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Abstract

In 1990 a quartz tube extensometer was installed in the Sopronbánfalva Geodynamic

Observatory (SGO) of the Geodetic and Geophysical Research Institute of the Hungarian

Academy of Sciences. On the basis of the 20 year data series, an average strain rate of -5.36

µstr/y was determined. Because the instrumental drift can also cause a slow change in the

output signal of the sensor similar to the tectonic movements, a lot of efforts were made to

determine the drift of the extensometer. The instrument has no detectable drift according to

the instrumental calibrations (regular calibration, parallel recording by more displacement

sensors, etc.). Since autumn of 2008, the radon concentration has been continuously

monitored by an AlfaGuard instrument in the SGO. The investigation of the relationship

between strain and radon concentration also showed the absence of instrumental drift, so the

instrument measures real tectonic movements. The results of the extensometric measurements

show that the rate of tectonic movement is not constant.  During the period 1993-2001, the

strain rate accelerated to a maximum of -8.6 µstr/y in 2001, and then decelerated again

between 2002-2010 to approx. -2.5 µstr/y in 2010.
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1. Introduction

Different types of extensometers (quartz tube, invar wire, crack gauge TM 71, laser) are

widely used for observation of tectonic movements and for measurement of the solid Earth’s

tide (e.g. Agnew, 1986; Košťák  et al. 2011; Crescentini et al. 1997; Jahr et al. 2006; Onoue et

al. 2001). In the Sopronbánfalva Geodynamic Observatory, a quartz tube extensometer was

installed in cooperation between the Geodetic and Geophysical Research Institute (GGRI) of

the Hungarian Academy of Sciences and the Institute of Physics of the Earth of the (former)

USSR Academy of Sciences, in Moscow. The electronic distance voltage transducer of the

instrument was developed at the GGRI. The instrument is used for observation of the solid

Earth’s tide and measurement of local tectonic movements and deformations. The

extensometer has been working continuously since May, 1990. There were only some

interruptions in recording, not longer than a few days, due to technical problems or

maintenance. Now a 20 year continuous record from 1 January, 2009 to 31 December, 2010 is

available for analysis of the tectonic movements at the observatory. Since the radon gas

concentration is high in the observatory, a radon monitor was also installed near the

extensometer in autumn of 2008 to investigate the relationship between strain and radon

concentration.

The measured local strain rate at the different extensometric stations is in the order of some

µstr/y (Onoue et al. 2001; Takemoto et al. 2006a, 2006b; Venedikov et al. 2006). Similarly

the strain rate in the SGO (average strain rate: 5.36 µstr/y) is higher by some order of

magnitude (Mentes, 2008) than the rates measured in the European GPS network (Bada et al.

2007b; Grenerczy et al. 2000; Grenerczy et al. 2005). This is why this difference is the subject

of regular debate. GPS specialists state that the higher tectonic rate measured by the

extensometer is due to the drift of the instrument. Much effort was devoted to ensure the high

reliability of extensometric measurements at the SGO (Mentes, 2010). This paper describes
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the results of the tectonic movement monitoring in the last 20 years. The relationships

between strain and radon concentration measurements are investigated and extensometric data

are validated by radon concentration measurements. The strain rate measured by the

extensometer is compared with the strain rates inferred from permanent and epoch-wise GPS

measurements in the Central European GPS Geodynamic Reference Network (CEGRN) and

in the Hungarian GPS Geodynamic Reference Network (HGRN) in Central Europe and the

possible reasons for the high rate difference are discussed.

2. Observation site and method

The Sopronbánfalva (a suburb of Sopron) Geodynamic Observatory (SGO) is located on the

Hungarian-Austrian border in the Sopron Mountains (Fig. 1). The area belongs to the

extensions of the Eastern Alps. The coordinates of the observatory are: 47º40’55’’ N,

16º33’32” E; it is 220 m a.s.l.  The observatory is an artificial gallery driven into gneiss. Its

ground plane is shown in Fig. 2. The overlay of the gallery is about 60 m thick. The yearly

mean value of the temperature is 10.4 ºC in the gallery and the yearly and daily temperature

variations are less than 0.5 ºC and 0.05 ºC, respectively. The relative humidity is 90% and it is

nearly constant. The gallery where the instruments are placed is thermally insulated, but there

can be slow air transport via the conduit for the electric cables of the instruments. This slow

ventilation ensures that the indoor and outdoor barometric pressures are the same and do not

considerably influence the temperature in the gallery as proved by the measurements.

The extensometer is 22 m long and it was assembled from quartz tubes 2 m long, 45 mm in

diameter, with walls 2.5 mm thick. The tubes are joined together by means of a special

adhesive technology. The jointed tubes are suspended from supports by invar wires. One end

of the extensometer is fixed to the bedrock by means of a stainless steel dowel. The other end

of the dowel holds a magnetostictive actuator which can move the quartz tube joined to the

actuator. The displacement of the other end of the quartz tube is measured by a capacitive
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transducer relative to the bedrock. In this way the extensometer measures the deformation of

the rock between its two ends. Switching a constant current (150 mA) on the coil of the

magnetostrictive actuator, it moves the quartz tube and provides daily calibration of the

instrument. The location of the extensometer in the gallery can be seen in Fig.2. Its azimuth is

116°. The scale factor of the extensometer is 2.093±0.032 nm/mV.  Mentes (2010) describes

the construction and calibration of the instrument in detail.

The radon concentration was measured by a radon monitor of type AlphaGuard PQ2000PRO

near the extensometer (Fig. 2).  The AlphaGuard can be used for continuous determination of

the radon and radon progeny concentration as well as air pressure and temperature

(http://www.genitron.de). This radon monitor is suitable for continuous monitoring of radon

concentrations between 2 – 2 000 000 Bq/m³. Its sensitivity is 5 cpm at 100 Bq/m³. It has a

long-term stable calibration factor (guaranteed for 5 years). The extensometric, radon, outdoor

temperature and air pressure data were measured hourly.

3. Results of extensometric measurements

Fig. 3 shows the extensometric raw data in the period from 1 January, 1991 to 31 December,

2010. The extensometric data are given in nstr (1 nstr=10-9 relative extension= measured

displacement/length of the extensometer). This 20 year continuous data series show a

compressive deformation in the bedrock at the measuring site. The seasonal variation of the

raw data is due to the annual outdoor temperature variation (Mentes and Eper-Pápai, 2006).

The rate of the movement is not constant. The steepness of the line fitted to the raw data in

Fig. 3 gives the average strain rate detected on the full length of the extensometer, which is -

5.36 µstr/y. To investigate the variation of the strain rate, the yearly average rates were

determined by fitting a line to the yearly extensometric data. The results are plotted in Fig. 4.

4. Validation of extensometric data

4. 1. Tidal analysis

http://www.genitron.de
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To check the firm connection of the instrument to the bedrock, the extensometric data were

subjected to tidal analysis by the ETERNA 3.40 Earth tide data processing program (Wenzel,

1996) using the Wahr-Dehant Earth model (Dehant, 1987) and the HW95 tidal potential

catalogue (Hartmann and Wenzel, 1995). Table 1 shows the amplitude factors

(measured/theoretical amplitudes) for the main lunar diurnal O1 and the semidiurnal M2

waves obtained by the tidal analysis. The main lunar waves are only used for the comparison

because the meteorological effects are in close connection with the Sun and not with the

Moon. The reason for the difference of the amplitude factors from one is due to the fact that

the ETERNA 3.40 program is not calibrated for extensometric measurements since the

measured strain caused by tidal forces depends on the quality of the rock in the vicinity of the

observatory. The variation of the amplitude factors is not connected with the variation of the

strain rates in the investigated period (2000-2010). The results of the tidal analysis show that

the instrument is firmly attached to the bedrock. The regular calibration and stability

investigation of the extensometer prove that the instrument has no detectable electrical drift;

the tube is rigid (Mentes, 2010) and the tectonic movement rates are reliable.

4. 2. Validation of extensometric data by radon concentration measurements

The left side of Fig. 5 shows the outdoor temperature, the barometric pressure, strain and

radon concentration data between 1 February, 2009 and 31 October, 2010. It shows that

temperature has a significant long-term effect on the strain and radon concentration data while

the effect of the barometric pressure is minor. To study the long-term relationship between the

different data, a polynomial of the 9th order was fitted on the data series. These polynomials

are plotted on the right side of Fig. 5. It is clear that the polynomial fitted to the radon data

does not represent the radon concentration data during the winter. The result is the same when

the data is filtered by a low-pass filter with a cut-off frequency of 0.003 cpd to remove the

short-periodic variations. For that reason only the summer periods (from 1 June, 2009 to 31
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August, 2009 and from 1 June, 2010 to 31August, 2010) were investigated. First the radon

concentration and temperature were correlated, and then the radon data was corrected by the

temperature by means of a simple linear regression. Then the temperature corrected radon

data was corrected by the air pressure data by the same method. The extensometer is not

sensitive to the direct effect of the temperature and air pressure (Mentes and Eper-Pápai,

2006; Mentes, 2008). These parameters have only an indirect effect on the extensometric data

due to deformation of the rock. This later effect influences also the strain of the rock (also

measured by the extensometer) and therefore the emanation of the radon. That is why the

strain data was not corrected with the temperature and air pressure. Finally, the temperature

and air pressure corrected radon data were correlated with the strain data, in order to

determine the regression coefficient between radon and the strain data. The regression

coefficient gives the change of the radon concentration caused by 1 nstr. The value obtained

for the summer of 2009 is 0.0424 kBq/m3/nstr (empirical correlation index: R2=0.9834) and

for the summer of 2010 is 0.0151 kBq/m3/nstr (R2=0.9673). The R-square values show a very

good correlation between radon concentration and strain values. In the summer of 2010, the

regression coefficient is less than the value in the summer of 2009. Figure 5 shows that the

amplitude of the radon concentration curve is smaller in 2010 than in summer 2009. The

reason is that the stress in the rock is higher due to the compression of the rock. If we divide

the difference between the maxima of the radon concentration (points A and B in Fig. 5) by

the difference of the measured strains between these points (112 kBq/m3/2700 nstr) we get

0.0414 kBq/m3/nstr, which is the value of the regression coefficient obtained for the summer

of 2009.  Otherwise, if the stress in the rock in the summer of 2010 were the same as in 2009,

the radon concentration would be the same value as in 2009. It means that the higher the

compression of the rock is, the less the radon is emanated from the rock. This fact proves
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unambiguously that the strain measured by the extensometer is real strain and does not

contain instrumental drift.

5. Discussion

Crustal movements and deformations in Central Europe are investigated on the basis of

continuous and repeated measurements of the coordinates of permanent and epoch GPS

stations of the Central European GPS Reference Network. Measurements began in 1994.

Measurements and data processing are carried out by different groups in close international

co-operation, e.g. within the Central Europe Regional Geodynamics Projects CERGOP and

CERGOP-2 (Grenerczy et al. 2000; Caporali et al. 2008). Grenerczy et al. (2000) determined

the strain rate from GPS data (from 1994 to 1998) of the CEGRN and the Hungarian GPS

Geodynamic Reference Network in two regions (A and B in Fig. 6). In region A they obtained

a principal contraction strain rate -8.6 ± 2.5 nstr/y in the NE-SW direction (G1 in Fig.6).

About the same principal contraction rate -8.0 ± 5.3 nstr/y (G2 in Fig. 6) was determined in

the B region but its direction is NW-SE. Bus et al. (2009) calculated a principal contraction

rate -4.1 nstr/y with a NEE - WWS direction for the whole Central Pannonian (CP) area from

the HGRN data from 1991 to 2007. In the sub-network A they obtained practically the same

value (-7.6 nstr/y) as was earlier calculated by Grenerczy et al. (2000). In the Mur-Mürz

(MM) zone, parallel with the fault -12 nstr/y contraction, while perpendicular to it 9.6 nstr/y

an extensional rate (transtension, see Fodor et al. 2005) was obtained. The extensometer in

Sopron has about the same azimuth as the direction of the principal extensional rate in the

MM zone and in the A section (in Fig. 6) and the direction of the principal contraction strain

rate in the B section. These directions correspond to forces which move the East Alpine-North

Pannonian unit to the east and rotate it clockwise (Bada et al. 2007a; Caporali et al. 2008).

Results derived from a borehole breakout, earthquake focal mechanism (FMS) and overcoring

measurements in the vicinity of the MM zone which show diverse local maximum strain
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directions (Bada et al. 2007b).  Some of them are parallel with the extensometer at the Sopron

station. Thus we can assume that the direction of the extensometer is near the direction of the

principal contraction strain rate in this region; (see also the maximum shortening direction

map made by Olaiz et al. (2009)). The deformation in the Pannonian basin is not uniform. It is

concentrated mostly in the western and central parts of the basin (e.g. Bada et al. 2007a).  The

vertical movements, such as uplift and subsidence, induce horizontal strain (Caporali 2009).

One of the reasons for the high strain rate measured by the extensometer in the SGO is

probably the difference of the vertical velocities in the East Alpine region and in the

Pannonian basin (Cloetingh et al. 2005; Dombrádi et al. 2010). However, the main reason for

the much higher strain rate (in the order of µstr/y) measured by the extensometer than strain

rates determined from GPS measurements is inherent in the difference of the measuring

methods. The extensometer measures local strain rates, since only global strain rates for large

areas can be determined from GPS measurements.  The weak lithosphere (folding and

compression) absorbs the strain in the Pannonian basin (Dombrádi et al. 2010) while faults

between GPS stations and earthquakes in the region release the strain (Bada et al. 2007b; Bus

et al. 2009).

Fig. 6 shows GPS velocities (simple arrows) in Sopron and in its surroundings. We see that at

the GPS stations in Sopron and DISZ, the eastward component of the velocity is larger than at

the stations in the Alps (HFLK, SBGZ, GRAZ). This fact can cause the decreasing

contraction rate measured by the extensometer in Sopron. The variation of the strain rate is

probably due to the spatial and temporal distribution of the earthquakes in the region of the

SGO (BUS et al. 2009; Kiszely 2010). Baseline length variations – probably due to strain

variations – were also determined from long-term GPS observations (Caporali and Martin,

2000).

6. Conclusions
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Data obtained from a quartz-tube extensometer located in the Sopronbánfalva Geodynamic

Observatory at the foot of the Eastern Alps have shown a long-term compressive strain rate of

-5.36 µstr/y. However, considerable strain variation was observed during the whole period of

20 years of observation. During the period 1993-2001 the strain rate accelerated to a

maximum of -8.6 µstr/y in 2001, and then decelerated again between 2002-2010 to

approximately -2.5 µstr/y in 2010. The strain results were validated by a simultaneous two

year radon monitoring in 2009/10. Correlations proved absence of instrumental drift in our

extensometric data.

Since strain variations measured by the extensometer are below of the threshold of the

measurability by GPS methods on short base lines, the continuous extensometric

measurements play a very important role in the study of local geodynamic processes.
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Table 1. Amplitude factors calculated from data series measured from 2000 to 2010

Wave
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Average
± stdv

O1 0.686 0.652 0.687 0.724 0.716 0.695 0.691 0.735 0.692 0.626 0.549 0.648 ±0.05
M2 1.087 1.144 1.212 1.186 0.959 1.129 1.292 1.236 1.268 1.163 0.951 1.148±0.11
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Figure captions

Fig. 1. The location of the Sopronbánfalva Geodynamic Observatory (SGO) in the Sopron

Mountains, Hungary and the geological setting of the measurement site (Haas, 2001).

Fig. 2. Ground-plan of the Sopronbánfalva Geodynamic Observatory.

Fig. 3. Raw extensometric data from 1 Jan.1991 to 31 Dec. 2010.

Fig. 4. Yearly variation of the strain rates.

Fig. 5. Temperature, barometric pressure, strain and radon concentration data measured in the

SGO between 1 Feb. 2009 and 31 Oct. 2010. Measured raw data are on the left, polynomials

fitted to the raw data are on the right.

Fig. 6. GPS velocities and strain rates in the region of the SGO (SOPRON).Arrows denote the

intraplate velocities inferred from GPS measurements. Velocities at the sites WTZR, HFLK,

HUTB, GRAZ, PENZ, DISZ were determined by Caporali et al. (2008); the velocity at the

site SOPRON was determined by Grenerczy et al. (2000). Double arrows denote the strain

rates inferred from GPS observations. The strain rate given in Sopron was determined by the

extensometer.



15

Figures

Fig. 1.

Fig. 2.



16

Fig. 3.

Fig. 4.
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