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Abstract. A set 3 is internally chain transitive if for any x, y ∈3 and ε > 0 there is an
ε-pseudo-orbit in3 between x and y. In this paper we characterize all ω-limit sets in shifts
of finite type by showing that, if 3 is a closed, strongly shift-invariant subset of a shift of
finite type, X , then there is a point z ∈ X with ω(z)=3 if and only if3 is internally chain
transitive. It follows immediately that any closed, strongly shift-invariant, internally chain
transitive subset of a shift space over some alphabet B is the ω-limit set of some point in the
full shift space over B. We use similar techniques to prove that, for a tent map f , a closed,
strongly f -invariant, internally chain transitive subset of the interval is the ω-limit set of a
point provided it does not contain the image of the critical point. We give an example of
a sofic shift space Z G (a factor of a shift space of finite type) that is not of finite type that
has an internally chain transitive subset that is not the ω-limit set of any point in Z G .

1. Introduction
Let f : X→ X be a continuous map of a topological space. The ω-limit set of a point, x , is
the set of accumulation points of the orbit of x , ω f (x)=

⋂
n∈N { f j (x) | j ≥ n} (we often

drop the subscript and write simply ω(x)). Intrinsic to any description of the behavior of x
is the topological structure of the ω-limit set of x . By definition, ω-limit sets are closed
and strongly invariant; however there are many closed strongly invariant sets which are not
ω-limit sets (such as two fixed points of a transitive map of the interval).

The following definition appears in Hirsch et al [5], where they prove Lemma 1.2.

Definition 1.1. Let f : X→ X be a continuous function on a metric space. Let 3⊆ X be
f -invariant and closed. We say that 3 is internally chain transitive if for every pair of
points x and y in 3 and ε > 0 there is a finite sequence of points in 3

x = x0, x1, x2, . . . , xn = y
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and sequence of natural numbers t1, t2, . . . , tn ≥ 1 such that

d( f ti (xi−1), xi ) < ε.

A sequence of points given in the definition above is sometimes called an ε-pseudo-
orbit. Thus a closed strongly invariant set is internally chain transitive if for each x and y
and ε > 0 there is an ε-pseudo-orbit from x to y in 3. According to Guckenheimer and
Holmes [4], 3 is indecomposable if for any two points x, y ∈3 and any ε > 0 there
is an ε-pseudo-orbit between x and y. If, for example, f : X→ X has a dense orbit
then any closed, strongly invariant subset (such as the union of two disjoint orbits) is
indecomposable, though not necessarily internally chain transitive.

Interestingly, it turns out that, in compact metric spaces, internal chain transitivity
is equivalent to Šarkovskii’s property of weak incompressibility (a set A is weakly
incompressible if and only if for any proper, non-empty closed F ⊆ A, F ∩ f (A r F)
6= ∅). We will examine this fact in a sequel to the current paper.

LEMMA 1.2. Let X be a compact metric space and f : X→ X a continuous map on X.
If x ∈ X, then ω(x) is internally chain transitive.

Many dynamical systems, for example Markov maps of the interval, horseshoes,
hyperbolic toral automorphisms, can be studied from a symbolic point of view (see [6]).
For these systems, understanding the structure of ω-limit sets reduces to understanding ω-
limit sets in the symbolic dynamical system, particularly in the widely studied sub-family
of symbolic systems, the shifts of finite type.

In this paper we focus on this family of dynamical systems. We characterize all closed
strongly invariant subsets of a shift of finite type which can occur as an ω-limit set as
precisely those that are internally chain transitive. It follows immediately that if X is any
shift space over the alphabet B and3 is any closed, strongly shift-invariant, internally chain
transitive subset of X , then3 is the ω-limit set of some point in the full shift space over B.
Using the same techniques from symbolic dynamics we prove that, if f is a tent-map core
on [0, 1] with critical point c, a closed, strongly invariant, internally chain transitive set
3⊆ [0, 1] is an ω-limit set provided f (c) /∈3.

We end the paper with an example of a sofic shift space with an internally chain
transitive subset which is not an ω-limit set. Essentially this is because this sofic shift
space does not have the pseudo-orbit shadowing property.

2. Shift spaces
For a finite alphabet Bn = {0, 1, . . . , n − 1}, let B j

n = {y1 y2 . . . y j | yi ∈ Bn for all i ≤ j},

Fin(Bn)=
⋃
∞

j=1 B j
n ,

Xn = BNn = {x0x1x2x3 · · · | xi ∈ Bn for all i ∈ N}

and
Zn = BZn = {. . . x−1x0x1x2 · · · | xi ∈ Bn for all i ∈ Z}.

Let w = w1w2 . . . wm ∈ Fin Bn . We call w a finite word (or just a word) over Bn , and
denote the length, m, of w by |w|. An element x of either Xn or Zn contains the word
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w if there is an integer i such that w = xi+1xi+2 . . . xi+m . If x is a word over Bn with
|x | = k ≥ m = |w|, then we say that w is an initial segment of x if x starts with w and that
w is a terminal segment of x if x ends in w.

If z = . . . z−1z0z1 · · · ∈ Zn , we say that z−n . . . z−1z0z1 . . . zn is a central segment
of z. We call the infinite word z0z1 . . . the right tail of z and the infinite word . . . z−1z0

the left tail of z.
Suppose Bn is given the discrete metric topology with the distance between distinct

points being 1. Then, with the product topology, both Xn and Zn are compact metrizable
spaces, with compatible metric d(x, y)= 1/2k , where k is the least natural number such
that x0 . . . xk 6= y0 . . . yk , for x, y ∈ Xn , or x−k . . . xk 6= y−k . . . yk , for x, y ∈ Zn . If
z ∈ Fin(Bn), then

Cz = {x ∈ Xn | z is an initial segment of x}

is a clopen cylinder set in Xn and

Dz = {x ∈ Zn | z is a central segment of x}

is a clopen cylinder set of Zn . Clearly, the collection of all cylinder sets forms a base for
the topology on Xn and Zn .

Define σ : Xn→ Xn by

σ(x0x1x2x3 . . . )= x1x2x3 . . . .

Similarly define σ : Zn→ Zn by

σ(. . . x−1x0x1x2 . . . )= . . . x ′
−1x ′0x ′1x ′2 . . .

where x ′i = xi+1. We refer to σ as the shift map.
A subset K of either Xn or Zn that is compact and strongly shift-invariant (i.e. σ(K )

= K ) is called a shift space.
Let F be a collection of words over Bn . Define

X F = {x ∈ Xn | x does not contain any word from F}
and

Z F = {x ∈ Zn | x does not contain any word from F}.
For Zn , the following theorem is exactly Theorem 6.1.21 combined with [7, Definition

1.2.1]. The argument for Xn is similar, see [2, Theorem 3.6.3].

THEOREM 2.1. A subset K of Xn or Zn is a shift space if, and only if, there is a collection
of words F such that K is either X F or Z F .

If F is finite then X F and Z F are called shifts of finite type. Shifts of finite type are
widely used in dynamical systems. For instance they are models for Markov maps of the
interval and are sometimes referred to as topological Markov chains.

The following theorem follows from the fact that the cylinder sets from a base for the
topology of a shift space.

THEOREM 2.2. Let K be a shift space, and let x ∈ K . If x ∈ Xn , then ωσ (x) is the set
of all points y ∈ K such that every initial segment of y occurs infinitely often in x. If
x ∈ Zn then ωσ (x) is the set of all points y ∈ K such that every central segment of y
occurs infinitely often in the right tail of x.
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3. ω-limit sets in shifts of finite type
In this section we prove our main theorem which states that a closed invariant subset of a
shift of finite type is an ω-limit set of a point if, and only if, it is internally chain transitive.

LEMMA 3.1. Let M ∈ N. Let F be a finite collection of words with length less than M,
and let A⊆ Fin(B). Consider the following conditions.
(1) A ∩ F = ∅.
(2) For all θ ∈A there are words φ, A, B ∈A of non-zero length such that φ = AθB.
(3) A is closed under taking subwords.
(4) If θ, φ ∈A with |θ |, |φ|> M then for each m >max{|θ |, |φ|} there is an integer

rθ,φ,m and for each 1≤ j ≤ rθ,φ,m there are words Bθ,φ,m, j and xθ,φ,m, j in A with
|Bθ,φ,m, j |, |xθ,φ,m, j | ≥ m such that the following hold.
(a) xθ,φ,m,1 = θx ′θ,φ,m,1 Bθ,φ,m,1 for some word x ′θ,φ,m,1.
(b) For 1≤ j < rθ,φ,m , Bθ,φ,m, j xθ,φ,m, j+1 ∈A.
(c) For 2≤ j ≤ rθ,φ,m the word xθ,φ,m,1xθ,φ,m,2 . . . xθ,φ,m, j ends with Bθ,φ,m, j .
(d) xθ,φ,m,1xθ,φ,m,2 . . . xθ,φ,m,rθ,φ,m ends with φ.

If conditions (1)–(4) are true then there is a point x ∈ Z F such that A is the set of all
infinitely repeating words in the right and left tail of x.

Proof. Let A′ be a subset of Fin(Bn) satisfying the conditions of the theorem, and
let A be the subset of A′ consisting of all elements of A′ with length longer than M .
Enumerate A as {θ∗n }

∞

n=0. Let {θn}n∈Z be defined so that θn = θ
∗

|n| for each n ∈ Z, and
let {mn}n∈Z be a sequence of positive integers with mn >max{|θn|, |θn+1|}. For each
n ∈ Z and 1≤ j ≤ rθn ,θn+1,mn , let rn = rθn ,θn+1,mn , Bn = Bθn ,θn+1,mn ,1, xn, j = xθn ,θn+1,mn , j ,
x ′n, j = x ′θn ,θn+1,mn , j ,

2n = xθn ,θn+1,mn ,1 . . . xθn ,θn+1,mn ,rθn ,θn+1,mn
= xn,1 . . . xn,rn ,

2′n = x ′n,1 Bn xn,2 . . . xn,rn .

Let

x = . . . x−2,r−2 x ′
−1,1 B−1x−1,2 . . . x−1,r−1 · x

′

0,1 B0x0,2 . . . x0,r0 x ′1,1 B1x1,2 . . . .

Now by conditions (4)(a) and (4)(b), the word xn,1 . . . xn,rn has

θn x ′θn ,θn+1,mn ,1 Bθn ,θn+1,1

as an initial segment and θn+1 as terminal segment. Hence, x is formed by consecutively
concatenating the words 2n but deleting one of the two copies of θn+1 at the junction
between2n and2n+1, for each n ∈ Z. These junctions, therefore, take the form2n 2

′

n+1.
We will begin by showing that x ∈ Z F . To accomplish this we show that no subword of x
with length less than M is in F . Notice that xn,1 ends with Bn and that Bn xn,2 ∈A. Thus
every subword of this is also in A. Therefore, as A ∩ F = ∅, we see that no subword of
2n = xn,1 . . . xn,rn is in F , for any n ∈ Z. Let V be a subword of x of length no more
than M . If V is not a subword of 2n , then V must occur at the junction of some 2n

and 2′n+1. Because θn+1 and Bn+1 have length greater than M and xn,rn ends in θn+1,
this implies that V is subword of xn,rn x ′n+1,1 Bn+1. If V occurred before the start of x ′n+1,1,
then V would be a subword of2n , which it is not. So the end of V must come after the start
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of x ′n+1,1. Since |θn+1|> |V |, we have that V is a subword of θn+1ξ
′

n+1,1 Bn+1 = xn+1,1

which is in A so that V 6∈ F . Thus x ∈ Z F .
Next we show that for each V ∈A′, V occurs infinitely often in the right and left tail

of x . Let V ∈A′. Then by (2) there are infinitely many elements of A which contain V
as a subword. Since θn is the end of the words xn−1,rn−1 and x−(n−1),r−(n−1) , so V occurs
infinitely often in the right and left tail of x .

Now suppose that V occurs infinitely often in the right and left tail of x . Choose K large
enough that |V |< |θn| for all |n| ≥ K . Notice that |2n| →∞ as |n| →∞ so our choice
of K is valid. Now either one or the other of the following holds.
(1) V occurs infinitely often as a subword of some 2n .
(2) V occurs co-finitely often as a subword of a junction 2n 2

′

n+1.
If |n| ≥ K and V occurs at the junction of2n 2

′

n+1, then, since θn+1 is a terminal segment
of 2n and |θn+1|> |V |, we actually have that V is a subword of 2n+1. Hence case
(2) reduces to case (1). For case (1), if V is a subword of any particular xn, j , then
V ∈A (since A is closed under taking subwords). So pick the largest j such that a
terminal segment of V is contained as an initial segment in xn, j , which implies that an
initial segment of V is a terminal segment of xn,1 . . . xn, j−1. But this word ends with
Bθn ,θn+1,mn , j−1 which is longer than V (by condition (4) of the lemma). Thus V is a
subword of Bθn ,θn+1,mn , j−1xθn ,θn+1,mn , j which is in A by assumption (4)(b). Again since A′
is closed with respect to taking subwords we see that V ∈A′. 2

LEMMA 3.2. Let M ∈ N. Suppose that A⊆ Fin(Bn) that is closed under taking subwords,
and such that for all θ, φ ∈A with |θ |, |φ|> M and all m >max{|θ |, |φ|} there is a
sequence of words ε1, ε2, . . . , εr ∈A such that the last m-segment of εi is the first m-
segment of εi+1, and such that θ is a subword of ε1 and φ is a subword of εr . Then A
satisfies all of assumption (4) of Lemma 3.1.

Proof. Choose θ, φ ∈A longer than M and m >max{|θ |, |φ|}. Without loss of generality
assume that θ is the initial segment of ε1 and φ is the initial segment of εr . Define
Bθ,φ,m,i to be the last m-segment of εi−1. Let xθ,φ,m,1 = ε1ε2. Then define xθ,φ,m,i+1 by
εi+1 = Bθ,φ,m,i−1xθ,φ,m,i (we lose no generality in assuming that εr has φ as its terminal
segment). 2

PROPOSITION 3.3. Let M ∈ N and let F ⊆ Fin(Bn) such that the length of every word
in F is less than or equal to M. Let A⊆ Fin(Bn). Then A is the set of all finite infinitely
repeating words in both tails of a point z ∈ Z F if, and only if, the following hold.
(1) A ∩ F = ∅.
(2) A is closed under taking subwords.
(3) For all θ ∈A there are t0, t1 ∈ Bn such that t0θ t1 ∈A.
(4) For all θ, φ ∈A with |θ |, |φ|> M and all m >max{|θ |, |φ|} there is a sequence of

words ε1, ε2, . . . , εr ∈A such that the last m-segment of εi is the first m-segment of
εi+1, and such that θ is a subword of ε1 and φ is a subword of εr .

Proof. Let z ∈ Z F and let A be the set of all infinitely repeating words in both tails of z.
Conditions (1), (2) and (3) are obviously satisfied. Lemma 1.2 gives (4). Now suppose
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that A satisfies conditions (1)–(4) of the theorem. Then by the previous lemma A satisfies
conditions (1)–(4) of Lemma 3.1. So there is a point z ∈ Z F which satisfies the theorem.

THEOREM 3.4. Let F be a finite collection of words. Let3⊆ Z F be strongly σ -invariant
and closed. Then there is a point z ∈ Z F such that3= ωσ (z) if and only if3 is internally
chain transitive.

Proof. Choose M such that |F |< M for all F ∈ F . Let z ∈ Z F . That ωσ (z) is closed,
strongly σ -invariant, and internally chain transitive follows from the definition and from
Lemma 1.2.

Suppose that 3 is closed, strongly σ -invariant and internally chain transitive. Let A
be the collection of all finite words that occur in elements of 3. Then A satisfies (1)–
(3) of Proposition 3.3. Let θ, φ ∈A with |θ |, |φ|> M and let u, v ∈3 such that θ is an
initial segment of u and φ is an initial segment of v. Let m >max{|θ |, |φ|} and let ε > 0
such that d(a, b) < ε if, and only if, the initial segment of a of length m is the same as
the initial segment of b of length m. Let x1 . . . xr be an ε-pseudo-orbit from u to v with
integers t1 . . . tr−1 such that d(σ ti (xi ), xi+1) < ε. Define εi to be the initial segment of xi

of length ti + m. Then clearly θ is an initial segment of ε1, φ is a subword of εr and the
terminal segment of εi of length m corresponds with the initial segment of εi+1 of length m.
Thus A satisfies condition (4) of Proposition 3.3. Hence there is some z ∈ Z F such that A
is the collection of all finite infinitely repeating words in both tails of z. Let x ∈3. Then
every central segment of x is in A. So every central segment of x occurs infinitely often in
the right tail of z. Hence x ∈ ωσ (z). Now let y ∈ ωσ (z). Then every central segment of y
occurs infinitely often in the right tail of z. So every central segment of y is in A. This
implies that y ∈3. Hence ωσ (z)=3. 2

Notice that by the construction of the point z in the proof above we also have
3= ωσ−1(z).

THEOREM 3.5. Let F be a finite collection of words. Let3⊆ X F be strongly σ -invariant
and closed. Then there is a point x ∈ X F such that3= ωσ (x) if and only if3 is internally
chain transitive.

Proof. The proof follows from the Proposition 3.3 immediately by taking x to be the right
tail of z.

The following is immediate since the full shift is a shift of finite type.

THEOREM 3.6. Let K ⊆ Xn (or K ⊆ Zn) be a shift space. If 3 is a closed, strongly
shift-invariant, internally chain transitive subset of K , then 3= ω(z) for some z ∈ Xn (or
z ∈ Zn).

4. ω-limit sets of the tent map
Given q ∈ [1, 2], let Fq : R→ R be the tent map

Fq(x)=

{
qx if x ≤ 1/2,

q(1− x) if x ≥ 1/2.
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We restrict this map to its core, i.e. the interval [F2
q (1/2), Fq(1/2)] and normalize the

restricted map to the unit interval. This rescaled map we call the tent-map core and we
denote it by Fq : [0, 1] → [0, 1] (or F if q is fixed). Notice that the critical point for Fq is
not 1/2, rather it is the point c = 1− 1/q . In order to ensure that Fq is locally eventually
onto (i.e. that for any interval (a, b), Fn

q (a, b)= [0, 1] for suitably large n) we also assume

that q ∈ [
√

2, 2]. We lose no generality in focusing on the dynamics of F in the interval
[0, 1], since it is strongly invariant under F and all points enter this region after a finite
number of iterations or diverge to −∞, so certainly any ω-limit set of F will be contained
within [0, 1].

Let B = {0, 1, C}, then it is well known that we can describe the dynamics of F by
considering the kneading sequence of F and itineraries of points in [0, 1] in the sequence
space BN (see [3] for details of the following). If the address map A : [0, 1] → B is defined
by

A(x)=


0, x ∈ [F2(c), c),

C, x = c,

1, x ∈ (c, F(c)],

then the itinerary map ItF : J → BN is defined by

ItF (x)= (A(x)A(F(x))A(F
2(x)) . . .).

The kneading sequence of F is then the sequence K F = ItF (F(c)) and 6F is the set
{ItF (x) | x ∈ [0, 1]} of all itineraries of points of the interval (again we drop the subscript
F). For s = (si ) and t = (ti ) in 6, we let s �k= s0s1 . . . sk−1 and say that s �k is even if it
contains an even number of 1s and odd otherwise. The discrepancy of s and t is the least k
such that sk 6= tk . We define the parity lexicographic ordering, ≺, on 6 by declaring s ≺ t
provided either one of the following hold.
(1) s �k−1= t �k−1 is even, and sk < tk .
(2) s �k−1= t �k−1 is odd, and sk > tk .
If x < y then It(x)� It(y). Moreover, for a tent-map core with slope λ ∈ [

√
2, 2], the

itinerary map is one-to-one (and thus a bijection onto 6) i.e. that x < y if and only if
It(x)≺ It(y).

The following two lemmas are extracted from [3, Ch. II.3].

LEMMA 4.1. Suppose that F is a tent-map core with non-periodic critical point c and
kneading sequence K .
(1) If x ∈ [0, 1], then σ(K )� It(x) and σ n(It(x))� K , for every n ≥ 0.
(2) If s ∈ BN, σ(K )� s and σ n(s)≺ K , for every n ≥ 0, then there is an x ∈ [0, 1] such

that It(x)= s.

LEMMA 4.2. Let F be a tent-map core with periodic critical point c and kneading
sequence K = (DC)∞ for some finite word D that does not contain c. Let ∗ = 0 if D
is even, and ∗ = 1 if D is odd.
(1) (D∗)∞ is adjacent to K in BN.
(2) If x < 1= F(c), then It(x)≺ (D∗)∞.
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(3) If x ∈ [0, 1], then σ(K )� It(x) and σ n(It(x))� (D∗)∞, for every 0≤ n.
(4) If s ∈ BN, σ(K )� s and σ n(s)≺ (D∗)∞, for every n ≥ 0, then there is an x ∈ [0, 1]

such that It(x)= s.

We use this symbolic representation of F to lift statements about subsets of the interval
to shift spaces via the following theorem.

LEMMA 4.3. Let F be a tent-map core with critical point c and slope λ ∈ [
√

2, 2]. For any
3⊂ [0, 1], let 3′ = {It(x) | x ∈3} ⊂6. If 3 is a closed, F-invariant set and F(c) /∈3,
then It :3→3′ is a homeomorphism.

Moreover, 3 is closed, F-invariant and internally chain transitive if and only if 3′ is
closed, σ -invariant and internally chain transitive.

Proof. Since F(c) 6∈3, Lemmas 4.1 and 4.2 imply that It is a bijection.
In fact It−1

:6→ [0, 1] is continuous. To see this, let s ∈6, where s = It(x) for some
x ∈ [0, 1] and let ε > 0. For each n ∈ N, In(x)= {y ∈ [0, 1] | It(y) �n= It(x) �n} is a ≺-
interval on 6 and, since It is bijective,

⋂
n∈N In(x)= {x}. It follows that, for some N ∈ N,

|x − y|< ε for all y ∈ IN (x). Then, if δ = 1/2N , whenever d(t, s) < δ, It−1(t) ∈ IN (x)
and so |It−1(y)− It−1(x)|< ε.

To see that It is continuous let x ∈3 and ε > 0. Since F(3)⊆3 and F(c) /∈3, no pre-
image of c is in3. For each i ≥ 0, let ηi = |F i (x)− c|. Choose N ∈ N such that 1/2N < ε.
Then for every i ≥ 0 and y ∈Ui =3 ∩ F−i (Bηi (F

i (x))), A(F i (y))= A(F i (x)). Let
U =

⋂
i≤N Ui , then x ∈U 6= ∅ and, for every y ∈U , It(y)�N = It(x)�N . U is a non-empty,

finite intersection of intervals, so there is a δ > 0 such that y ∈U whenever y ∈3 and
|x − y|< δ. So for every y ∈3 for which |x − y|< δ we have that It(y)�N = It(x)�N and
so d(It(x), It(y))≤ 1/2N < ε.

Suppose now that 3 is closed, F-invariant and internally chain transitive. Clearly
σ ◦ It= It ◦ F , so that 3′ is σ -invariant. To show that 3′ is internally chain
transitive, pick r = It(y) and s = It(x) in 3′ and let ε > 0. By compactness, It :3→
3′ is uniformly continuous, so there is a δ > 0 such that, whenever x, y ∈3 and
|x − y|< δ, d(It(x), It(y)) < ε. Since 3 is internally chain transitive there exist x0 = x,
x1, . . . , xn = y and t1, . . . , tn ≥ 1 for which |F ti (xi−1)− xi |< δ for every 1≤ i ≤ n.
Hence d(It(F ti (xi−1), It(xi )) < ε. Thus, setting si = It(xi ) and noting that by conjugation
It(F ti (xi−1))= σ

ti (It(xi−1)), we get that d(σ ti (si−1), si ) < ε for every 1≤ i ≤ n. Hence
3′ is internally chain transitive. The converse is identical. 2

We are now in a position to prove the following.

THEOREM 4.4. Suppose that F : [0, 1] → [0, 1] is a tent-map core with slope λ ∈ [
√

2, 2]
and critical point c. If3⊂ [0, 1] is closed, F-invariant and internally chain transitive and
F(c) /∈3, then 3= ωF (x) for some x ∈ [0, 1].

Proof. Notice that by Lemma 4.3,3′ = {It(x) | x ∈3} is closed, σ -invariant and internally
chain transitive. Since F(c) /∈3 and 3 is closed, 3 is bounded away from F(c) and,
by uniform continuity of It−1, 3′ is bounded away from H , where H = K if c is not
periodic, and H = (D∗)∞ if c is periodic, where again ∗ = 0 if D is even, ∗ = 1 is D is
odd. In either case, by Lemma 4.1 or 4.2, there must be an N ∈ N such that s�N ≺ H�N
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for every s ∈3′. Let F be the collection of words t of length N for which t � H�N .
Then no element of 3′ contains any word from F . Let A be the set of all finite words
of length greater than N occurring in elements of 3′, and enumerate A as {θn}n∈N. For
every n ∈ N there exist qn, rn ∈3

′ such that θn is the initial segment of qn and θn+1 is
the initial segment of rn . Moreover, for m >max{θn, θn+1} and for ε = 1/2m there is an
ε-pseudo-orbit of elements from 3′ joining qn and rn . In other words, for each n ∈ N
we have points qn,0 = qn, qn,1, . . . , qn,kn = rn ∈3

′ and integers t1, . . . , tkn ≥ 1 such that
d(σ ti (qn,i−1), qn,i ) < ε for every 1≤ i ≤ kn . Then the first m symbols of σ ti (qn,i−1) agree
with the first m symbols of qn,i+1. In the spirit of Lemma 3.1 we construct a point s ∈ BN
as follows.

For every n ∈ N we make a new word φn from θn, θn+1 and the ε-pseudo-orbit joining
the corresponding qn, rn , by picking words {θn,i | i ≤ kn} ⊆A of suitable length so that
for each i , θn,i is the word corresponding to the initial segment of qn,i which stops
immediately after the m-symbol agreement with qn,i+1, and concatenating the θn,i for all
i ≤ kn − 1, whilst omitting one instance of the overlap between each word. So φn begins
with θn−1,kn−1 = θn,0 and ends with θn,kn−1. The sequence s is then the concatenation of
all the φn .

We want to have that A is the set of all infinitely repeating words in s, and hence that
3′ = ωσ (s). Let V ∈A. Then V occurs as a subword infinitely often in A, and hence
by construction infinitely often in s. Now suppose that the finite word V occurs infinitely
often in s. Pick K large enough so that |V |< |θn| for every n ≥ K . In each occurrence
of V in s, either V occurs as a subword of some θn,i , or across a join between θn,i and
θn,i+1. But since for n ≥ K , m > |θn|> |V | we have that if V occurs in the join between
θn,i and θn,i+1, it must start before θn,i+1, but then end during the m-symbol agreement
of θn,i and θn,i+1, so in fact is a subword of θn,i . Then since θn,i ∈A and A is inherently
closed under taking subwords, we must have that V ∈A.

Now pick t ∈3′. Then every finite initial segment of t is in A, so occurs infinitely often
in s, and hence by the metric on BN, t ∈ ωσ (s). Pick t ∈ ωσ (s). Then every finite initial
segment of t occurs infinitely often in s, and so is in A. Hence t ∈3′, and we have that
3′ = ωσ (s) as required.

We now want to have that s = It(x) for some x ∈ [0, 1], and that 3= ωF (x). We show
first that the conditions of Lemmas 4.1 and 4.2 are satisfied. To ensure that σ(K )� s we
can (without loss of generality) set θ1 to be any word beginning with a 1. To ensure that
σ j (s)≺ H for every j ≥ 0 notice that since every word in the construction of s comes
from A, no subword of s violating this condition occurs as a subword of any θn,i . So a
violation, if it occurs, must occur across the join between θn,i and θn,i+1, for some n and
i i.e. before the start of θn,i+1. But as mentioned above, we know that the discrepancy
between H and any element of 3′ (and hence word in A) is less than N , so since there
are at least N symbols in the part of θn,i which overlaps θn,i+1, we are forced to concede
that the violation occurs in a subword of θn,i , which we have said is not possible. Thus the
condition is upheld, and s = It(x) for some x ∈ [0, 1].

It remains to show that 3= ωF (x). But this follows very easily. Let L ′ = {σ n(s) | n ∈
N} ∪ ωσ (s)= {σ n(s) | n ∈ N} ∪3′ and L = {Fn(x) | n ∈ N} ∪ ωF (x). It−1 is continuous
and bijective on L ′ by Lemma 4.3, so It−1(L ′) is closed and contains {Fn(x) | n ∈ N}, so
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must contain ωF (x) also. i.e. L ⊂ It−1(L ′). K /∈ L ′ so F(c) /∈ L , and hence by Lemma 4.3
It is a homeomorphism on L , so as above L ′ ⊂ It(L) and hence It−1(L ′)⊂ L . This gives
us that It−1(L ′)= L and in particular that 3= ωF (x). 2

5. Two examples of strictly sofic shifts
Internal chain transitivity does not characterize ω-limit sets (see the example described
in [1, Remark 1] for an example of a continuous function f of the interval and an internally
chain transitive subset that is not an ω-limit set of f ). In this section we consider ω-limit
sets in sofic shifts, a class of shift spaces closely related to shifts of finite type [7]. Every
shift of finite type is a sofic shift and a shift is sofic if and only if it is a factor of a shift of
finite type.

Let G be a finite directed graph with edges EG . For each e ∈ EG , let e− denote the
initial point of e and e+ the final point. Let A be a finite set of labels, let L : EG→A
and let G = (G, L). A bi-infinite path on G is a bi-infinite sequence of edges π =
. . . e−1 · e0e1 . . . such that e+n and e−n+1 meet at a vertex. We denote the shift space
of all paths on G by ZG . L can be extended to paths around G in the natural way:
L(π)= . . . L(e−1) · L(e0)L(e1) . . . . A shift space is sofic if it takes the form

Z G = {L(π) | π ∈ ZG},

for some G.
The following two examples show that Theorem 3.5 does not hold in the class of sofic

shifts but that the conclusion of 3.5 does not characterize shifts of finite type amongst all
shift spaces.

Example 5.1. There is a sofic shift with an internally chain transitive, closed, strongly
shift-invariant subset that is not the ω-limit set of any point.

Proof. Let S be the sofic shift generated by the graph G with vertices a and b and distinct
directed edges [a, a] labeled 0, [a, a, ] labeled 1, [a, b] labeled 2 and [b, b] labeled 0.

Let A be the set of all shifts of elements 0= 0−∞ · 0∞, 1= 1−∞ · 1∞, s = 0−∞ · 1∞

and t = 1−∞ · 20∞. Clearly A is strongly shift-invariant. A is closed since an infinite
sequence of distinct forward shifts of s converges to 1, an infinite sequence of distinct
forward iterates of t converges to 0. Moreover, given n ∈ N, any shift of s can be shifted
forward to a point in the cylinder set {x | xi = 1,−n ≤ i ≤ n} and any shift of t can be
shifted forward to a point in the cylinder set {x | xi = 0,−n ≤ i ≤ n}, from which it follows
that A is internally chain transitive.

By Theorem 3.6, there is at least one z in the full shift on {0, 1, 2} such that ω(z)= A.
Since t ∈ A, arbitrarily long central segments of t occur infinitely often in z, so that 2
occurs in z more than once. However, this is clearly impossible for any point of S. 2

In the above example, the point t is not in any ω(x) for any x ∈ S.

Example 5.2. There is a sofic shift that is not a shift of finite type in which every closed,
strongly shift-invariant, internally chain transitive subset is the ω-limit of a point.
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Proof. Let T be the sofic shift generated by the graph H with nodes a, b, c, and d and
directed edges [a, a] labeled 1, [a, b] labeled 0, [b, b] labeled 2, [c, c] labeled 2, [c, d]
labeled 0, [d, d] labeled 3.

According to [7, Ex 3.3.4, 3.3.5], a shift space is not a shift of finite type if for each
n ∈ N there are words un ,vn and wn such that wn has length at least n, unwn and wnvn

occur as words in elements of the shift but unwnvn does not occur. Letting un = 0,wn = 2n

and vn = 3, we see that T is not a shift of finite type. On the other hand it is not hard to see
that the only internally chain transitive subsets of T are the constant sequences 1Z, 2Z and
3Z, each of which is a fixed point and so obviously an ω-limit set. 2

It seems that the underlying explanation for these examples is that in the first example
A is not minimal but pseudo-orbits in A cannot be shadowed. In the second example, the
internally chain transitive sets are all minimal.
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