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Abstract

Let G be isomorphic to a group H satisfying SL(d, q)≤ H ≤ GL(d, q) and let W be an irreducible
Fq G-module of dimension at most d2. We present a Las Vegas polynomial-time algorithm which takes
as input W and constructs a d-dimensional projective representation of G.
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1. Introduction

A major research topic over the past decade has been the development of efficient
algorithms for the investigation of subgroups of GL(d, Fq) where Fq is a finite field
of size q = p f . We refer to the recent survey [15] for background related to this work.

A particular focus is the development of algorithms to construct an isomorphism
between an arbitrary representation of a classical group and its ‘standard’ (or natural)
representation.

In 2001, Kantor and Seress [9] proved that there is a Las Vegas algorithm that,
given as input an arbitrary permutation or (projective) matrix representation G of
an almost simple classical group H of Lie type of known characteristic, constructs
an isomorphism between G and the natural projective representation of H . Their
algorithm also constructs a new ‘nice’ generating set S for G such that any element
can be reached efficiently from S by a short straight-line program: an efficiently stored
group word on S that evaluates to g. (For a formal definition and discussion of their
significance, see [18, p. 10].)

In this paper, we present efficient algorithms to construct such an isomorphism for
a projective matrix representation of degree at most d2 of the general linear groups
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having natural module of dimension d . In the natural module, a ‘nice’ generating
set can be constructed using the efficient algorithms of [5] or [11]. Hence this
work supplements that of [9], providing fast polynomial time reduction for the most
commonly occurring irreducible representations of general linear groups.

An additional motivation for our algorithm is the recent work of Ryba [17].
He presents a polynomial-time Las Vegas algorithm that, given as input an odd
defining characteristic absolutely irreducible representation of a finite Chevalley
group, constructs its action on the adjoint module. Since the adjoint module of
GL(d, q) has dimension at most d2

− 1, a combination of Ryba’s algorithm and ours
can be used to construct the action on the natural module.

A similar program has been carried out for the alternating and symmetric groups
in [2] and [3]. The algorithm of [2] constructs an isomorphism between an arbitrary
permutation or matrix representation of An or Sn and the natural permutation
representation on n points; in [3] a specialized, faster algorithm does the same for the
deleted permutation module, which is the smallest dimensional matrix representation
of these groups.

2. Background and main result

We now consider in more detail our task. Let SL(d, q)≤ H ≤ GL(d, q) with q = p f .
Let V denote the natural module of H , and V ∗ is its dual module. Define the Frobenius
map δ : GL(d, q) 7→ GL(d, q) by (ai, j )

δ
= (a p

i, j ) for (ai, j ) ∈ GL(d, q).
Two representations ρ1 and ρ2 of H are quasi-equivalent if there exists θ ∈ Aut(H)

such that ρ1 is equivalent to θρ2.
Let H act on an irreducible Fq G-module W of dimension at most d2. For a

discussion of such irreducible representations, see [12]. In particular, W is quasi-
equivalent to an irreducible section of V ⊗ V δe

, or V ∗ ⊗ V δe
where 0≤ e < f .

The irreducible sections of V ⊗ V are the symmetric and alternating squares of V
of dimension d(d + 1)/2 and d(d − 1)/2, respectively.

Consider V ∗ ⊗ V with basis {ei ⊗ e j | 1≤ i, j ≤ d} and let

w :=

d∑
i=1

ei ⊗ ei , U :=

{∑
i, j

αi, j ei ⊗ e j

∣∣∣∣ d∑
i=1

αi,i = 0
}
, W1 :=U ∩ 〈w〉.

The adjoint module of V is W :=U/W1. If d mod p ≡ 0 then W has dimension
d2
− 2, otherwise d2

− 1.
The remaining irreducible representations of dimension at most d2 are V ⊗ V δe

and
V ∗ ⊗ V δe

where 0< e < f .
Our principal goal is an algorithm that, given as input such an irreducible

representation W of H , constructs a d-dimensional projective representation of H .
Our algorithm assumes that we can construct random elements of a finite group

G. Following the notation of [18, p. 24], an algorithm constructs an ε-uniformly
distributed random element x of G if (1− ε)/|G|< Prob(x = g) < (1+ ε)/|G| for
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all g ∈ G; if ε < 1/2, then the algorithm constructs nearly uniformly distributed
random elements of G. Babai [1] presents a black-box Monte Carlo algorithm to
construct such elements in polynomial time. Another, more practical, option is the
product replacement algorithm of Celler et al. [6], which also runs in polynomial time
(see [16]). For a discussion of both algorithms, we refer the reader to [18, pp. 26–30].

Let ξ denote the cost of constructing a nearly uniformly distributed random element
in a group G and let ρr denote the cost of a field operation in a finite field Fr . Our
main result is the following.

THEOREM 2.1. Let d ≥ 2 and let q = p f be a prime power. Let SL(d, q)≤ H
≤ GL(d, q) where H has natural module V . Suppose that H is given as G = 〈X〉
acting irreducibly on an Fq -vector space W of dimension n ≤ d2. Subject to
Conjecture 4.9, given as input G, the value of d, and error probability ε > 0,
there is a polynomial-time Las Vegas algorithm that, with probability at least 1− ε,
sets up a data structure to construct the projective action of G on V in time
O(ξd2 log q log(1/ε)+ ρqd9 log2 d log2 q). The time requirement to evaluate the
image of g ∈ G on V is O(ξ + ρqd8 log q).

We prove this theorem by exhibiting an algorithm with the stated complexity. We
present the conjecture and evidence in its support in Section 4.3. Theorem 2.1 depends
on Conjecture 4.9 only if W is the exterior square of V .

An n × n matrix over Fq requires 2(d4 log q) space, so the running time of the
algorithm, in terms of the input length N , is O(ξN + ρq N 2.25 log2 N ). We use the
conventional estimate of O(n3) field operations for matrix multiplication; if it can be
done in O(nω) field operations for some constant ω < 3, then our algorithm runs in
O(ξd2 log q + ρqd3+2ω log2 d log2 q) time.

In Section 3 we outline the basic algorithm common to all of the cases, and in
Section 4 estimate the costs of common steps. We then study each representation in
turn, and finally report briefly on an implementation of the algorithms in MAGMA [4].

3. The general strategy

Let q = p f be a prime power and let r be a prime. Recall from [14] that r is a
primitive prime divisor of qd

− 1 if r | qd
− 1 but r does not divide qe

− 1 for e < d.
We use the notation ppd(q; d) to describe such an r .

By a theorem of Zsigmondy (see [14]), ppd(q; d) primes exist for all q and d except
when q = 2, d = 6 and q is a Mersenne prime, d = 2. To cover these exceptional
cases, we call 9 a ppd(2; 6) prime and 4 a ppd(q; 2) prime for Mersenne prime q .

Recall that H has natural module V and is given as G ≤ GL(W ) where W = Fn
q .

Let s ∈ H and assume that |s| is divisible by some ppd(q; d). Hence s is a power of a
Singer cycle and has d one-dimensional eigenspaces 〈e1〉, 〈e2〉, . . . , 〈ed〉 in V ⊗ Fqd .
Let σ = δ f be the Frobenius map of GL(d, qd) whose fixed points contain H . Thus σ
centralizes 〈s〉 and so σ transitively permutes the eigenspaces of s acting on V ⊗ Fqd .
Consequently, we can index the eigenspaces 〈ei 〉 of s and choose the eigenvectors
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ei within the eigenspaces in such a way that eσi = ei+1 where the index is computed

modulo d . If e1s = λe1, then ei s = λq i−1
ei for i ≤ d .

Our goal is to write the action A of an arbitrary g ∈ G on V ⊗ Fqd , in the basis
e1, . . . , ed . If W is either the alternating or the symmetric square representation, then
we also compute the base change matrix B between a particular Fq -basis b1, . . . , bd
and e1, . . . , ed . Hence, we also learn the action B AB−1 of g on the natural module V .
In the other cases, the action of G in a suitable Fq -basis is recovered using the
algorithm of [8] which has complexity O(ρqd5 log2 d).

We now summarize the algorithm Decompose to construct the projective action
of G on V .

(1) Find, by random search, s ∈ G which satisfies the following:
• if W is not the adjoint module, then s has n one-dimensional eigenspaces;
• if W is the adjoint module, then s has d2

− d one-dimensional eigenspaces
and an n − (d2

− d)-dimensional eigenspace for the eigenvalue 1;
• |s| is divisible by some ppd(q; d) prime.

(2) Construct a basis B0 consisting of eigenvectors for the action of s on W ⊗ Fqd .
(3) Label the elements of B0 by ordered pairs (i, j) with 1≤ i, j ≤ d . The labels

are found by discovering a sufficient number of algebraic dependencies among
the eigenvalues. This labelling must be commensurate with the basis e1, . . . , ed
and consistent with the action of σ .

(4) From the eigenspace labelled with (i, j), compute the vector corresponding to
ei ⊗ e j .

Steps 1 to 4 create the data structure described in Theorem 2.1 and are applied once.
To obtain the image of g ∈ G, we apply the following step.

(5) First write g in the basis B0; then compute the action of g on V ⊗ Fqd in the
basis e1, e2, . . . , ed ; finally rewrite with respect to the basis b1, b2, . . . , bd for
the natural module V .

4. The common steps

We first discuss costs associated with the extension field Fqd . Since step 1 is
common to all representations, we next discuss it in detail and estimate its cost. To
conclude this section, we discuss base change between the bases b1, . . . , bd of V and
e1, . . . , ed of V ⊗ Fqd , and consider properties of matrices written with respect to the
latter basis.

4.1. Construction of the extension field Since we work in Fqd , as a preprocessing
step we construct that field.

LEMMA 4.1. The extension field Fqd can be constructed by a Las Vegas algorithm,

in O(ρqd3 log2 d log q) time. The cost of a field operation in Fqd is O(ρqd2 log2 d).

Taking a square root of an element of Fqd can be done in O(ρqd3 log2 d log q) time.
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PROOF. We construct Fqd as an extension of Fq . To do this, we search for monic
polynomials of degree d from the polynomial ring Fq [x] until we find an irreducible
f (x). With probability at least 1/(d + 1) (see [14]), a random polynomial of degree
d defined over Fq [x] is irreducible. That a polynomial of degree d is irreducible over
Fq [x] can be decided in O(ρqd2 log d log log d log q) time by a Las Vegas algorithm
(see [19, Theorem 14.14]).

The elements of Fqd are the residue classes of Fq [x] modulo f (x), and they can
be represented by the polynomials of degree at most d − 1. We summarize the cost of
field operations in Fqd .
• O(ρqd) for addition and O(ρqd log d log log d) for multiplication and division

(see [19, Theorems 8.23 and 9.6]).
• O(ρqd2 log d log log d) for taking inverses; we compute the inverse of a(x) ∈

Fqd by writing the greatest common divisor 1 of f (x) and a(x) in the form
1= f (x)g(x)+ a(x)h(x) by a Euclidean algorithm of length at most d , and
then taking h(x) as the inverse.

• Taking square roots of some c ∈ Fqd can be done by factorizing the
polynomial x2

− c, in time O(ρqd log qd)= O(ρqd3 log2 d log q) (see
[19, Theorem 14.14]). 2

We use the following result, obtained in [2, 4.6], as an application of
[19, Algorithm 14.19].

LEMMA 4.2. The distinct linear factors of some g(x) ∈ F[x] of degree n can be
computed by a Las Vegas algorithm, in O(ρFn log2 n log(n|F|) log log n) time.

4.2. Step 1 of the general strategy: Finding s We now discuss the search for
random s ∈ G which satisfies the conditions associated with step 1 of Decompose. If
an s satisfying the eigenvalue condition is found, then we check that |s| is divisible by
a ppd(q; d) prime as follows. If (d, q) equals (6, 2) or (2, p) with p Mersenne, then
define m := 21 and m := p − 1, respectively; otherwise

m := qd
∏

j |d, j 6=d

d

j
(q j
− 1). (4.1)

Now |s| is divisible by a ppd(q; d) prime if and only if sm
6= 1. We decide this by

raising the eigenvalues of s to the mth power.

LEMMA 4.3. We can decide if s ∈ G satisfies the conditions of step 1 by a Las Vegas
algorithm in O(ρqd6 log q) time.

PROOF. The characteristic polynomial c(x) of s can be computed using the
algorithm of [10] in O(ρqn3 log n)= O(ρqd6 log d) time. By Lemma 4.2,
the distinct linear factors of c(x) in Fqd are obtained by a Las Vegas algo-
rithm, in O(ρqd n log2 n log(nqd) log log n)= O((ρqd2 log2 d)(d2 log2 d)(log d + d

log q)(log d))= O(ρqd5 log5 d log q) time. If W is the adjoint module, then the 1-
eigenspace of s can be computed in O(ρqd6) time. Raising the eigenvalues of s to the
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power m in (4.1) takes O(nρqd log(qd3/2
))= O(ρqd11/2 log2 d log q) time, using the

trivial upper estimate 2
√

d for the number of divisors of d . 2

We now derive a sufficient condition to identify a suitable element of H , and use
this condition in Lemma 4.5 to estimate the number of random elements processed in
our search.

THEOREM 4.4. Suppose that (d, q) 6= (3, 4) and that the order of s ∈ H is a multiple
of (qd

− 1)/(q − 1). If W is not the adjoint module, then s has n distinct eigenvalues
in Fqd . If W is the adjoint module, then 1 is an eigenvalue of s with eigenspace of
dimension n − (d2

− d), and s has d2
− d other eigenvalues.

PROOF. Let α be a primitive element of Fqd . If the order of s is a multiple of

(qd
− 1)/(q − 1), then the eigenvalues of s in V ⊗ Fqd are ω, ωq , . . . , ωqd−1

, where
ω = αk for some divisor k of q − 1.

If W is the symmetric square of V , then the eigenvalues of s in W ⊗ Fqd are

ωq i−1
+q j−1

, for 1≤ i ≤ j ≤ d . Suppose that ωq i1−1
+q j1−1

= ωq i2−1
+q j2−1

for some
i1 ≤ j1, i2 ≤ j2. Then αk(q i1−1

+q j1−1)
= αk(q i2−1

+q j2−1). If the exponents on both
sides are less than qd

− 1, then they must be equal. This implies that j1 = j2, and
so i1 = i2. If k(q i1−1

+ q j1−1)≥ qd
− 1, then k = q − 1 and i1 = j1 = d , so the

only remaining possibility is 2(q − 1)qd−1
= qd

− 1+ (q − 1)(q i2−1
+ q j2−1). This

simplifies to qd−1
= qd−2

+ qd−3
+ · · · + q + 1+ q i2−1

+ q j2−1. If q = 2, then we
further simplify to 1= q i2−1

+ q j2−1, which is a contradiction. If q ≥ 3, then q = 3
and i2 = j2 = 1, otherwise the right-hand side of the last equation is not divisible by
q . But this also leads to a contradiction.

If W is the alternating square, then the eigenvalues of s in W ⊗ Fqd are ωq i−1
+q j−1

,
for 1≤ i < j ≤ d . Since all occur as eigenvalues for the symmetric square, they are
distinct.

If W is the adjoint module, then the eigenvalues of s in W ⊗ Fqd , different from

1, are of the form ωq i−1
−q j−1

, for 1≤ i ≤ j ≤ d , i 6= j . If ωq i1−1
−q j1−1

= ωq i2−1
−q j2−1

for some i1 6= j1, i2 6= j2, then αk(q i1−1
+q j2−1)

= αk(q i2−1
+q j1−1). As in the symmetric

square case, the only solution of this equation implies that j2 ∈ {i2, j1}. Since j2 6= i2,
we must have j2 = j1, and so i1 = i2.

Now consider the case W = V ⊗ V τ . If τ = δe and 0< e < f , then the eigenvalues
of s in W ⊗ Fqd are ωq i−1

+peq j−1
, for 1≤ i, j ≤ d . Suppose that ωq i1−1

+peq j1−1

= ωq i2−1
+peq j2−1

for some 1≤ i1, j1, i2, j2 ≤ d . Then

αk(q i1−1
+peq j1−1)

= αk(q i2−1
+peq j2−1). (4.2)

If one of i1 = i2 and j1 = j2 holds, then clearly the other equality holds as well. If the
exponents on both sides of (4.2) are equal, then q i1−1

− q i2−1
= pe(q j2−1

− q j1−1).
If j1 6= j2, then the exponent of p in the prime factorization of the right-hand side of
this last equation is equal to e mod f , but on the left-hand side the exponent is 0 mod
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f , which is a contradiction. Hence ji = j2, and so i1 = i2. If j1, j2 ≤ d − 2, then both
exponents in (4.2) are at most

k(qd−1
+ peqd−3) < (q − 1)(qd−1

+ qd−2)≤ qd
− 1,

so the exponents must be equal. But this implies i1 = i2 and j1 = j2.
If d ≥ 5 then, given any solution of (4.2), there exists m ∈ {0, 1, 2, 3, 4} so that

jk + m − 1≤ 2d − 2 and jk + m − 1 6∈ {d − 1, d} holds for k = 1, 2. Hence,
raising (4.2) to the qm th power and replacing the terms q ik+m−1, q jk+m−1 by
q ik+m−1−d , q jk+m−1−d , respectively, in the case that these exponents are greater than
d , we obtain a solution of (4.2) with j1, j2 ≤ d − 2. Therefore, for the original
j1, j2 we have j1 + m − 1≡ j2 + m − 1 (mod d), implying j1 = j2. Similarly,
if 3≤ d ≤ 4 then, given any solution of (4.2), there exists m ∈ {0, 1, 2} so that
jk + m − 1≤ 2d − 2 and jk + m − 1 6= d holds for k = 1, 2. Hence it is enough to
consider solutions of (4.2) with j1, j2 ≤ d − 1, and at least one of the exponents of α
on both sides of (4.2) is greater than qd

− 1. However, if j1 ≤ d − 1 then

k(q i1−1
+ peq j1−1) > qd

− 1

is possible if and only if k = q − 1, i1 = d, j1 = d − 1, and again k(q i1−1

+ peq j1−1) < 2(qd
− 1). Hence the only case to consider is

(q − 1)(qd−1
+ peqd−2)= (q − 1)(q i2−1

+ peq j2−1)+ qd
− 1.

Here the left-hand side is divisible by p, so we must have i2 = 1 and p = 2. Thus
our equation is equivalent to 2e(qd−2

− q j2−1)= (qd−1
+ q − 2)/(q − 1). Using

the fact that 2e
≥ 2 and j2 ≤ d − 2 (because j2 6= j1), the left-hand side of the last

equation is greater than the right-hand side, unless d = 3, q = 4, j2 = 1. This is the
exception identified in the statement of the lemma. The last subcase is d = 2. Since
i1 6= i2, j1 6= j2, αk(1+peq)

= αk(q+pe). But this implies that k(1+ peq − q − pe)

= k(q − 1)(pe
− 1) is a multiple of q2

− 1, a contradiction since it is not divisible
by a ppd(p; 2 f ) prime.

Finally, if W = V ∗ ⊗ V τ , then the eigenvalues of s in W ⊗ Fqd are ω−q i−1
+peq j−1

,

for 1≤ i, j ≤ d . Suppose that ω−q i1−1
+peq j1−1

= ω−q i2−1
+peq j2−1

for some 1≤ i1,
j1, i2, j2 ≤ d . Then

αk(q i2−1
+peq j1−1)

= αk(q i1−1
+peq j2−1).

As in the previous case, the only solution is i1 = i2, j1 = j2 if (d, q) 6= (3, 4). 2

As stated, Theorem 4.4 identifies a sufficient condition for an element of H to be
suitable; its statement can be readily adapted to G.

LEMMA 4.5. The expected sample size for step 1 is O(1/4d2 ln q) and the expected
running time is O(ξd2 log q + ρqd8 log2 q).
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PROOF. By [14], the probability that the order of a random s ∈ H is divisible by a
ppd(q; d) number is greater than 1/2d . If the order of s is divisible by a ppd(q; d),
then CH (s) is the intersection of H with the cyclic subgroup generated by a Singer
cycle; further, the order of s is largest if and only if CH (s)= 〈s〉. The probability that
this occurs is greater than 1/(2 ln qd), since ϕ(k) > k/(2 ln k) for all k > 2 (see [13,
p. 227]). Hence the probability that a random s ∈ H satisfies the order requirement of
Theorem 4.4 is greater than 1/(4d2 ln q). Combining with Lemma 4.3, we obtain the
statement of this lemma. 2

4.3. The base change matrix Let s ∈ H have order a multiple of (qd
− 1)/(q − 1).

Consider a basis b1, b2, . . . , bd of the natural module V of H in which s is represented
by the matrix

S =


0 0 · · · 0 a0
1 0 · · · 0 a1
0 1 · · · 0 a2
· · · · · · · · · · · · · · ·

0 0 · · · 1 ad−1

 . (4.3)

This is the rational canonical form, or companion matrix, of the left action of s in V ∗,
but the bi are row vectors, a basis for the right action of H on V . The characteristic
polynomial of s is xd

−
∑d−1

i=0 ai x i , with the entries ai in the last column of S.

Let s have eigenvalues ω, ωq , . . . , ωqd−1
in V ⊗ Fqd , and corresponding

eigenvectors e1, e2, . . . , ed satisfying eσi = ei+1. We now determine the base change
matrix between the bases b1, b2, . . . , bd of V and e1, e2, . . . , ed of V ⊗ Fqd , and
obtain structural information about the matrix of an element of H in the basis
e1, e2, . . . , ed .

LEMMA 4.6. The base change matrix between b1, b2, . . . , bd and e1, e2, . . . , ed has
the form

B =


µ µω µω2

· · · µωd−1

µq (µω)q (µω2)q · · · (µωd−1)q

· · · · · · · · · · · · · · ·

µqd−1
(µω)q

d−1
(µω2)q

d−1
· · · (µωd−1)q

d−1


for some nonzero µ ∈ Fqd .

PROOF. Let e1 = (α1, . . . , αd) in the basis b1, b2, . . . , bd . Then e1s = ωe1 implies
that

(α1, . . . , αd)S = (ωα1, . . . , ωαd).

Also, by (4.3),

(α1, . . . , αd)S = (α2, . . . , αd , β),
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with β =
∑d

i=1 αi ai−1. Comparing the first d − 1 corresponding entries in the two
vectors on the right-hand sides of these equations, we obtain αi = α1ω

i−1 for 2≤ i
≤ d . Hence, with the notation µ := α1, the first row of the base change matrix B is
(µ, µω, . . . , µωd−1). Since eσi = ei+1 for all i , the other rows of B can be obtained
by taking the qth power of entries in the previous row. 2

LEMMA 4.7. Let h ∈ H and let A = (ai j ) be the matrix of h in the basis e1, . . . , ed .
For i, j ∈ {1, . . . , d},

ai+1, j+1 = aq
i j

(where the index d + 1 is interpreted as 1).

PROOF. Let c1, c2, . . . , cd be the column vectors of B−1, where B is the base change
matrix defined in Lemma 4.6. Then e1c1 = 1 and, for 2≤ j ≤ d , e j c1 = eσ

j−1

1 c1 = 0.

Applying σ i−1 to these equations, we obtain eσ
i−1

1 cσ
i−1

1 = ei cσ
i−1

1 = 1 and e j cσ
i−1

1 = 0

for all j 6= i . Hence ci = cσ
i−1

1 for 2≤ i ≤ d .
If M is the matrix of h in the basis b1, b2, . . . , bd , then its entries are in Fq , and

A = B M B−1. Thus ai j = ei Mc j and aq
i j = eσi Mσ cσj = ei+1 Mc j+1 = ai+1, j+1. 2

LEMMA 4.8. Let h ∈ H, and let A = (ai j ) be the matrix of h in the basis e1, . . . , ed .

(a) For i, j ∈ {1, . . . , d}, Prob(ai j = 0) < 4/qd . If q ≥ 3 then Prob(ai j = 0)
< 2/qd .

(b) Prob(all ai j 6= 0) > 5/8.

PROOF. Recall that the entries of A lie in Fqd , not Fq .

(a) By Lemma 4.7, the first row of A determines uniquely the other rows of A,
and ai j = 0 if and only if a1, j−i+1 = 0 (if j − i + 1≤ 0 then define a1, j−i+1 as

a1, j−i+1 := a1,d+ j−i+1). There are qd2
−d vectors of length d over Fqd with a 0

entry in position j − i + 1. Not all of these vectors can occur as the first row of
a matrix for h ∈ GL(d, q), so

Prob(a1, j−i+1 = 0) <
qd2
−d

|GL(d, q)|
=

1
qd

d∏
k=1

1
1− 1/qk .

Observe that

d∏
k=1

(
1−

1
qk

)
>

(
1−

1
q

)(
1−

d∑
k=2

1
qk

)
>

(
1−

1
q

)(
1−

1

q2

1
1− 1/q

)
=

q2
− q − 1

q2 .

This last fraction is greater than 1/2 if q ≥ 3 and is equal to 1/4 if q = 2,
implying both claims of (a).
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(b) By Lemma 4.7, it is enough to estimate the probability that the first row of A
consists of all nonzero entries. By (a), if q ≥ 3, then the probability that the first
row of A contains a zero entry is less than 2d/qd

≤ 1/4 (not considering the
solvable case (d, q)= (2, 3)). Similarly, if q = 2 and d ≥ 6, then the probability
that the first row of A contains a zero entry is less than 4d/2d

≤ 3/8. For
3≤ d ≤ 5, we counted using GAP [7] the exact number of h ∈ GL(d, 2) with
a zero entry in its matrix A. 2

In Section 6.2, we require the following conjecture.

CONJECTURE 4.9. Let h be a random element of H and let A = (ai j ) be the matrix
of h in the basis e1, . . . , ed . The probability that a principal 3× 3 submatrix of A
has determinant 0 is less than c/qd for an absolute constant c, unless d = 3m and the
principal submatrix is from rows and columns i, m + i, 2m + i for some i .

In the exceptional case, the first row of the submatrix uniquely determines the other
entries; in all other cases, there is an entry that is ‘independent’ of the others. It appears
that the value of this entry is roughly uniformly distributed in F∗

qd and only one value
makes the determinant 0. The conjecture and these observations are supported by
experiment: we considered large random samples of elements from the alternating
square representation of GL(d, q) for q = 2, 3 and d ≤ 9.

4.4. Avoiding division by zero Let g ∈ G, let A = (ai j ) be the matrix of g in the
basis e1, . . . , ed , and let K = (κi j,k`) be the matrix of g in the basis B0 obtained in
step 3 of Decompose.

In step 4, we determine the constants associated with our choice of basis. In doing
so, we perform arithmetic operations on the entries of K ; some of these operations are
not possible if certain entries of A are 0. Lemma 4.8 implies that, with high probability
all entries of A are nonzero and so we can perform the computations.

In step 5, we compute the action A of arbitrary g ∈ G in the basis e1, . . . , ed .
The algorithms of Sections 5–7 may not work if A has zero entries; however, if we
multiply g by a random m ∈ G, then both m and gm are uniformly distributed (but not
independent) random elements of G. Hence, with probability at least 1/4, all entries
in the d × d matrices of m and gm are nonzero. If so, then we compute the action of
m and gm in the basis e1, . . . , ed , and obtain the action of g as the ratio of these two
matrices.

Summarizing, in Sections 5–7 we may assume that, for g ∈ G, all entries of its
matrix A are nonzero. In Section 6.2 we assume Conjecture 4.9 which implies that
all of the 3× 3 submatrices of A not having the exceptional indices have nonzero
determinant.

5. The symmetric square representation

In this case, q must be odd. Suppose that G ≤ GL(W ) where W is the symmetric
square of V , and s ∈ G was constructed as described in step 1 of Decompose. We
now discuss steps 2–5.
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5.1. Labelling the basis Let li = ωq i−1
, for 1≤ i ≤ d , be the eigenvalues of s in its

action on V ⊗ Fqd . The eigenspaces of s on W are 〈ei, j = ei ⊗ e j 〉 for 1≤ i ≤ j ≤ d ,

and ei, j s = ωq i−1
+q j−1

ei, j .
We know the set L of products li, j := li l j for 1≤ i ≤ j ≤ d . We identify the

indices (i, j) corresponding to every element of L , and choose a basis B0 = { fi, j },
fi, j ∈ 〈ei, j 〉, using the following procedure.

(1) We construct the orbits �1, . . . , �k of eigenvalues under the Frobenius map σ .
If d is odd, then there are (d + 1)/2 orbits of size d; otherwise there are d/2
orbits of size d and one of size d/2.

(2) We identify the orbit �m of size d which satisfies the following test: for all
distinct pairs α, β ∈�m , γ = α · β is a square, and one of the square roots of γ
is in � j for some j 6= m.

(3) Now we have identified that �m is the orbit of l1,1 under σ . We choose an
arbitrary element of �m as l1,1 and label l j, j = l1,1σ j−1.

(4) For i 6= j , we evaluate γ = li,i l j, j ; record li, j as the one of ±
√
γ in L .

(5) From each orbit of eigenvalues �, we pick an arbitrary li, j ∈� and compute
its eigenspace 〈ei, j 〉. We choose the vector fi, j ∈ 〈ei, j 〉 whose first nonzero
coordinate is equal to 1.

(6) For the other elements lσ
r

i, j ∈�, we compute fi+r, j+r := f σ
r

i, j .

Since we identified ω2
= l1,1, we can compute ω and the base change matrix B of

Section 4.3. We may choose µ := 1 as the (1, 1) entry of B.

LEMMA 5.1. The cost of this procedure is O(ρqd9 log2 d log q).

Observe that the largest exponent for d comes from step 5, where we compute d
eigenvectors at a cost O(ρqd n3)= O(ρqd8 log2 d) for each.

5.2. Determining the constants The outcome of the last step is the following: for
1≤ i ≤ j ≤ d , we now know that

fi, j = ci, j ei, j

for some ci, j ∈ Fqd . We now describe a procedure to determine these constants.

Our choice of fi, j implies that ci+1, j+1 = cq
i, j . Since we can multiply all basis

vectors by the same scalar, we may assume that c1,1 = 1 (implying that c2,2 = c3,3
= · · · = cd,d = 1). We have no further control over the ci, j . Our procedure must
compute their values.

We choose random g ∈ G and compute the matrix K = (κi j,kl) representing the
action of g on W with respect to the basis B0 = { fi, j }. Let A = (ai j ) be the matrix
of g in the basis e1, . . . , ed . A priori, we do not know the entries of A, but we may
assume that all entries of A are nonzero.
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If ei g =
∑d

j=1 ai j e j , then

(ei ⊗ e j )g =

( d∑
s=1

aises

)
⊗

( d∑
t=1

a j t et

)
and so

ci j ei j g = fi j g =
∑

κi j,st fst =
∑

κi j,st cst est .

The basic equation for κi j,k` is

κi j,k` =
ci j

ck`
(aika j` + ai`a jk(1− δkl)) (5.1)

where δkl = 1 if k = l, otherwise 0.
By choosing specific values of the indices, this equation allows us to readily deduce

the following formulas.

(i)

κi i, j j =
ci i

c j j
a2

i j = a2
i j .

(ii)
κi i,i i = a2

i i .

Hence the values ai j are determined up to a sign ambiguity.

(iii)

κi j, j j =
ci j

c j j
ai j a j j = ci j ai j a j j .

(iv)

κi i,i j = 2
ci i

ci j
ai i ai j =

2
ci j

ai i ai j .

We square (iii) and substitute (i), (ii) to get

(v)

c2
i j =

κ2
i j, j j

κ j j, j jκi i, j j
c j j ci i =

κ2
i j, j j

κ j j, j jκi i, j j
.

Taking the product and ratio of (iv) and (iii), and using (i) and (v), we get

(vi)

ai i a j j =
κi j, j jκi i,i j

2κi i, j j
.

(vii)
ai i

a j j
=

κi i,i jκi j, j j

2κ j j, j jκi i, j j
.
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Taking j = k, Equation (5.1) gives

κi j, j` =
ci j

c j`
(ai j a j` + ai`a j j ).

Rearranging and multiplying by ai i/a j j , we get

(viii)
ci j

c j`
ai`ai i =

ai i

a j j

(
κi j, j` − c2

i j
ai j

ci j

a j`

c j`

)
.

Using (iv)–(vii), the right-hand side of (viii) can be expressed as a function of the
κi j,k`.

We now describe the procedure to extract the ci j .

(1) If d is even, let m = d/2, else m = d .
(2) We evaluate (viii) for i = 1, j = 2, . . . m, `= (2 j − 1) to obtain

c1 j

c j,2 j−1
a1,2 j−1a11

as a function of the κi j,k`.

(3) Since c1 j/c j,2 j−1 = c(1−q j−1)

1 j is a power of c1 j with even exponent, by (v) we
can express it as a function of the κi j,k`.

(4) Thus we obtain a1,2 j−1a11 as a function of the κi j,k`, and (iv) now yields the
value of c1,2 j−1 without ambiguity.

(5) If d is even, then we must compute the values c1,2 j . By (v), we know c2
12, but c12

cannot be computed without ambiguity: writing g ∈ G in the basis e1, . . . , ed
or in e1,−e2, e3, . . . ,−ed yields the same action on W . Hence we choose an
arbitrary square root of c2

12 from (v) to obtain c12.
(6) Evaluating (viii) with i = 1, j = 2, `= 4, 6, . . . , d , we obtain a1`a11 as a

function of c12, c2` = cq
1,`−1, and the κi j,k`, without further ambiguity (apart

from the sign of c12).
(7) Now (iv) yields the value of c1`. The values ci j , for i > 1, can be obtained as

ci j = cq i−1

1, j−i+1.

LEMMA 5.2. The cost of this procedure is O(ξ + ρqd8 log2 d).

The most expensive part of this procedure is writing g with respect to the basis
B0 = { fi, j }.

5.3. Evaluating images Assume we now wish to carry out step 5 of Decompose:
namely, we want to construct the projective image of an arbitrary g ∈ G.

We first compute the matrix K = (κi j,kl) representing the action of g on W with
respect to the basis B0 = { fi, j }. We then compute the ai j in terms of the κrs,tu : for
given i, j , we compute a11ai j = (a11/ai i )(ai i a j j ) using (vii) and (iv). Hence the ai j
values are recovered up to a scalar multiple a11. By (ii), the value of a11 can be
computed only up to a sign ambiguity.
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LEMMA 5.3. The cost of this procedure is O(ρqd8 log2 d).

If necessary, we compute the images of m and gm for random m ∈ G as discussed
in Section 4.4.

6. The alternating square representation

Suppose that G ≤ GL(W ) where W is the alternating square of V , and s ∈ G is
constructed as described in step 1 of Decompose. We now discuss steps 2–5.

6.1. Labelling the basis Let li = ωq i−1
, for 1≤ i ≤ d , be the eigenvalues of s in its

action on V ⊗ Fqd . A basis of W is the set of vectors ei, j = ei ∧ e j for 1≤ i < j ≤ d ,

and ei, j s = ωq i−1
+q j−1

ei, j .
We know the set L of products li l j for 1≤ i ≤ j ≤ d . We identify the indices (i, j)

corresponding to every element of L , and choose a basis B0 = { fi, j }, fi, j ∈ 〈ei, j 〉,
using the following procedure.

(1) We construct the orbits of the eigenvalues under the Frobenius map σ .
(2) We choose an orbit of length d , and label an element of this orbit as l1l2. Taking

qth powers determines l2l3 and l3l4.
(3) We identify l1l4 = (l1l2)(l3l4)/(l2l3), and by taking qth powers we identify l2l5

and l3l6.
(4) We identify l1l6 = (l1l4)(l3l6)/(l3l4), and by taking qth powers we identify l2l7

and l3l8.
(5) In the same manner, we identify l1l2i for i ≤ d/2. It remains to identify l1l2i+1.
(6) Assume d = 2k + 1. By taking qth powers, we identify l2l2k+1 and l3l1. We

compute (l1l3)/(l1l2)q−1
= ω2. From ω2, we compute ωq i−1

+q j−1
for all i, j . If

these are not elements of L , then we select another L-orbit of length d and pick
another candidate for l1l2.

(7) Assume d = 2k. We know that (l1l2)(l3l4)= (l1l3)q+1. We choose an orbit of
length d in L and an element x of this orbit such that xq+1

= (l1l3)q+1. We
compute x/(l1l2)q−1. If our choice of x is valid as l1l3, then this last ratio is ω2.
From ω2, we compute ωq i−1

+q j−1
for all i, j . If these are not elements of L , then

we select another L-orbit of length d and pick another candidate for l1l3. The
case d = 4 is exceptional: one orbit has size 4, the only other has size 2, and we
choose x from the orbit of length 2.

(8) From each orbit � of eigenvalues, we pick an arbitrary li, j ∈� and compute
its eigenspace 〈ei, j 〉. We choose the vector fi, j ∈ 〈ei, j 〉 whose first nonzero
coordinate is equal to 1.

(9) For the other elements lσ
r

i, j ∈�, we compute fi+r, j+r := f σ
r

i, j .

During this procedure, we computed ω2, so we can compute the base change matrix
B of Section 4.3.



[15] Recognition of small dimensional representations of general linear groups 243

LEMMA 6.1. The cost of this procedure is O(ρqd9 log2 d log q).

6.2. Determining the constants The outcome of the last step is the following: for
1≤ i < j ≤ d , we now know

fi, j = ci, j ei, j

for some ci, j ∈ Fqd . We now describe a procedure to determine these constants.
Our choice of fi, j implies that ci+1, j+1 = cq

i, j . Since we can multiply all basis
vectors by the same scalar, we may assume that c1,2 = 1 (implying c2,3 = c3,4 = · · · =

cd−1,d = 1). We have no further control over the ci, j . Our procedure must compute
their values.

We choose random g ∈ G and compute the matrix K = (κi j,kl) representing the
action of g on W with respect to the basis { fi, j }.

If ei g =
∑d

j=1 ai j e j , then

(ei ⊗ e j )g =

( d∑
s=1

aises

)
∧

( d∑
t=1

a j t et

)
and so

ci j ei j g = fi j g =
∑

κi j,st fst =
∑

κi j,st cst est .

The basic equation for κi j,k` is

κi j,k` =
ci j

ck`
(aika j` − ai`a jk). (6.1)

Underpinning our procedure is the observation that, in dimension 3, the exterior
square is the dual of the natural module. This means that for distinct triples i, j, k, the
matrices

Bi jk =


ai i

cik

c jk
ai j

ci j

c jk
aik

c jk

cik
a j i a j j

ci j

cik
a jk

c jk

ci j
aki

cik

ci j
ak j akk

 , Ci jk =

 κ jk, jk −κik, jk κi j, jk
−κ jk,ik κik,ik −κi j,ik
κ jk,i j −κik,i j κi j,i j


(6.2)

satisfy Bi jkCi jk = det(Bi jk) · I , because by (6.1) the entries of Ci jk are the appropriate
2× 2 minors of Bi jk . This implies det(Bi jkCi jk)= det(Bi jk) · det(Ci jk)= det(Bi jk)

3.
Moreover, if Ci jk is invertible, then Bi jk =

√
Ci jkC−1

i jk ; so we can compute Bi jk up to
a sign ambiguity. Conjecture 4.9 implies that we may assume that Bi jk is invertible
unless j = i + d/3 and k = i + 2d/3.

We now describe the procedure to determine the constants ci, j . Recall that we can

assume c12 = 1 (and consequently ci,i+1 = cq i−1

12 = 1 for all i ≤ d − 1).
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(1) For k = 4, 6, . . . , 2bd/2c, we compute B132 and B13k . We choose the
square root of determinants so that the common entries B132[1, 1] = B13k[1, 1]
= a11 and B132[2, 2] = B13k[2, 2] = a33 are equal. Now B132[2, 1] = a31c32/

c12 = a31 and B13k[2, 1] = a31c3k/c1k = a31cq2

1,k−2/c1k . Taking the ratio, we

obtain c1k = cq2

1,k−2 B132[2, 1]/B13k[2, 1] and so recursively we can compute
c14, c16, . . . , c1,2bd/2c. Since ci j = cq

i−1, j−1, we obtain all ci j with i < j and
j − i odd.

(2) For k = 5, 7, . . . , 2dd/2e − 1, we compute B123 and B12k , again choosing
the square roots of determinants so that the common entries B123[1, 1]
= B12k[1, 1] = a11 and B123[2, 2] = B12k[2, 2] = a22 are equal. Thus B123[2, 1]
= a21c23/c13 = a21/c13 and B12k[2, 1] = a21c2k/c1k = a21cq

1,k−1/c1k . The ratio
yields

c1k = c13cq
1,k−1

B123[2, 1]
B12k[2, 1]

. (6.3)

Since c1,k−1 is already known, we obtain c1k as the value of c13 multiplied by a
known quantity.

(3) If d is odd, then c13 = cq2

1,d−1 is known, and we obtain all c1 j without ambiguity.
The other ci j are computed by the formula ci j = cq

i−1, j−1.
(4) If d is even, then we compute B123 and B124. Now (6.3), with the value

k = 4, gives c14 = cq+1
13 B123[2, 1]/B124[2, 1]. Since c14 is already known, we

obtain cq+1
13 . Using the formula ci j = cq

i−1, j−1, and the values of c1k and cq+1
13 ,

we obtain ci j with i < j and j − i even as ci j = c13ci j if i is odd, and as
ci j = c13

−1ci j if i is even, where ci j is a known element of Fqd .
We do not compute the value for c13 because (q + 1)-st roots cannot be
computed in polynomial time. Instead we ignore both c13 and c−1

13 , and take
ci j = ci j for all i < j with j − i even.
The justification is the following. Given g ∈ G, we want to compute the
coefficients in the linear combination em g =

∑
` am`e`. If we know ci j , then

am` can be computed from an appropriate entry of some Bi jk . If we use
ci j in place of ci j , then we obtain c13am` when both m and m − ` are odd,
am`/c13 when m is even and m − ` is odd, and am` when m − ` is even. Thus,
instead of A = (am`), we construct the conjugate of A by the diagonal matrix
Diag(1, c13, 1, c13, . . . , 1, c13). Equivalently, this is the action of g in the basis
e1, e2/c13, e3, e4/c13, . . . , ed−1, ed/c13.

LEMMA 6.2. The cost of this procedure is O(ξ + ρqd8 log2 d log q).

6.3. Evaluating images Given g ∈ G, we compute the matrix K = (κi j,kl)

representing the action of g on W with respect to the basis B0 = { fi, j }. We
determine the first row of A by computing the matrices B12k for 3≤ k ≤ d . Following
Lemma 4.7, the other entries of A can be obtained by taking qth powers.



[17] Recognition of small dimensional representations of general linear groups 245

LEMMA 6.3. The cost of this procedure is O(ρqd8 log2 d log q).

If necessary, we compute the images of m and gm for random m ∈ G as discussed
in Section 4.4.

7. The adjoint representation

Let V ∗ ⊗ V have basis B0 := {ei ⊗ e j | 1≤ i, j ≤ d}. Recall from Section 2 our
definition of the adjoint module W :=U/W1. Consider a basis for W which is the
union of the set B1 of d2

− d vectors ei ⊗ e j +W1, i 6= j , and a set B2 of d − 1 or
d − 2 vectors of the form x +W1 for some x ∈ 〈ei ⊗ ei | 1≤ i ≤ d〉. We can compute
the subspaces 〈ei ⊗ e j +W1〉; by choosing the vectors with first coordinates 1 from
these subspaces, we construct B1. Choosing the remaining basis vectors from the 1-
eigenspace of s on W , we construct B2.

For g ∈ G, let K1 and K2 be the matrices of g on V ∗ ⊗ V with basis B0, and
on W with basis B1 ∪ B2, respectively. Independent of the particular choice of B2,
the (d2

− d)× (d2
− d) submatrices of K1 and K2, determined by the basis vectors

ei ⊗ e j and ei ⊗ e j +W1, respectively, are identical.

7.1. Labelling the basis Let li = ωq i−1
, for 1≤ i ≤ d, be the eigenvalues of s in its

action on V ⊗ Fqd . The one-dimensional eigenspaces of s on W are 〈ei, j 〉 for i 6= j ,

and ei, j s = ωq i−1
−q j−1

ei, j .
We know the set L of products li, j := li l

−1
j for 1≤ i, j ≤ d , i 6= j . We identify the

indices (i, j) corresponding to every element of L , and choose a basis for W using the
following procedure.

(1) We construct the d − 1 orbits of elements of L under the Frobenius map σ .
(2) We choose one of these orbits and declare an entry from this orbit as l1,2. For

i ∈ {2, . . . , d − 1}, we label li,i+1 = lq
i−1,i , and ld,1 = lq

d−1,d .
(3) For k ∈ {2, . . . , d − 1}, we perform the following:

• we evaluate ν := l1,klq(k−1)

1,2 ;
• if ν 6∈ L , then we choose a different orbit;
• otherwise we label ν as l1,k+1;
• for j ∈ {2, . . . , d − k}, we identify l j, j+k := lq

j−1, j+k−1. Also we identify

ld+1−k,1 := lq
d−k,d ;

• for j ∈ {d + 2− k, . . . , d}, we identify l j, j−d+k := lq
j−1, j−d+k−1.

(4) For each of the d − 1 orbits on L , we pick a representative li, j and compute
its eigenspace 〈ei, j 〉. We choose the vector fi, j ∈ 〈ei, j 〉 whose first nonzero
coordinate is equal to 1.
Since we can assume that the first coordinate of each ei is 1, the vector fi, j
corresponds precisely to ei ⊗ e j , not just to a scalar multiple of it. For other
eigenvalues lσ

r

i, j , we compute fi+r, j+r := f σ
r

i, j . Let B1 := { fi, j | 1≤ i 6= j ≤ d}.
(5) We compute the 1-eigenspace of s and choose an arbitrary basis B2 for it. Then

B1 ∪ B2 is a basis of W .
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LEMMA 7.1. The cost of this procedure is O(ρqd9 log2 d log q).

Since the exponent of ω in li, j is a multiple of q − 1, we cannot compute ω in
polynomial time. Hence we cannot compute the base change matrix B of Section 4.3,
but instead use the algorithm of [8] to perform the final base change.

7.2. Evaluating images Given g ∈ G, we compute the matrix representing the
action of g on W with respect to the basis B1 ∪ B2. Let K1 be the matrix of g in
the basis B0, let K2 = (κi j,kl) be the matrix of g in the basis B1 ∪ B2, let A = (ai j ) be
the matrix of g in the basis {ei }, and let A∗ = (a∗i j ) be the matrix of gϕ in the basis
{ei }. Here ϕ is a graph automorphism, namely an inverse transpose map, but it is taken
with respect to the basis b1, . . . , bn defined in Section 4.3. Thus A and A∗ are not
inverse transposes of each other. The goal is to recover a scalar multiple of A. The
basic equation in K1 is

κi j,kl = a∗ika jl . (7.1)

The (d2
− d)× (d2

− d) submatrix of K2 indexed by B1 is the corresponding
submatrix of K1, so we may use (7.1) for i 6= j and k 6= `.

To determine a∗11aks for any s, k, we use the following equations:

κ1k,1s = a∗11aks, k, s ≥ 2,

κ21,2s = a∗22a1s, s 6= 2,

κ2k,21 = a∗22ak1, k 6= 2,

κ31,32 = a∗33a12,

κ32,31 = a∗33a21,

a∗11/a
∗

22 = κ1 j,1`/κ2 j,2` for some j, ` 6∈ {1, 2},

a∗11/a
∗

33 = κ1 j,1`/κ3 j,3` for some j, ` 6∈ {1, 3}.

LEMMA 7.2. The cost of this procedure is O(ρqd8 log2 d).

If necessary, we compute the images of m and gm for random m ∈ G as discussed
in Section 4.4.

8. The other representations

We now discuss the outstanding cases: namely, W = V ⊗ V τ and W = V ∗ ⊗ V τ .
Recall that H ≤ GL(d, q) with q = p f . The operation τ is to take peth powers of the
entries in the matrices representing the group elements, for some fixed positive e < f ,
and so W is now irreducible.

As before, we can assume that the first coordinate of the basis vector e1 is 1; since
all other ei are obtained by the Frobenius map σ , their first coordinate is also 1.
Consequently, the first coordinates of the d2 vectors ei ⊗ e j are 1. These d2 vectors
form a basis of W . Hence, we can compute the one-dimensional subspaces 〈ei ⊗ e j 〉

and, by picking the vectors with first coordinates 1 from these subspaces, we choose
the vectors ei ⊗ e j .
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8.1. Labelling the basis when W = V ⊗ V τ Let li = ωq i−1
, for 1≤ i ≤ d , be the

eigenvalues of s in its action on V ⊗ Fqd . The eigenspaces of s on W are 〈ei, j

= ei ⊗ e j 〉 for 1≤ i, j ≤ d , and ei, j s = ωq i
+q j pe

ei, j .
We know the set L of products li, j := li (l j )

pe
for 1≤ i, j ≤ d . We identify the

indices (i, j) corresponding to every element of L , and choose a basis B0 = { fi, j },
fi, j ∈ 〈ei, j 〉, using the following procedure.

(1) We construct the orbits of eigenvalues under the Frobenius map σ .
(2) We choose one of these orbits and declare an entry λ from this orbit as l1,1.
(3) If there exists an eigenvalue ν where ν1+pe

= λ1+qpe
and λq+1ν−1 is also an

eigenvalue, then we identify l1,2 as ν and λq+1ν−1 as l2,1. Otherwise we choose
a new orbit.

(4) For i ∈ {2, . . . , d}, we label li,i = lq
i−1,i−1.

(5) For i ∈ {2, . . . , d − 1}, we label li,i+1 = lq
i−1,i , and ld,1 = lq

d−1,d .
(6) For i ∈ {2, . . . , d − 1}, we label li+1,1 := l1,1li,i li+1,i+1/ li,i+1l1,i and l1,i+1

:= l1,1li+1,i+1/ li+1,1.
(7) The remaining values li, j can now be identified by taking qth powers of the

already labelled elements of their orbits.
(8) For each orbit on L , we pick a representative li, j and compute its eigenspace

〈ei, j 〉. We choose the vector fi, j ∈ 〈ei, j 〉 whose first nonzero coordinate is equal
to 1.
Since we can assume that the first coordinate of each ei is 1, the vector fi, j
corresponds precisely to ei ⊗ e j , not just to a scalar multiple of it. For other
eigenvalues lσ

r

i, j , we compute fi+r, j+r := fi, jσ
r .

LEMMA 8.1. The cost of this procedure is O(ρqd9 log2 d log q).

We use the algorithm of [8] to perform the final base change.

8.2. Evaluating images when W = V ⊗ V τ Given g ∈ G, we compute its d2
× d2

matrix K = (κi j,kl) in the basis {ei ⊗ e j }. Let A = (ai j ) be the matrix of g in the basis
{ei }. The goal is to recover a scalar multiple of A. The basic equation for κi j,k` is

κi j,k` = aika pe

j` .

We choose an arbitrary nonzero entry κi0 j0,k0`0 in K . For this fixed j0, `0, the matrix

with (i, k) entry κi j0,k`0 = aika pe

j0`0
is a projective image of g.

LEMMA 8.2. The cost of this procedure is O(ρqd8 log2 d).

8.3. Labelling the basis when W = V∗ ⊗ V τ Labelling the basis for this case is
essentially identical to that described in Section 8.1.

8.4. Evaluating images when W = V∗ ⊗ V τ Given g ∈ G, we compute its d2
× d2

matrix K = (κi j,kl) in the basis {ei ⊗ e j }. Let A = (ai j ) be the matrix of g in
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TABLE 1. Performance of implementation for some groups.

d q G Setup Image

5 710 Symmetric square 1.0 0.02
Alternating square 0.3 0.01

Adjoint 1.6 0.05
V ⊗ V τ 1.5 0.05

10 56 Symmetric square 15.7 0.4
Alternating square 6.0 0.2

Adjoint 34.5 1.1
V ⊗ V τ 73.6 1.0

15 32 Symmetric square 50.1 1.7
Alternating square 23.4 1.3

Adjoint 140.2 5.2
V ⊗ V τ 150.7 1.2

the basis {ei } and let A∗ = (a∗i j ) be the matrix of gϕ in the basis {ei } for a graph
automorphism ϕ. The goal is to recover a scalar multiple of A∗. The basic equation
for κi j,k` is

κi j,k` = a∗ika pe

j` .

We choose an arbitrary nonzero entry κi0 j0,k0`0 in K . For this fixed j0, `0, the matrix

with (i, k) entry κi j0,k`0 = a∗ika pe

j0`0
is a projective image of g.

LEMMA 8.3. The cost of this procedure is O(ρqd8 log2 d).

9. Implementation and performance

We have implemented our algorithms in MAGMA. We use the algorithm of [6] to
generate random elements and in step 1 choose a sample of size 4d2.

The computations reported in Table 1 were carried out using MAGMA V2.13
on a Pentium IV 2.8 GHz processor. Let G act as the named representation of
H := GL(d, q). The first four steps of Algorithm Decompose provide the data
structure of Theorem 2.1. Having computed this data, we can now compute the
projective image of g ∈ G. In the final two columns, we list the CPU times in
seconds to set up the data structure, and to evaluate the image of a randomly chosen
element of G.
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