be used here. Livestock 

production model also uses fixed effects model based on Hausman test, and the test isn’t listed 

here. 
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Table 6: Under identification test and over identification test of estimation results of 

simultaneous equation model in Table 2 

  Equation (1’) Equation (2’) 

Under identification Kleibergen-Paap rk LM statistic 68.75 104.85 

 p-value 0.00 0.00 

Over identification Hansen J statistic 8.57 4.35 

 p-value 0.13 0.50 

 

{

𝑙𝑛𝑁𝑃𝑃𝑖𝑡 = 0.03𝑙𝑛𝑉𝐿𝑃𝑖𝑡 + 0.06𝑙𝑛𝑟𝑎𝑖𝑛𝑖𝑡 + 0.80𝑙𝑛𝑠𝑢𝑛𝑖𝑡 + 0.62𝑙𝑛𝑢𝑟 + 0.09𝑡𝑒𝑚𝑖𝑡

−0.01𝑔𝑑𝑒𝑛
𝑖𝑡
+ 0.06𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑖𝑡 + 0.04𝑙𝑛𝐺𝐷𝑃𝑖𝑡 + 0.24lnNPP𝑖,𝑡−1

𝑙𝑛𝑉𝐿𝑃𝑖𝑡 = 0.49𝑙𝑛𝑁𝑃𝑃𝑖𝑡 + 0.16𝑙𝑛𝑚𝑒𝑎𝑡 − 10.31𝑙𝑛𝑆𝑔𝑖𝑡 − 0.09𝑙𝑛𝑎𝑟𝑔𝑙𝑏𝑟𝑖𝑡 + 0.11𝑙𝑛𝐺𝐷𝑃𝑖𝑡
+0.24𝑙𝑛𝑉𝐿𝑃𝑖,𝑡−1 + 0.15𝑙𝑛𝑉𝐿𝑃𝑖,𝑡−2 + 0.08𝑙𝑛𝑉𝐿𝑃𝑖,𝑡−3 + 0.66𝑙𝑛𝑁𝑃𝑃𝑖,𝑡−1

  (5) 

 

That NPP is increasing with higher valued livestock production is perhaps a 

surprising result. There is no doubt that farm animals fed on plants affect herbage 

growth associated with NPP and the negative effect on NPP of grazing density, 

conditional on the value of livestock production, shows this (Table 2). Yet grazing 

activity often concentrates on the county-level region with higher NPP (Fig. 2). By 

and large, they suggest that the livestock industry in Qinghai Province may be further 

developed without necessarily harming NPP (contribution of livestock production to 

NPP is 3% while grazing density is -1%, thus restorability of grassland in Qinghai 

Province is strong enough to bear livestock farming at the moment). 

4.2 Potential effects of climate change on livestock production 

Climate factors have significant effects on NPP that are precisely estimated (all are 

p<0.05). Higher rainfall and humidity, and more sunshine all log-linearly associate 

with higher NPP, while there is a linear effect of temperature, suggesting hotter is 

always better (Fig. 5). The positive effect of NPP on livestock production also means 

that these climate effects are similarly positive, so in this case the transmission 

mechanism may see a positive impact of climate change on livestock production. 
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               Panel A                                 Panel B 

 

             Panel C                                   Panel D 

 
Panel E 

Fig. 5 Maps of the distribution of annual precipitation (panel A), average annual temperature 

(panel B), sunshine hours (panel C), relative humidity (panel D) and NPP (panel E) in Qinghai 

Province in the year of 2010. 
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4.3 Potential effects of establishment of natural reserve on livestock production 

The presence of nature reserves within a county-level region is included as a dummy 

variable to test the hypothesis that ecological projects have a significant impact on 

NPP and an indirect impact on livestock farming. The results show that, all else the 

same, NPP is about 6% higher in a county-level region with a nature reserve, and the 

effect is very precisely estimated (p<0.01). Thus there is likely to be only a marginal, 

indirect, effect of nature reserves on the value of livestock production, operating via 

NPP. 

 

5 Conclusion and discussions 

5.1 Conclusion 

This paper quantitatively analyzes and presents the interaction between NPP and livestock 

production based on the multi-source data during 1990 to 2010 in the case study area of 

Qinghai province. In this study, the value of livestock production, the climate factors 

(precipitation, temperature, sunshine, and humidity), grazing density, and a dummy 

variable for county-level regions with nature reserves are used as explanatory variables 

for NPP by applying Two-stage Least Square regression analysis. Through the analysis, it 

shows that the relationship between the value of livestock production and NPP is positive, 

and it is still statistically significant once other variables are included in the model, 

indicating that NPP does not seem to be traded off for livestock production at current 

stocking levels; while climate factors, and the presence of natural reserves are also found 

to have significant effects on NPP. 

The study concludes that variation of NPP goes the same way as changes in 

livestock production while the grazing activity has an opposite impact on NPP. That 
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indicates that it is still possible for Qinghai province to enhance the livestock production 

with improved NPP on conditional of the current stocking density is warranted in the 

context of ecological restoration. Moreover, climate change is also an important aspect 

for altering NPP, linking to livestock production. In addition, the dummy variable, 

denoted as natural reserve construction, is useful for illustrating the effect of ecological 

projects on livestock production transmitted by its function on NPP. 

5.2 Discussions 

Despite relationships among climate change, NPP and livestock production being 

examined in several case studies, the literature on the interaction between NPP and 

livestock production by simultaneous equation modeling is seldom touched. Through this 

empirical case study, we find that both livestock production and NPP could be improved 

simultaneously on regional extent, which signifies that the livestock industry can be 

further developed in conjunction with advocating ecological conservation in Qinghai 

province, as seen by the positive relationship between the value of livestock production 

and NPP. This conclusion differs from most of the research on NPP and livestock 

production.  

This research finds that NPP moves together with livestock production while 

opposite to the tendency of grazing density. Thus, the livestock industry in Qinghai 

province can be further supported without limiting the priority for ecological preservation. 

Specifically, climate change affected livestock production via acting on variations of NPP, 

and the construction of natural reserves appears to be beneficial to livestock production 

even though it prohibits grazing. In addition, a full system of equations can encompass 
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more endogenous variables by adding more equations for a further exploration on the 

interaction between variations in NPP and in livestock production. 
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Abstract 

This study aims to analyze the trade-offs between cultivated land conversions and 

land productivity using data fusion. First, 1-km area percentage data model, which 

integrates advantages of grid data and vector data, is applied to detect cultivated land 

conversion in each 1km×1km grid cell in Shandong province. Then land productivity 

in the study area is assessed with the Estimation System of Land Production (ESLP) 

based on agro-ecological zones, which integrates multi-source data, including land 

use data, climatic data, radiation parameters, soil properties. Estimation result shows 

that the average land productivity of the whole study area is 7509 kg·hm-2 during 

1985-2010, while land productivity of built-up land and water areas with low 

vegetation is zero. Furthermore, results of comparative analysis on cultivated land 

conversion and land productivity shows that land productivity in Shandong province 

is unevenly distributed, which is higher in the west part of the study area, and lower in 

the regions where cultivated land conversion occurs. And the overall trend of land 

productivity is in a decreasing trend during 2003-2010. The measures of management 

of this trade-off should be focused on preventing cultivated land conversion. 

Keywords: land productivity; land use; land conversion; data fusion 

1 Introduction 

Land resource for cropping is one of the key determinants of agricultural production, 

and the report released by FAO (2011) has revealed that the increasing population is 

expected to cause additional 70% increase in global demand for agricultural 

production with current cultivated land by 2050. It is well known that China’s 

cultivated land area per capita ranked as one of the lowest worldwide, and the second 
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national land survey has showed that the cultivated land area per capita is 913 m2, less 

than half of the world average level (FAO, 2009). However, urbanization, economic 

growth and industrial transformation aggravate land conversion, which incurs the 

competition between cultivated land and built-up land and imposes an overriding 

challenge upon the food safety. The problem seems to be particularly distinct in 

Shandong province, which is one of the major grain production regions in China. 

Shandong province is located on the eastern edge of the North China Plain 

(114°19'-122° 43'E, 34°22'-38°15'N) and at the lower reaches of the Yellow River 

(Fig. 1). It covers a total area of over 151, 100 km2, 55%, 15.5% and 13.2% of which 

are plains, mountainous area and hilly area, respectively. Shandong province lies in 

the warm-temperate zone with the continental monsoon climate, with the annual mean 

temperature ranging from 11 to 14 ºC and the annual precipitation ranging from 550 

to 950 mm. 

Cultivated land conversions may create positive externalities, such as outstanding 

economic growth, increasing agricultural production through technological innovation 

and shared information (Bai et al., 2011; Song et al., 2013; Deng et al., 2013a). In 

Shandong province, gross domestic product (GDP) was 3.12 trillion yuan by the end 

of 2008, which was 27 times higher than that of 1988 (NBSC, 1999-2009). In the 

same time, the industrial structure, which is represented by the ratios of primary 

industry, secondary industry and tertiary industry in the total GDP, changed from 

3:4.4:2.6 in 1988 to 1:5.7:3.3 in 2008 (NBSC, 1999-2009). Otherwise, cultivated land 

conversions generate negative externalities, such as problems in the public safety, 
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health and social equality (Deng et al., 2008; Liu et al., 2014a), and the most 

significant negative effect is cultivated land loss (Huang et al., 2007; Wu et al., 2011). 

Along with the changes in industrial structure, there is an obvious land use/land cover 

change (LUCC) in Shandong province. The built-up land area in Shandong province 

increased from 34123 km2 to 39110 km2 during 1988-2008, but meanwhile the 

cultivated land area decreased from 83623 km2 to 80135 km2 (It is calculated by our 

own land use dataset used to estimate land productivity). Apparently, the cultivated 

land loss and built-up land expansion suggest that land conversion is caused by the 

increasing demand for built-up land, which is at the expense of occupying other types 

of land (Song and Deng, 2015). However, land resource and other natural resources 

are translated into food for millions of people (Fader et al., 2013), otherwise, food 

production exerts pressure on land and other resources (Pfister et al., 2011). Although 

the grain production in Shandong province had been continuously increasing since 

2003, the growth rate shows it decreases. A slowdown of the growth rate of grain 

supply is primarily caused by land productivity degradation and cultivated land loss 

(Alston et al., 2009; Smith and Gregory, 2013). On one hand, cultivated land 

conversion is decreasing the cultivated land area for grain production; on the other 

hand, cultivated land conversion affects land productivity through changing its 

properties. As land conversion can be detected with Geographic Information System 

(GIS) and Remote Sensing (RS) techniques, how can the land productivity be 

assessed? What kind of strategies should be used to improve or remain land 

productivity for grain production? 
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Fig. 1 Location and mean annual rainfall of the study area of Shandong province. 

This study answers these questions by exploring the trade-offs between cultivated 

land conversions and land productivity by using 1-km area percentage data model and 

Estimation System of Land Production (ESLP). Firstly, literature review shows the 

context of land productivity and big data technology, with priorities of combining 

both vector data and grid data. Secondly, this study utilizes 1-km area percentage data 

model to simulate cultivated land conversion. Thirdly, land productivity is estimated 

by using ESLP, which integrates multi-source data into different forms of indices to 

calculate land productivity. Fourthly, cultivated land conversion data and land 

productivity data in 1km×1km grid cells are compared to analyze their trade-offs. 

Finally, a concise conclusion is provided. 

2 Literature review 

2.1 Land productivity 

Land productivity refers to the capacity of agricultural land to produce plant biomass 

under the constraints of each agro-ecological zone (FAO, 2003; Barrios, 2007). Pieri 

(1995) and Dengiz and Sağlam (2012) defined land productivity as “the condition and 

capacity of land, including its soil, climate, topography and biological properties, for 

purpose of production, conservation, and environmental management”. Driving 
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mechanism of land productivity should be accordingly clarified before the assessment. 

Dynamics of land productivity is induced by diverse factors, involving both 

geographic forces and socio-economic forces (Holden et al., 2001; Datta and De Jong, 

2002; Holden and Shiferaw, 2002; Song and Pijanowski, 2014). Barrios (2007) 

concluded that soil biota directly and indirectly affected land productivity via 

ecosystem services, which actually referred to provisioning services and natural flow, 

as it stated that soil organism community had an influence on crop yield and 

participated carbon and nutrients cycles. Research on soil erosion and land 

productivity indicated that soil erosion as one of the most serious determinants for 

degradation of land productivity was often neglected or treated as a loss of 

infrastructure rather than a loss of production capacity (Bakker et al., 2005; Larney 

and Janzen, 2012; Power et al., 2014). Documentation of Blaschke et al. (2000) 

manifested that surface-erosion-induced loss of land productivity emphasized the 

issue of decreasing crop yield. Aside from the geographic forces for assessing land 

productivity, the relationship between socio-economic forces and land productivity 

was widely investigated in the field of economy. For example, Chand et al. (2011) 

showed that the farm size was closely associated with land productivity. Dyer (1997) 

argued that land productivity tended to drop in a long run with smaller farms as 

smaller households intended implement intensive cultivation of land to maintain the 

labor productivity. 

The assessment of land productivity is to obtain the optimal production capability of 

agriculture for human’s requirement in a certain premise of climate condition, soil 
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property, land-use intensity and management measures (Deng et al., 2013b). Land 

productivity can be estimated for any unit area, ranging from pixels, plots to countries, 

and even the global scope (Fischer et al., 2000; Atehnkeng et al., 2008). There are 

diverse methodologies for assessing land productivity, but a common step is to 

stepwise correct the target index. Original FAO Agro-ecological Zones Project is an 

early exercise to apply land evaluation at a continental scale (FAO, 1978). The ESLP 

assesses land productivity based on the agricultural ecology zone. Compared with 

other models, ESLP considers substitutability of land use types and crop types, adopts 

multi-objective programming to evaluate land productivity. Simultaneously, diverse 

parameters are combined with the input factors and management information in the 

ESLP to get a result that can be appropriate for sustainable land use (Deng et al., 

2009). 

2.2 Trade-offs between cultivated land conversions and land productivity 

Changes of land productivity are driven by diverse factors. Cai et al. (2010) used land 

productivity as a mediator to clarify the relationship between land availability and 

biofuel production, the result of which indicated that land productivity varied with 

land use/cover change, and urban land scored the lowest and cropland ranked middle 

of all. This implied that cultivated land conversion in Shandong province, resulting in 

shrinking cultivated land and sprawling built-up land, might decrease the overall land 

productivity. Moreover, land productivity is often represented by net primary 

productivity (NPP) in many studies since NPP is deemed as a proxy for biomass 

(Haberl et al., 2007; Carreño et al., 2012). With respect to the exploration of NPP and 
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cultivated land conversion, empirical studies of Gingrich et al. (2015) measured the 

effect of land conversion on NPP based on analysis of the land use change in multiple 

countries. Their results indicated that land conversion led to a decline in NPP in the 

early 20th century and growth in the earth 21st century, the increase in NPP mainly 

happened in regions where agriculture was intensified as well as regions with low 

coverage forests (Gingrich et al., 2015). Imhoff et al. (2004) studied the influence of 

urban land transformation on NPP and indicated that urban land encroached 

agricultural land, which would lead to the loss of NPP. Thus, this hazardous impact 

makes analysis on cultivated land conversion and land productivity in trade-off 

system necessary. 

2.3 Progress of spatial data format for data fusion 

Big data technology, the new mega-rich of Silicon Valley at first, is the master at 

harnessing data of the Web, such as online searches, posts and messages with Internet 

advertising (Lohr, 2012). Now, it has become a hot topic across nearly every field of 

ecology and economy for science research and decision making, and the concept of 

big data is more extensive including sensors, satellites and so on (Wamba et al., 2015). 

It is defined as a new-type technology to economically extract valuable information 

from multi-source and multi-scale data (Gantz and Reinsel, 2012; McAfee et al., 

2012). It is an aggregated technology of handling and utilizing a wide variety of data 

for scientific research, which is now widely used throughout the various research 

fields including resource management and environmental protection (Dubey et al., 

2015; Song et al., 2016). Aside from possessing the advantages of multiple data, the 
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analysis of these data and the presentation of the results are another two features of 

big data technology (Zikopoulos and Eaton, 2011). Improved access to information is 

another aspect for fueling big data technology (Madden, 2012). To some extent, big 

data technology is prior for its merits of mass storage and fusion technologies. For 

example, the integration of spatial data with socioeconomic data realized the 

positioning of multi-source information, which is known as “socializing the pixels”, 

the technology can be dated back to the 1990s (Geoghegan et al., 1998; Deng et al., 

2008). 

1-km area percentage data technology was prevailing in the 1990s, which integrated 

the advantages of the grid data and vector data to realize the fusion of global or 

regional multi-source data and information. It provides successful examples of big 

data technology for the resource and environment management (Liu et al., 2003; Deng 

et al., 2010). It is well known that vector data and raster data are two of the most 

widely used data formats in spatial data analysis (Lin and Kao, 1998; Wicks et al., 

2002), and both of them have a number of advantages and disadvantages (Chen et al., 

1999). By incorporating the advantages of the two types of data, Liu et al. (2002) 

developed the prototype of 1-km area percentage data model to realize the 

identification of the direction and intensity of cultivated land conversion. The 

framework of 1-km area percentage data model developed by Chinese Academy of 

Sciences was derived from the concepts of map-algebra, a method for visualization of 

geographic symbols and spatial analysis by arithmetic of a set of spatial grids 

(Takeyama and Couclelis, 1997; Mennis et al., 2005). 
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3 Approach and data 

3.1 Approach 

3.1.1 1-km area percentage data model 

This study analyzes the impacts of dynamics of cultivated land and built-up land on 

land productivity in Shandong province at the 1km×1km grid scale based on the 

fusion of socio-economic data and geographic data. The LUCC can be identified on 

the 1km×1km grid scale, and the 1-km area percentage data model is introduced in 

this study to trace cultivated land conversions at the 1km×1km grid level. 1-km area 

percentage data model realizes the detection of cultivated land conversion contains 

three steps in the ArcGIS software environment. Firstly, as the model is employed to 

analyze cultivated land conversion in this study, a vector map of land use/cover 

changes during the study periods at the scale of 1:100,000 is generated at the very 

beginning. Secondly, cultivated land conversion is uniformly partitioned by forming a 

1km×1km FISHNET vector map with an administration boundary of Shandong 

province, and each cell in the 1-km FISHNET vector map is assigned a unique ID. 

The third step is to overlay the land use/cover change map with the 1km×1km 

FISHNET vector map, and LUCC in each 1-km grid can be traced by 1-km FISHNET 

vector cell IDs in the TABLE module of Arc/Info. Finally, the vector data is 

transformed into grid raster data after finishing the above operations to identify the 

conversion direction and intensity. 1-km area percentage data model generates a basic 

dataset for detecting the encroachment of built-up area onto cultivated land in this 

study. 

3.1.2 Assessment of land productivity 

This research estimates land productivity at pixel level based on ESLP. The ESLP is 
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conducted on the basis of agroecological zones through considering common 

characters that affect crop growth, including the climate conditions, soil properties 

and other geographic features. Each pixel in agro-ecological zones should be 

relatively consistent in the aspect of the growth environment and condition. Factors 

selected to estimate land productivity are in light of literature review in above, then 

land productivity of each grid is calculated by overlaying the information of land 

ownership, land suitability, population carrying capacity, etc. The estimation of land 

productivity can be divided into five steps, namely photosynthetic productivity, 

light-temperature productivity, climatic productivity, soil productivity, land 

productivity.  

Firstly, photosynthetic productivity is expressed as follows. 

𝑌𝑝 = 𝐶𝑓(𝑄) = 𝐾Ωℰ𝜑(1 − 𝛼)(1 − 𝛽)(1 − 𝜌)(1 − 𝛾)(1 − 𝜔)(1 − 𝑑)𝑠𝑓(𝐿)(1 −

𝜂)−1(1 − 𝛿)−1𝑞−1 ∑ 𝑄𝑗                                               (1) 

where 𝑌𝑝 (Unit: kg/hm2) represents photosynthetic productivity, which refers to the 

productivity totally determined by photosynthetically active radiation (PAR) with 

temperature, moisture, soil, crop varieties and other agricultural technical conditions 

in optimum. 𝐶 is the unit conversion , 𝐾 is area coefficient, Ω is the light use 

efficiency of crops, ℰ  is the ratio of photosynthetically active radiation (PAR) 

calculated by PAR divided by the total radiation, 𝜑 is the conversion efficiency of 

photon, 𝛼 is the reflectivity of plant population, 𝛽 is the transmissivity of flourish 

plant population, 𝜌 is the ratio of radiation captured by the organs of crop not for 

photosynthesis, 𝛾 is the ratio over light saturation point, 𝜔 is the proportion of 

respiration consumption to photosynthate, 𝑑 is the abscission rate of cauline leaf of 
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crops. 𝑠 is economic coefficient of crops, which varies with crop types, natural 

condition and cultivation technics. 𝑓(𝐿) is the modified value of dynamics of leaf 

area of crops, 𝜂 is moisture content of mature crops, 𝛿 is the ash rate, 𝑞 (Unit: 

MJ/kg) is the heat per dry matter,  ∑ 𝑄𝑗 (Unit: MJ·m-2) is the total solar radiation in 

crop growth period. Guo et al. (1995) and Sun et al. (1998) provided the methods for 

evaluating these parameters. 

Secondly, Equation (2) presents the light-temperature productivity. 

𝑌𝑙𝑡 = 𝑓(𝑇)𝑌𝑝                                                        (2) 

where 𝑌𝑙𝑡  (Unit: kg/hm2) is the light-temperature productivity, which refers to 

agricultural productivity determined by photosynthesis and temperature condition 

when moisture, soil, crop varieties and other agricultural technical conditions are in 

the optimum conditions; 𝑓(𝑇) refers to the modified function for temperature, which 

can be written as follows. 

𝑓(𝑇) =
(𝑇−𝑇1)(𝑇2−𝑇)𝐵

(𝑇0−𝑇1)(𝑇2−𝑇0)𝐵                                                 (3) 

𝐵 =
𝑇2−𝑇0

𝑇0−𝑇1
                                                           (4) 

where 𝑇 (Unit: ºC) represents the average temperature in a certain period, 𝑇0, 𝑇1, 

and 𝑇2 (Unit: ºC) separately refers to the optimum temperature, lowest temperature, 

and highest temperature in the course of crop growth. 𝑓(𝑇) is the asymmetric 

parabolic function identified by 𝑇, 𝑇0, 𝑇1, and 𝑇2, ranging from zero to one. The 

crop growth period is divided into five stages, namely seeding stage, vegetative stage, 

reproductive stage, filling stage and mature stage, and 𝑓(𝑇)  of each stage is 

calculated. 

Thirdly, climatic productivity can be calculated based on the former two steps, it takes 
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precipitation and irrigation into account. 

𝑌𝑤 = 𝑌𝑙𝑡𝑓(𝑊)(1 − 𝐼) + 𝑌𝑙𝑡𝐼                                           (5) 

where 𝑌𝑤 is the climatic productivity (Unit: kg/hm2), 𝐼 is irrigation efficient, which 

calculated by irrigated cultivated area divided by total cultivated area. 𝑓(𝑊) is 

modified coefficient for precipitation, which can be rewritten as follows: 

𝑓(𝑊) = 1 − 𝐾(1 − 𝑃𝑒/𝐸𝑇𝑚)                                          (6) 

where 𝐾 is production response coefficient, 𝑃𝑒 is the effective precipitation (Unit: 

mm), and it can be calculated by the model designed by United States Department of 

Agriculture (USDA) Soil Conservation Service as follows. 

{
Pe =

R(125−0.2R)

125
,              R < 250

Pe = 125 + 0.1R,             R > 250
                                      (7) 

where 𝑅 (Unit: mm) means the total precipitation. 𝐸𝑇𝑚 (Unit: mm) is the largest 

evapotranspiration in crop growth period, which can be calculated with Equation (8). 

𝐸𝑇𝑚 = 𝐾1𝐸𝑇0                                                       (8) 

where 𝐾1  is crop coefficient, related to season, crop type and crop community 

structure, etc. 𝐸𝑇0 (Unit: mm) represents the evapotranspiration rate from a reference 

surface, it is estimated by the improved Penman-Monteith model, which could be 

rewritten as follows. 

𝐸𝑇0 =
0.408∆(𝑅𝑛−𝐺)+∅

900

𝑇′+273
𝑢2(𝑒𝑠−𝑒𝑎)

∆+∅(1+0.34𝑢2)
                                      (9) 

where ∆ (Unit: kPa·P-1) is the slope of the saturation vapor pressure-temperature 

curve, 𝑅𝑛 (Unit: MJ·m-2·h-1) is the net radiation of crop canopy surface, 𝐺 (Unit: 

MJ·m-2·h-1) is the soil heat flux, which is the energy utilized for heating soil. ∅ 

(Unit: kPa·P-1) is the psychrometric constant, 𝑇′ (Unit: ºC) is the mean daily air 

temperature, 𝑢2 (Unit: ms-1) is the wind speed at 2 meters height, 𝑒𝑠 (Unit: kPa) is 
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the saturation vapor pressure, 𝑒𝑎 (Unit: kPa) is the actual vapor pressure, 𝑒𝑠 − 𝑒𝑎 is 

the vapor pressure deficit of the air. Additionally, soil heat flux can be calculated by 

Equation (10). 

G = 0.1 × R𝑛                                                      (10) 

Fourthly, soil productivity can be obtained by modifying the climatic productivity (𝑌𝑤) 

with the coefficient of soil availability (𝑓(𝑆)). 

𝑌𝑠 = 𝑓(𝑆)𝑌𝑤                                                       (11) 

𝑓(𝑆) = ∑ 𝐴𝑖𝑖 𝑊𝑖                                                    (12) 

where 𝐴𝑖 represents the factors affecting soil availability, i is the number of factors, 

𝑊𝑖 is the weight of each factor. 

Fifthly, we can get the land productivity based on ESLP, which introduces multiple 

objective analytics to work out land productivity of each grid by using the following 

equation. 

𝑌 = 𝑓(𝐼0, 𝑌𝑠)                                                       (13) 

where 𝐼0 is the total socio-economic investment, and land productivity meets the 

condition of revenue maximization. 

𝑓(𝐼, 𝑌𝑠)𝑃𝑒 − 𝐼 < 𝑓(𝐼0, 𝑌𝑠)𝑃𝑒 − 𝐼0,      ∀𝐼 ≠ 𝐼0                              (14) 

{
𝑓′(𝐼0,𝑌𝑠)𝑃𝑒 − 1 = 0

𝑓′′(𝐼0, 𝑌𝑠) < 0
                                                 (15) 

where 𝑃𝑒 is the expected price. 

3.1.3 Impact of cultivated land conversion on land production 

To distinguish the impacts of cultivated land conversions on land production, we 

apportioned the contribution of the major variables (including cultivated land area and 

land productivity) to the total land production as follows: 

∆𝐴 = 𝐴2 − 𝐴1                                                     (16) 

∆𝑃 = 𝑃2 − 𝑃1                                                      (17) 

where ∆𝐴 represents the changes of cultivated land area, 𝐴1 and 𝐴2 are cultivated 
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area in the base year and selected year, respectively; ∆𝑃, 𝑃1 and 𝑃2 are the changes 

of land productivity, land productivity in the base year and land productivity in a 

selected year, respectively. As cultivated land area can be extracted from remote 

sensing data, land productivity can be computed by using ESLP, changes of land 

production of each 1-km cell can be written as follows. 

∆𝑄 = 𝑄2 − 𝑄1                                                     (18) 

       = 𝐴2 × 𝑃2 − 𝐴1 × 𝑃1  

       = (𝐴1 + ∆𝐴) × (𝑃1 + ∆𝑃) − 𝐴1 × 𝑃1  

       = 𝐴1 × ∆𝑃 + ∆𝐴 × 𝑃1 + ∆𝐴 × ∆𝑃  

where changes of the total land production (∆𝑄) was categorized into three parts: (i) 

changes in land production caused by changes in land productivity (𝐴1 × ∆𝑃); (ii) 

changes in land production resulting from the cultivated land area change (∆𝐴 × 𝑃1); 

and (iii) changes in land production under the joint effects of the change of land 

productivity and change of cultivated land area (∆𝐴 × ∆𝑃). 

3.2 Data sources 

The data used in this study is categorized into geographic data and socio-economic 

data. The geographic data involves meteorological data, soil properties data and land 

use/cover data, among which land use/cover data is majorly employed in 1-km area 

percentage data model. Meteorological data and soil properties data are introduced 

into ESLP to calculate land productivity (Table 1). Meteorological data, such as 

temperature, rainfall and radiation are derived from China Meteorological 

Administration, collected from 117 meteorological stations from 1985 to 2010. Soil 

property data is derived from the Second National Soil Survey. Additionally, 

socioeconomic attributes are acquired from Statistics Yearbook of China (NBSC, 

multiple years). Instead of accessing to traditional statistical databases, the land 
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use/cover data is provided by the Data Center of the Chinese Academy of Sciences. It 

is interpreted from Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper 

(ETM) images in the year of 1988, 1995, 2000, 2005 and 2008 at the scale of 

1:100,000. Uniform quality control and integration checking was implemented to 

guarantee the data quality and consistent interpretation, and the overall accuracy of 

the land use/cover data use in this study is above 94.3% (Liu et al., 2014b). There are 

six major land use/cover types, i.e., built-up land, cultivated land, grassland, forestry 

land, water body and unused land, and we extracted the information of built-up land 

and cultivated land to analyze the relationship between them. Moreover, we select 

different crop types to calculate land productivity in the light of 25 kinds of land use 

types, among which paddy land is primarily used for rice, dry land is mainly used for 

corn, bean, sorghum and millet, and the average productivity of these five crop types 

was taken as the light-temperature productivity of cultivated land. 

Table 1: Indicators used in ESLP to calculate land productivity in this study. 

Index 

type 
temperature rainfall radiation Soil Land use 

Other 

factors 

Indicators 

Accumulated 

temperature 
Precipitation 

Sunshine 

hours 

Soil 

texture 

Land use 

structure 
Wind speed 

Mean daily 

temperature 

Relative 

humidity 
PAR 

Soil 

fertility 

Land use 

intensity 

Saturation 

vapor 

pressure 

Daily 

maximum 

temperature 

Precipitation 

intensity 
 

Erosion 

intensity 
 

Actual 

vapor 

pressure 

Daily 

minimum 

temperature 

Precipitation 

variation 
    

Note: Meteorological data in Table 1 were collected from meteorological stations, related 

parameters and the other data were calculated based on these indicators. 
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4 Results 

4.1 Spatial distribution of land productivity 

4.1.1 Estimation of land productivity 

The estimation results from the ESLP show that the spatial distribution of land 

productivity is uneven in Shandong province (Fig. 2). Obviously, land productivity is 

higher in the west part of Shandong province and lower in the east part. Besides, the 

color of land productivity shows a decreasing trend as the built-up land area increases 

(Fig. 2, 3). In addition, the results show that the land productivity ranged from zero to 

13957 kg·hm-2 among all pixels, 9.2% out of which show their land productivity is 

zero, these pixels are often occupied by built-up land or water bodies with very low 

vegetation coverage (Fig. 3). The average land productivity of the whole study area 

was 7509 kg·hm-2 during 1985-2010, and the land productivity of over 56% of pixels 

exceeded the average level. In particular, pixels with land productivity ranging from 

10000 kg·hm-2 to 12000 kg·hm-2 accounted for 23.5% of the total area (Fig. 4). 

 

Fig. 2. Estimated multi-year average land productivity based on annual observed data during 

1985-2010 in Shandong province 
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Fig. 3. Land use/cover map of Shandong province in 2008 

  
Fig. 4. Interval distribution of multi-year average land productivity during 1985-2010 in Shandong 

province 

 

4.1.2 Validation of estimated land productivity 

The grain yield of 110 counties in Shandong province is incorporated to compare with 

the average land productivity estimated based on the ESLP. The validation results 

show that land productivity from the ESLP is significantly correlated with grain yield 

(R2=0.63, p<0.01), indicating that land productivity estimated by using the ESLP can 

be used to represent the agricultural productivity (Fig. 5). 
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Fig. 5. Relationship between land productivity estimated based on ESLP and grain yield in 

Shandong province. 

 

4.2 Spatial association of cultivated land conversion and land productivity 

In terms of spatial distribution, changes in land productivity and cultivated land 

conversion in Shandong province shows that expansion of built-up area affects land 

production (Figs. 2 and 6). As shown in Equation (18), cultivated land conversion is 

tightly associated with changes in land productivity. Specifically, when cultivated land 

transforms into built-up area, cultivated land conversion influences the land 

production through the change of cultivated land area, change of land productivity 

and their synergistic effects. Additionally, built-up area expands at the expense of 

decreasing cultivated land area (Fig. 6), even if this trend slows down. Overall, the 

above analysis apparently proves that land productivity is relatively lower in the 

regions where cultivated land conversion occurs.  

In terms of temporal trend, with Grain for Green Program implemented in 2003, the 

average land productivity was in a decreasing trend during 2000-2002 (-2595 kg/hm2) 

and 2003-2005 (-138 kg/hm2), respectively. By the same token, during 2005-2008 the 

land productivity declined by 1612 kg/hm2 (Fig. 7). Furthermore, there were 

137,914.8 hm2 cultivated land transformed into built-up land during 2000-2005 and 
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104,729.8 hm2 during 2005-2008. Therefore, both these findings prove that land 

productivity declined as the built-up land area increased.  

 

Panel A                                 Panel B 

Fig. 6. Land conversions between cultivated land and built-up land: Panel A and B depict the 

cultivated land transformed into built-up area during 2000-2005 and 2005-2010, respectively 

 

Fig.7. Land productivity in Shandong province during 2000-2010.  

 

4.3 Trade-offs between cultivated land conversions and land productivity 

The information from Equation (18) and Figs. 2, 3 and 6 proves the threat of 

competition between cultivated land and built-up land on the land productivity. It is of 

great significance to analyze the trade-offs between cultivated land conversions and 

land productivity to preserving the land productivity. A number of land use related 

policies are launched trying to slow down the pace of cultivated land conversions, e.g., 

the balance of total amount of cultivated area, land use regulation system, land use 



154 
 

planning, basic farmland protection. However, the average annual area of cultivated 

land transforms into built-up land during 2000-2005 and 2005-2008 was 27583 hm2 

and 34910 hm2, respectively, indicating that the loss of cultivated land became more 

severe. Moreover, the loss of land productivity can’t be offset by the quantitative 

balance since Figs. 2 and 3 showed that land productivity of built-up land was much 

lower than that of cultivated land. Some measures should be taken to get rid of the 

negative externalities of cultivated land conversions, and it seems that the most 

effective path is still to prevent the cultivated land conversion. 

Current policies on preventing cultivated land conversion involve land use control 

system, basic farmland protection and so on. But some of the policies like balance 

system of farmland requisition and compensation, are criticized by neglecting the 

trade-offs between cultivated land conversions and land productivity. Then, land 

productivity is still decreasing while so many related policies and regulations are 

implemented to prohibit cultivated land conversions. Therefore, the concept of their 

trade-offs should be planted into the policies and regulations. 

5 Discussion and Conclusions 

This research analyzes the trade-offs between cultivated land conversions and land 

productivity in Shandong province during 1985-2010. Our research results show that 

land productivity is unevenly distributed in Shandong province, which is relatively 

lower in regions covered by built-up land. Although expansion of built-up land 

threatens the land productivity, cultivated land conversions still occur, while the 

conversion pace slows down. Moreover, cultivated land conversion influences land 
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production simultaneously through the change of cultivated land area, change of land 

productivity and their synergistic effects, and therefore controlling cultivated land 

conversions is one of the most effective ways to preserve land productivity, which is 

closely associated with the provisioning services of ecosystems. 

Roughly speaking, one of the strength of our research is to estimate land productivity 

with the ESLP which is capable of the identification of substitutability between each 

of land use types and crop types as well. The ESLP adopts multi-objective 

programming to estimate land productivity influenced by various kinds of factors 

including soil properties, climate factors, solar radiation, land resources and even 

other management information within some certain social and economic context.  

However, our study is still far from perfect enough and further study is still needed. 

There are uncertainties due to some parameter values, which may reduce the accuracy 

of the estimated results, while the ESLP is capable of analyzing the changing trends of 

land productivity under reasonable hypotheses and can provide valuable decision 

support information for land-use planning and land resource management. 

Nevertheless, it is still necessary to carry out some further research, for example, this 

study has not estimated the accurate contribution of cultivated land conversion to 

change of land productivity. Moreover, land productivity is influenced by both natural 

factors and human activities, but more natural factors are considered in the estimation 

of land productivity based on ESLP, and it can be further improved by involving the 

contribution of cultivated land conversions to land productivity in the future research. 
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Abstract 

The effect of expressways on cultivated land is ambiguous. Many studies conclude that 

building and upgrading expressways increases pressure on cultivated land while others 

find expressways reduce the rate of cultivated land loss. In this paper, we use satellite 

remote sensing images of cultivated land in Shandong province of China to test whether 

the existence of expressway in 2005 affected the level of cultivated land in 2010 and 

the rate of change from 2005 to 2010. To account for expressway access for each of 

our1 km2 (‘pixel’) units of cultivated land we measure whether or not and what type of 

roads penetrate the ‘watershed’ in which the pixel lies. These watersheds allow more 

plausible measures of accessibility than those traditional ‘crowfly’ distance measures 

that ignore topography. To account for possible confounding we also use 24 additional 

covariates. Although simple univariate OLS regressions analysis show that cultivated 

land is always lower while cultivated land increasing rates are higher either when there 

is an expressway, these results are not robust. Controlling for all of the covariates and 

also using recently developed covariate matching techniques to estimate treatment 

effects, we find that expressway can most safely be described as putting a positive 

impact on cultivated land changes.  

Keywords: Cultivated land; Expressway; Land use; Covariate matching; PSM model; 

Shandong province.  

1 Introduction 

Expressways are a fairly recent addition to the transportation infrastructure in China. 

Previously, the national road network consisted of a system of at-grade China National 

Highways. It is an integrated system of national and provincial-level expressways in 

China. Since the middle of 1980s, in order to meet the increasing need of economic 

http://en.wikipedia.org/wiki/China_National_Highways
http://en.wikipedia.org/wiki/China_National_Highways
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growth, expressway has been developed rapidly in China. At the beginning of 21st 

century, the total mileage of expressway in China has reached nineteen thousand 

kilometers, which ranked second in the world after the United States. With the opening 

of National western development strategy, strengthening the highway construction, 

especially the highway of high grade is an important base for developing the western 

region. The country’s economic growth has been accompanied by the sparkling growth 

of the nation’s transportation infrastructure. According to the database given by 

National Bureau of Statistics of China (NBSC, 2014), the total highway mileage of 

China reached an amazing 4.46 million kilometers by 2014. 

According to the database given by the World Bank (2014), the cultivated land 

in China has decreased significantly since 1990, for the reason of ecological restoration, 

rapid urbanization as well as real estate development. However, as the speed of 

ecological restoration has slowed down since 2007, the rate of cutting down the quantity 

of cultivated land has lowered, or even showed an increasing trend in the area of the 

cultivated land (Liu et al., 2010). With rising concern over food security related to 

cultivated land loss, increasing efforts are being made by economists, ecologists, 

geographers and other scientists to understand the direction, rate and intensity of 

cultivated land change (Chen et al., 2009; Jiang et al., 2013).  
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Fig. 1 The area of cultivated land in China from 1990 to 2010 

Data source: World Development Indicators from World Bank, 1990 - 2010 

Nowadays, both rural development and urban development in China are 

experiencing a transition period that is the reconstruction of a traditional agricultural 

society into a modern industrial and urban society. With the accelerated rural 

industrialization and urbanization process, rapid population growth and development 

of the market economy, the industrial structure, employment structure and land-use 

pattern in the coastal region of China have been transformed enormously. Long et al. 

(2009) pinpointed that rapid industrialization along with urbanization had greatly 

changed the rural areas in the facet of cultivated land loss for factory workshop, and 

rural labors transformation for workers. Since the year of 1978, agriculture and the rural 

area have made a big contribution to the development of industries and the cities in 

China. As a result, a series of problems along with the social and economic development 

of China appeared, such as decreasing cultivated land, degrading environment, 

widening the income gap between urban and rural area, and so on (Gibson and Rozelle, 

2003; Xie and Zhou, 2014; Wang et al., 2016).  

95

100

105

110

115

120

125

130

A
re

a 
( 

M
il

li
o

n
 H

a)



168 
 

Currently, the determinants of cultivated land loss have attracted interests 

among a wide variety of researchers, ranging from those who are modeling the spatial 

and temporal patterns of land conversion, to those who try to understand the causes and 

consequences of land-use changes (Irwin and Geoghegan, 2001; Liu et al., 2008; 

Gennaio et al., 2009; Deng et al., 2015). To some extent, cultivated land loss is still a 

complex issue regarding its process, dynamic and driving forces (Jiang et al., 2012; 

Kuang et al., 2016; Tegegne et al., 2016). The literature shows that various geophysical 

factors, such as slope and elevation, demographic factors, economic variables and 

policies of governments are all important correlates of cultivated land and its changes. 

Therefore, a single research approach does not suffice for a complete analysis on 

impacts of road buildings on cultivated land. Instead, a combination of multiple 

approaches is necessary (Long, 2009; Song et al., 2012; Laurance et al., 2014).  

There are an increasing number of researches which have focused on the 

relationship between roads and cultivated land. In many instances, roads are found to 

lead to cultivated land loss. The logic is that when a road enters an area (or when it is 

widened or improved), pressure will rise and then cultivated land will fall. An important 

implication of what we characterize as this “pressure cooker” hypothesis is that “road 

networks may significantly shape the spatial pattern of remaining cultivated land” 

(Deng et al., 2011). Hence, road investments in cultivated land are thought to lead to 

cultivated land loss. 

According to this “pressure cooker” hypothesis, when new or better roads 

reach into a region, access to transportation and new and more convenient linkages to 
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the outside world encourages economic growth, produces jobs and increases 

agricultural productivity (by making inputs cheaper, agricultural technology more 

accessible and farm-gate prices of agricultural commodities higher). If these dynamics 

are able to refocus the livelihood strategies of households that previously were 

encroaching on cultivated land onto intensive (river-bottom; irrigated) agriculture and 

off-farm employment, including migration, the pressure on the cultivated land might be 

reduced. In fact, there has been a fairly large literature that discusses the mechanism 

that may be underlying the pressure-valve hypothesis. Such a phenomenon could arise 

in part as a result of increased opportunities to purchase inputs that increase or maintain 

yields (Gibson, 2002, Gibson and Olivia, 2010; Song et al., 2013; Turkseven and Ueda, 

2017). 

Since existing evidence on the effects of roads on cultivated land is unclear, 

and has not always benefited from latest refinements in data and methods, new evidence 

is required. Specifically, we use the remotely sensed digital images by the Landsat 

TM/ETM satellite with a spatial resolution of 30×30m2 covering Shandong province, 

China, to test whether the existence of roads in 2005 affected the level of cultivated 

land in 2010 and the rate of change from 2005 to 2010. To account for road access for 

each of our 1 km2 (‘pixel’) units of cultivated land we measure whether or not roads in 

the “city corridor” exists. City corridor is one of spatial forms of city system, and it has 

a long history in regional and urban development and planning. To account for 

confounding from the exclusion of other relevant variables and potentially biased 

estimates of treatment effects due to the endogenous placement of roads, we use 
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covariate matching techniques, using 24 additional covariates. Our overall goal is to 

discover if roads are delegating more like “pressure cookers”—and are associated with 

lower levels of cultivated land and greater rates of cultivated land loss in Shandong 

province—or more like “pressure valves”—and are associated with higher levels of 

cultivated land and lesser rates of cultivated land loss (or are neutral). 

To meet these objectives, the rest of this paper is organized as follows. The 

next section is an overview of the study area, the third section is about the definitions 

(explained and explanatory variables) and data used in this study. The dependent 

variable, the level of cultivated land (in some regressions—and the change in cultivated 

land in others), is defined and the approach that we use to measure access to expressway 

is described. The fourth section lays out the econometric approach that we use to 

explore in greater depth the relationship between expressway and cultivated land loss. 

Our main strategy in this analysis is to look at the simple relationship between 

expressway and cultivated land loss, by including covariates to measure the net effect 

of expressway on cultivated land changes, and use matching methods to at least in part 

control for observed and unobserved differences between pixels that have different 

degrees of access to expressway in order to obtain unbiased treatment effects estimates, 

of what happens to the cultivated land. The final section reports the estimation results, 

discusses the key findings and concludes as well. 

2 Study Area 

In this study, we selected Shandong province, a coastal province of China, as our study 

area. Shandong province is located at the intersection of ancient as well as modern 

https://en.wikipedia.org/wiki/Province_(China)
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north–south and east–west trading routes have helped to establish it as an economic 

center. There are totally 17 cities in Shandong province, which includes Jinan, Qingdao, 

Zibo, Zaozhuang, Dongying, Yantai, Weifang, Jining, Taian, Weihai, Rizhao, Laiwu, 

Linyi, Dezhou, Binzhou, Liaocheng, Laiwu. Now Shandong province has emerged as 

one of the most populous (95,793,065 inhabitants at the 2010 Census) and most affluent 

provinces in the People's Republic of China with a GDP of 5.942 trillion yuan, or 967 

billion US dollars in 2014, making it China's third richest province (Fig. 2). 

 

Fig. 2 Geographical location and administrative boundaries of Shandong province 

Shandong province ranks first among the provinces in the production of a 

variety of products, and it is also the largest agricultural exporter in China. Besides, the 

total length of expressway in Shandong province ranked second among whole China in 

2014(NBSC, 2015), so this study on the impacts of expressway on cultivated land in 
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Shandong province is of great importance to the major livelihood (Fig. 3). The relations 

between expressway and cultivated land are showed in Fig. 4. We can observe the clear 

correlation between the two sides changing from 2005 to 2010. 

 

Fig. 3 Distribution of cities and expressway in Shandong province 

 

Fig. 4 Temporal changes of length of expressway and area of cultivated land of 

Shandong province from 2005 to 2010 

3 Data and Variables 
3.1 Data 

One of the strengths of our study is the quality of data that we use to estimate the 

cultivated land in given years and changes in cultivated land over time. For our 

purposes, we believe that variables based on satellite remote sensing digital images are 
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the most suitable measures that can be used for detecting and monitoring land use 

change at global and regional scales (Geist and Lambin, 2001; Kok, 2004; Deng et al., 

2006). In China, land use change—including changes in cultivated land—has been 

tracked by remote sensing data and results of the empirical exercises have been reported 

in the literature (Shi, 2000; Sato and Yamamoto, 2005).  

In our study, we use a land use database developed by the Chinese Academy 

of Sciences (CAS). The original data are from satellite remote sensing data provided by 

the US Landsat TM/ETM images which have a spatial resolution of 30 by 30 meters. 

These have been aggregated by CAS into 1 km by 1 km picture elements (‘pixels’) and 

these are the observations used in this study. The database includes time-series data for 

three time periods: a.) the mid-1990s, including Landsat TM/ETM scenes from 1995 

and 1996 (henceforth, 1995); b.) the late 1990s, including Landsat TM/ETM scenes 

from 1999 and 2000 (henceforth, 2000); c) the late 2000s, including the data from 2005 

to 2010 (henceforth, 2010). For each time period, more than 500 TM/ETM scenes were 

used to cover the entire country. The data team also spent considerable time and effort 

to validate the interpretation of TM/ETM images and land-cover classifications against 

extensive field surveys (Liu et al. 2003, Tan et al., 2005). A hierarchical classification 

system of 25 land-use classes was originally applied to the data and we aggregate these 

further into six classes of land use–forest land, forestry area, grassland, water area, 

built-up area and unused land. In this study, we only use information from the data set 

on cultivated land (primarily as our dependent variable) and built-up area (as 

covariates). The socio-economic data used in this paper was obtained from Ministry of 
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Public Security of China (2001), Bureau of Statistics of Shandong (2008), NBSC (2001, 

2005, 2007, 2010). 

3.2 Variables  

3.2.1 Dependent variable— cultivated land and change of cultivated land  

The data we used is collected from Shandong province of 2005 and 2010, they can be 

used to track the changes in the cultivated land. Although decreasing in the aggregate 

by a small margin, which maps the differences in the cultivated land across time for 

each pixel in the data set, demonstrates two things: Firstly, both cultivated land 

expansion and cultivated land loss occur at the same time. Secondly, it can be shown 

that, in fact, the cultivated land in Shandong province is quite dynamic and changing 

over a large area. One of the main questions that this paper wants to answer is whether 

expressway would encourage the cultivated land loss directly; or if they are part of the 

set of forces that facilitates cultivated land loss; or if they are in neutral position.  

3.2.2 Explanatory variables: roads and other factors  

The basic data for our expressway variable came from provincial, county and local 

maps which were collected from the Chinese Academy of Sciences (CAS) data center. 

The information from the hard copies of the maps was digitized by a working group 

based in the Institute of Geographical Sciences and Natural Resource Research, CAS. 

Although it would be simple to calculate the straight line (“crowfly”) distance from 

each pixel to the nearest segment of digitized road, such an approach is likely to provide 

a misleading measure of road access. Almost there are plenty of land area is 

mountainous or hilly, so travel from many pixels to the nearest road involves going over 
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mountains, which may be impractical. In such an environment, a more realistic measure 

of accessibility requires knowledge of the topography.  

In addition to the information on cultivated land and expressway, other data 

were used to create control variables for the other factors that determine cultivated land. 

When looking at the empirical literature on the determinants of cultivated land, there 

are four broad categories of variables. Chomitz and Gray (1996) and others include a 

number of geographic and climatic variables. These same authors along with Cropper 

et al., (1999) also use several demographic and economic variables. Other authors like 

Pfaff (1998), Robalino et al., (2007) include measures of distance from the cultivated 

land plots to different features (such as, distance to the nearest city). There are other 

factors also being used by different authors (such as whether or not the pixel is in a 

protected area). In order to make our analysis as consistent as possible with the rest of 

the literatures, we have collected information on four sets of variables: geographic and 

climatic factors, demographic and economic factors, measures of distance and other 

factors.  

With our data we are able to create fourteen measures of geographic and 

climatic factors. The data for measuring rainfall (measured in millimeters per year), 

temperature (measured in average degrees centigrade per year) and cumulative 

temperature (measured in accumulated degrees centigrade per year) in 2005 and 2010 

are from the CAS data center but were initially collected and organized by the 

Meteorological Observation Bureau of China from more than 600 national climatic and 

meteorological data centers. For using in our study, we took the point data from the 29 
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climate stations in Shandong province and interpolated them into surface data using an 

approach called the thin plate smoothing spline method (Hartkamp et al., 1999). The 

elevation and terrain slope variables, which measure the nature of the terrain of each 

county, are generated from China’s digital elevation model dataset that are part of the 

basic CAS data base. Landform data including mountain, hill, mesa and plain are also 

from the CAS data center. Information on the properties of soil is also a part of our set 

of geographic and climatic variables from the CAS data center (organic matter in the 

top soil and loam). Originally collected by a special nationwide research and 

documentation project (the Second Round of Chinese National Soil Survey in 2014) 

organized by the State Council and run by a consortium of universities, research 

institutes and soils extension centers, we use the data to specify three variables: the 

nitrogen content of the soil (nitrogen—measured in percentage); available phosphorous 

in the top soil (measured in ppm); and soil pH value. By using a conventional Kriging 

algorithm (Kravchenko and Bullock, 1999), we are able to interpolate the soil 

information into surface data to get more disaggregated information on the property of 

the soil over space for each pixel.  

Two demographic and economic variables, population and the level of gross 

domestic product per square kilometer (GDP), are included in our modeling work. The 

demographic data for 2005 and 2010 are from the Population Statistical Yearbook for 

China. Information on GDP for each county for 2005 and 2010 are collected from the 

Socio-economic Statistical Yearbook for China’s Counties. In order to get pixel-specific 

measures of the demographic variables, we use an approach which is called the Surface 
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Modeling of Population Distribution framework to interpolate the data across space 

(measured as persons/kilometer square) (Deng et al., 2008). The level of GDP (GDP 

per square kilometer) is also interpolated across space using commonly available GIS 

algorithms (Doll et al., 2000, 2006; Deng et al., 2008). 

We also created four measures of distance (all of which are measured in 

kilometers). These variables are defined separately for each pixel in our sample. 

Distance to the nearest road is measured as the distance (by the shortest road route) 

from each pixel to the main roads of Shandong province. Distance to the nearest urban 

core is generated by measuring the distance by shortest road route from each pixel to 

the nearest county seat or other major urban center. Distance to the expressways is 

generated by measuring the distance to the expressways in Shandong province. 

Distance to the port city is the distance to the nearest port city in Shandong province.  

Finally, we further obtained data for four other factors. The variable, bufferarea3, 

bufferarea5, bufferarea7, bufferarea10, indicates whether a pixel is covered by city 

corridor or not. (See Appendix Fig. 1 for more details about other variables). The idea 

of including this variable is to hold the impact on the cultivated land. The variable is 

created by measuring the distance to the city corridor within a 1 by 1 km2 around the 

pixel. Descriptive statistics for the control variables are included in Table 1. 

4 Econometric model 

4.1 Basic model 

The basic relationship that we are interested in is:  

Cultivated landit = a0 + a1*Access to Expresswayi(t-j) + eit  (1)                      
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where Cultivated landit is the area of the cultivated land in pixel i in year t; Access to 

Expresswaysi(t-j) is a measure of the nature of the expressway that ran through the 

watershed which contains pixel i in year t-j; and a1 is our coefficient of interest. We use 

a lagged measure of access to expressway to help reduce some of the potential 

endogeneity bias, since changes in cultivated land between 2005 and 2010 should have 

no direct effect on expressway in 2010. 

Table 1: Descriptive table of the variables used in this study 

Variable Units Obs Mean Std. Dev. 

Dependent variables     

Cultivated land in 2010  ha 82634 43.8 1.68 

Change of cultivated land 

between 2005 and 2010  
ha 82634 -0.37 -0.52 

Geographic and climatic 

factors 
    

Elevation  Meter 82634 105.41 139.16 

Terrain slope  Degree 82634 72.9 145.89 

Landform: mountain - 82634 - - 

Landform: hill - 82634 - - 

Landform: mesa - 82634 - - 

Landform: plain - 82634 - - 

Organic matter in the top 

soil 
% 82634 

0.79 0.18 

Loam % 82634 11.47 2.09 

Nitrogen  % 82634 0.05 0.01 

Available phosphorous  PPM 82634 5.37 0.94 

Soil pH value – 82634 6.4 0.68 

Temperature  
degree 

centigrade 
82634 

12.65 0.71 

Rainfall Millimeter 82634 1282 309.5 

Cumulative 

temperature(>0°C) 
°C  5831.37 729.9 

Demographic and 

economic factors 
    

Population  

persons per 

square 

kilometer 

82634 645.6 948.8 

GDP 

10, 000 yuan 

per square 

kilometer 

(2010) 

82634 2480.2 4516.7 
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Measures of distance     

Distance to the nearest 

road  
Kilometer 82634 

4.21 3.86 

Distance to the 

expressways 
Kilometer 82634 

15.8 14.55 

Distance to the near 

urban core 
Kilometer 82634 

43.7 21.9 

Distance to the port city Kilometer 82634 219.8 68.9 

Other factors     

Bufferarea3, expressway 

pixel is inside or not   
1/0 82634 

0 1 

Bufferarea5, expressway 

pixel is inside or not     
1/0 82634 

0 1 

Bufferarea7, expressway 

pixel is inside or not   
1/0 82634 

0 1 

Bufferarea10, expressway 

pixel is inside or not   
1/0 82634 

0 1 

Notes: Statistics based on the sampled data set of 1 by 1 km2 with total number of 

pixels up to 82634.  

 

Fig. 5 Distance of each pixel to the nearest expressway in Shandong province, 2010 

Since we are interested in the impact of whether there is a road in the watershed 

(or not) as well as the type of road (expressway vs. province-level highway vs. other 

road), we define Access to Roads it-j in four different ways. In model 1.1 we will include 

in our sample only the expressway and province-level highway pixels and Access to 

Roads 1.1it-j will equal 1 if the pixel is an expressway pixel and will equal 0 if the pixel 
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is on a province-level highway. This is called Treatment 1 in the rest of our paper. Note, 

the other road pixels and no road pixels are excluded from the analysis when we use 

Access to Roads 1.1it-j. In the estimation of model 1.1, a 1.1 will measure the effect on 

cultivated area of changing a highway system from a province-level highway to an 

expressway. 

In model 1.2, we will include in our sample only the expressway, province-

level and other road pixels and Access to Roads 1.2it-j will equal 1 if the pixel is either 

an expressway pixel or a province-level highway pixel and will equal 0 if the pixel is 

an “other road pixel”. In the estimation of model 1.2, a 1.2 will measure the effect on 

cultivated area of changing a highway system from some other road to either an 

expressway or province-level highway. This is called Treatment 2. The roadless pixels 

are dropped from the analysis when we work with model 1.2. 

In models 1.3 and 1.4, we use the full sample. The empirical exercise in model 

1.3 will be like that of model 1.2, except we set Access to Roads 1.3it-j =0 when the pixels 

are either other road pixels or no road pixels. In this way, the interpretation of a 1.3 

becomes the effect on cultivated area of changing a highway system from some other 

road to either a province-level highway to an expressway or of building a province-

level highway or expressway to a previously roadless watershed (Treatment 3). In 

model 1.4, we set Access to Road 1.4it-j =1 if there is any type of road in the watershed 

and set it to 0 if there is no road in the watershed. The interpretation of a 1.4 becomes 

the effect on cultivated area of building any type of road to a previously roadless 

watershed (Treatment 4). Table 2 summarizes the different treatments that we will 
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conduct by estimating models 1.1–1.4. 

Table 2: Definition of treatment and control variables for four alternative treatments 

Alternative 

treatment 

Treated—the largest type of road that 

goes through the watershed is: 

 

Control—the largest type of road 

that goes through the watershed is: 

 

Expres

sways 

Province-

level 

highways 

Other 

roads 

 

No 

roads 

 

Expres

sways 

Province-

level 

highways 

Other 

roads 

 

No 

roads 

 

Model 1.1: 

Expressways vs. 

province-level 

highways  

X     X   

Model 1.2: 

Expressway and/or 

province-level 

highways vs. 

other roads  

X X     X  

Model 1.3: 

Expressway and/or 

province-level 

highways vs. other 

roads or no roads  

X X     X X 

Model 1.4: 

Expressway and/or 

province-level 

highways and/or 

other roads vs. no 

roads  

X X X     X 

Equation (1) is problematic for several reasons. Pixels in watersheds with 

expressways are likely to differ from those in watersheds without any roads (or with 

only minor roads) in many ways. They may have easier topography and more 

productive soils along with unobserved locational advantages, since richer areas (or 

areas with more development potential) are more likely to attract investment in roads. 

Hence, applying OLS to Equation (1) is likely to give biased and inconsistent estimates. 

Indeed, as discussed above, previous work suggests many other factors that might affect 

cultivated area and since some are likely to be correlated with both cultivated area and 

access to roads, we can reduce omitted variable bias by controlling for as many 

variables are possible. This gives the model: 
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Cultivated landit = a0 + a1*Access to Expresswayi（t-j） + a2*Zi + eit      (2)              

where in addition to the variables and parameters in equation (1), the specification of Z 

in equation (2), includes eight measures of geographic and climatic variables (rainfall, 

temperature, cumulative temperature, elevation, terrain slope, nitrogen, available 

phosphorous and soil pH value); two measures of demographic and economic variables 

(population, GDP); two measures of distance variables (distance to the provincial 

capital, distance to the nearest urban core). Since the other variables in Z are only vary 

across space, we only include an i subscript on Z.1 

While adding covariates to an OLS regression (as in equation 2) allows 

differences in the average values of observed characteristics to be controlled for, many 

studies show that this is a relatively inflexible and unsuccessful way to deal with the 

sample selection problem that occurs when observations in non-experimental studies 

cannot be randomly assigned to “treatment” and “control” groups. On the other hand, 

matching is an increasingly popular non-experimental evaluation method, with 

proponents claiming that it can replicate experimental benchmarks when appropriately 

used (Dehejia and Wahba, 2002). In particular, matching offers a way of structuring 

non-experimental data to look like experimental data, where for every subject in the 

“treated” group, the researcher finds comparable subjects in the “control” group. 

In other words, while adding Z may help controlling for some of the factors 

that might create an omitted variables bias problem when estimating a1, using Ordinary 

                                                             
1 To avoid over-controlling, we do not include in the Zi matrix of equation. The variable, distance to nearest road, 

measures the distance from each grid cell to the nearest road of any type. We generated the variable, road density 

within the watershed by measuring “the length of all roads per square kilometer (m/km2).  
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Least Squares (OLS) assumes that simply conditioning linearly on Z variables suffices 

to eliminate selection bias. While the linear model can approximate a given non-linear 

function of the Z arbitrarily well when sufficient higher order terms are included, most 

of the linear regression models in the literature do not include higher order terms. Hence, 

for such models, using the standard OLS estimation approach would also be biased.  

4.2 Matching methodology 

The matching method is another way to examine the impact of a treatment (in our 

context, existence of expressway) on an outcome (in our case, cultivated land) when 

selection takes place on observable characteristics. Also, just as in a standard OLS 

model, measuring the effect of expressway on cultivated land without bias using the 

matching method assumes that the outcome in the base state is independent of the 

treatment, conditional on observed covariates Z. In other words, for pixels within 

subgroups defined by Z, being located in a city corridor with expressway is unrelated 

to what the cultivated land would be if the pixel were not in a city corridor with roads. 

This is the so-called Conditional Independence Assumption. If this assumption holds, 

we can say that given the observable covariates, the cultivated land of the control pixels 

are what the cultivated land of the treated pixels would have been had they not had the 

expressway.  

Unlike OLS, however, matching works by finding a control pixel that is very 

similar to the treatment pixel by conditioning on Z variables non- parametrically rather 

than linearly (Black and Smith 2004). Moreover, with matching methods, but not OLS, 
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we can impose “common support,” which excludes treated pixels for which we cannot 

find reliably similar control pixels.  

To take advantage of these factors, we follow the recent literature and match 

every treated pixel with a control pixel using covariate Matching and its variants. With 

covariate matching (Abadie and Imbens, 2006), we estimate the average treatment 

effect by comparing outcomes between treated observations—pixels in a watershed 

with a specific type of road—and control observations—pixels in a watershed without 

the specific type of road.  

Covariate matching, the method created by Abadie and Imbens (2006), 

matches directly on covariates. In our analysis, we choose to match the two nearest 

neighbors with the similar covariates (Z), where the variables in Z are the same as in 

the OLS model. Within these pixels, we can then directly estimate E(Yi1|Ti=1, Zi) and 

E(Yi0|Ti=1, Zi). This approach means that once we have a matched sample, we compare 

the cultivated land of the treated pixel with the cultivated land of the controlled pixel. 

We also report the estimated coefficients that use the post-matching bias correction 

factor also developed by Abadie and Imbens (2006). This correction factor is needed to 

correct for the conditional bias in finite samples when there are three or more 

continuous variables. The recent work demonstrates that bootstrapping standard errors 

are invalid with non-smooth nearest neighbor estimators. 

4.3 Spatial sampling 

The basic unit of observation in our study is the 1 km2 pixel, of which there are 82634 

in Shandong province. There is a high correlation in cultivated land between 
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neighboring pixels and a lesser but still statistically significant correlation in the 

residuals of the OLS estimates of equation (2). 2  At the very least, this spatial 

autocorrelation can lead to inefficiency and invalid hypothesis testing procedures but it 

may also cause biased and inconsistent parameter estimates if spatial interactions are 

present such that a spatially lagged dependent variable belongs in the model (Anselin, 

1995). 

We take three approaches to dealing with this spatial autocorrelation problem. 

First, rather than using all pixels we take a 1-in-25 sample by choosing only the pixels 

at the vertices of a 5 km by 5 km grid. Second, since we use matching methods this 

eliminates even more of the spatial autocorrelation because every treated pixel is 

matched with a control pixel. Except for the extreme case where the two matched pixels 

share a common watershed boundary, the pixels are unlikely to be adjacent neighbors.  

4.4 Summary of our estimation approach 

Given the proceeding discussion, in order to estimate the effect on cultivated land of 

access to expressway, we take the following approach. First, we estimate equations (1) 

and (2) using OLS. Next, we use a covariate matching approach, using two 

algorithms— “covariate matching using an inverse variance weighting scheme” and 

“covariate matching using a Mahalanob is weighting scheme.” We use these estimators 

to analyze the effect of expressway in the city corridor on the cultivated land and do so 

holding constant (in the case of our OLS estimators) and matching on (in the case of 

our covariate matching estimators) a set of covariates that are described above.  

                                                             
2 The Moran I statistic is 0.73 for the dependent variable and 0.49 for the residuals. Intuitively, this statistic is 

equivalent to the slope coefficient of a linear regression of the weighted average value of cultivated cover 

(residuals) for the pixels surrounding the ith pixel on the cultivated cover (residual) in pixel i. 
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In order to check the robustness of our results, we first report the models 

excluding four variables that may be correlated with our treatment variable and then 

add them one by one for robustness checks with one of the Access to Expressway 

variables. Furthermore, we estimate all of our equations using both level of cultivated 

land in 2005 and 2010 (Cultivated landi2005, Cultivated landi2010) and the changes in 

cultivated land (Cultivated landi2010 – Cultivated landi2005 = ∆ Cultivated landi2005) 

using pixels as the units of observation.  

5 Results 

The simple linear regression using OLS (with no controls and when we divide 

Shandong province into 9461 watersheds) produces results that are similar to those 

found in the descriptive analysis above (Table 3, row 1& Table 4, row 1). Regardless 

of the definition of the roads variable (Treatments 1–4), the larger the road in the early 

21st century (or if there is any road vs. no road), the lower the cultivated area in 2010. 

The signs on the coefficient of the roads variable are negative in all columns, and there 

are four columns are significant at 1% level, one is significant at 5% level, and two are 

significant at 10% level, while the remaining one is insignificant. In other words, when 

we use any treatment variable and when using observations at either the pixel or 

watershed level, there is a negative and significant relationship between roads in one 

period (2005) and cultivated lands in the next period (2010). Examining the magnitude 

of the coefficients demonstrates that the presence (or size) of a road, when we do not 

control for other factors, is associated with land that has 0.23 -4.41% less cultivated 

area. 
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Table 3: Results from Ordinary Least Squares regression approach and covariate 

matching analyzing the effect of roads on cultivated land in Shandong province at 

pixel level 

Dependent variable: cultivated land area of 2010 

 

Expressways 

vs. province-

level highways 

(Treatment1) 

Expressway and/or 

province-level 

highways vs. other 

roads  

(Treatment2) 

Expressway 

and/or province-

level highways vs. 

other roads or no 

roads 

(Treatment3) 

Expressway and/or 

province-level 

highways and/or other 

roads vs. no roads 

(Treatment 4) 

OLS, no control -0.289 (-1.23) -0.932 (-1.89) * -0.234 (-4.56) *** -1.377 (-8.62) *** 

OLS, with 

covariates 
-0.193 (-1.49) * -0.252 (-1.57) * -0.102 (-1.79) * -0.152 (-2.56) ** 

Covariate matching 

(inverse variance) 
0.181 (0.66) 0.172 (0.82) 1.068 (1.72) * 1.142 (2.76) ** 

Covariate matching 

(Mahalanobis) 
1.806 (1.53) * 1.127 (1.82) * 1.279 (2.78) ** 0.232 (2.41) ** 

N treated 1250 2908 2908 5076 

N available 

controls 
1191 995 1606 1590 

Notes: *** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

Table 4: Results from Ordinary Least Squares regression approach and covariate 

matching analyzing the effect of roads on cultivated land in Shandong province at 

watershed level 

Dependent variable: cultivated land area of 2010 

 

Expressways 

vs. province-

level highways 

(Treatment1) 

Expressway and/or 

province-level 

highways vs. other 

roads  

(Treatment2) 

Expressway and/or 

province-level 

highways vs. other 

roads or no roads 

(Treatment3) 

Expressway and/or 

province-level 

highways and/or other 

roads vs. no roads 

(Treatment 4) 

OLS, no control -1.879 (-1.91) * -1.214 (-2.74) ** -4.412 (-4.78) *** -4.321 (-5.20) *** 

OLS, with 

covariates 
-0.696 (-0.71) -1.621 (-1.86) * -1.128 (-1.98) * -0.217 (-1.71) * 

Covariate 

matching 

(inverse variance) 

1.313 (0.80) 1.014 (1.99) * 2.752 (2.53) ** 0.223 (1.42) * 

Covariate 

matching 

(Mahalanobis) 

1.496 (1.06) 1.762 (1.11) 1.526 (1.89) * 1.231 (1.27) * 

N treated 153 328 328 559 

N available 

controls 
131 120 479 265 

Notes: *** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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Importantly, as soon as we add the 24 covariates defined above to the OLS 

model, the negative association between roads from 2005 to 2010 and the level of the 

cultivated area in 2010 still remains (Table 3, row 2 & Table 4). Regardless of the 

treatment or the level of observation (watershed or pixel), point estimates of the 

relationship between roads and cultivated area are negative in all eight models, with 

most of figures are statistically significant. Therefore, the most accurate interpretation 

of the findings when we estimate Equation (2) is that roads have significant negative 

impact when it comes to influencing cultivated area in Shandong province.  

The absence of an impact of roads on cultivated land in Shandong province in 

2010 is reinforced when we use the two covariate matching approaches to estimate 

treatment effects (Table 3 & Table 4, rows 3 and 4). Regardless of the treatment variable 

and whether we use pixels or watersheds as our units of observation, there is no case 

where we find a negative and significant impact of roads on cultivated area. In fact, in 

all 16 different models the signs on the road variables are positive. Hence, we can most 

accurately classify the result as having nearly no effect. In other words, in our analysis 

there is no evidence to suggest that roads are creating pressures on cultivated area. In 

this way, we can find a positive relationship between roads and cultivated area. 

The positive relationship between roads and cultivated area is in a strict 

statistical sense also supported by the simple linear regression of the change in 

cultivated area on roads (Table 5, row 1). In all of the four models (considering different 

treatments), the signs on the road variable of treatments 1 and 2 are negative, while of 

treatments 3 and 4 are positive. Especially in Treatment 4, the coefficients are positive 
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and significantly different than zero.  

After controlling for covariates and after implementing our two matching 

schemes (Table 4, rows 2–4), our interpretation of the findings uses the change of 

cultivated area as the dependent variable continues to be consistent with the findings 

when using the level of cultivated area as the dependent variable. At watershed 50 level, 

there are three of the four signs are negative, while most signs at watershed 100 level 

are positive. However, in those cases, whether the sign of the coefficient is positive or 

negative, statistically there is no discernible relationship between roads and change of 

cultivated area.  

Finally, before concluding that the findings from Shandong province, we want 

to make sure that the results hold up to more conventional analysis. To show this, 

instead of using our variable of interest (whether or not and what type of roads penetrate 

the watershed or pixel), we want to examine the coefficients on more traditional 

measures of road access (e.g., measures based on straight line distance to a pixel or 

watershed, etc.) and using more standard regression approaches (i.e., OLS instead of 

matching methods). In this sensitivity exercise, we use two types of data sets (pixels, 

watersheds) and three different measures of roads (watersheds crossed by roads; 

distance to roads and road density). The results of the sensitivity analysis (not shown 

for brevity) using the more traditional measures of roads also show that there is no 

impact of roads on change in cultivated land in Shandong province. Therefore, the 

substance of the results using our new approach is also found using more traditional 

methodological approaches.  
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Table 5: Estimated model of the impact of road on cultivated land from 2010 to 2005 

Dependent variable: cultivated land area, 2010 to 2005 

                 Difference-in-Difference 

 

Expressways 

vs. province-

level 

highways 

(Treatment1) 

Expressway 

and/or province-

level highways 

vs. other roads 

(Treatment2) 

Expressway and/or 

province-level 

highways vs. other 

roads or no roads 

(Treatment3) 

Expressway and/or 

province-level 

highways and/or 

other roads vs. no 

roads (Treatment 4) 

At pixel level -0.41 (-0.354) -1.29 (-0.967) 1.35 (0.352) 4.86 (0.932) *** 

At watershed50 

level 
0.16(0.383) -1.15 (-3.472) -0.65 (-1.606) -0.32 (-0.847) 

At watershed100 

level 
0.59 (2.141)  

-6.12 (-

15.120)*** 
0.24 (0.866) 0.40 (1.672) 

Notes: *** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

6 Conclusions and discussion 

In this paper, we have sought to estimate the impact of expressway on cultivated land 

and the change in cultivated land in Shandong province. Using satellite remote sensing 

data to track changes over time at the 1 km2 pixel level, we have found that Shandong 

province experienced a fall in cultivated land during 2005-2010. Then, we analyzed the 

determinants of these changes, focusing mostly on the role of expressway in the city 

corridor.  

To estimate the impact of the presence (or the size) of expressway on cultivated 

land in the city corridor, we developed an empirical framework in which we assigned 

pixels—the level of observations on which we can observe cultivated land— labels 

indicating whether or not the 1 km by 1 km land area is easily accessible by expressway. 

Holding constant a set of carefully defined geographic and climatic factors; 

demographic and economic variables, distance variables and other factors, we sought 

to measure the net impact of the nature of the expressway in the mid-1990s on the level 
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of the cultivated land in 2005 and 2010 and the change of the cultivated land between 

2005 and 2010. Using both standard OLS with covariates and two covariate matching 

methods, we found that expressway in the city corridor had no contribution to cultivated 

land. In other words, according to the findings from three different empirical 

approaches, when expressways were in larger corridor, they did not appear to be 

exerting any pressure onto the cultivated land.  

However, when an area is long settled or comparatively isolated, and when 

population densities are fairly high, it is possible that when roads enter an area, they 

can act as an approach to reduce the cost of moving out of the region or depressing the 

cost of technologies that will encourage more intensive cultivation/use of land resources 

in non-cultivated areas. If this were the cases, roads could lead to increasing utilization 

efficiency of cultivated land, which can be considered as the positive effect on the 

expansion of cultivated area. 

Clearly if these two interpretations are true, it is possible that our research 

findings are accurately portraying the situation in Shandong province. Shandong 

province has been settled for thousands of years. The population pressures in many 

regions of the province become quite high, especially after entering the 21st century. As 

the frequency of communication with the outside based on the convenient roads, an 

increasing number of youngsters have migrated to other regions, which may lead to the 

consequences of lower pressure on cultivate land. Hence, our results may be reasonable. 

However, we still don’t know whether the quality of the cultivated is rising or 

deteriorating under the influence of roads. Future research might include the impact on 
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value of the cultivated and other ecosystem services provided by cultivated area. 

Then some limits need to be addressed in our study. First, we recognize that 

we have grouped different types of cultivated area into a single measure. As a result, 

we are unable to measure the transition between different types of cultivated area (e.g., 

from high to low quality). If roads affect this transition, but do not lead to de-cultivation, 

we will ignore these impacts. 

In addition, we are also able to measure only the impact of roads on the 

cultivated area in 2005 in Shandong province. We do not have data on which of the 

roads are newly built and which have been around for a period of time. Consequently, 

the available data do not allow us to identify the impacts of roads separately from the 

impacts of all of the history of human settlement and activity, which is likely correlated 

with where the roads have been placed over time. Both this historical human activity 

and roads may shape the current spatial pattern of the cultivated area, making it difficult 

to identify the impact of roads. However, there is few reason to support us to believe 

that this omitted history will affect the recent change in cultivated cover, so the 

similarity of our results showing neutral impacts of roads on the change of cultivated 

area reduces concern about possible biases in our estimated impact of roads. Future 

research could consider searching for instrumental variables that show why roads have 

developed over time in some parts of Shandong province but not others. 

However, due to the limitation of the data, we only focused on the relationship 

between uprating expressways and cultivated land in Shandong province in 2005 and 

2010. However, the figure in two years is less representative, that is to say, we cannot 
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know the whole process of land use changing and the conflicts with infrastructure 

without observation and evaluation over years. In addition, for the contemporary of data, 

latest data should be used in the future studies. 
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Appendix Fig. 1 Distribution of cities overlaid with a road network buffered with a 

radius of 3km(a), 5km(b), 7km(c) and 10km(d) 
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Abstract 

With rapid economic growth and urbanization in China affecting agricultural land, it is 

of great importance to improve eco-efficiency for sustainable agricultural development 

to ensure food security. Shandong, as a key agricultural production base in China that 

experiences accelerated urbanization, was chosen as our case study area. Supported by 

a large scale natural and socioeconomic data, we estimated land productivity in 

Shandong, China during 1990-2010 using the Estimation System of Land Production, 

then analyzed the eco-efficiency based on Stochastic Frontier Analysis. The results 

showed that land productivity was unevenly distributed in Shandong, with relatively 

lower values in regions covered by built-up area. The regional eco-efficiency in 

Shandong was mostly over 0.9, expect for cities located far from the political or 

economic centers. The results indicated there exists trade-offs between agricultural 

production and urbanization, and it is necessary to adjust its agricultural technological 

measures according to local specific conditions to improve eco-efficiency for 

sustainable agricultural development in Shandong. 

Keywords: Land productivity; Eco-efficiency; Cultivated land; Estimation System for 

Land Productivity (ESLP); Stochastic Frontier Analysis (SFA); Shandong  

1 Introduction 

China is the most populous nation in the world, and it currently feeds approximately 

22% of world population with only 7% of the world’s cultivated land. Globally, rising 

population is expected to lead to a 70% increase in demand for agricultural production 
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by 2050 with current cultivated land not increasing over current levels (FAO, 2015; 

Tirlapur and Mundinamani, 2015; Guilpart et al., 2017). It is notable that China’s 

cultivated land area per capita is one of the lowest worldwide (Deng et al., 2010). For 

example, the second national land survey showed cultivated land area per capita in 

China was 913 m2, which was less than half of the world average level (Song and Deng, 

2015). The total area of cultivated land in China showed a decreasing trend from 1990 

to 2010 (Fig. 1). 

 

Fig. 1 The area of cultivated land in China,1990-2010 

Data source: World Development Indicators from the World Bank. 

 

Based on this background, tracking changes in cultivated land area and 

impacts on agricultural productivity in China is a prerequisite for the better 

safeguarding of national food security. However, rapid urbanization in China, along 

with the implementation of various land policies and ecological protection campaigns, 

has resulted in changes in the quantity and quality of cultivated land (Wu et al., 2011; 

Gingrich et al., 2015).  
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Along with detailed research on land use change, there is growing awareness 

that eco-efficiency is one of the fundamental factors for ecosystem services 

improvement and sustainable agricultural production (Deng et al., 2016). The concept 

of eco-efficiency was introduced as ‘a business link to sustainable development’ by 

Schaltegger and Sturm (1990). Regional eco-efficiency is the efficiency with which 

ecological resources within an area are used to meet human needs (Mickwitz et al., 

2006), expressing how efficient the economic activity is with regard to nature’s goods 

and services (Zhang et al., 2008). Eco-efficiency can be improved by reducing 

environmental impacts and natural resources use while maintaining or increasing the 

value of the output produced (Mickwitz et al., 2006). Scientific estimation and analysis 

of eco-efficiency is needed to analyze the impacts of socio-economic development on 

ecosystem services, with the aim of providing support for land use policy making. 

In China, problems regarding land use change and sustainable development of 

agricultural production are particularly acute in Shandong, which is the third largest 

agricultural production bases in China (Fig. 2), and so what happens in Shandong 

affects food security and social stability in all China. Shandong features interactions 

between crop production, conservation of forestry and grassland covers, and 

urbanization. The Ministry of Land and Resources of China shows cultivated land per 

capita in Shandong was just 232 m2, which is one-quarter of the average for China in 

2015. Shandong’s importance as an agricultural production base and the loss of 

cultivated land to development justifies our choice of the region as a study area. 
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Fig. 2 Food production in all provinces and cities of China, 2015 

Data source: NBSC, 2015. 

In this paper, we first evaluated land productivity in Shandong based on the 

Estimation System of Land Production (ESLP). Within the ESLP, agricultural 

productivity is an indicator of the production capacity of each unit area land, taking into 

consideration of many socio-economic factors based on land potential productivity 

(Deng et.al, 2013; Jin et.al, 2015). During the estimation of land productivity, a 

significant part is the support of large-scale data for the inputs in the ESLP. These can 

be divided into two main aspects, one is the fundamental inputs to improve land 

conditions; the other is the conventional production inputs in the specific production 

process. In addition, we aimed to expand previous studies on the measurement approach 

and empirical research of regional eco-efficiency. Prior research on eco-efficiency used 

Data Envelopment Analysis, which only measures inefficiency from a single 

perspective of input/output, while it is not comprehensive (Li and Hu, 2012). Instead, 

we evaluated the regional eco-efficiency in Shandong by means of a Stochastic Frontier 

Analysis (SFA), which will provide scientific support for decision making concerning 

the sustainability of regional agricultural production. 
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2 Study Area 

Shandong is located on the eastern edge of the North China Plain and the lower reaches 

of the Yellow River (114°19'-122° 43'E, 34°22'-38°15'N) and borders the Yellow Sea 

(Fig. 3). There are 17 cities in Shandong, covering a total area of over 151,100 km2, 

with plains, mountainous areas and hilly areas accounting for 55%, 15.5% and 13.2% 

respectively. Shandong lies in the warm-temperate zone with a continental monsoon 

climate. The annual mean temperature ranges from 11 to 14 ºC and annual precipitation 

ranges from 550 to 950 mm. 

 

Fig. 3 Geographical location of Shandong Province 

Shandong is China’s second most populous province with a population of 

98.47 million and third richest province with a GDP of over one trillion US dollars in 

2015. Shandong ranks first among the provinces in agricultural production, and it is 

also the largest agricultural exporter in China. However, along with the changes in 

industrial structure, Shandong experienced obvious land use/cover change and rapid 

urbanization. The built-up area increased from 34,123 km2 to 39,110 km2 during 1990-
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2010, while the cultivated land area decreased from 83,623 km2 to 80,135 km2 (Fig. 4). 

Thus, it is important to study the sustainability of regional agricultural production, the 

results of which may illustrate features of the competing demands for land use in rapidly 

developing areas (Wang and Zhang, 2010). Urbanization in Shandong has a negative 

influence on the agricultural development (Song and Deng, 2017). Although grain 

production in Shandong had been continuously increasing since 2003, the growth rate 

was decreasing, which maybe primarily caused by land degradation and cultivated land 

loss (Smith and Gregory, 2013). 

 

Fig. 4. Land use/cover map of Shandong of the year 1990(a) and the year 2010(b) 
Data source: The Data Center, Chinese Academy of Sciences 

3 Methods 

3.1 Estimation System of Land Production (ESLP) 

Land productivity was assessed with the ESLP based on agricultural-ecological zones, 

which integrated large scale multi-source data, including land use data, climatic data, 

radiation parameters, and soil properties. In addition, we selected different crop types 

to calculate land productivity for 25 types of land-use, among which paddy land was 

primarily used for rice and dry land was mainly used for corn, bean, sorghum and millet. 
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The average productivity of these five crop types was taken as the light-temperature 

productivity of cultivated land (Jiang et al., 2011; Hou et al., 2012). 

The ESLP consists of two modules, the accumulation module of land resources 

and the optimization module of land suitability. The first module is decided by the 

diversity of regional land-use type and land quality, and the second module takes the 

influencing climatic factors during crop growth in agricultural production into account, 

with the combination of radiation, temperature and precipitation, to achieve the 

optimization of coefficients of substitution elasticity and crop types, and further realize 

agricultural production simulation. The ESLP also provides an open extensible system 

to apply ecological and economic planning approaches to the development of 

sustainable agricultural production. We considered not only the natural and social 

factors that affect land productivity, but also the limiting factors in management. This 

connects agricultural potential and production inputs to measure the interaction of crops. 

From the input perspective, these can be divided into two major sections, one is 

improving the fundamental inputs of cultivated land, the other is the inputs into the 

specific production type, such as seeds, fertilizers, pesticides, machinery and so on.  

The ESLP is conducted based on agro-ecological zones through considering 

common characteristics that affect crop growth, including the climate conditions, soil 

properties and other geographic features. Each pixel in an agro-ecological zone should 

be relatively consistent in the aspect of the growth environment and condition. Then 

land productivity of each grid was calculated by overlaying information, such as land 
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ownership, land suitability and population carrying capacity. The estimation of land 

productivity was divided into five steps, namely photosynthetic productivity, light- 

temperature productivity, climatic productivity, soil productivity and land productivity 

(Deng et al., 2013). 

Photosynthetic productivity is expressed as follows. 

1 1 1

( ) (1 )(1 )(1 )(1 )(1 )

(1 ) (1 ) (1 )

p

j

Y Cf Q K

d sf q Q

     

 − − −

= =  − − − − −

− − − 
             (1) 

where  (kg/hm2) represents photosynthetic productivity, which refers to the 

productivity totally determined by photosynthetically active radiation (PAR) with 

temperature, moisture, soil, crop varieties and other agricultural technical conditions in 

optimum.  is the unit conversion ,  is the area coefficient,  is the light use 

efficiency of crops,  is the ratio of PAR, calculated as PAR divided by the total 

radiation,  is the conversion efficiency of photons,  is the reflectivity of the plant 

population,  is the transmissivity of flourishing plant population,  is the ratio of 

radiation captured by the organs of crops not for photosynthesis,  is the ratio of light 

over saturation point,  is the proportion of respiration consumption to photosynthate, 

 is the abscission rate of cauline leaf of crops.  is the economic coefficient of crops, 

which varies with crop types, natural condition and cultivation techniques,  is the 

modified value of the dynamics of leaf area of crops,  is moisture content of mature 

crops,  is the ash rate,  (MJ/kg) is the heat per dry matter,  (MJ·m-2) is the 

total solar radiation in the crop growth period. 

Light- temperature productivity is presented as equation (2). 

( )lt pY f T Y=                               (2) 
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where  (kg/hm2) is the Light- temperature productivity, which refers to agricultural 

productivity determined by photosynthesis and temperature conditions when moisture, 

soil, crop varieties and other agricultural technical conditions are at the optimum 

condition;  refers to the modified function for temperature, which can be written 

as follows. 

1 2

0 1 2 0

( )( )
( )

( )( )

B

B

T T T T
f T

T T T T

− −
=

− −
                       (3) 

2 0

0 1

T T
B

T T

−
=

−
                             (4) 

where  (ºC) represents the average temperature in a certain period, , , and  

(ºC) separately refers to the optimum temperature, lowest temperature, and highest 

temperature during crop growth.  is the asymmetric parabolic function identified 

by , , , and , ranging from zero to one. The crop growth period is divided 

into five stages, namely seeding stage, vegetative stage, reproductive stage, filling stage 

and mature stage, and  of each stage is calculated. 

Climatic productivity can be calculated based on the former two steps, taking 

precipitation and irrigation into account. 

( )(1 )w lt ltY Y f W l Y I= − +                      (5) 

where  is the climatic productivity (kg/hm2),  is irrigation efficiency, which 

calculated by irrigated cultivated area divided by total cultivated area,  is the 

modified coefficient for precipitation, which can be rewritten as follows. 

( ) 1 (1 / )mf W K Pe ET= − −                     (6) 



211 

 

where  is the production response coefficient, and  is the effective precipitation 

(mm). This can be calculated by the model designed by United States Department of 

Agriculture (USDA) Soil Conservation Service as follows. 

(125 0.2 )
250

125

125 0.1 250

R R
Pe R

Pe R R

−
= 


 = + 

                  (7) 

where  (mm) means total precipitation.  (mm) is the largest evapotranspiration 

in the crop growth period, which can be calculated with equation (8). 

                         (8) 

where  is the crop coefficient, related to season, crop type and crop community 

structure,  (mm) represents the evapotranspiration rate from a reference surface, 

which is estimated by the improved Penman-Monteith model, and can be rewritten as 

follows. 

2'

0

2

900
0.408 ( ) ( )

273

(1 0.34 )

n sR G e e
TET





 − + −
+=

 + +
              (9) 

where  (kPa·P-1) is the slope of the saturation vapor pressure-temperature curve,  

(MJ·m-2·h-1) is the net radiation of crop canopy surface,  (MJ·m-2·h-1) is the soil heat 

flux, which is the energy used for heating soil,  (kPa·P-1) is the psychrometric 

constant,  (ºC) is the mean daily air temperature,  (ms-1) is the wind speed at 2 

meters height,  (kPa) is the saturation vapor pressure,  (kPa) is the actual vapor 

pressure, and  is the vapor pressure deficit of the air. The soil heat flux can be 

calculated by equation (10). 

0.1* nG R=                             (10) 



212 

 

Then soil productivity can be obtained by modifying the climatic productivity 

( ) with the coefficient of soil availability ( ). 

( )s WY f S Y=                            (11) 

( ) i ii
f S AW=                           (12) 

where  represents the factors affecting soil availability, i is the number of factors, 

 is the weight of each factor. 

Finally, we can calculate land productivity based on the ESLP, which 

introduces multiple objective analytics to work out the land productivity of each grid 

using the equation (13). 

0( , )sY f I Y=                             (13) 

where  is the total production investment, and land productivity meets the condition 

of revenue maximization. 

0 0 0( , ) ( , ) ,s sf I Y P I f I Y P I I I  −  −                 (14) 
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                          (15) 

where P  is the expected price of total production investments, 
'f  and 

''f are the 

first and second difference of the function model. 

3.2 Eco-efficiency analysis based on Stochastic Frontier Analysis (SFA) 

The Stochastic Frontier Analysis (SFA) is applied to calculate the ecological 

performance indicator (EPI) and eco-efficiency (EE) (Du et al., 2016). The stochastic 

production frontier model was simultaneously introduced by Aigner, Lovell and 

Schmidt (1977) and Meeusen and van Denk Broeck (1977). Eco-efficiency and 
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environmental efficiency are developed to express how the performance of ecological 

factors and environmental factors meet human demand (OECD, 1998; Huppes and 

Ishikawa, 2005; Huang et al., 2014). Concerns about environmental problems caused 

by local economic development in developing countries have received much attention 

in recent years, and the stochastic frontier production function can be used to calculate 

these two indicators. 

To estimate technical efficiency and eco-efficiency, we established a multi-

input and multi-output production function, incorporating the ecological variable as one 

input, and typical land as another necessary input in agricultural crop farming. We 

assumed that for each period t=1,…,T, the input vectors t NX R+  could generate 

output vectors t NY R+ , 

 ( , ) :t t t t tS X Y X can produce Y=                   (19) 

According to the goal of the research, we followed the distance function 

methodology (Song et al., 2012). The input distance function was defined at as follows 

 ( , ) sup : ( / , )t t t t t t

ID X Y X Y S =                    (20) 

This function treats the output vector Yt as given and adjusts the input vector 

Xt  if the input-output vectors are still technologically feasible (Song et al., 2014). It 

should be noted that ( , ) 1t t t

ID X Y   if and only if ( , )t t tX Y S . In addition, 

( , ) 1t t t

ID X Y =  if and only if ( , )t tX Y is on the boundary or frontier of technology. So, 

for the sample i of the observations, the expression (21) can be obtained considering 

the definition of SFA. 

( , , ; , , , , , )exp( ) 1t t t

I i i i iD X Y t v u      − =                 (21) 
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where , , , , ,       are all parameters to be estimated. Here, we will get the 

stochastic frontier model by adding a term vi to capture noise, and ui is defined as the 

technical inefficiency, where i.i.d  vi
t ~ N(0, σu

2) and ui
t ~ N+(ui, σu

2). The technical 

inefficiency model is  

0 *i ij ju Z = +                             (22) 

where Zij is a vector of explanatory variables associated with the technical inefficiency 

effects, 0 is the constant of the technical inefficiency model, and is a vector of 

unknown parameter to be estimated (Bai et al., 2016). 

Equation (21) can be transformed into: 

ln( ( , , ))t t t

I i i i iD X Y t u v= −                         (23) 

The distance function possesses the characteristic of homogeneity, which 

means that the normalization for a certain input can be written as: 

( / , , ) ( , , ) /

ln ln( ( / , , )) ln( ( , , ))

t t t t t t

I i n i I i i n

t t t t t t

n I i n i I i i

D X x Y t D X Y t x

x D X x Y t D X Y t

=

 − = −
        (24) 

According to equations (23) and (24), we can generate  

ln ln( ( / , , ))t t t

n I i n i i ix D X x Y t u v− = − − +               (25) 

Technical efficiency (TE) can be estimated by equation (25). It is defined as 

the ratio of the observed output to the corresponding potential output given the 

production frontier (Song et al., 2013), specified as  

( , ) exp( )i i i iY f X v u= −                     (26) 

Therefore, the technical efficiency is written as equation (27). 

( , ) exp( ) 1
exp( )

( , )exp( ) ( , , )

i i i
i i t t t

i i I i i

f X v u
TE u

f X v D X Y t





−
= = − =                  (27) 
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We also included two additional indicators, the EPI and the EE. The EPI is 

defined as the ratio of the distance function values obtained from the production 

function incorporating the ecological input to those without ecological input. The EPI 

is then written as follows: 

( , ) ( , ) ( , ) ( , )

( , ) ( , )

t t t t t t t t t t t t

I i i I i i i i i i i i
i t t t t t t

I i i i i i

D X eco Y D X Y TE X eco Y TE X Y
EPI

D X Y TE X Y

− −
= =   (28) 

The EE is defined as the ratio of minimum feasible ecological input use to 

observed ecological input use, conditional on the observed levels of the other input and 

outputs (Reinhard et al., 1999). 

min. log

log
i

feasible eco ical input
EE

observed eco ical input
=                  (29) 

The output distance function is defined similarly: 

  1( , ) (sup : ( , ) )t t t t t t

OD X Y X Y S  −=                  (30) 

This function is defined as the reciprocal of the ‘maximum’ proportional 

expansion of the output vector Yt, given input Xt. We can choose either of the two 

functions considering the requirement. Specifically, the ecological input in Shandong 

is built-up area (BUA). The land input is all cultivated land in these two regions. The 

regional eco-efficiency in Shandong can be calculated as follows, 

𝑋𝑆
𝑡 = (𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑎𝑟𝑒𝑎, 𝑁𝑃𝑃, 𝑐𝑎𝑝𝑖𝑡𝑎𝑙, 𝑙𝑎𝑏𝑜𝑟, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦1, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦2, . . . ) (31)      

𝑌𝑆
𝑡 = (𝑙𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦)                      (32) 

{
− 𝑙𝑛 𝑥𝑛 = − 𝑙𝑛(𝐷𝐼

𝑡(𝑋𝑖
𝑡(𝑁𝑃𝑃𝑖)/𝑥𝑛, 𝑌𝑖

𝑡, 𝑡)) − 𝑢𝑖 + 𝑣𝑖
− 𝑙𝑛 𝑥𝑛 = − 𝑙𝑛(𝐷𝐼

𝑡(𝑋𝑖
𝑡(𝑁𝑃�̂�𝑖)/𝑥𝑛, 𝑌𝑖

𝑡, 𝑡)) − 𝑢𝑖 + 𝑣𝑖
              (33)                    
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Besides, there are the land-use based trade-offs of ecosystem services between 

NPP, cropping returns and urbanization identified by sizes of built-up area within each 

pixel. This means that the different trade-offs can be embodied in the indicator of EE 

calculated by NPP based on the ESLP model. And the EE is then written as follows: 

𝐸𝐸𝑖 =
𝑚𝑖𝑛. 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑁𝑃𝑃𝑖

𝑁𝑃𝑃𝑖
                 (34) 

4 Results and analysis 

4.1 Analysis on estimated land productivity 

The land productivity of Shandong during 1990–2010 was estimated based on the ESLP. 

To validate the estimated results, we compared the statistical grain yield with the 

estimated average land productivity in 110 counties in Shandong (Fig. 5). The 

correlation analysis results showed that there existed significant correlativity between 

statistical grain yield and ESLP estimated land productivity (at 5% significance level), 

indicating that land productivity estimated by the ESLP can indicate agricultural 

productivity at some extent in Shandong. 

 
Fig. 5 Correlation analysis of grain yield and land productivity in Shandong  
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The spatial pattern of land productivity showed an unevenly distribution in 

Shandong, with higher values in the west and lower values in the east, which was 

closely related with land use/cover patterns (Fig. 6). For example, where the pixel was 

covered by built-up land or water areas, the land productivity there was almost low to 

zero, while if the pixel was covered by grassland, forest land or cultivated land, the 

values of land productivity were higher to>10,000 kg/hm2. According to pixel-level 

statistics, more than half of the pixels possessed land productivity values that were 

higher than the average value in Shandong. Especially, pixels with land productivity 

values of above 10,000 kg/hm2 accounted for around one-quarter of the total area. 

 

Fig. 6 Mean annual average land productivity in Shandong during 1990-2010 

4.2 Analysis on eco-efficiency 

Based on the SFA, we calculated the regional eco-efficiency in Shandong. The eco-

efficiency of 17 cities in Shandong is shown as in Table 1 and Fig. 6. The non-

constrained results of the SFA were proved to be more accurate than the constrained 

model to express the eco-efficiency of Shandong. From Table 1 and Fig. 6, we can 
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conclude that the eco-efficiency of most cities in Shandong was relatively high at over 

0.9, including Linyi, Laiwu, Liaocheng, Zibo, Yantai, Qingdao, Jinan, Jining, Heze, 

Dongying, Weifang, Rizhao and Tai’an. Most of these cities were in the zones with 

developed cities, ecological tourism, or belonging to the coastal economic zone and 

mountainous areas. Conversely, only Weihai, Zaozhuang, Dezhou and Binzhou 

remained in the low efficiency group (Fig. 7). The common feature in those cities was 

that they were far away from the provincial center or economic center. In most cities, 

the values of EPI were positive, which meant that the loss of vegetation contributed 

significantly to urbanization and social/economic development. However, the cities 

where EPI<0 indicated that the relationship between the ecological environment and 

economic growth was small. 

Table 1: City-level eco-efficiency in Shandong, 2010 

Code City Eco-efficiency EPI 

1 Jinan 0.9823  0.0180  

2 Qingdao 0.9740  0.0267  

3 Zibo 0.9628  0.0386  

4 Zaozhuang 0.8298  0.2051  

5 Dongying 0.9949  -0.0051  

6 Yantai 0.9647  0.0365  

7 Weifang 0.9962  -0.0038  

8 Jining 0.9889  0.0113  

9 Tai’an 0.9975  -0.0025  

10 Weihai 0.7563  0.3222  

11 Rizhao 0.9970  -0.0030  

12 Laiwu 0.9490  0.0538  

13 Linyi 0.9316  0.0734  

14 Dezhou 0.8385  0.1926  

15 Liaocheng 0.9600  0.0416  

16 Binzhou 0.8849  0.1301  

17 Heze 0.9918  0.0082  
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Fig. 7 City-level eco-efficiency ranking in Shandong, 2010 

5 Conclusions and Discussions 

In this study, with the support of large scale of multi-source data, including land use 

datasets, various observation datasets, socioeconomic statistics from yearbooks, and 

data produced by other projects, we estimated land productivity in Shandong during 

1990–2010 using the ESLP. Then, we calculated the eco-efficiency of agricultural 

production in Shandong based on SFA. Our results showed that land productivity was 

unevenly distributed in Shandong and was relatively lower in regions covered by built-

up area. The non-constrained results of SFA were proved to be more scientific than the 

constrained model to express the eco-efficiency of agricultural production in Shandong. 

The eco-efficiency of most cities in Shandong was relatively high at over 0.9. In most 

cities, the values of EPI were positive, which meant that the loss of vegetation 

contributed significantly to urbanization and social/ economic development. 

Based on the estimation of land productivity and analyses of eco-efficiency of 

agricultural production, this paper can also provide evidence and suggestions with 
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respect to sustainable agricultural development in Shandong. The results indicated that 

the land productivity was unevenly developed and some cities located far from the 

provincial economic centres were possessed with low eco-efficiency, which implies 

that to achieve sustainable agricultural production in Shandong, timely management of 

trade-offs between agricultural production and urbanization are needed, and the 

adjustment of agricultural technological measures according to specific local conditions 

will improve land productivity and eco-efficiency. 

We quantitatively analyzed land productivity and eco-efficiency based on the 

ESLP and SFA, which was proved to be useful tools to evaluate eco-efficiency and to 

identify regional differences in agricultural development. However, our study had some 

limitations. There were uncertainties in some parameter values, which may reduce the 

accuracy of the estimated results. For example, land productivity is influenced by both 

natural factors and human activities, but more natural factors than human activities are 

considered in the estimation of land productivity in the ESLP, and it can be further 

improved by including the contribution of cultivated land conversions to land 

productivity in the future research. 
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This thesis focuses on the trade-offs between ecosystem services, provided by natural 

capital, and certain land use and cover changes (LUCC) in China. One of the main 

changes is the conversion of land into urbanized, built-up area, and so this can be 

thought of as an example of substitution between natural capital and built capital. By 

better understanding the trade-offs between these types of capital, researchers and 

policy makers can better judge whether an economy is on a sustainable pathway. Of 

course, some of the specific trade-offs studied in this thesis, such as between grassland 

quality and livestock production, between landscape diversity and crop residues, and 

between urbanization and terrestrial net primary productivity (NPP) have also been a 

focus of many other papers by economists, and by other social and environmental 

scientists (e.g. Allen et al., 1991; Pearce & Moran, 1994; Geoghegan et al, 1997; 

Swinton et al., 2007; Hubacek et al., 2009; Stehfest et al., 2013; Deng et al., 2015).  

A particular aim of this thesis was to look at the impacts on the socio-economy 

from the dynamics of LUCC in China and to see effects of some policies and regulations 

adopted by central and regional governments to preserve or restore ecosystem services. 

Therefore, in this thesis I assess trade-offs between land use/land cover change (LUCC) 

and ecosystem services in three case study areas (Hebei, Qinghai, and Shandong 

provinces). The lessons learned from exploring these case studies may help to improve 

the optimal management of ecosystem services and to support socio-economic 

development. More generally, by studying these cases it may be possible to contribute 

to the literature that seeks to improve policy-oriented optimum land-use management 

in order to restore or enhance ecosystem services. 

Looking through the history of land use policies in China, a milestone mark 

was the reform and opening-up policy during 1978-1982 (Ding, 2003). With the 

beginning of the Household Responsibility System in 1978, where rural households 

could partially farm on their own account, there was a series of China’s land use policies 

that clarified property rights, resulting in People’s Republic of China Land 

Management Law (Revision) in 1998 (Gong, 2018). This policy has moved rural China 

away from the planned economy approach, and thereby has made the role of land use 

policy more important to ecological restoration in China. Under the earlier central 
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planning approach, command-and-control methods may have been used, but in the 

more market-oriented approach, the response of individual cultivators and livestock 

herders (which can be thought of, generally, as family farmers) to policies that regulate 

land-use becomes important to understand. This change also makes the lessons from 

China more applicable to other countries that tend to rely on individual agents to 

respond to incentives rather than on the command-and-control approach of central 

planning. 

Policy and environmental planning decisions may influence how land is being 

managed. Land management, as defined by the presence of human activities, covers a 

range of issues such as ecosystem exploitation, land use management, and ecosystem 

management, and this affects land cover directly and indirectly. In this research, the 

trade-offs between ecosystem services, and certain land use and land cover changes 

(LUCC) have been studied. To make the study manageable, the regional problems in 

three regions that typify issues facing China — Qinghai, Hebei and Shandong 

provinces— to specifically analyze the trade-offs between ecosystem services and 

activities such as urban expansion that caused the local LUCC. To be more specific, the 

relationships between grassland quality and livestock production, between landscape 

diversity and crop production, and between urbanization and terrestrial net primary 

productivity (NPP) have been explored for Hebei, Qinghai and Shandong provinces, 

respectively. With better understanding of these trade-offs, and of the effect of land-use 

practices and management for conserving ecosystem services, the thesis may contribute 

to the literature on the optimum management for sustaining ecosystem services.      

Chapter 2 reviews analytical tools and approaches used to study trade-offs in 

ecology, economics and other fields. It concludes that it is critical to conduct trade-off 

analysis of ecosystem services that may be affected by changes in land uses. Explicit 

recognition of trade-offs and their importance for the long-term sustainability of 

ecosystem services is important to help policy-makers to gain a better understanding of 

the choices they face and the corresponding consequences (Gascoigne et al., 2011; 

Deng, Li, & Gibson, 2016).   
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Chapter 3 proves a case study on the effects of landscape diversity. This 

diversity interprets has both ecological significance and economic significance through 

influencing land use patterns. The impact of landscape diversity upon crop production 

can also be represented as an ecological effect, which provides indirect effects on 

economic production associated with cultivated land changes (Deng, Gibson, & Wang, 

2017a). These ecological effects on economic production are key to some of the trade-

offs studied throughout this thesis. 

Chapter 4 provides a case study of sustainable land use management for 

improving regional eco-efficiency, where this is important because of the economic 

significance of ecosystem services. Cultivated land is a key factor affecting crop 

production, which is positively correlated with crop yields. Although the land use 

management system implemented by the Chinese government seems to be effective, 

there are still some regions within the case study area that are of concern because of 

their lower values of eco-efficiency and their high elasticity of landscape diversity in 

response to changes in land use (Deng & Gibson, 2018a).   

Chapter 5 provides a case study of quantitatively measuring the interaction 

between net primary productivity (NPP), as a measure of ecosystem health, and 

livestock production. In the case study area (Qinghai province) livestock production 

appears to be positive affected by variation in NPP, while grazing activity has an 

opposite effect on NPP. Consequently, there are direct and indirect effects of grazing 

management, in increasing livestock production but degrading grassland quality (in 

terms of NPP), and so there is still some potential for the further adjustment of the 

livestock industry, particularly through establishing appropriate grazing densities. 

There also appears to be a positive effect of ecological reserves, which may become 

increasingly important because climate change is expected to be an important 

influencing factor on NPP, which in turn links to livestock production (Deng, Gibson, 

& Wang, 2017b).  

Chapter 6 uses remote sensing data, for 1km  1km grids in Shandong 

province, to examine the management of trade-offs between the conversions of 

cultivated land to non-agricultural (primarily urban) use and land productivity. It 
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appears that spatial variation in land productivity reflects the growth in built up area, 

with lower productivity in regions of the province where cultivated land was converted 

to other uses over the 1985-2010 study period. While expansion of built-up area is 

threatening land productivity, cultivated land conversion is still carrying on and so the 

trade-offs identified in this chapter will be on-going issues for land management in 

coastal provinces of China (Sutton et al., 2016; Deng, Gibson and Wang, 2017c).   

Chapter 7 aims to discover potential trade-offs between one form of built 

capital – transport infrastructure, and specifically whether roads are acting more like 

“pressure cookers”—and are associated with lower levels of cultivated land and greater 

rates of cultivated land loss in the case study area of Shandong province. It indicates 

that there is no evidence to suggest that roads are creating pressures on cultivated area. 

Since roads are crucial to the socio-economic development strategy, and the road is a 

form of produced capital, the lack of apparent trade-off means that at least for this 

special case, China may not exhaust natural capital faster than producing built capital 

(Deng, Gibson, & Jia, 2017d).   

Chapter 8 indicates the existence of trade-offs between agricultural production 

and urbanization, as revealed by the use of Stochastic Frontier Analysis in the case 

study region. There is spatial variation in land productivity, with prefectures located far 

from the provincial economic centers in Shandong having lower eco-efficiency. This 

implies that to achieve sustainable agricultural production in this province, timely 

management of trade-offs between agricultural land use and urbanization are needed. 

Moreover, the adjustment of agricultural technological measures according to specific 

local conditions will improve land productivity and eco-efficiency (Deng & Gibson, 

2018b).  

Each of these case studies use different methods, ranging from simple 

regression to matching methods and stochastic frontier analysis. Likewise, a range of 

data are used, from very detailed remote sensing data on land cover and changes in land 

cover at the one-kilometer square pixel level, to more aggregated administrative data at 

county and prefecture level. However, a unifying theme throughout the case studies is 

a quest for a better understanding of the optimum management needed to sustain 
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ecosystem services and support socio-economic development. In conjunction with prior 

studies on incorporating ecosystem services into economic management and policy 

discussion (Sanchirico et al., 2005; de Groot, 2006; de Groot et al., 2010; de Lange et 

al., 2010), the research in this thesis provides some suggestions on improving the 

understanding of the economic forces that affect, and the contributory role of, 

ecosystem services. Within the broader environmental economics concept of weak 

sustainability, the case studies in the thesis all involve trade-offs between natural and 

produced capital, especially in the form of the built urban environment. These are trade-

offs that are increasingly apparent as countries such as China undergo rapid 

urbanization with associated changes in land cover and in land use which puts pressure 

on ecosystem services.  

There are many limitations of this study, and not just because the case studies 

cover only three of China’s provinces. There are uncertainties due to some parameter 

values, which may reduce the accuracy of the estimated results, even though the same 

style of modelling and data could be used elsewhere for analyzing the changing trends 

in land productivity and can provide valuable decision support information for land-use 

planning and land-use management. Nevertheless, it is still necessary to carry out some 

further research, for example, this study has not estimated the accurate contribution of 

cultivated land conversion to the change in land productivity (Jiang et al., 2011). 

Moreover, land productivity is influenced by both natural factors and human activities, 

but more natural factors are considered in the estimation of land productivity (Deng et 

al., 2006), and the study can be further improved by involving the contribution of 

cultivated land conversions to land productivity in the future research. In addition, the 

future research needs to be concentrated on the examination of the land-use practices 

and management for conserving ecosystem services as well as for advancing human 

well-being. More such studies will contribute to the existing literature on how the 

LUCC-induced ecosystem service changes exert impacts on human well-being, which 

can then help with achieving a sustainable environment and economic development.  

As a final note, more and more attention in the scientific literature has been 

paid to the close relationship between the evolution of the natural environment, the 
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terrestrial ecosystem process, the human production activities and the dynamics of the 

land system changes. This literature involves work both by environmental economists, 

by ecologists, and by researchers from disciplines concerned with land use management. 

In addition to contributing to this literature, the studies in this thesis can also be used to 

examine a triple challenge: the inter-linked interactions between LUCC, ecosystem 

services, and human well-being at both local and regional extent. Armed with this 

enhanced knowledge, future research can further identify the dominant influence of 

land-use management policies on ecosystem services and human well-being.   
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