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Abstract. The possibility of using spray pyrolysis as a simple, chemical, low cost method for 

the production of CeO2 and MgO thin films widely used as buffer layers for second generation 

coated conductors was examined. CeO2 films were produced on borosilicate glass substrates 

and four different surface morphologies were observed at different deposition temperatures. 

The smoothest films were obtained when the process was described as low temperature 

chemical vapour deposition. In addition, c-axis textured CeO2 films have been deposited on Si 

(100) single crystal, but the surface morphology was quite rough, consisting of distinct 

particles indicating that further optimisation is needed. On the other hand c-axis textured MgO 

films with smooth morphologies were deposited on Si (100) single crystal. Rocking curves 

revealed an excellent out of plane texture with a FWHM between 0.95
0
 and 1.01

0
 

1. Introduction 
The spray pyrolysis method presents numerous advantages such as simplicity, low cost, non toxic 

precursors, good reproducibility, and no need for vacuum; it has been therefore used over the years for 

the production of thin films of simple oxides, mixed oxides, metallic spinel type oxides, chalcogenides 

films [1].  

      One of the problems for the commercialisation of the coated conductors is the high cost related to 

the expensive physical methods employed for the fabrication of the YBCO superconducting material 

and the essential buffer layers [2]. Recently low cost chemical routes such as MOD have been 

employed to substitute the complex physical methods [3] [4]. Despite spray pyrolysis being one of the 

most well known low cost chemical deposition method for thin films, it has non been widely used for 

the production of either the superconducting layers or the buffer layers for coated conductor 

architectures.  

      There are few reports referring to the production of YBCO films by the aforementioned method 

[5] [6]. Previously, Shields et al have reported the production of YBCO films on STO (100) single 

crystal substrates [7]. The precursor solutions have been prepared by dissolving Y2O3 BaCO3 and CuO 

in a mixture of nitric acid and distilled water. Good epitaxial films were produced with a Jc of around 

1.9*105 A cm-2 (77K, 0 Tesla). Furthermore, YBCO has been deposited on buffered Ni using the same 

spray parameters identified for the successful deposition of YBCO on STO single crystals [8]. The Ni 

substrates have been prebuffered with CeO2 /YSZ/CeO2 layers deposited by pulsed laser deposition.   
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      CeO2 has been extensively used as buffer or cap layer in architectures [9] [10]. There are some 

studies referring to the production of CeO2 on various substrates by the spray pyrolysis technique but 

none of these studies concentrate on evaluating the texture of the produced films [11] [12] [13]. Wei et 

al [14] conducted the most important study in this field. They used a method similar to spray 

pyrolysis, called electrostatic spray-assisted vapour deposition (ESAVD). Soda lime glass and Si(100) 

were used in the first place as substrates. CeO2 thin films deposited on Si (100) are crystallised in the 

cubic structure with a preferred orientation along the [100] direction. Better alignment is achieved by 

increasing the electric field. Furthermore, CeO2 has been deposited on biaxially textured Ni substrates 

[15]. Once more much smoother films were obtained when higher voltage was applied. The (200) pole 

figures shows a strong out of plane texture, while the (111) pole figure indicates that an epitaxial 

relationship of [110]CeO2// [100]Ni has been achieved; the four CeO 2 (111) poles located at about 45° 

rotation from Ni (111) poles. 

      MgO thin films have been widely used as buffer or template layers for YBCO coated conductor 

architectures [16] [17]. MgO has been deposited on various substrates by spray pyrolysis but once 

again the texture of the obtained films is not the main focus of these studies [18] [19] [20] [21]. The 

main focus in this paper will be to produce CeO2 and MgO thin films, widely used as buffer layers in 

the coated conductor architectures. 

2. Experimental details 
The experimental set up has been described in detail elsewhere [22]. Briefly, the atomization of the 

initial chemical solution was achieved with the help of a commercial ultrasonic nebuliser (OMRON, 

model NE-U17). The substrate was attached to a stainless steel holder, which was positioned in the 

middle of the cylindrical furnace (height 30 cm, diameter 15 cm). Argon gas was used to transport the 

mist produced in the nebuliser onto the substrate. During spraying the temperature of the substrate was 

observed to drop 5-7
0
C for each 15 s spray. After 15 s, therefore, the gas flow was turned off for 1 min 

and 45 s and the substrate was allowed to stabilize to its set temperature. The solutions were prepared 

by dissolving an appropriate amount of Ce(NO3)3.6H2O and Mg(NO3)2.6H2O in 100 ml of distilled 

water for the production of CeO2 and MgO thin films respectively. 

      The structural properties of the films were studied by the XRD theta- 2 theta technique and rocking 

curves with the aid of a 2-circle Siemens diffractometer. Surface morphology and fracture cross 

section thickness were examined in a JEOL 7000 SEM and surface roughness by contact mode AFM 

(Dimension 3100). 

3. Results and discussion 

3.1. Preparation of CeO2 Thin films  

3.1.1. CeO2 on borosilicate glass  

The effect of some of the most important deposition parameters (temperature, solution concentration, 

flow rate, deposition time, cooling rate) on the structure and the morphology of CeO2 thin films were 

examined with the aim to obtain some understanding of the mechanisms involved in the spray 

pyrolysis deposition. It was identified that the substrate temperature is the deposition parameter that 

has the most effect on the properties of the produced films. In this study we will concentrate on films 

deposited from 0.0461 M solutions with the flow rate equal to 10 litres/min and the deposition time set 

to 32 min. The deposition temperature was varied between 200-600° C. 

      For the film deposited at 2000C none of the x-ray peaks observed corresponds to CeO2; the nitrates 

used for the deposition have not been decomposed and therefore higher substrate temperatures should 

be employed. The XRD pattern of the film prepared at 2500C starts to show some weak peaks 

corresponding to CeO2 (Figure 1). For films deposited at higher temperatures these peaks are 

becoming more pronounced. For the films deposited at 250
0
C, 350

0
C the peak that corresponds to the 
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(111) plane is the most intense while at higher temperatures (4500-6000C) the (200) peak becomes the 

strongest.  
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      Figure 1: XRD patterns of CeO2 films deposited on borosilicate  

glass from 0.0461M solutions at various temeratures. 

 

      Three different morphologies are detected according to the temperature used: a) at low 

temperatures (2500-3000C) extremely rough films are obtained with a spaghetti-like morphology 

(Figure 2), b) at medium temperatures (350-550°C) smoother films are obtained- the smoothest 

morphology is detected for the film deposited at 350°C (Figure 3), c) at higher temperatures (6000C) 

the film surface is quite rough since it consists of distinct particles with sizes varying from 1µm to 

3µm (Figure 4) . 

 

 
Figure 2: SEM picture of the 

CeO2 film deposited on 

borosilicate glass at 250°C 

from a 0.0461 M solution. 

 
Figure 3: SEM picture of 

the CeO2 film deposited on 

borosilicate glass at 350°C 

from a 0.0461 M solution. 

 
Figure 4: SEM picture of the 
CeO2 film deposited on 

borosilicate glass at 600°C 

from a 0.0461 M solution. 

      G. Blandenet et al [23] suggested four possible growth modes for the spray pyrolysis process as a 

function of the temperature that can be correlated with the observed morphology in our case according 

to the following: At temperatures < 2500C the droplet impinges on the substrate where evaporation 

takes place. This can explain the obtained XRD pattern of the film deposited at 2000C where none of 

the observed peaks correspond to cubic ceria, indicating that full decomposition of the nitrates has not 

taken place. At temperatures between 2500 and 3000C the evaporation of the solvent is complete just 

prior to contacting the substrate, followed by the decomposition of the nitrates to oxides. In the 

temperature range between 350
0
-550

0
C the growth mode can be characterized as low temperature 

chemical vapour deposition (CVD) since it involves volatilisation of the dried metal salt, diffusion of 

the vapour to the substrate, followed by decomposition to the oxide. When the temperature is around 

350
0
C films are quite smooth indicating that this is the optimum temperature. Many authors propose 
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that the smoothest films are deposited when they are produced at the low temperature CVD regime 

[21] [24] [25]. Lastly at temperatures > 5500C the morphology consists of distinct particles indicating 

that the oxide particles are formed well above the substrate. 

      More details about the effect of the different deposition parameters on the properties of the 

produced films and comments about the correlation between the preferred orientations of the films 

with the observed morphology can be found elsewhere [22]. 

3.1.2. CeO2 on Si (100) single crystals    

The next step involved the efforts to epitaxially grow CeO2 thin films on single crystals with the aim to 

produce biaxially textured films that can be used as buffer layers in second generation coated 

conductors. Si (100) is used as a single crystal since its lattice mismatch with CeO2 is quite small 

around 0.40 %.   

      Figure 5 presents the XRD pattern of the CeO2 deposited at 550° C from a 0.0461 M solution (the 

flow rate was set to 10 l/min while the deposition time was fixed to 32 min). It is observed that the 

(200) peak is the strongest indicating that the produced film are c-axis preferentially oriented. On the 

other hand the (111), (222) and (311) peaks are also detected. The morphology of the film consists of 

distinct particles indicating that the oxide particles are formed well above the substrate (Figure 6).  

This is a typical morphology when we operate under the fourth growth mode that has been described 

earlier. However, the smoothest films are obtained when the process can be described as low 

temperature CVD. A further optimisation is therefore needed with the scope to function at the CVD 

regime. Similar results have been obtained by the ESAVD method [14]. Better alignment and 

smoother films were obtained simply by increasing the electric field.  
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       Figure 5: XRD pattern of the CeO2             

filmfilm deposited on Si (100) at 550
0
C       

fro  from a 0.0461 M solution 

 
 

Figure 6: SEM picture of the CeO2  

film deposited on Si (100) at 550
0
C  

from a 0.0461 M solution 

3.2. Preparation of MgO thin films 

In this section we will concentrate on the efforts to produce biaxially textured MgO thin films by 

depositing them on Si (100) single crystal substrates. In this case the lattice mismatch is 28.8 % but if 

the MgO unit cell rotates by 45° the lattice mismatch is equal to 9.7 %.  

      Figure 7 illustrates the XRD pattern obtained from the film deposited at 650°C from a 0.078 M 

solution- the deposition time was set to 64 min and the flow rate was fixed to 10 l/min. The films are 

c-axis oriented since only the peaks from the Si substrate and the MgO (200) plane are detected. The 

peaks noted as * can be attributed to high order reflections from the substrate. The rocking curve of 

the (200) peak of the deposited film shows a FWHM equal to 0.95
0
 indicating that the produced film 

presented an excellent out of plane texture (Figure 8). The rms roughness calculated from the 3-D 5*5 

µm2 AFM picture is 43.3 nm (Figure 9). SEM studies of the cross section of the fractured surface 

(Figure 10) illustrate a dense and homogeneous MgO layer with film thickness estimated between 

1650 to 1750 nm. 
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            Figure 7: XRD pattern of the MgO film 

deposited on Si (100) at 650°C from a 

0.078 M solution  
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       Figure 8: Rocking curve of the MgO (200) 

peak of the MgO film deposited on Si (100) 

at 650°C from a 0.078 M solution  

 

 
Figure 9: 3-D 5*5 µm

2
 AFM picture of the 

MgO film deposited on Si (100) at 650°C 

from a 0.078 M solution with a deposition 

time equal to 64 min 

 
Figure 10: SEM picture of the fracture cross 

section of the MgO film deposited on Si 

(100) at 650°C from a 0.078 M solution with 

a deposition time equal to 64 min 

 

      Films with reduced thickness were obtained when the deposition time was reduced to 32 min- 

temperature, solution concentration and flow rate were kept constant. The thickness of the film is 

between 650 to 750 nm. The produced film is once more c-axis textured as identified from the XRD 

pattern. The FWHM as calculated from the rocking curve is 1.01°. The rms roughness as calculated 

from the 3D AFM picture in a 5*5 µm
2
 area is 22.6 nm (Figure 11). 

 

 

Figure 11: 3-D 5*5 µm2 AFM image of the MgO film deposited on Si (100)  

at 650°C from a 0.078 M solution with a deposition time equal to 32 min 

4. Conclusion 
The four different surface morphologies were observed for CeO2 films deposited on borosilicate glass, 

which could be associated with four typical growth modes for the spray pyrolysis method. The 

smoothest films were obtained when the temperature was 350
0
C such as the process could be 
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described as low temperature  CVD. C-axis preferred oriented CeO2 were deposited on Si (100) single 

crystal. However, further optimisation is needed since the surface morphology was quite rough. 

      C-axis textured MgO films with various deposition times were obtained on Si (100) single crystal. 

As the overall deposition time was increased from 32 min to 64 min, the thickness and the rms 

roughness of the produced film was approximately doubled indicating that a good control over the 

process was acquired. All the films exhibited an excellent out of plane texture with a FWHM varying 

from 0.950 to 1.010
.   
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