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ABSTRACT 1 

Coefficient of determination (R2) and its leave-one-out cross-validated analogue 2 

(denoted by Q2 or R2
cv) are the most frequantly published values to characterize the predictive 3 

performance of models. In this article we use R2 and Q2 in a reversed aspect to determine 4 

uncommon points, i.e. influential points in any data sets. The term (1-Q2)/(1-R2) corresponds 5 

to the ratio of predictive residual sum of squares (PRESS) and the residual sum of squares 6 

(RSS). The ratio correlates to the number of influential points in experimental and random test 7 

data sets. We propose an (approximate) F-test on (1-Q2)/(1-R2) term to quickly pre-estimate 8 

the presence of influential points in training sets of models. The test is founded upon the 9 

routinely calculated Q2 and R2 values and warns the model builders to verify the training set, 10 

to perform influence analysis or even to change to robust modeling. 11 

 12 
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1. INTRODUCTION 1 

Model validation and evaluation of predictive ability are basic steps in chemometrics, 2 

bioinformatics, quantitative structure activity relationship (QSAR) and quantitative structure 3 

retention relationship (QSRR). The coefficient of determination (R2) and the leave-one-out 4 

cross-validated R2 (Q2 or R2
cv) e.g. in ref. [1] are performance parameters calculated in most 5 

studies. In the last decades there is a plenty of discussion on the qualitative and the 6 

quantitative meaning of these parameters in the validation and prediction processes alike. 7 

There are other ways of calculations for performance parameters, e.g. they can be calculated 8 

on the training set and on the test set of the data [2-7]. The former is called internal validation, 9 

the latter is called external one. We can use the mean of the test set or of the training set in 10 

external Q2 calculations [6,7]. Further functions can be defined, if we take into account the 11 

degrees of freedom of the sums of squares in the calculations [1]. In the case of Q2, most of 12 

the calculations are performed with the leave-one-out cross-validation method, but there are 13 

many examples for different number of data to leave out [3,8]. 14 

Though the interpretation of R2 is usually straightforward, in the case of Q2, the 15 

interpretation is not unified or even dubious. Some authors only take into account the value of 16 

Q2 to R2. If Q2 is only “slightly” less than the corresponding R2, the model is considered to be 17 

validated [2,6]. However, the measure for “slight” difference cannot be given, especially not 18 

without the degree of freedom. Other users concentrate on the numerical value of Q2 without 19 

the degree of freedom and without any comparison to R2. If it is larger than e.g. 0.5, the model 20 

is thought to be validated [2,9-11]. It is not necessary that Q2 calculated on the training set 21 

correlates to the external predictive ability as it is stated in the article entitled “Beware of Q2” 22 

written by Golbraikh and Tropsha on QSAR in 2002 [2]. Doweyko repeated this observation 23 

in his paper entitled “QSAR: dead or alive?” [12]. 24 
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The literature on Q2 is connected mostly on model validation and predictive ability. 1 

Leave-one-out Q2 on the training set is a measure of internal predictive power and it is not the 2 

standalone best choice to quantify predictive performance in general, e.g. [4,13-15]. 3 

In this article we focus on a different aspect of R2 and Q2. Originally, we tried to 4 

develop a statistical test to be used in model validation, where the input data are R2 and Q2 5 

calculated on the training set. We tried with different formulas, but none of them indicated 6 

reliable correlation to the expected validity of the models. Looking through the calculation 7 

details of R2 and Q2, we realized that our methods were not connected to the validity or the 8 

predictive ability of the models, but they were connected to a different feature of the training 9 

set. Here, we suggest using a statistical test to pre-estimate the presence of influential points 10 

in the training set. In our study we focus on the average model builders of QSAR or QSRR 11 

ones, where ordinary or partial least square regressions are applied, and R2 and Q2 are 12 

routinely calculated. Influence analysis, identification of x and y outliers, and comparison to 13 

robust regression are usually outside of scope in the average QSAR/QSRR publication. 14 

Therefore, an introduction of a method that alerts model builders is a valuable aim. There are 15 

two general ways to investigate the data set and the model building for uncommon points (e.g. 16 

ref. [16]). The first one is the regression diagnostics pioneered by Cook [17,18]. Here, the 17 

model is fitted to the whole data set first, and thereafter the influential points, x and y outliers 18 

are detected via different criteria [1,18]. The other way is to use robust regression, where the 19 

model is built on a subset or on a weighted set of data. Here, the uncommon feature of the 20 

points is taken into account in the model building. The outliers are quantified with large 21 

robust residuals in the y direction and robust distances in the predictor space. The latter points 22 

are usually termed as leverages. Since the aim of our study is to introduce a quick test to alert 23 

uncommon points in the data set of QSAR studies, where the model building has been already 24 

performed with ordinary or partial least square methods, we have limited ourselves to the first 25 

type of regression diagnostics. It does not mean, that we question or neglect the results 26 
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obtained in the last decades with robust regression, simple the aim and the corresponding 1 

preconditions do not allow its use. The suggested test uses PRESS (predictive residual sum of 2 

squares) and its meaning is at least questionable in the combination of the leave-one-out 3 

method and robust regression. 4 

 5 

2. THEORY 6 

2.1 Calculation of sum of squares 7 

We denote with TSS, RSS and MSS the total, residual and model sum of squares of n 8 

data, yi. The average of the experimental data is denoted by y  and iŷ -s are the data 9 

calculated by a model. The number of the parameters (including intercept) in the model is p. 10 
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The coefficient of determination is defined as 12 

TSS

RSS

TSS

MSS
R  12  (Eq. 2) 13 

because TSS=MSS+RSS. 14 

In the case of internal cross-validation with leave-one-out method, we can calculate the 15 

predictive residual sum of square as: 16 
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/ˆ  (Eq. 3) 17 

where iiy /ˆ  denotes the value calculated for the i-th experiment leaving out the i-th experiment 18 

in the parameterization of the model. The cross-validated correlation coefficient is defined in 19 

Eq.4. 20 
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(Eq. 4) 21 
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R2 ]1;0[ , but Q2 can be negative, if the model performs weakly (worse than modeling with a 1 

simple average), therefore Q2 ]1,( . 2 

The basic assumption in our test is that the ratio of two variances sampling from the 3 

same normal distribution follows F-distribution with the corresponding degree of freedom. 4 

Both RSS and PRESS are sum of squares with dfRSS and dfPRESS degrees of freedom. If our 5 

data set (training set) is correctly chosen, we can reasonably expect that 6 
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dfPRESS

RSS
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


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 (Eq. 5) 7 

Strictly speaking the F-distribution in (Eq. 5) is only valid when PRESS and RSS are 8 

independent. The PRESS is higher or equal to RSS, i.e. they are not fully independent. Hence 9 

we emphasize the approximate sign in Eq. (5). 10 

Therefore, a traditional F-test (known also as variance ratio test) gives us information that the 11 

models on the reduced data sets obtained by the leave-one-out way are significantly different 12 

in the aspect of the variance from the one derived on whole data set. Of course it is not easy to 13 

identify the direct link between the meaning of “difference in the aspect of the variance” and 14 

“model validation”.  15 

One of the reviewers suggested that the PRESS/RSS test (i.e. the traditional parametric 16 

F-test) might be substituted with a non-parametric alternative. However, we have not found 17 

any reasonable algorithm (i.e. using bootstrap) for our case, where a given PRESS/RSS ratio is 18 

available from the literature. The bootstrap on the given data set provides very important (but 19 

different) information. Namely, it provides the uncertainty (confidence interval, histogram) of 20 

the PRESS/RSS on the given data set. This issue is detailed in the result and discussion part 21 

(3.3). 22 

 23 

2.2 Identification of influential points 24 
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There is no unique mathematical definition of an influential observation in the 1 

literature, therefore we used the following “... compared to other observations it has a 2 

relatively large impact on the estimated quantities like response, regression coefficient, 3 

standard error, etc.” [1]. One or more parameters are extremely sensitive to the influential 4 

observation. If we omit the observation, there is a reasonable difference in the parameter set 5 

causing different models. Outliers and influential points are similar but not identical concepts. 6 

Many of the outliers are influential points as well, despite that they are outliers in the y 7 

direction (termed often as outliers) or in the x direction (known as leverages). There are 8 

mathematical definitions for outliers, there are methods to detect them despite the masking 9 

effect, but it is a mismatch to use the outlier definitions for influential observations.  10 

To identify the influential points in data sets, we selected some basic methods. A good 11 

survey of the methods was published in 1986 [18]. A comparison of some new methods to 12 

robust methods was performed recently, as well [16]. As we mentioned earlier, we did not use 13 

all available methods to identify influential points, because we concentrated on the studies, 14 

where Q2 and R2 are calculated and the model can be obtained with ordinary least squares and 15 

partial least square regressions. Robust methods are very efficient to build models with 16 

correct treatise of outliers and leverages, but an average QSAR or QSRR developer avoids 17 

using robust methods. The aim of our study was to develop a quick pre-estimation tool on 18 

uncommon data points for average model builders, who are not interested in model building 19 

with special knowledge on robust statistics or influence analysis. Therefore, we deliberately 20 

chose several non-robust methods being differently sensitive on the presence of influential 21 

points in dissimilar data sets. Here, we outline the selected ones as described in the handbook 22 

of Frank and Todeschini [1]. For details see the references therein and the surveys mentioned 23 

in refs. [16,18]. We performed some calculations with robust methods as well (e.g. [16,19]), 24 

but the results are questionable for the aim of the study and because of the combination of 25 

ordinary least squares and robust regression. 26 
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HD: The i-th observation is called influential point, if the corresponding diagonal 1 

element of the hat matrix (hii) is 2 

nphii /2  (Eq. 6) 3 

The hat matrix is calculated as X(XTX)-1XT for ordinary least square regression, where X is 4 

the predictor matrix. Since hii is proportional to the square of the Mahalanobis distance of the 5 

observation from the mean of observations, this definition often used to identify leverages, as 6 

well. 7 

SR: ti denotes the studentized residuals and calculated as  8 
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observation. The i-th observation is influential, if ti > 2. 11 

COOK: Cook’s method is used for regression, where rsi denotes the standardized 12 

residuals and sr is the residual standard deviation. In this method a di value is defined and 13 

tested in an F-test with p and n-p degrees of freedom.  14 
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Practically, the F-test can be replaced by the comparison of COOKi to different limit values 16 

(constants). We defined influential points as COOK-1, if COOKi > 1 and COOK-2, if  17 

COOKi > 4/n [17]. According to the classification of Chatterjee and Hadi [18], Eq. 8 belongs 18 

to the influence function type definitions. 19 

COVRATIO: The covariance ratio method measures the influence of the i-th 20 

observation on the variance of the regression coefficients.  21 
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We used the definitions of influential points with npCOVRATIOi /31   [20]. It differs 1 

from the (maybe mistyped) definition in the book of Frank and Todeschini [1]. Eq. 9 It is 2 

related to the volume of confidence ellipsoids according to the classification of ref. [18]. 3 

DFBETAS is calculated using the bj estimated regression coefficient, its bj\i estimation 4 

when the i-th experiment is omitted and cjj, is the diagonal of the (XTX)-1 matrix. 5 

jji

ijj
ij

cs

bb
DFBETAS

/

/
   (Eq. 10) 6 

The i-th data is treated as influential observation, if nDFBETASij /2  [20]. The definition 7 

is related to partial influence [18]. 8 

DFFITS: The scaled variable is the difference between the predicted and the response of 9 

the i-th observation with and without using the observation in the model. It is scaled by the 10 

standard error of the observations. 11 

2/1
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h
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A point is influential, if npDFFITSi /2  (case DFFITS-1) or 2iDFFITS  (case DFFITS-13 

2). It belongs to the influence function type definitions [18]. 14 

 15 

3. RESULTS AND DISCUSSIONS 16 

3.1 Simulated data sets 17 

Data sets were generated using random numbers to mimic experimental data to be 18 

modeled with multivariate ordinary least squares regression. The superscripts denote the 19 

dimension of the variables. At first yp and Xp×(p-1) variables were filled with uniform random 20 

numbers of [0;1). Xp×(p-1) was extended with a p-th column containing ones. The solution of 21 

the set of linear equations Xp×(p-1)pp =yp provided a set of regression parameters pp, where pp 22 

was the intercept in the regression. The number of the rows of X was extended from p to n 23 
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and the new rows were filled with random numbers from uniform [0;1) distribution. The last 1 

column of X contained only ones. The dimension of the column vector y was extended from p 2 

to n. The new elements were calculated using the previously obtained pp regression 3 

parameters and the generated new rows of Xn×p using the equation yn= Xn×ppp. Finally, a 4 

white noise of w*ε was added to each elements of y, where ε was a random number chosen 5 

from standard normal distribution and w was a predefined factor. Nine 9 parameter sets were 6 

used because of practical reasons: n=10, p=5; n=20, p=5; n=20, p=10; with combinations of 7 

w=0.05, w=0.10 and w=0.25 weights of white noise; 105 random model calculations were 8 

performed for each parameter sets resulted all together 9•105 datasets. The limit correlation 9 

coefficients for chance correlation for n=20 (or n=10) is 0.444 (or 0.632) at the 5 % level 10 

according to the Table C-3 of Bevington [21]; i.e. the medium range for correlation 11 

coefficients were used, where the distortions can be effectively observed. Such a way the data 12 

sets will contain outliers, influential points randomly. 13 

If we used an F-like test for the ratio defined in Eq. 5, we need to know the degrees of 14 

freedom both for RSS and PRESS. In the case of ordinary least square regression dfRSS=n-p. 15 

We found in the literature that dfPRESS=n-p is used without any proof or explanation. To test 16 

this we determined dfPRESS numerically. PRESS is a sum of squares of residual quantities. If 17 

we accept the reasonable assumption of OLS regression that the PRESS residuals are not 18 

serially correlated and they are normally distributed, their sum of squares shows χ2 19 

distribution. The shape of the χ2 distribution functions can be used to determine the degrees of 20 

freedom [22] as it depends strongly on them. We calculated the histograms of our PRESS-s 21 

(105 PRESS-s for each parameter set). We scaled the histograms with their standard 22 

deviations. Thereafter we calculated the overlap integral of the scaled and normalized 23 

histograms and theoretical χ2-distributions with different degrees of freedom. The maximal 24 

overlap integrals (0.96-0.98) were obtained for the theoretical distributions with n-p-1 or n-p 25 
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degrees of freedom for all of the nine cases. The results encouraged us to use dfPRESS=n-p. It 1 

has the advantage of simplifying Eq. 5, as well.  2 

The number of influential points for all the 9•105 datasets were calculated with the 3 

methods detailed above. Different number of influential points was provided according to the 4 

different definitions. We found good correlation among the number of the influential points 5 

and the PRESS/RSS ratios for the methods SR, COOK-1, COOK-2, DFBETAS, DFFIT-1 and 6 

DFFIT-2. We did not detect reliable correlation for the method called HD, and we got 7 

negative correlation for the COVRATIO one. This negative correlation is not surprising, 8 

because a large SR value causes small COVRATIO, especially, if the HD method did not 9 

seem to be decisive for our data sets. The lack of positive correlation of the HD and the 10 

COVRATIO methods mean that leverage points are not necessarily influential observations, 11 

because these quantities are suitable (only) to identify leverages and not influential 12 

observations. HD is related to the Mahalanobis distance of the corresponding point to the 13 

centre of the points, and COVRATIO is related to the volume of the confidence ellipsoids 14 

[18]. We performed calculations, where PRESS/RSS-s were calculated by ordinary least 15 

squares fit and the leverage points were detected by extreme Mahalanobis distances or by 16 

extreme robust distances after different robust regression methods. In these cases we did not 17 

observe correlation between the number of leverage points and PRESS/RSS values, similarly 18 

to non-correlation with the HD and COVRATIO terms. We calculated also the correlation 19 

between PRESS/RSS from ordinary least squares regression and the number of the omitted or 20 

down-weighted observations in robust regressions, but we did not observe any significant 21 

correlations. Without going into details and repeating all specific aspects of robust regression, 22 

the lack of correlation in these incoherent comparisons can be caused by the differences in the 23 

definitions of Euclidean and Mahalanobis distances, by the so-called masking effect and 24 

differences in the breakdown points. 25 
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We calculated the relative frequencies of the number of data sets with different number 1 

of influential points versus the PRESS/RSS of the data sets. In Figure 1 the relative 2 

frequencies are shown for the COOK-2 method in the case of n=10, p=5 and w=0.05 3 

parameter set. This method identifies for the most data sets 2-4 influential points. This range 4 

is not surprising due to relatively small n/p ratio. It is also known that there is some 5 

connection between the expected number of influential observations and the number of the 6 

parameters in a model [22]. Data sets with larger number of influential points (defined as 7 

COOK-2) had larger PRESS/RSS values. We plotted three percentiles of F-distributions for 8 

85%, 90% and 95% with ν1 = 5 and ν2 = 5 degrees of freedom. Three or four influential points 9 

were in the data sets, if the PRESS/RSS ratio was higher than the 90% percentile. Five 10 

uncommon points were found, if PRESS/RSS was larger than the 95% percentile. 11 

 12 

(Figure 1) 13 

 14 

The results of an even more sensitive method can be seen in Figure 2. The DFBETAS 15 

method identified 3-6 influential points for the most of the cases in the same set (n=10, p=5 16 

and w=0.05) 7 and more influential points were found mostly with PRESS/RSS larger than the 17 

90% percentiles. The lack or the small number of influential points depended on the 18 

PRESS/RSS as well. Zero to two influential points were found mostly for PRESS/RSS smaller 19 

than the 95% percentiles. 20 

(Figure 2) 21 

3.2 Experimental data 22 

We tested the method on the results of Zhang et al. [23]. They performed a quantitative 23 

structure retention relationship (QSRR) study on the gas chromatographic retention indices 24 

using molecular descriptors. They built a multivariate regression model on the experimental 25 

retention data of 161 hydrocarbons using a constant and two descriptors: the total number of 26 
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non-H bonds (constitutional descriptor), R autocorrelation of lag 3 weighted by atomic van 1 

der Waals volumes (GETAWAY descriptor) [24]. 2 

In order to test the relation between PRESS/RSS and the number of influential points we 3 

performed resampling on their data. We chose n=10 or n=20 molecules. We performed the 4 

regression with p=3 parameters. We calculated PRESS, RSS and the number of the influential 5 

points with the different methods. We repeated the random resampling for 105 cases both for 6 

n=10 and n=20. 7 

(Figure 3) 8 

The relative frequencies of the number of data sets versus PRESS/RSS are shown for the 9 

DFFITS-1 method (n=10, p=3) in Figure 3. There was zero or one influential point in the 10 

majority of the resampled sets. Three influential points were seldom found and it coincided 11 

mostly with PRESS/RSS values larger than the 85% percentage of the corresponding F-12 

distribution. The results are shown for the COOK-1 method on the same sets in Figure 4. This 13 

method selected only few influential points, the most of the data sets were without any 14 

influential points. Two influential points were found mostly for data sets with larger 15 

PRESS/RSS than the 90% percentile of the corresponding F-distribution. This percentile 16 

served also as an upper limit for the data sets with zero influential point. 17 

(Figure 4) 18 

We applied the fi coefficient e.g. in ref. [1] to quantify the correlation among 19 

PRESS/RSS and influential point methods. It is defined as: 20 

    dcdbcaba

bcad
fi





,
 (Eq. 12) 21 

where the meaning of a, b, c and d is detailed in Table 1. 22 

(Table 1) 23 

In this calculation we distinguished according to the absence/presence of influential 24 

points, but it was an approximation in the case of our simulated data, because methods 25 
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identifying the influential points observed many influential points in most of the cases. We 1 

did not predefine an Fcrit value, but we scanned the possible PRESS/RSS range (x-axis of 2 

Figures 1-4) to find an Fcrit which maximizes the fi coefficient. The ranges of the obtained 3 

maximal fi-s for the different parameter sets in the scanned Fcrit range were as follows: SR 4 

(0.1-0.2), COOK-1 (0.6-0.8), COOK-2 (0.5-0.6), DFBETAS (0.4-0.5), DFFITS-1 (0.2-0.3), 5 

DFFITS-2 (0.3-0.4). We note again, that the absence/presence criterion fails due to the high 6 

number of the influential points found by the methods for the most data sets. 7 

In Figures 1-4 we showed that higher number of influential points (L) causes shift of the 8 

relative frequency curves along the PRESS/RSS axis and that the PRESS/RSS ratio positively 9 

correlates with the number of the influential points. If the correlation is strong, there is a 10 

possibility to use PRESS/RSS to detect, or at least to pre-estimate the presence of influential 11 

points. An F-test on PRESS and RSS may be used for this purpose, but we have to predefine a 12 

significance level and a corresponding Fcrit value. A reasonable significance level can be 13 

identified, if we search the Fcrit value, where the PRESS/RSS and one of the identification 14 

methods shows the maximal fi. It means an Fcrit value, where the separation of data sets with 15 

and without influential points is maximal. We show the Fcrit dependence of fi for the gas 16 

chromatographic retention data of Zhang et al. [23]. The COOK-1 method was chosen for the 17 

detection of influential points. It can be seen in Figure 5, that a clear maximum is obtained at 18 

Fcrit=2.4 here. Fcrit=2.4 corresponds to a percentile of 86%. 19 

(Figure 5) 20 

We collected Q2 and R2 values of 247 QSAR models from the literature. The sources of 21 

the data were mostly collections, for QSAR details see references [6,10,25] and references 22 

therein. We calculated the PRESS/RSS ratios for these data and also the F-percentiles, because 23 

n and p were accessible in the data collections. The histogram of the F-percentiles is shown in 24 

Figure 6. Obviously, there are no data less than 0.5, because 1 ≤ PRESS/RSS and ν1=ν2 cause 25 

a minimal 0.5 percentile of the corresponding F-distribution. There were no influential points 26 
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in the training sets of the two thirds of the models according to our test, but one third of the 1 

QSAR models would fail on an F-test of the PRESS/RSS ratio. It means the training sets of 2 

these models probably contained influential points. It can be interpreted that there were 3 

problems already with the internal predictive character of the models. We note here that the 4 

part of the models were taken in the collections of references [6,10] to show the existence of 5 

better models. We note as well that the most of the models with F-percentiles larger than 0.95 6 

(models with larger probability of influential observations) were 3D QSAR ones collected or 7 

calculated by Cramer and Wendt [10]. 8 

(Figure 6) 9 

The determination of the number of the degrees of freedom is not straightforward in the 10 

case of partial least square regression (PLS). There are different assumptions and methods to 11 

calculate so-called pseudo degrees of freedom for PLS regression [22,26,27]. Unfortunately, 12 

we were not able to calculate pseudo degrees of freedom for these cases with PLS, because it 13 

needs more details on the data sets and the models, than it was accessible in the used literature 14 

sources of Q2 and R2. Anyway, we plot a second histogram in Figure 6 (frequencies against 15 

percentiles of the F distribution (p=0.05), where the pseudo degrees of freedom of the model 16 

was defined as 4*p causing dfPRESS=n-4p and dfRSS=n-4p. The factor 4 was chosen as an 17 

extremely large difference between conventional degrees of freedom and pseudo degrees of 18 

freedom. Figure 6 clearly shows that though the majority of the models are acceptable about 19 

80 models are wrong (percentile is above 95%). The ambiguity problem of degrees of 20 

freedom in case of PLS (or principal component regression) cannot cause a serious limitation. 21 

The problem disappears asymptotically as ‘n-p’ approximates n, whereas there is some 22 

uncertainty in the p-value only. The test detected the same models as wrong ones even if the 23 

degree of freedom value was calculated by other multiplier than 4. 24 

3.3 The uncertainty of PRESS/RSS data 25 
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We used the bootstrap method of resampling residuals [28] to assess the uncertainty and 1 

the confidence intervals of PRESS/RSS calculation. We generated 500 bootstrap samples for 2 

each of 500 random datasets corresponding to our test sets with given n, m and w. The 3 

bootstrap PRESS/RSS averages, the corresponding 2.5 and 97.5 percentiles are plotted versus 4 

traditional PRESS/RSS values of the data sets (Figure 7).  5 

(Figure 7) 6 

In the case of low PRESS/RSS values, the bootstrap means are usually larger than the 7 

standard one, while at medium and large PRESS/RSS they are smaller. The correlation of the 8 

bootstrap averages and the standard ones are strong with less than unit slope. It means, the use 9 

of bootstrap avrage PRESS/RSS enhances the conservative feature of our proposed test. The 10 

lower and the upper confidence limits depend strongly ion the datasets and they provide 11 

rather large uncertainty. 12 

4. CONCLUSIONS 13 

The PRESS/RSS ratio calculated from leave-one-out Q2 and R2 correlates well with the 14 

number of influential points in the training sets. Different identification methods on both 15 

simulated and experimental data support the conclusion. The correlation is strong enough, so 16 

we suggested a variance ratio test on the PRESS/RSS ratio to pre-estimate the presence of 17 

influential points in the training set, if degrees of freedoms (dfPRESS and dfRSS) are known. 18 

Some ambiguity in the degrees of freedom does not limit the applicability, because the test is 19 

conservative in this sense: i.e. it will detect only the “largely” contaminated models as wrong 20 

ones. However, any leave-one-out at a time diagnostic will fail, if influential points are shown 21 

up in groups (e.g. in pairs). 22 

There are two possible applications of our results. Q2, R2, n and p are usually calculated 23 

and published in modeling, especially in QSAR studies. The rapid calculation of PRESS/RSS 24 

and the F-test on it is a fast method to pre-estimate the presence of influential points or with 25 

other words the internal predictive character of a model. If a model fails in this test, it is 26 
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worthwhile to consider changes in the training data. As many fortuitous QSAR models appear 1 

in the literature, editors and reviewers can check the submitted models easily: if a model fails 2 

the above variance ratio test the model has little generalization ability, if at all.  3 

The other possibility is to apply the method for influential point detection, where not 4 

specific data is declared as an influential one, but the whole set is marked as influential point 5 

free or infected one. Of course, a hypothesis is necessary for the F-test. Our examples 6 

suggested using 85-95 % percentiles as critical F values to make decisions between the H0 7 

hypothesis of influential observation free or Ha alternative hypothesis of presence of 8 

influential points. 9 

10 
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 1 

Table 1  2 

Frequencies a, b, c and d denote the number of occurrences of the sub cases where L is the 3 

number of the influential points in the data set 4 

 0<L L=0 

Fcrit ≤ PRESS/RSS a b

PRESS/RSS < Fcrit c d

 5 

6 
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FIGURE CAPTIONS 1 

Figure 1  2 

Relative frequencies of the number of data sets with different number of influential points (L) 3 

identified by the COOK-2 method versus the PRESS/RSS of the data sets. The black squares 4 

denote three percentiles of the corresponding F-distribution. Parameters: n=10, p=5 and 5 

w=0.05 6 

Figure 2  7 

Relative frequencies of the number of data sets with different number of influential points (L) 8 

identified by the DFBETAS method versus the PRESS/RSS of the data sets. The black squares 9 

denote three percentiles of the corresponding F-distribution. Parameters: n=10, p=5 and 10 

w=0.05 11 

Figure 3  12 

Relative frequencies of the number of resampled experimental sets with different number of 13 

influential points (L) identified by the DFFITS-1 method versus the PRESS/RSS of the data 14 

sets. The black squares denote three percentiles of the corresponding F-distribution. 15 

Parameters: n=10, p=3 16 

Figure 4  17 

Relative frequencies of the number of resampled experimental sets with different number of 18 

influential points (L) identified by the COOK-1 method versus the PRESS/RSS of the data 19 

sets. The black squares denote three percentiles of the corresponding F-distribution. 20 

Parameters: n=10, p=3 21 

Figure 5  22 

Dependence of fi on the choice of the critical F-value for the resampled experimental data of 23 

Zhang et al. n=10, p=3. 24 

 25 

Figure 6  26 
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Frequencies for the percentiles calculated from F-distributions at the PRESS/RSS values of 1 

247 QSAR models. Blue (black): dfPRESS and dfPRESS=n-p Red (gray): estimation of the 2 

pseudo degrees of freedom, dfPRESS and dfRSS=n-4*p for PLS models. 3 

 4 

Figure 7 5 

Scatter plot of bootstrap PRESS/RSS values versus standard ones. n=20, m=5, w=0.05 6 

7 
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Fig.1 Tóth  1 

Figure 1 Relative frequencies of the number of data sets with different number of influential 2 

points (L) identified by the COOK-2 method versus the PRESS/RSS of the data sets. The 3 

black squares denote three percentiles of the corresponding F-distribution. Parameters: n=10, 4 

p=5 and w=0.05 5 
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Fig.2 Tóth  1 

Figure 2 Relative frequencies of the number of data sets with different number of influential 2 

points (L) identified by the DFBETAS method versus the PRESS/RSS of the data sets. The 3 

black squares denote three percentiles of the corresponding F-distribution. Parameters: n=10, 4 

p=5 and w=0.05 5 
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Fig.3 Tóth  1 

Figure 3 Relative frequencies of the number of resampled experimental sets with different 2 

number of influential points (L) identified by the DFFITS-1 method versus the PRESS/RSS of 3 

the data sets. The black squares denote three percentiles of the corresponding F-distribution. 4 

Parameters: n=10, p=3 5 
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Figure 4 Relative frequencies of the number of resampled experimental sets with different 2 

number of influential points (L) identified by the COOK-1 method versus the PRESS/RSS of 3 

the data sets. The black squares denote three percentiles of the corresponding F-distribution. 4 

Parameters: n=10, p=3 5 
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Figure 5 Dependence of fi on the choice of the critical F-value for the resampled experimental 2 

data of Zhang et al. n=10, p=3. 3 
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Figure 6 Frequencies for the percentiles calculated from F-distributions at the PRESS/RSS 2 

values of 247 QSAR models. Blue (black): dfPRESS and dfPRESS=n-p Red (gray): estimation of 3 

the pseudo degrees of freedom, dfPRESS and dfRSS=n-4*p for PLS models. 4 
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Figure 7 1 

Scatter plot of bootstrap PRESS/RSS values versus standard ones. n=20, m=5, w=0.05 2 
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