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Heptanol and 18β-glycyrrhetinic acid (18βGA) block gap junctions, but have other actions on transmitter
release that have not been characterised. This study investigates the prejunctional and postjunctional effects
of these compounds in guinea pig and mouse vas deferens using intracellular electrophysiological recording
and confocal Ca2+ imaging of sympathetic nerve terminals. In mice, heptanol (2 mM) reversibly decreased
the amplitude of purinergic excitatory junction potentials (EJPs; 52±5%, Pb0.05) while having little effect
on spontaneous excitatory junction potentials (sEJPs). Heptanol (2 mM) reversibly abolished the nerve
terminal Ca2+ transient in 52% of terminals. 18βGA (10 μM) decreased the mean EJP amplitude, and increased
input resistance in both mouse (137±17%, Pb0.05) and guinea pig (354±50%, Pb0.001) vas deferens
indicating gap junction blockade. Further, 18βGA increased the sEJP frequency significantly in guinea pigs (by
71±25%, Pb0.05) and in 5 out of 6 tissues in mice (19±3%, Pb0.05). Moreover, 18βGA depolarised cells
from both mice (11±1%, Pb0.01) and guinea pigs (8±1%, Pb0.005). Therefore, we conclude that heptanol
(2 mM) decreases neurotransmitter release (given the decrease in EJP amplitude) by abolishing the nerve
terminal action potential in a proportion of nerve terminals. 18βGA (10 μM) effectively blocks the gap
junctions, but the increase in sEJP frequency suggests an additional prejunctional effect, which might involve
the induction of spontaneous nerve terminal action potentials.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Gap junctions are complexes that form hydrophilic channels
between neighbouring cells. By allowing the passage of ions and
small molecules between cells, gap junctions provide a mechanism of
intercellular communication (for review, see de Wit and colleagues,
2006). Gap junctions are present in many tissues including smooth
muscle, endothelial cells, glia (both central and peripheral), cardiac
muscle and some neurons (for review, see Sohl et al., 2005). Obtaining
specific blocker of gap junctions is therefore of great interest in order
to study the communication between cells and potentially for clinical
therapies (such as for overactive bladder syndrome)(Christ et al.,
2003). Agents that block gap junctions include: long-chain alcohols
(e.g. 1-heptanol, 1-octanol), glycyrrhetinic acid (18α and 18β iso-
forms), carbenoxolone, connexin mimetic peptides (e.g. gap 27),
connexin antibodies (Mather et al., 2005), retinaldehyde (Pulukuri
and Sitaramayya, 2004), organochlorine pesticides, and general
anaesthetics (e.g. halothane). However, target specificity is important

if such drugs are to be used in tissues containing more than one cell
type, such as smooth muscle and its innervating nerve terminals.

Nerve terminals in the vas deferens release the neurotransmitters
ATP and noradrenaline upon stimulation. ATP activates purinergic P2X
receptors (ligand-gated cation channels) to produce an excitatory
junction potential (EJP) (Sneddon and Machaly, 1992). In addition,
spontaneous excitatory junction potentials (sEJPs) are produced by
the spontaneous release of packets of ATP from varicosities in the
absence of stimulation. In the guinea pig vas deferens, not every
smooth muscle cell is directly innervated (Merrillees, 1968) and not
every nerve action potential triggers release of neurotransmitters by
every varicosity (Cunnane and Stjärne, 1984), so gap junctions are
important in the spread of excitation from directly activated cells to
cause EJPs and sEJPs in cells not directly innervated (Venkateswarlu
et al., 1999).

Several studies argue that heptanol and 18βGA selectively block
gap junctions (Christ, 1995; Manchanda and Venkateswarlu, 1997)
while others have questioned the mechanism of action on smooth
muscle cells (Chaytor et al., 1997; Tare et al., 2002; Yamamoto et al.,
1998). Much less is known of the actions of these drugs on nerve
terminals. The aim of the present study was to investigate the
possibility of prejunctional as well as postjunctional effects of these
agents in mouse and guinea pig vas deferens.
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2. Materials and methods

2.1. Tissue preparation

All experimental procedures were in accordance with the UK
Animals (Scientific Procedures) Act 1986. Male guinea pigs and mice
(Balb/C) were killed by concussion and cervical fracture. Using a
midline abdominal incision both vasa deferentia were dissected out.
The connective tissue overlying the vasa deferentia was carefully
removed under a dissecting microscope. Each vas deferens was
immobilised by pinning it to the Sylgard-covered base of a Perspex
organ bath. The tissue was allowed to stabilise for 30 min following
pinning. Preparations were immersed in Krebs solution and oxyge-
nated by continuous bubbling of the solution with 95% O2, 5% CO2 to
maintain a pH of 7.4. The solutionwas warmed to 33±1 °C. The Krebs
solution contained (mM): NaCl 118.4, NaHCO3 25.0, NaH2PO4 1.13,
CaCl2 1.8, KCl 4.7, MgCl2 1.3 and glucose 11.1.

2.2. Intracellular recordings

Standard intracellular recording procedures were used to measure
membrane potential (Em) changes in vas deferens smooth muscle
cells. Briefly, this involved using glass microelectrodes filled with 5 M
potassium acetate and with resistances between 40–100 MΩ. The
microelectrodes were connected to the high input impedance head-
stage of an Axoclamp 2A (Axon Instruments, Sunnyvale, CA, USA). Em
measurements were digitisedwith a PowerLab system and stored on a
Macintosh computer (using Chart 5.0, ADI Instruments, Chalgrove,
UK) for subsequent analysis. The criteria for a successful impalement
of a smooth muscle cell were: a rapid change in potential upon
impalement andwithdrawal, Emmore negative than−60mV, and the
presence of spontaneous excitatory junction potentials (sEJPs) during
recordings. The resting Em was measured as the difference between
the recorded voltage inside the cell after impalement and outside the
cell after withdrawal of the electrode.

Intrinsic nerves were stimulated by a pair of parallel electrodes
placed around the prostatic third of the preparation. Mouse vas
deferens was stimulated by sequences of 5 rectangular voltage pulses
(5 Hz, 0.1 ms duration, 10–20 V). Due to the difficulty of maintaining
intracellular insertions, guinea pig vas deferens received trains of only
2 pulses at a lower frequency of 1 Hz (0.6 ms, 10–20 V). At least 4
trains of stimuli were given to each preparation with 20 s intervals
between each train.

2.3. Input impedance

Input resistance (Rin) was determined from Ohm's Law by
measuring the steady-state change in membrane potential following
injection of a 0.5 nA current. The Rin depends on the membrane
resistance (Rm) and junctional resistance (Rj): 1/Rin=1/Rm+1/Rj. In
well-coupled tissues, where RmNNRj, the Em change upon current
injection should effectively reflect changes in junctional resistance
and should provide an estimate of the extent of cell coupling (Purves,
1976). Blocking gap junctions will increase Rj and therefore Rin.
Although cable potentials would provide amore precise measurement
of this parameter, intracellular recording has the advantage of
allowing a simultaneous measure of transmitter release.

2.4. Ca2+ imaging

Nerve terminals in the mouse vas deferens were orthogradely
filled with the Ca2+ indicator Oregon Green 488 BAPTA-1 AM 10 kDa
dextran (OGB-1; Invitrogen, Paisley, UK) as previously described
(Brain and Bennett, 1997). To summarise: after removing each
vas deferens (as above), the cut prostatic end was exposed to a
0.25 mg.µl−1 solution of OGB-1 for 8 h, rinsed in Krebs' solution for

2 h, then transferred to a Leica TCS NT inverted confocal microscope
(Leica Microsystems, Milton Keynes, Buckinghamshire, UK). Excita-
tion illumination (with an Ar ion laser) was at 488 nm; the emission
was sampled with a long pass 510 nm filter. A 40× water immersion
objective was used to obtain images of a field 158 μm2 at a sampling
rate just slower than 2 Hz. Field stimuli were applied with electrodes
embracing the tissue (as described above) andwere synchronised by a
TTL signal from the microscope software to occur at the start of every
4th confocal scan (giving a stimulus rate of around 0.5 Hz). The field
size and sampling rate were chosen to increase the number of
terminals recorded at the expense of some spatial and temporal
resolution. Images were acquired in sets of 42 frames (10 stimuli),
with 3 such sets acquired for each experimental condition (30
stimuli). Drugs were applied by changing the solution that con-
tinuously superfused the organ bath on the microscope stage (bath
exchange time was 1 min). Image analysis was with Image SXM
(http://www.liv.ac.uk/~sdb/ImageSXM/) and custom-written
macros. Fluorescent signals were averaged over regions of interest
(ROI) manually selected to include a single varicose terminal; lateral
movement was corrected by locally tracking this ROI with an
automated algorithm, as previously described (Brain and Bennett,
1997).

No reliable protocol to load the Ca2+ indicator into terminals in the
guinea pig vas deferens has, as yet, been developed.

2.5. Drugs

Heptanol was used at 2 mM (final concentration) similar to
previous studies of gap junctions (Manchanda and Venkateswarlu,
1997; Manchanda and Venkateswarlu, 1999). Although some studies
use 30–40 μM 18βGA (Matchkov et al., 2004; Yamamoto et al., 1998),
10 μM seems to be sufficient to inhibit gap junctions (Takeda et al.,
2005). Therefore, in order to minimise non-specific actions at high
concentrations, 18βGA was used at a 10 μM final concentration after
dilution from a 10 mM stock solution in dimethyl sulfoxide (DMSO).
The final concentration of DMSO was 0.1%. The tissue was exposed to
the drug for 30 min to allow the drug to take effect before recordings
weremade. All drugs were obtained from Sigma-Aldrich (Dorset, UK).

2.6. Statistics

The assumptions of a normal distribution and homogeneity of
variances were checked with the Kolmogorov–Smirnov Test and
Levene Test, respectively, prior to parametric tests. Statistical
significance was tested using a paired Student's t-test, pairing pre-
and post-drug responses in the same preparation. Probabilities less
than 0.05 (Pb0.05) were taken as statistically significant. nc refers to
the number of pairs of cells; np refers to the number of preparations.
Data here are reported as mean±S.E.M. (standard error of the mean)
using np for calculations. In addition, the variability of the EJP
amplitude can also be used as a test for electrical coupling (Young
et al., 2007). To assess this parameter, the F-test was used to check if
the standard deviation of the EJP amplitudes in control and in the drug
were equal after the EJP amplitudes were normalised. All statistical
tests were performed with Prism (GraphPad, Software, San Diego, CA,
USA).

3. Results

3.1. Rin and membrane potential

The effect of 18βGA (10 μM) on Rin was tested on both mouse and
guinea pig vas deferens. A partially reversible increase in Rin was
observed in guinea pig (by 354±50%; control: 9.6±1.4 MΩ, 18βGA:
43.6±1.5 MΩ; nc=26, np=5, Pb0.001; Fig. 1a) and mouse (by 137±
17%, control: 24.1±4.5 MΩ, 18βGA: 57.0±11.3 MΩ; nc=36, np=6,
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Pb0.05; Fig. 1c) vas deferens. 18βGA also significantly depolarised cells
in guinea pig (by 8±1%, control: −75.8±2.1 mV, 18βGA: −69.8±
2.6 mV; nc=36, np=6, Pb0.005; Fig. 1b) and mouse (by 11±1%,
control: −79.4±1.1 mV, 18βGA: −70.9±2.5 mV; nc=35, np=6,
Pb0.01; Fig. 1d) vas deferens.

Unlike 18βGA (10 μM), heptanol (2 mM) in mice did not affect
resting Em. The mean Em in control (−79 mV) and with heptanol
(−78 mV) was not significantly different.

3.2. Spontaneous EJPs (sEJPs)

Changes in cell-to-cell coupling affecting the spread of current
between cells should produce changes in sEJP shape and amplitude, as
explained in the discussion. In the mouse, heptanol (2 mM) did not
significantly change sEJP amplitude, frequency or time to fall from 90%
to 50% of peak (F90–50; median amplitude 1.93±0.32 to 1.96±
0.35 mV; frequency 0.188±0.034 to 0.189±0.024 Hz; fall time 21.0±
0.6 to 20.7±0.7 ms; np=6).

Similarly, 18βGA (10 μM) did not change sEJP characteristics
significantly in the mouse (Fig. 2). However, in 5 of 6 preparations

there was a significant increase in sEJP frequency (19±3%, nc=30,
np=5, Pb0.05). In guinea pig vas deferens 18βGA administration also
increased sEJP amplitude (by 34±4%, nc=36, np=6, Pb0.05;
Fig. 3a). Associated with this change was an increase in high
amplitude sEJPs (Fig. 3c) and a statistically significant increase in
sEJP frequency (by 71±25%; control: 0.07±0.02 Hz, 18βGA: 0.12±
0.02 Hz; nc=36, np=6, Pb0.05; Fig. 3i). On the other hand, the time
course of the sEJP, assessed as the F90–50, was not significantly affected
(Fig. 3b).

3.3. EJPs

Heptanol (2 mM) reversibly decreased average EJP amplitude in
mouse vas deferens (by 60±5%; control: 19.0±5.1mV, heptanol: 7.5±
2.4 mV, nc=36, np=6, Pb0.05; Fig. 4). Paired-pulse facilitation was

Fig. 2. The effects of 18βGA on sEJPs in mouse vas deferens.18βGA (10 μM) had no effect
on sEJP (a) amplitude, (b) frequency or (c) F90–50 in the mouse vas deferens.

Fig. 3. The effects of 18βGA on sEJPs in guinea pig vas deferens. The effects of 18βGA
(10 μM) on sEJP (a) amplitude and (b) F90–50. (c) shows the amplitude histogram of
sEJPs illustrating an increase in sEJP frequency (pooled across all frequencies in the
inset) and the occurrence of high amplitude sEJPs. The inset shows the change in
frequency pooled across all sEJP amplitudes. ⁎ denotes Pb0.05 compared with control.

Fig. 4. The effect of heptanol on EJPs in guinea pig vas deferens. There was a decrease in
EJP amplitude on exposure to heptanol (2 mM) in mice. (a) shows representative EJPs
before and after heptanol exposure. (b) shows that the mean EJP amplitude decreased
in the presence of heptanol (n=6). A single field stimulus was applied at the arrow.
⁎ denotes Pb0.05 compared with control.

Fig. 1. The effect of 18βGA on cell input resistance and membrane potential. 18βGA
(10 μM) increased both the input resistance (a, c) and restingmembrane potential (b, d)
in both guinea pig (n=6; a, b) and mouse (n=6; c, d) vas deferens. In the input
resistance graphs (a, c), the bars represent the mean. ⁎ denotes Pb0.05 compared with
the control.

71F. Rahman et al. / Autonomic Neuroscience: Basic and Clinical 148 (2009) 69–75



Author's personal copy

calculated as the ratio of the amplitude of the second stimulus to the
first stimulus (no example is shown). No significant change in the
facilitation was observed after heptanol. Further, the latency from
stimulus to EJP peak was reversibly increased by heptanol (by 27±5%,
nc=36, np=6, Pb0.05). Although a consistent effect on the variability
of EJP amplitude was not found, 4 of the 6 tissues did show a significant
(Pb0.05) increase in variability of the first stimulus EJP amplitude using
the F-test.

Similarly, 18βGA (10 μM) decreased EJP amplitude in guinea
pig (by 44±3%, control: 5.7±1.2 mV, 18βGA: 3.2±1.0 mV; nc=36,
np=6, Pb0.005; Fig. 5a, b) and mouse (by 32±3%, control: 25.6±
1.9 mV, 18βGA: 17.3±2.5 mV; nc=36, np=6, Pb0.005; Fig. 5c, d) vas
deferens. In the guinea pig the EJP was almost completely abolished
upon stimulation in several cells. Upon washout the effect of 18βGA
was not reversed and EJP amplitude remained significantly smaller
than in control in bothmouse (by 25±3%, Pb0.05) and guinea pig (by
34±7%, Pb0.05) vas deferens. Analysis of facilitation and the stimulus
peak latency showed no significant change in either species. A
significant, irreversible decrease in the time constant of decay of the
EJP was found in guinea pig vas deferens (by 35±2% Pb0.005). In
mouse (4/6 tissues), and guinea pig (5/6 tissues) vas deferens, there
was a significant increase in the variability of the EJP amplitude.

3.4. Nerve terminal Ca2+ imaging

Potential prejunctional effects of heptanol (2 mM) and 18βGA
(10 μM) were further investigated by imaging the Ca2+ concentration
in the nerve terminals of the mouse vas deferens. The fluorescent
signal from each nerve terminal (F; see Fig. 6A for an example of the
region sampled) increased on each field (nerve) stimulus (Fig. 6B;
‘EFS’). The value of F immediately after the stimulus was compared to
the trough immediately before it (Fo); their difference (ΔF) was
normalised (ΔF/Fo) to give a relative measure of the change in Ca2+

concentration in a nerve terminal ([Ca2+]t). Heptanol (2 mM) either
abolished the Ca2+ transient (13 of 25 terminals from 3 of 4 vasa
deferentia; 52%), or caused intermittent evoked Ca2+ transients (12 of
25 terminals from 4 of 4 vasa deferentia; 48%). The Ca2+ transients did
not return (nor become less variable) by increasing the amplitude of

the field stimulus to 50 V, suggesting that the stimulus threshold for
initiating nerve terminal action potentials had not changed, at least
over the range tested. In those terminals still intermittently

Fig. 5. Decreased EJP amplitude in 18βGA from guinea pig and mouse vas deferens.
Sample traces of EJP amplitude before and after 18βGA in (a) guinea pig and (b) mouse
vas deferens. Mean EJP amplitude decreased in (c) guinea pig (n=6) and (d) mouse
(n=6) vas deferens. A single field stimulus was applied at the arrow. ⁎ denotes
Pb0.005 compared with control.

Fig. 6. The effect of heptanol on nerve terminal Ca2+. a, shows a field of OGB-1 loaded
nerve terminals in the mouse vas deferens. A sample ROI has been drawn in white
around a terminal in the upper part of the figure. The scale bar is 20 μm. b, shows sample
recordings of the fluorescent signal (F) from the marked ROI under control conditions,
then during electrical field stimulation (EFS; with each stimulus marked with a vertical
bar), EFS in the presence of heptanol (2 mM), and then subsequent EFS once heptanol
had beenwashed from the organ bath. In this terminal the Ca2+ signal is of intermittent
or highly-variable amplitude in the presence of heptanol.
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responding, themean probability of response per stimulus was 0.42±
0.06 (n=12 terminals) and the amplitude of such responses was 78±
5% of the control amplitude (paired two-tailed t-test; Pb0.05). After
washing out the bath for 10 min the Ca2+ transients partially returned
(except in one terminal) with a mean probability of response per
stimulus of 0.72±0.06 and such responses were of the same
amplitude as the control (103±5%; n=24 terminals; paired t-test,
P=0.46).

Using the same exposure protocol,18βGA (10 μM) had no significant
effect on the [Ca2+]t in response to field stimuli. The Ca2+ transients did
not become intermittent and the amplitude remained unchanged at
106±3% of the control amplitude (n=21 terminals from 4 vas
deferens; P=0.11 with a Wilcoxon signed rank test). However, in the
presence of 18βGA 4 of these terminals (all from 1 preparation; see
Supplementary Movie) showed spontaneous whole-terminal Ca2+

transients of similar amplitude to those observed following field
stimulation. Such spontaneous transients were never observed during
the control recording (for any experimental protocol).

4. Discussion

The present study shows that both heptanol (2 mM) and 18βGA
(10 μM) have significant prejunctional effects on sympathetic
terminals.

4.1. Heptanol

Early support for heptanol's uncoupling effects came from its
ability to block the transfer of fluorescent dye between smoothmuscle
cells (Christ, 1995). In agreement with the work of Manchanda and
Venkateswarlu (1997), this study shows that heptanol (2 mM)
reduces EJP amplitudes (Fig. 4). Since not all cells receive innervation,
at least in the guinea pig (Merrillees,1968), and only some varicosities
release neurotransmitters on each nerve action potential (Cunnane
and Stjärne, 1984), most EJPs are thought to be initiated in cells
neighbouring the monitored cell. Due to electrical coupling depolar-
ising current can spread to generate an EJP in the cell beingmonitored.
Therefore, by blocking gap junctions, heptanol could prevent the
spread of depolarisation and thus reduce the EJP amplitude. However,
inhibition of neurotransmitter release could also reduce EJP amplitude
(Manchanda and Venkateswarlu, 1997). The present work suggests
that the EJP amplitude is reduced because of intermittent, or
complete, abolition of the Ca2+ transient in the nerve terminals,
probably due to failure of action potential propagation in the axons or
terminals. This is also supported by the finding of increased latency of
the EJP peak, which would arise in the presence of slowed nerve
terminal action potential velocity.

sEJP properties are good, if indirect, indicators for changes in gap
junctional coupling (Ghildyal et al., 2006). Gap junctions provide low
resistance pathways for current flow between cells (Purves, 1976).
Good electrical coupling is well established in the guinea pig vas
deferens, while in the mouse there is a small population of poorly-
coupled cells, with the rest of the cells being well electrically coupled
(Blakeley et al., 1989; Young et al., 2007). The mouse vas deferens
smooth muscle cells impaled in the present study had relatively
negative membrane potentials and EJPs of regular amplitude,
consistent with them being from the relatively well-coupled popula-
tion (Blakeley et al., 1989). Therefore, it is expected that by decreasing
the shunting of current (by blocking gap junctions) the sEJP fall time
would increase. Additionally, as most low amplitude sEJPs are
generated in cells other than the one being recorded from, the
frequency should decrease as sEJPs generated in other cells become
part of the recording noise (Palani et al., 2006). When gap junctions
are blocked, the amplitude of sEJPs generated in the recording cell
should increase, current being unable to spread to neighbouring cells.
However, the amplitude of sEJPs generated in neighbouring cells

should decrease (in the limiting case, disappearing), as the high
intervening electrical resistance damps their amplitude at the
recording electrode. However, the amplitude, frequency and F90−50

did not change significantly after heptanol (2 mM) administration,
which is inconsistent with an uncoupling effect. Further, since sEJPs
are produced by ATP activation of purinergic receptors, the absence of
an effect on sEJP amplitudes suggests that heptanol does not act on
P2X receptors.

In agreement with Palani and Manchanda (2006), heptanol
(2 mM) did not affect resting Em of vas deferens smooth muscle in
the present study. However, in vascular smooth muscle both
hyperpolarisation (Lagaud et al., 2002) and depolarisation (Matchkov
et al., 2004) have been reported. Effects on resting Em may be
preparation, concentration (Matchkov et al., 2004), or species
dependent. However, all the studies report a reduction in EJP
amplitude or smooth muscle tension suggesting that any resting
smooth muscle Em effects of heptanol do not govern the effects on the
EJP and smooth muscle contraction.

Reports ofRin usingheptanol (2mM)are variable andnot significant
in the guinea pig vas deferens (Manchanda and Venkateswarlu, 1999)
suggesting that cell uncoupling may not be occurring effectively; the
effect on Rin has not been reassessed in the present study.

One of us has previously reported that in the guinea pig vas
deferens, heptanol reduces the amplitude of the EJPs without affecting
the amplitude of the nerve terminal impulse (an extracellular
measure of the nerve terminal action potential) and excitatory
junction currents (an extracellular measure of neurotransmitter
release) from which it was inferred that heptanol did not affect
nerve impulse conduction (Manchanda and Venkateswarlu, 1997),
although subsequent wavelet analysis of heptanol's effect argued that
heptanol did inhibit neurotransmitter release. Whether the effects of
heptanol on the nerve terminal Ca2+ transients in a proportion of
terminals from the mouse vas deferens implies that the mouse and
guinea pig differ in the nature of their response to heptanol, or
whether the nerve terminal impulse (which might represent a
compound action potential in small bundles of axons known to run
across the surface of this tissue) might not have sufficient sensitivity
to detect heptanol's action in only a proportion of terminals, has not
been determined. Furthermore, the amplitude and shape of inter-
mittent excitatory junction currents are not expected to change with
intermittent action potential abolition, although the frequency of such
excitatory junction currents might drop.

4.2. 18β-glycyrrhetinic acid

18βGA (10 μM) is usually considered a more specific uncoupling
agent than heptanol (2 mM) (Griffith, 2004; Guan et al., 2007; Tare
et al., 2002). Gap junctions provide low-resistance shunts for injected
current, thus uncoupling should increase Rin. Fig. 1 shows that 18βGA
doubled Rin in mice and increased Rin by over three-fold in guinea pigs
indicating gap junction blockade. Using the values of Rin, Rm and time
constant (τ) from Bywater and Taylor (1980), Blakeley et al. (1989)
and this study, calculations show that such large changes in Rin in both
tissues can be explained only by an increase in Rj (see Appendix A).

Interestingly, the much greater increase in Rin in guinea pig vas
deferens suggests that cell coupling is more important in the guinea
pig than in the mouse, consistent with previous reports (Brock and
Cunnane, 1992).

Like heptanol (2 mM), 18βGA (10 μM) decreased EJP amplitude in
both species. As noted above, this does not necessarily indicate a gap
junctional effect. However, 18βGA increased the variability of the EJP
amplitudes in 4 out of 6 tissues in mice and 5 out of 6 tissues in guinea
pigs. Gap junction uncoupling is expected to increase variability due to
the increase in very high amplitude and low amplitude sEJPs (as
discussed above).
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In mice, the sEJP amplitude and F90–50 were not significantly
changed (Fig. 2), which was not expected with an uncoupling
effect. Although the sEJP frequency was not significantly greater
across all preparations, a significant increase in sEJP frequency was
found in 5 out of 6 tissues. Give the occurrence of occasional
spontaneous [Ca2+] transients in nerve terminals of the mouse
(similar to those following field stimulation) it is possible that
events considered as sEJPs are produced when spontaneous nerve
terminal action potentials evoke synchronous (multipacketed)
transmitter release. If the same phenomenon occurs in guinea pig
terminals, this could explain the increase in sEJP amplitude and sEJP
frequency.

An additional action of 18βGA (10 μM) seems to be on ionic
currents to affect the resting Em. In both mouse and guinea pig vasa
deferentia a significant depolarisation was observed (Fig. 1). The
effect on resting Em is consistent with findings in vascular (Matchkov
et al., 2004) and gastrointestinal (Takeda et al., 2005) smooth muscle.
This postjunctional action affecting basal electrical activity of cells
might account for part of the decrease in EJP amplitude caused by
18βGA.

We suggest that 18βGA (10 μM) produces its actions through
a combination of gap junction uncoupling and prejunctional ef-
fects. Whether this is an effect on prejunctional hemichannels
(containing connexin or pannexin molecules) on the nerve termi-
nal, or whether there is a different prejunctional target, has not
been determined. This particular question might be best addressed
through the use of connexin-specific antibodies (Mather et al.,
2005).

4.3. The utility of gap junction blockers

Despite the increase in Rin induced by 18βGA it is surprisingly
still the case that the time course of sEJP is unaltered. The most
parsimonious explanation for this is that currently available gap
junction blockers can influence electrical coupling between smooth
muscle bundles (syncitial groups; and hence change Rin), but that
the more intimate local communication within bundles remains
resistant to currently available drugs. This conclusion has also been
made previously regarding the action of heptanol (Manchanda and
Venkateswarlu, 1999). The uncoupling of syncitial groups might be
functionally useful for abolishing macroscopic co-ordinated con-
traction, but ineffective at removing local contraction, of which
micromotion in the urinary bladder is a functionally important
example (Drake et al., 2005). A change in the sEJP time course, in
organs like the guinea pig vas deferens, should be considered as a
gold standard for detecting drugs that affect intimate coupling
within smooth muscle bundles, a challenging but worthwhile phar-
macological target.
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Appendix A

The capacitance (C) can be defined in terms of the charge
separated (Q) over the voltage (V) as C = Q

V , but as C is constant
C = I = dV

dt during the initial phase of current injection. During the
current injection of 0.5 nA, the rate of change of voltage was 1.6 V s−1,
so the effective capacitance (C) was 0.3125 nF. The time constant of a
membrane (t) in the product of the resistance and capacitance (RmC),
so Rm = τ

C so Rm is 864 MΩ.

The total input resistance (Rin) depends on both membrane
resistance and junctional resistance, adding in parallel, so:

1
Rin

=
1
Rj

+
1
Rm

or Rj =
RmRin

Rm − Rin

so in this case the junctional resistance is calculated to be 9.71 MΩ.
Notice that the junctional resistance is much lower than the
membrane resistance, as required by Purves (1976) to allow current
injection to monitor gap junction coupling.

In themouse vas deferenswe can similarly calculate the Rj=26MΩ,
using Rin=24.1 MΩ and Rm=331 MΩ; again the junctional resistance
is much lower than the membrane resistance.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.autneu.2009.03.006.
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