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Abstract 

Sprays and droplets are involved in numerous industrial processes and in nature, e.g. fuel 

injection in combustion chambers, painting, spray cooling, spray coating, chemical 

engineering, cloud physics, etc. The understanding of the light scattering features from the 

droplets, or particles in general, lays the foundation for extending existing techniques or 

devising novel techniques for particle characterization. The optical techniques are clearly 

advantageous over sampling, because of their non-intrusiveness and immediacy of results. 

Typical particle characteristics of interest include refractive index, size, velocity, and 

especially for non-spherical particles, some information regarding shape or form and 

orientation. However, most of existing optical techniques are only available for the 

measurement of spherical particles. In this thesis, the light scattering from a spheroid is 

studied and the generalized rainbow technique is proposed for droplet non-sphericity 

measurement. 

First, the vector ray tracing (VRT) model is employed to simulate the optical caustic 

structures in the primary rainbow region of oblate spheroidal droplets, which includes the 

rainbow and hyperbolic umbilic (HU) fringes. The location of cusp caustic is calculated by use 

of the VRT simulation and compared with that calculated by using analytic solution, 

exhibiting excellent agreement. Furthermore, the evolution process of the optical caustic 

structures is consistent with the experimental observation. It reveals that the optical caustic 

structures in the primary rainbow region can be used to measure the non-sphericity of 

oblate droplets. The VRT model can also be used to simulate and predict the optical caustic 

structures observed in higher-order rainbows. As a further validation, the cusp location and 

optical caustic structures in the secondary rainbow region also have been studied using the 

VRT method. The secondary rainbow fringe, as well as the location and opening rate of the 

cusp caustic provide a further avenue for non-sphericity measurement of oblate droplets. 

Then the character of the generalized rainbow pattern from a spheroidal water droplet is 

investigated experimentally. In the experiment, light scattering from spheroidal water 

droplets in the vicinity of the primary rainbow region has been observed to contain a variety 

of characteristic interference patterns which are the generalization of the rainbow from a 

sphere. These patterns start from being a fold rainbow, change to transverse cusp caustics 
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and then to hyperbolic umbilic catastrophe as the aspect ratio of the droplet increases. A 

comparison of the intensity distribution of the observed rainbow patterns in the horizontal 

equatorial plane with those of Airy simulation reveals that these patterns can be used for 

characterizing droplets, in particular for determining the refractive index and the diameter 

of the spheroidal droplet in the equatorial plane.  

According to the generalized rainbow patterns and Airy approximation, the refractive index 

and equatorial diameter of water droplets can be inverted from the corresponding 

generalized rainbow patterns. A comparison of the refractive indices inverted from the 

corresponding generalized rainbow patterns with that of pure water shows good agreement 

with absolute errors less than 0.5x10-4. The water droplet diameters in the horizontal 

equatorial plane are calculated from the generalized rainbow patterns and compared to that 

measured by direct imaging. It is shown that the relative errors of droplet diameters 

associated with the generalized rainbow patterns lie between -5% and 5%; hence reliable 

diameter estimations of droplets can be obtained from the generalized rainbow patterns. 

The curvatures of simulated rainbow fringes are compared with observed ones from the 

generalized rainbow patterns, in which good agreement is also shown. Since for a given type 

of droplet, the curvatures of the rainbow fringes are only a function of the aspect ratios, the 

non-sphericity (in terms of aspect ratio) of water droplets are inferred from the relevant 

generalized rainbow patterns. The relative errors of aspect ratios calculated from the 

generalized rainbow pattern lie between -1% and 1%. Accordingly, the complete 

informations of a spheroidal water droplet in terms of geometric and optical properties are 

obtained. 

Then, the evolution of the optical caustic structures for tilted spheroidal droplets is 

investigated. The rainbow fringes are tilted counterclockwise as the spheroidal droplet is 

tilted counterclockwise and vice versa. The changes of the fringes depend on the aspect 

ratio and tilt angle. A preliminary experiment for tilted spheroidal droplet is shown. 

Furthermore, Möbius’s approximation is modified to calculate the deviation between the 

geometrical rainbow angle for an ellipse and that for a sphere. And the vector ray tracing 

model is also used to compute the rainbow angle deviation for an ellipse, which agrees with 

modified Möbius equation for small eccentricity. Moreover, the application range of 

Möbius’s approximation is also investigated. It is demonstrated that, for small eccentricity 
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(0.95≤a/c ≤1.05), the Möbius’s approximation can predict the rainbow angle difference of 

ellipse. 

Keywords: 

Airy approximation, Catastrophe optics, Debye series, Diffraction catastrophe, Geometrical 

optics approximation, Generalized rainbow pattern, Lorenz-Mie theory, Spheroidal droplets, 

Rainbow fringe, Vector ray tracing 
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Zusammenfassung 

Sprays und Tropfen treten in verschiedenen industriellen Prozessen und in der Natur auf, z.B. 

Treibstoffeinspritzung in Brennstoffkammern, Lackierungen, Spraykühlung, 

Spraybeschichtung, chemische Reaktionen, atmosphärische Physik und vieles mehr. Das 

Verständnis der Lichtstreuungsmerkmale der Tropfen oder kleiner Teilchen im Allgemeinen 

bestimmt die Grundlagen zur Erweiterung bestehender Methoden oder zur Entwicklung 

neuer Techniken zur Partikelcharakterisierung. Optische Methoden sind hier klar im Vorteil 

gegenüber direkter Stichprobenentnahme, aufgrund ihrer nicht-invasiven Natur und der 

sofortige Verfügbarkeit der Resultate. Typische Eigenschaften von Partikeln die untersucht 

werden sind der Brechungsindex, die Größe, Geschwindigkeit und besonders für nicht-

sphärische Teilchen jegliche Information betreffend Gestalt und Orientierung. Allerdings sind 

die meisten optischen Messmethoden nur für die Charakterisierung von sphärischen 

Teilchen bestimmt. In dieser Dissertation wird die Lichtstreuung von einem Sphäroid 

untersucht und die verallgemeinerte Regenbogen-Methode (generalized rainbow technique) 

wird vorgeschlagen, um die Abplattung eines Tropfens zu messen. 

Zunächst verwenden wir ein vektorielles Strahlverfolgungsmodel (Vector Ray-Tracing), um 

die optischen Kaustiken in der primären Regenbogenregion eines oblat-sphäroiden Tropfens 

zu simulieren, die den konventionellen Regenbogen und hyperbolisch-umbilische (HU) 

Muster miteinschließen. Die Position dieser Scheitelpunktskaustik wird mit der VRT-

Simulation bestimmt und mit einer analytischen Lösung verglichen. Hierbei wurde eine 

exzellente Übereinstimmung festgestellt. Des Weiteren ist der simulierte Evolutionsprozess 

der optischen Kaustik-Strukturen deckungsgleich mit den experimentellen Beobachtungen. 

Es zeigt sich, dass die optischen Kaustik-Strukturen in der primären Regenbogenregion dazu 

genutzt werden können, die Abplattung von oblaten Tropfen zu messen. Das VRT-Modell 

kann ebenfalls dazu benutzt werden, die optischen Kaustik-Strukturen in Regenbögen 

höherer Ordnung zu simulieren. Als weitere Validierung wurden die Form der Kaustiken und 

der Ort des Scheitelpunkts in der sekundären Regenbogenregion mit dem VRT-Modell 

untersucht. Das sekundäre Regenbogenmuster sowie der Ort und die Öffnungsrate der 

hyperbolisch-umbilischen (Sattelpunkts-) Kaustik zeigen einen weiteren Weg zur Messung 

der Abplattung von oblaten Tropfen auf.  
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Im Anschluss wurde der Charakter des verallgemeinerten Regenbogenmusters von 

Wassertropfen experimentell untersucht. Im Experiment wurde festgestellt, daß Streulicht in 

der Nähe der primären Regenbogenregion von sphäroiden Wassertropfen eine Reihe von 

charakteristischen Mustern aufweist, die die Verallgemeinerung des Regenbogens eines 

gänzlich runden Tropfens darstellen. Diese Muster beginnen mit zunehmender Streckung 

des Tropfens als gewöhnliche Falten-Kaustik, ändern sich zu einer transversalen 

Sattelpunkts-Kaustik und schließlich zu einer hyperbolisch-umbilischen Kaustik. Ein Vergleich 

der Regenbogenmuster in der Äquatorialebene mit der Auswertung einer Airy-Funktion zeigt, 

daß diese Muster zur Charakterisierung von Tropfen genutzt werden können, insbesondere 

zur Bestimmung des Brechungsindex und des Durchmessers des Tropfens in der 

Äquatorialebene. 

Gemäß der verallgemeinerten Regenbogenmuster und der Airy-Approximation kann der 

Brechungsindex und der Äquatorialdurchmesser von Wassertropfen aus den 

korrespondierenden Regenbogenmustern invertiert werden. Der Vergleich der 

Brechungsindices, invertiert von den zugehörigen verallgemeinerten Regenbogenmustern, 

mit denen von reinem Wasser zeigt gute Übereinstimmung mit absoluten Fehlern in der 

Größenordnung von weniger als 0,5 x 10-4. Die Durchmesser der Tropfen in der 

Äquatorialebene wurden aus den verallgemeinerten Regenbogenmustern berechnet und mit 

den durch direkte Photographie Bestimmten verglichen. Es wurde gezeigt, daß der relative 

Fehler bei der Bestimmung des Tropfendurchmessers aus den verallgemeinerten 

Regenbogenmustern bei 5 Prozent liegt, was die Zuverlässigkeit der verwendeten Methode 

bestätigt. Die Krümmung der simulierten Regenbogenmuster wurde mit der an 

verallgemeinerten Regenbogenmustern beobachteten verglichen und eine gute 

Übereinstimmung gefunden. Da die Krümmung des Regenbogens für einen spezifischen 

Tropfen nur eine Funktion der Streckung ist, kann die Abplattung (ausgedrückt durch die 

Streckung) aus den relevanten verallgemeinerten Regenbogenmustern abgeleitet werden. 

Die relativen Fehler der Streckungen berechnet aus den verallgemeinerten 

Regenbogenmustern liegen im Bereich von einem Prozent. Dementsprechend können 

sämtliche geometrischen und optischen Eigenschaften eines sphäroiden Tropfens gewonnen 

werden. 

Im Anschluss ist die Entwicklung der optischen Kaustik-Strukturen von zur Laborebene 

geneigten sphäroiden Tropfen untersucht worden. Die Regenbogen Muster sind bei gegen 
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den Uhrzeigersinn geneigten sphäroiden Tropfen ebenfalls gegen den Uhrzeigersinn geneigt 

und umgekehrt. Die Änderungen in den Beugungsmustern hängen von der Streckung und 

dem Neigungswinkel ab. Ein vorläufiger experimenteller Aufbau für einen geneigten 

sphäroiden Tropfen wurde aufgezeigt. 

Des Weiteren wurde Möbius Näherung abgewandelt, um die Abweichung des 

Regenbogenwinkels zwischen einer Ellipse und eines Kreises zu berechnen. Und das 

Vektorstrahlverfolgungsmodell wurde ebenfalls benutzt, um die Abweichung des 

Regenbogenwinkels für eine Ellipse zu bestimmen. Die Ergebnisse stimmen mit der 

modifizierten Möbius-Näherung für kleine Exzentrizitäten überein. Zusätzlich wurde die 

Anwendbarkeitsgrenze von Möbius-Approximation ebenfalls untersucht. Es wurde gezeigt, 

dass für kleine Exzentrizität, also einer Streckung um 5 %, die Möbius-Näherung die Differenz 

des Regenbogenwinkels einer Ellipse vorhersagen kann. 

Schlüsselworte: 

Airy-Approximation, Katastrophen-Optik, Debye-Reihen, Beugungskatastrophe, 

geometrische Optik-Approximation, allgemeine Regenbogenmuster, Lorenz-Mie-Theorie, 

sphäroide Tropfen, Regenbogenmuster, vektorielle Strahlverfolgung 
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List of symbols and abbreviations 

Roman symbols 

a   radius of spherical particle (m) 

  long semi-diameter of ellipse (m) 

  equatorial diameter of spheroid (m)  

  parameter for Airy integral 

na   Mie coefficient 

aGRP  equatorial diameter of spheroidal droplet inverted from the corresponding  

generalized rainbow patterns (m) 

A   amplitude of electric vector (kg⋅m⋅s−3⋅A−1) 

Ai   Airy function 

b   semi-principal axis of spheroid along the y axis (m) 

nb   Mie coefficient 

B   magnetic induction (kg⋅s−2⋅A−1) 

c  short semi-diameter of the ellipse (m) 

   semi-principal axis of spheroid along the z axis (m) 

C   constant (C=0.3137) 

C1, C2, C3  control parameters in catastrophe optics 

d  diameter of spherical particle (m) 

D  diameter of spheroidal particle in the horizontal equatorial plane (m) 

D   electric displacement (s⋅A⋅m−2) 

( )pD   divergence factor  

E   electric field (kg⋅m⋅s−3⋅A−1) 
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h  parameter for Airy approximation 

H  diameter of spheroid along the vertical axis of the rotational symmetry (m) 

H   magnetic field (A⋅m−1) 

( )2
1
2

n
H

+
    Hankel function of the second kind 

i   dimensionless intensity of un-polarized scattered light  

1i , 2i   dimensionless intensities for the perpendicularly and parallel polarized  

   directions of scattered light  

( )p
ji    dimensionless intensity due to the reflection and/or the refraction for the  

 emergent ray of order p     

0I   incident light intensity (cd)  

( )p
jI   scattering light intensity (cd) 

j  integer representing the perpendicularly and parallel polarized directions of  

light respectively (j=1, 2) 

Jf   electric current density (A⋅m−2) 

1J     the first order Bessel function  

1
2

n
J

+
   Bessel function of the first kind 

1 3J , 1 3J−   Bessel functions 

k   wave number (m−1) 

1 3K    modified Bessel function 

0L   incident ray 

rL , 12L , 23L  reflection rays 

10L , 1L , 2L , 3L  refraction rays  

m   relative refractive index 

1m , 2m   refractive indexes of the ambient medium and the particle 

m0, n0, p0 vector components of light ray 

mGRP   relative refractive index of water droplet inverted from the corresponding 

  generalized rainbow patterns 

n  real part of complex refractive index 
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n   unit normal pointing from the first medium into the second medium 

   unit normal at the incident point on the interface between the two media 

n0  unit vector along the direction of the incident ray 

n1  unit vector along the reflection ray 

n2   unit vector along the refractive ray 

nA, nB, nC, nD surface normals at point A, B, C, and D respectively 

nstop   criterion for the terminating order of the Mie simulation 

p   order of the emerging ray 

q , l      integers 

(1)
nP   associated Legendre function 

r   location of one point in polar spherical coordinate (m) 

r   distance of one point off the origin in polar spherical coordinate (m) 

rGRP   aspect ratio of water droplet inverted from the corresponding generalized  

  rainbow patterns  

rImaging  aspect ratio of water droplet measured by imaging  

1r , 2  r   Fresnel coefficients  

s   integer denoting +1 or -1 

1S , 2S   Mie scattering amplitudes for two polarized directions  

diffractionS  dimensionless amplitude of diffraction 

reflectionS  dimensionless amplitude of the reflection for the emergent ray  

refractionS  dimensionless amplitude of the refraction for the emergent ray  

( )p
jS  dimensionless amplitude of the reflection and/or the refraction for the 

emergent ray of order p  

1t , 2  t   Fresnel coefficients  

U   component of electric vector (s⋅A⋅m−2) 

x0, y0, z0 coordinates of a point where the light ray impinging on the particle surface (m) 

x2, y2, z2 the coordinates of other point where the light ray impinging on the particle 

surface (m) 

z   parameter for Airy integral 

z1  constant parameter (α1=1.0874) 
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z2   constant parameter (α2=3.4668) 

 

Greek symbols 

α   dimensionless size parameter 

α  surface current density (A⋅m−2) 

α1  constant parameter (α1=1.0874) 

α2   constant parameter (α2=3.4668) 

Γ    Gamma function 

1δ ′ , 2δ ′   phase shifts due to total reflection for two polarized directions (rad)  

jδ     phase difference due to the length of optical path (rad)  

a∆   error of equatorial diameter of droplet inverted from the corresponding 

generalized rainbow patterns 

m∆   error of refractive index of droplet inverted from the corresponding 

 generalized rainbow patterns 

rgθ∆   deviation angle between the geometrical rainbow angle for an ellipse and that  

for a sphere (o) 

ε   permittivity (A2·s4·kg−1·m−3) 

ε1, ε2  infinitesimal shift amounts in x’ and y’ directions respectively 

jε    fraction of the scattering intensity due to the reflection and/or the refraction  

for the emergent ray of order p  

jζ     phase difference due to focal line (rad) 

η     absorption coefficient 

θ   scattering angle (o) 

off-axis angle (o) 

1θ , 2θ   angles of the first two peaks of the Airy simulation (o) 

  angles of the first two peaks of the filtered intensity distribution (o) 

bθ    Brewster angle (o) 

cθ    critical angle (o)  

θgn   rainbow angle for an ellipse in the sense of geometric optics (o) 

iθ   incident angle (o) 
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irgθ , rrgθ  incident angle and refractive angle for rainbow ray (o) 

'
pθ   angle of deflection  (o) 

pθ   angle of deflection  (o) 

psaθ   polarization scattering angle (o) 

rθ   refractive angle (o) 

rgθ    scattering angle for the first rainbow (o) 

θr0   the corresponding incident angle of the rainbow ray (o) 

tθ   refractive angle (o) 

λ   wavelength of the incident light in the medium (m)  

  wavelength of acoustic wave 

μ  magnetic permeability (kg⋅m⋅s−2 ·A−2) 

2ν    velocity of light in a medium (m/s) 

( )2
nξ   Riccati-Bessel function 

nπ    function of scattering angle 

ρ   eccentricity of the elliptical profile 

pf   free charge density (s⋅A·m−3) 

σ   specific conductivity (kg⋅m2⋅s−3⋅A−2 ⋅m) 

jσ   total phase shifts for the perpendicularly and parallel polarized directions of  

light ray (rad) 

τ  charge density on the surface density (A/m2) 

nτ    function of scattering angle 

ϕ   tilt angle of tilted droplet (o) 

φ   elevation angle (o) 

fpφ    phase shift due to the focal point (rad) 

ψ   oblique angle of incident light ray with respect to the major axis of spheroid (o)  

nψ   Riccati-Bessel function  

ω   angular frequency of the light (s-1) 
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EBCM   extended boundary condition method  

FLMT   Fourier-Lorenz Mie Theory  

CCD  charged-coupled device 

GLMT  generalized Lorenz-Mie theory 

GO  geometrical optics 

GRP  generalized rainbow pattern 

HU  hyperbolic umbilic 

HUFS   hyperbolic umbilic focal section  

ILIDS   interferometric laser imaging for droplet sizing  

IPI  interferometric particle imaging  

LED  light-emitting diode 

LMT   Lorenz-Mie theory  

VRT  vector ray tracing 
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Chapter 1   Introduction 

1.1   Development of particle optical diagnostic techniques  

This research is devoted to basic light scattering computations and experiments for non-

spherical particles, as they are often encountered in a wide variety of applications and in 

nature. Such a basic understanding of the light scattering features of particles lays the 

foundation for extending existing measurement techniques or devising novel techniques for 

particle characterisation, required for diagnostic purposes in research and development. 

Typical applications where such diagnostic techniques are indispensable include fuel 

injection in combustion chambers, spray cooling, spray coating, chemical engineering or 

cloud physics. Optical techniques are clearly advantageous over sampling, because of their 

non-intrusiveness and immediacy of results. Such droplet characterization of interest include 

refractive index, size, shape, orientation, velocity, and especially as well as for evaluating 

errors arising from the spherical shape assumption by many scattering-based measurement 

techniques. 

The present work is restricted to spheroidal shapes and indeed to droplets, for which the 

scattering problem is defined by the aspect ratio (ratio of major to minor axes), refractive 

index and orientation with respect to the incident beam. At this stage the orientation angle 

will be fixed to 0o , but first results are available for particles tilted out of plane. 

According to a recent review (Tropea, 2011), optical particle characterization techniques are 

classified as direct imaging, intensity or intensity ratio, interferometry, time shift, pulse delay 

and Raman scattering, according to measurement principles. A brief review of existing 

optical techniques for particle characterisation reveals that few are candidates for non-

spherical particle shapes (Damaschke, et al., 1998). The most prominent and widely used 

techniques include the phase Doppler technique (Albrecht, et al., 2003), in which the 

measurability and measurement accuracy are affected by the non-sphericity of the particle 

(Damaschke, et al., 1998). Interferometric particle imaging (IPI) or interferometric laser 

imaging for droplet sizing (ILIDS) is a planar technique for sizing of spherical droplets (Maeda, 

et al., 2000), but is equally sensitive to non-sphericity as the phase Doppler technique. The 

time-shift technique (also known as the pulse-displacement technique), first introduced by 

Semidetnov (Semidetnov, 1985), holds significant potential for characterising non-spherical 
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droplets (Damaschke, et al., 2002), but has yet to be introduced as a commercial instrument 

(Schäfer, et al., 2012). 

The primary rainbow has also been used previously for particle characterisation, for instance 

for size and temperature (refractive index) (Roth, et al., 1988). The measurement accuracy of 

the rainbow technique is also affected by the non-sphericity of droplets (van Beeck, et al., 

1996); however with the global rainbow technique, both the droplet size distribution and 

average temperature can be estimated locally in a spray ( (van Beeck, et al., 1999), (van 

Beeck, et al., 2001), (Vetrano, et al., 2004), and (Saengkaew, et al., 2009)). It is assumed that 

the non-spherical droplets and liquid ligaments provide a uniform background; hence they 

do not influence the interference pattern from which droplets size and temperature are 

derived. Nonetheless, none of the above methods are readily available for droplet non-

sphericity measurements. 

For further advancement and improvement of these optical techniques, the interpretion of 

light scattering from a droplet is a pre-requisite. Lorenz-Mie Theory ( (Mie, 1908) and 

(Lorenz, 1890)) provides a rigorous solution to describe the scattering of a linearly polarized 

plane wave by a homogeneous sphere. Debye (Debye, 1909) interpreted the scattered light 

from a cylinder in terms of different orders. To describe the interaction between an 

arbitrarily shaped beam and a sphere, the Generalized Lorenz-Mie theory has been 

developed ( (Gouesbet, et al., 1988) and  (Gouesbet, 1994)).  

On the other hand, many particles of interest are non-spherical particles. To calculate the 

light scattering from non-spherical particles, the separation of variables approaches (e.g. 

spheroidal expansion), surface based methods (e.g. T matrix method), volume-based 

methods (e.g. finite difference time domain), etc. have been developed (Wriedt, 1998). Most 

notably, Debye series for light scattering by a non-spherical particle with arbitrary shape has 

been studied (Xu, et al., 2010). Due to its intuitive physical interpretation, Debye series has 

been widely untilized by other researchers ( (Lock, et al., 1994), (Wu, et al., 2008), (Shen, et 

al., 2010), and  (Xu, et al., 2010)). However, the computation of the light scattering from 

non-spherical particles using these approach is only valid for very small particles (Ren, et al., 

2011). For larger particles, light scattering can be approximately computed by geometrical 

optics ((van de Hulst, 1981) (Glantschnig, et al., 1981) (Xu, et al., 2004), (Lugovtsov, et al., 

2007), and (Yu, et al., 2009)). The physical optical approximation was also proposed ( (Ravey, 

et al., 1982), (Mazeron, et al., 1996), and (Onofri, et al., 2012)). Light scattering for bubbles 



Chapter 1   Introduction 

9 
 

in liquid also has been studied based on physical-optics approximation  (Marston, et al., 

1982) and geometrical optics (Yu, et al., 2008). 

Considering these difficulties in computing the light scattering from non-spherical particles, 

it is instructive to observe the scattering patterns experimentally. A variety of characteristic 

diffraction patterns from spheroidal droplets have been observed in the vicinity of the 

primary rainbow region (Marston, et al., 1984). The diffraction patterns, also known as 

generalized rainbow patterns, start from being a fold rainbow, then change to transverse 

cusp caustics and then to hyperbolic umbilic caustics as the axes ratio (major to minor) 

gradually increases ( (Nye, 1992), (Marston, 1999), and (Lock, et al., 2010)). When the 

particle is spherical, the standard rainbow patterns are observed. To visually understand the 

patterns, this dissertation starts with the rainbow in nature and the laboratory. 

1.2   Rainbows in nature and the laboratory 

Rainbows have long been a source of inspiration both for poets and scientists who would 

prefer to treat them impressionistically or mathematically. People were historically attracted 

and puzzled by the following questions: What makes colors in the rainbows? Why the 

sequences of colors reverse in the higher bows? If there can be two rainbows, why not more? 

The classical Greek scholar Aristotle (384-322 BC) was the first to devote serious attention to 

the rainbow. The attraction to this phenomenon of Descartes, Newton, Yong, Airy and 

others, has resulted in the formulation and test of some of the most fundamental principles 

of mathematical physics (Nussenzveig, 1977). Most notably, Theodoric of Freiberg (1250-

1310) provided an accurate explanation of the colors and positions of the primary and 

secondary rainbows (Edward, 1974). Now it is clear that the rainbow is an optical and 

meteorological phenomenon and the primary rainbow arises from the second-order 

refraction of light from the water droplets in the earth’s atmosphere, resulting in a 

multicolored arc in the sky.  

The primary rainbow photographed after a rainstorm is shown in Fig. 1.1, which is the 

rainbow most commonly known and observed. The rainbow caused by sunlight always 

appears in the section of the sky directly opposite to the sun. And the colors of the primary 

rainbow are always followed the sequence: violet is innermost, blending gradually with 

various shades of blue, green, yellow and orange, with red outermost. Under favourable 

conditions one can also see a double rainbow in the sky (see Fig. 1.4 in ref. (van Beeck, 
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1997)). In this case, higher in the sky than the primary arc is the secondary one, which is faint 

and indeed not always present. In the second rainbow, the colors appear in reverse order. 

Careful observation reveals that the region between the two bows is considerably darker 

than the surrounding sky. The dark region has been given the name Alexander’s dark band 

after the Greek philosopher Alexander who first described it in about A. D. 200 (Nussenzveig, 

1977).  

Rainbows could be caused by many forms of airborne water. These include not only rain, but 

also mist, spray, and airborne dew. For example, the rainbow effect is also commonly seen 

near waterfalls or fountains. In most cases, we only see the semicircle when we are on the 

ground. Exceptions can occur when the observer is high above the ground, for example in an 

aeroplane or on top of a mountain. Then one can see the entire circle of the rainbow, with 

the observer’s shadow in the center.  

 

 
Fig. 1.1.   The primary rainbow in the sky (photographed at Darmstadt on 8th August 2011). 

 
Fig.1.2.   Dispersion of white light into different colors on entering and leaving water droplet. 
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A more detailed explanation of formation of rainbow is given in following. The light is first 

refracted entering the surface of the rain droplet, reflected off the back of the droplet, and 

again refracted leaving the droplet (see Fig. 1.2.) In conventional use, the scattering angle 

can be defined by the deviation angle of the exiting light ray from the incidence direction. 

According to geometrical optics, the scattering angle exhibits a minimal value, which is called 

the rainbow angle and denoted by θrg, independent of the size of the droplet, but dependent 

on relative refractive index of droplet, as will be discussed in detail in next Chapter. 

Consequently light rays are strongly scattered at an angle of about 138o for a water droplet. 

However, geometrical optics can only approximately determine the rainbow position. As is 

well known, white light is the effect of combining the visible colors of light with different 

wavelengths in suitable proportions. The relative refractive index is different for different 

wavelengths. So the rainbow angles are slightly different for each wavelength of light, with 

the result that the colors are dispersed, as shown in Fig. 1.2. Consequently, white light is 

separated into different colors on entering and leaving the rain droplet. Because red light is 

refracted by a lesser angle than blue light, when leaving the raindrop, the red light rays have 

turned through a smaller angle than the blue rays, producing the primary rainbow. 

 
Fig. 1.3.   Descartes' sketch of the rainbow formation. 

 

So far, only interaction with a single droplet has been considered. Actually the rainbow arcs 

in the sky are caused by a large number of droplets. Descartes' sketch (see Fig. 1.3) reveals 

how the primary and secondary rainbows are formed (Han, 2000). In Descartes’ sketch of 

rainbow, the rainbow angle is defined by the angle between the scattering light and the 
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direction opposite the sunlight. According to geometrical optics, the primary rainbow is 

formed by the ray ABCDE while the secondary rainbow is formed by the ray of FGHIKE. For 

the primary rainbow, the light rays encounter one inner reflection and two refractions and is 

located at the angle of 40o-42o. However, the secondary rainbow, which appears at the angle 

of 50o-53o, is caused by light rays undergoing two reflections inside the raindrop and two 

refractions. As a result of the second reflection, the colors of the second rainbow are 

inverted to the colors of the primary bow, with blue on the outside and red on the inside.  

And the second rainbow is much fainter than the primary rainbow because more light exits 

the drop at each of the two reflections compared to a single reflection. Furthermore, the 

second rainbow is spread over a great area of the sky. Therefore it is not always 

simultaneously present with the primary rainbow. While higher-order rainbows also exist, 

they are generally not visible to the observer. Many excellent textbooks and articles do exist 

on this subject, and the more detailed history and explanations of rainbow can be found 

((Khare, et al., 1974), (Walker, 1977), (Nussenzveig, 1977), (Sassen, 1979), (Nussenzveig, 

1979), (Wang, et al., 1991), (Lock, 1993), (van Beeck, 1997), and (Lee, 1998)). 

Even though it is difficult to observe higher-order rainbows in nature, in the laboratory 

extremely bright and well collimated light produced by laser can be used to visualize these. It 

is reported that higher-order rainbows, up to 200th, formed by a pendant water drop, have 

been observed (Ng, et al., 1998). The higher-order rainbows have been studied theoretically 

and experimentally ((Lock, 1987) and (Ng, et al., 2007)). The significant difference of such 

rainbows to natural rainbows is that the light source is a laser beam and the origin is a single, 

spherical droplet. In the present study the scattering patterns from droplets which are 

deformed and non-spherical are studied.  
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Fig. 1.4.   Generalized rainbow pattern from a spheroidal water droplet with aspect ratio of 

1.21. 

 

Considering the the difficulties in computation of the light scattering from large particles 

with complex shape, a simplified problem is to start from spheroidal particles. A variety of 

characteristic scattering patterns from spheroidal water droplets have been observed in the 

vicinity of the primary rainbow region (Marston, et al., 1984). These patterns are called 

diffraction patterns in the language of catastrophe optics (Berry, et al., 1980). The diffraction 

patterns, also known as generalized rainbow patterns, start from being a fold rainbow, then 

change to transverse cusp caustics and then to hyperbolic umbilic caustics as the aspect ratio 

gradually increases ( (Nye, 1992) and (Marston, 1999)). A generalized rainbow pattern from 

a spheroid water droplet with aspect ratio of 1.21 is shown in Fig. 1.4. As the ratio is further 

increased, other catastrophes will appear. To understand more of the generalized rainbow 

patterns, one can refer the articles ((Berry, et al., 1980), (Nye, 1992), (Kaduchak, et al., 1994), 

(Kaduchak, et al., 1994), and (Marston, et al., 1994)). And the detailed explanation and more 

rainbow patterns will be given in Chapter 4.   

1.3   Thesis overview 

The development of new measurement techniques for non-spherical droplet 

characterization is the main subject of the thesis. The application of the optical 

characterization technique is the non-intrusive measurement of droplets and sprays in a 

numerous industrial processes e.g. painting, spray cooling, spray drying, inhalators, aerosol 

sprays, etc. It is based on the generalized rainbow patterns.   

The light scattering theories including exact theories and approximation methods are given 

in Chapter 2. Lorenz-Mie theory (also known as Mie theory) is the solution to Maxwell’s 

equation which can be used to describe the scattering of plane electromagnetic radiation by 

an optically homogeneous spherical particle. The solution takes the form of an analytical 

infinite series and is named after its developer Gustav Mie and Ludvig Lorenz who developed 

the theory independently. Debye series expansion is developed for scattering of light by a 

homogeneous particle which could interpret the scattered intensity in terms of various 

physical processes (Debye, 1909). However, these rigorous theories cannot be applied to 

particles of complex shape. Geometrical optics approximation is a very simple and intuitive 
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method for treating the interaction of a particle with light. The shape of the particle could be 

complex, but the size of particle must be much larger than the wavelength of the light. 

Moreover, the Airy approximation can be used to calculate the light scattering in the 

rainbow region. 

In Chapter 3, vector ray tracing (VRT) model for spheroid is presented, which can be used 

both for a sphere and a particle with complex shape. For a given incident light ray, the 

calculation of the reflected ray, transmitted rays, and the intersection of the inside ray with 

the particle are given in detail. Some first simulation results are also given in this Chapter. 

In Chapter 4, the VRT model is employed to simulate optical caustic structures including the 

rainbow and hyperbolic umbilic (HU) fringes in the primary rainbow region of light scattering 

from oblate water droplets. The location of cusp caustics are calculated by VRT and compared 

to results obtained using an analytic solution, in which a good agreement is found. The 

evolution of the optical caustic structures in response to shape deformation of oblate water 

droplets is investigated using the VRT method and is found to be consistent with 

experimental observation. For the secondary rainbow, the location of the cusp caustic is also 

calculated using the VRT method and compared with that calculated using analytic solutions; 

again excellent agreement is found. The optical caustic structures for the secondary rainbow 

are first simulated and analyzed systematically according to VRT model and the evolution 

process of the optical caustic structures is consistent with experimental observations. 

Then, the experimental investigation of light scattering by oblate spheroidal particle in the 

primary rainbow region is shown in Chapter 5. The generalized rainbow patterns are 

presented and discussed in detail. By comparison of experimental results with Airy 

approximation, the validity of the Airy approximation for spheroidal droplets is confirmed.  

In Chapter 6, based on the generalized rainbow patterns and Airy approximation, the 

refractive index and equatorial diameter of spheroidal water droplets are determined. It is 

shown that absolute error of the refractive index is less than 0.5x10-4 and of the droplet 

diameter 5%. Furthermore, the relation between the curvature of the rainbow fringes and 

the aspect ratio of spheroidal water droplets is established. Then the aspect ratio of 

spheroidal droplets is inferred from the corresponding generalized rainbow patterns with 

relative errors lying between -1% and 1%. 

Then, the evolution of the optical caustic structures for tilted spheroidal droplets is given in 

Chapter 7. The rainbow fringes are counterclockwise tilted as the spheroidal droplet is 
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counterclockwise tilted and vice versa. The experimental investigation for a tilted spheroidal 

droplet is also presented.  

In Chapter 8, Möbius’s approximation is modified to calculate the deviation between the 

geometrical rainbow angle for an ellipse and that for a sphere. And the vector ray tracing 

model is also used to compute the rainbow angle deviation for an ellipse, which agrees with 

modified Möbius equation for small eccentricity. Moreover, the application range of 

Möbius’s approximation is also investigated. It is demonstrated that, for small eccentricity, 

that is, 0.95≤a/c ≤1.05, the Möbius’s approximation can be used to predict the rainbow 

angle deviation of an ellipse. 

Finally, the dissertation is concluded with a conclusion and perspectives section in Chapter 9. 
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Chapter 2   Light Scattering Theories 

In this Chapter, an introduction of light and Maxwell’s equations are given. Then the 

analytical solution of interaction of light with a particle is introduced, which includes the 

Lorenz-Mie theory and Debye series. The approximation methods of light scattering from a 

particle, including geometrical optics approximation and Airy approximation, are then 

reviewed. Furthermore, the polarization character of light scattered in the rainbow region is 

studied based on geometrical optics. 

2.1   Introduction to light 

In physics, the term light refers to electromagnetic radiation of any wavelength, whether 

visible or not. Commonly, light is referred to electromagnetic radiation that is visible to the 

human eye and is responsible to the sense of sight. Primary properties of light are intensity, 

propagation direction, frequency or wavelength spectrum, and polarization, while its speed 

in vacuum is one of the fundamental constants of nature.  

J. C. Maxwell was first to formally postulate electromagnetic waves. Maxwell’s equations are 

a set of partial differential equations that, together with Lorentz force law, form the 

foundation of classical electrodynamics and classical optics. The electromagnetic field 

comprises the mutually perpendicular electric field E and magnetic field H. According to 

Maxwell’s equations, a specially varying electric field causes the magnetic field to change 

over time. Likewise, a spatially varying magnetic field causes changes over time in the 

electric field. The electromagnetic field (E, H) satisfies Maxwell’s equations given in the 

following form (Born, et al., 1999): 
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       (2.1) 

Where ∇⋅  is the divergence operator, ∇×  is the curl operator, pf is called free charge 

density, σ is called the specific conductivity, ε is known as permittivity and μ is the magnetic 

permeability.  

To allow a unique solution of the field vectors from a given distribution of currents and 

charges, the above equations must be supplemented by relations, which can describe the 
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behavior of substances under the influence of the field. These relations are known as 

material equations. Generally, for linear materials the material equations are: 

 = , , .fε µ σ= =D E B H J E        (2.2) 

here D is the electric displacement, B the magnetic induction and Jf the electric current 

density.  

To apply the material equation to Eq. (2.1), one can rewrite Maxwell equation in the 

following form: 
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In vacuum, the free charge density and electric current density are both zero, and the above 

equation can be simplified. 

To solve Maxwell’s equations, one can deduce other differential equations in which each of 

the vectors separately satisfies. These are called wave equations. For an optically 

homogeneous medium, the wave equations are given as: 
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The wave equations can be written in other forms which depend on the units adopted (Born, 

et al., 1999). Attention has to be paid to the fact that, while Maxwell’s equations are 

extraordinarily successful at explaining and predicting variety phenomena, they are not 

exact. In some situations e.g. strong fields and extremely short distances, they are not 

accurate. For more accurate predictions, Maxwell’s equations are superseded by quantum 

electrodynamics, which is beyond the scope of this dissertation. 

On other hand, Maxwell’s equations (Eqs. (2.1) and (2.3)) are only stated for regions of space 

in which the physical properties of the medium are continuous. In most case, one often 

deals with situations in which the properties change abruptly across one or more surfaces. 

The electromagnetic vectors E, D, H, and B may then become discontinuous; however they 

must obey the boundary conditions at a surface of discontinuity: 

n⋅ (D2 − D1) = τ,   n× (E2 − E1) =0.      (2.5a) 

n⋅ (B2 − B1) =0,    n× (H2 − H1) = α.      (2.5b) 
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Here n is the unit normal pointing from the first medium into the second medium, τ is the 

charge density on the surface and α is the surface current density. 

For convenience of operation and theoretical analysis, the field of the light can be 

represented by the complex amplitude, which is an indispensable tool in the mathematical 

physics of wave phenomena:  

 ( ) ( ) ( ), expU t A i tω= − ⋅  r r k r        (2.6) 

where A(r) is the amplitude function related to the location r, k the wave number which can 

be complex in absorbing medium, ω the angular frequency or called circular frequency. The 

choice of i  or i−  is arbitrary. The present choice of positive i  in the time factor is the 

classical one and corresponds with the classical form of the complex refractive index (van de 

Hulst, 1981). 

According to the set of exp( )i t iω − ⋅k r , i−  is the imaginary unit of 1− . Only on this 

assumption, the transmission wave corresponds to the physical situation, otherwise the 

amplitude would tend to infinity with increasing distance, under the condition of total 

reflection occurs (Yu, 2008). Contrary to the present choice, 1 i− =  is adopted in Born’s 

description (Born, et al., 1999). In the present choice, the phase advances by 2π  at the 

passage of any focal point (also called focal line) (van de Hulst, 1981). The complex refractive 

index for an absorbing medium is defined as ( )2 1n n iη= − , where n  and η  are positive, and 

η  is the so-called absorption coefficient. However, if one adopt the other choice of 

exp( )i t iω− + ⋅k r , 1−  equals i , the phase shift is 2π−  when the light passes the focal 

point, and the complex refractive index is ( )2 1n n iη= + . In summary:  
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here fpφ  is the phase shift due to the focal point. The present choice is i , which is retained 

throughout this dissertation. So the time shift is 2π  at passage of any focal point, and 

imaginary part of refractive index is negative.  

2.2   Rigorous theories of light scattering 

Light scattering theory is a framework for studying and understanding the scattering of light 

by particles. The particles could be atoms, molecules, particulate particle, liquid droplets, etc. 

One kind of light scattering is inelastic light scattering in which the frequency of scattered 
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light is shifted. A well-known inelastic light scattering is Raman scattering, which is widely 

used for material identification and analysis (Kador, et al., 2003), and medicine (Choo-Smith, 

et al., 2002). The other kind of light scattering is elastic light scattering, such as Rayleigh 

scattering and Mie scattering, in which the frequency of scattered light is not changed. The 

present work focuses on elastic light scattering and its application to particle 

characterization. 

Light scattering theory is the solution of Maxwell’s equations describing the interaction of 

electromagnetic field and particles, which are given in Chapter 2.1. The electromagnetic field 

can be plane wave, Gaussian beam and the particle shape could be arbitrary. However, only 

for some regular particles including sphere, spheroid, ellipsoid or cylinder, can an analytical 

solution be obtained. Lorenz-Mie theory is the solution to Maxwell’s equations describing 

the scattering of plane electromagnetic radiation by spherical particle. Generalized Lorenz-

Mie theory describes the interaction of a homogeneous sphere and electromagnetic 

radiation with an arbitrary shaped beam. Debye series expansion is developed for the light 

scattering by a homogeneous particle to interpret the scattered intensity in terms of various 

physical processes. 

2.2.1   Lorenz-Mie theory 

 
Fig 2.1.   Light scattering model. 

 

In 1908, Gustav Mie published his famous paper for explaining the color effects related with 

colloidal gold particles (Mie, 1908).  In this paper, he gave an outline of how to calculate the 

light scattering by small spherical particles using Maxwell’s electromagnetic theory. 

Although electromagnetic scattering by a homogeneous, isotropic sphere is commonly 
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referred to as Mie theory, Gustav Mie was not the first to formulate this electromagnetic 

scattering problem. Before him, Ludvig Lorenz also contributed to this problem (Lorenz, 

1890). Therefore, plane wave scattering by homogeneous spherical particle is also referred 

to as Lorenz-Mie theory. For more detailed introductions to Lorenz-Mie theory, one can 

refer to the book  (Hergert, et al., 2012). 

Lorenz-Mie theory is the solution to Maxwell’s equations describing the scattering of 

electromagnetic radiation by homogeneous spherical particle (see Fig. 2.1). The solution 

takes form of two amplitude functions S1(α,m,θ) and S2(α,m,θ). They are the non-

dimensional scattering amplitudes perpendicular and parallel to the scattering plane 

respectively, and are given as: 
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Here an and bn are the Mie coefficients, τn and πn are the Legendre functions, which are 

given by: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

' '

2 2 ''
n n n n

n
n n n n

m m m
a

m m m
ψ α ψ α ψ α ψ α
ξ α ψ α ξ ψ α

−
=

−
      (2.10) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

' '

2 2 ''
n n n n

n
n n n n

m m m
b

m m m
ψ α ψ α ψ α ψ α
ξ α ψ α ξ ψ α

−
=

−
      (2.11) 

( )
(1) (cos ) (cos )
sin cos

n n
n

P dP
d

θ θπ θ
θ θ

= =        (2.12) 

( )
(1) (cos )n

n
dP

d
θτ θ

θ
=          (2.13) 

where the relative refractive index m=m2/m1 is the ratio of the refractive index of the 

particle m2 to the that of ambient medium m1, and α=2a/λ is the dimensionless particle size 

parameter (Mie parameter), where a is the radius of spherical particle and λ the wavelength 

of the incident light in the ambient medium. (1) (cos )nP θ  is the associated Legendre function. 

( )nψ α  and ( ) ( )2
nξ α  are the Riccati-Bessel functions given by: 

( ) ( )
1 2

1
22n n

Jπαψ α α
+

 =  
 

        (2.14) 
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( ) ( ) ( ) ( )
1 2

2 2
1
22n n

Hπαξ α α
+

 =  
 

        (2.15) 

here ( )1
2

n
J α

+
 is the Bessel function of the first kind, and ( ) ( )2

1
2

n
H α

+
 is the Hankel function of 

the second kind. The Hankel function of the second kind is used, because it makes 

( )exp i tω − ⋅  E k r  to an outgoing wave at larger distance from the particle, as the 

scattered wave is supposed to be. The Hankel function of the first kind can be used if one 

adopt the convention of exp( )i t iω− + ⋅E k r .  

Usually, the detection of the scattered light takes place at a very larger distance from the 

particle, that is, the far-field approximation (Hergert, et al., 2012). The scattered amplitudes 

for the two polarized directions are respectively: 

( )1 1 10S
2
iE E

r
λ θ
π

=          (2.16) 

( )2 2 20S
2
iE E

r
λ θ
π

=          (2.17) 

Here r is the distance from the particle center to the observer. E10 and E20 are incident 

electric field components of two polarized directions, respectively.   

Generally, the normalized far-field intensities ( )1 , ,i mα θ  and ( )2 , ,i mα θ  are used, which 

are given by: 

 ( ) ( ) 2
1 1, , , ,i m S mα θ α θ=         (2.18) 

( ) ( ) 2
2 2, , , ,i m S mα θ α θ=         (2.19) 

The intensity of un-polarized scattered light ( ), ,i mα θ  is simply obtained by averaging the 

intensity due to the two linearly polarized components, i.e. 

 ( ) ( ) ( )1 2, , , ,
, ,

2
i m i m

i m
α θ α θ

α θ
+

=        (2.20) 

It can be seen that the scattering amplitudes (S1 and S2) given by Eqs. (2.8) and (2.9) are 

expressed in terms of an analytical infinite series. For simulation, the criterion of the 

terminating order must be chosen. For ( )0,100000α ∈ , a criterion is given by the following 

equation (Shen, et al., 2005). 
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( )
( )
( )

0.34

1 3

0.31

7.5 2 1 18,

6 2 1 12,

4.88 1 5.

n

stop n

n

A e

n A e

A e

α α α

α α α

α α α

 + + < −
= + + < −
 + < −

     (2.21) 

Lorenz-Mie theory gives the analytical solution of the interaction between electromagnetic 

radiation and the homogeneous spherical particle. Due to the development of computation, 

it can be used to simulation of the scattered light from larger size particle. However, it does 

not give insight into either the scattering process, or changes in the pattern resulting from 

changes in shape, refractive index, or profile of the incident wave fronts. 

2.2.2   Debye series expansion 

The analytical solution of the interaction between electromagnetic radiation and the 

homogeneous spherical particle is given by Lorenz-Mie theory. For a homogeneous 

spheroidal particle, the solution of electromagnetic scattering has also been obtained 

( (Asano, et al., 1975), (Asano, 1979), and (Asano, et al., 1980)). However, only a plane and 

linearly polarized monochromatic wave was considered in the above cases. For shaped-

beam incidence, the generalized Lorenz-Mie theory (GLMT) was developed ( (Gouesbet, et 

al., 1988), (Gouesbet, 1994), (Barton, 1995), (Han, et al., 2001), (Xu, et al., 2007), and (Lock, 

et al., 2009)). Alternatively the Fourier-Lorenz Mie Theory (FLMT) can also be used to 

compute the scattering of shaped beams from spherical particles (Albrecht, et al., 2003). 

Although LMT, FLMT and GLMT provide accurate solutions to the Maxwell equations, the 

drawbacks lie in the fact that they cannot reveal the contribution of different scattering 

orders to the overall scattering pattern. Debye series provides such information and has 

been applied to some regular particles (e.g. cylinder (Debye, 1909), sphere (Nussenzveig, 

1969), coated sphere (Lock, et al., 1994), and multilayer cylinder (Wu, et al., 2008) etc.). 

However Debye series has not yet to be applied to spheroidal particles or particles with 

complex shape. The difficulties in doing so are, on the one hand, that the orthogonality 

relationship of the spheroidal vector wave functions does not exist, which is a prerequisite 

for the Debye series in analytical form for each order n.  On the other hand, the second kind 

of spheroidal radial function for spheroids of large size or large axis ratio exhibit numerical 

divergence.  

Recently, the Debye series has been developed for light scattering by spheroidal particles in 

order to decompose the far-zone fields into various physical processes (Xu, et al., 2010). 



2.3   Approximation methods 

24 
 

Furthermore, the Debye series has been applied to analyze the formation of rainbow caustic, 

transverse cusp and hyperbolic umbilic caustics for a spheroid, which provides an exact 

analysis tool for studying the light scattering by a spheroid (Lock, et al., 2010). The Debye 

series is also generalized to nonspherical particles with complex shape (Xu, et al., 2010) and 

coated nonspherical particles (Xu, et al., 2010) using the extended boundary condition 

method (EBCM). The EBCM treats light scattering in spherical coordinates independent of 

the shape of the particle’s surface; no special coordinate system in which the vector wave 

equation is separable is required to match the boundary conditions of the electromagnetic 

field at the particle surface  

However, Debye series has not been applied to droplet sizes of hundreds of microns because 

of the numerical problems in computation. Accordingly, further investigations for applying 

Debye series for large particle needs to be implemented.  

2.3   Approximation methods 

Although rigorous theories cannot be applied to larger particles, the geometrical optics 

approximation is a very simple and intuitive method for such cases. The particle shape can 

be complex, but the size of the particle must be much larger than the wavelength of the light. 

Moreover, the Airy approximation can be used to calculate the light scattering in the 

rainbow region.  

Other approximation methods for the light scattering problems, such as the complex angular 

momentum method or the physical-optics approximation are available; however, only the 

geometrical optics approximation and Airy approximation are introduced and only the basic 

principles are presented without a detailed derivation. 

2.3.1   Geometrical optical approximation 

The geometrical optics approximation and its generalizations provide solutions to 

electromagnetic problems that are valid in the limit of large dimensionless size parameter 

(i.e. the ratio of particle size to the light wavelength). The most appealing factors of the 

geometrical optics approximation are their simplicity and intuitive nature. Since many 

excellent textbooks (van de Hulst, 1981)and articles ( (Lock, 1996), (Lock, 1996), (Xu, et al., 

2004), (Xu, et al., 2006), (Xu, et al., 2006),  (Yu, et al., 2008) and (Yu, et al., 2009) etc.) exist 

on the subject, the present thesis shall only survey the basic principles, providing the most 

significant working relations.  
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From the geometrical optics viewpoint, the amplitude of the scattered light can be 

calculated by the superposition of reflection, refraction and diffraction rays.  

( )
1

, , , diffraction reflection refraction
p

S a b S S Sθ φ
∞

=

= + +∑      (2.22) 

 
Fig. 2.2.   Theoretical model of geometrical optics approximation. 

 

Figure 2.2 shows the light scattered by a sphere in the geometrical optics sense, assuming 

that all the incident light rays are parallel, that is, the incident light is a plane wave. A light 

ray impinging on the sphere at an incident angle θi is partly reflected and partly refracted, 

with the exception of total reflection. At all subsequent interfaces this process repeats with 

the result that an infinite number of rays emerge from the scatterer for each particular 

incident ray.  Each emerging ray can be characterized by the incident angle θi and the integer 

p, denoting the number of chords each light ray makes inside the sphere. The deflection 

angle '
pθ  between the pth emerging ray which can be reflection ray of refraction ray, and the 

direction of incident light ray can be expressed as follows (Yu, 2008): 

 ( ) ( )' , 2 2 1      0,1, 2,3 p i r im p p pθ θ θ θ π= − − − =       (2.23) 

where rθ  the refraction angle. And by the Snell’s law sinθi=msinθr. The p=0 ray represents 

the externally reflected light. The p=1 ray is directly transmitted through the sphere without 

any internal reflection and the ray is transmitted with p-1 internal reflections when p>1. To 

simplify the problem, the scattering angle θ  is defined, which is related to the deflection 

angle.  

 ( )' , 2p im l qθ θ π θ= − +         (2.24) 
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where q=1 or -1, and ( )0,θ π∈ . l  is an integer which must be chosen so that the scattering 

angle θ is on the range of ( )0,π . q=1 indicates that the incident light ray hits the sphere on 

the top hemisphere and q=-1 for the lower hemisphere (Yu, et al., 2008).  

The scattering intensity of a finite emergent pencil of light is given by (van de Hulst, 1981): 

 ( ) ( ) ( ) ( )
2 2 2

0 2
02 2

sin cos
, , , , ,     1, 2

sin
p j i i i p

j i j i

I a d d aI p m I D p m j
r d d r

ε θ θ θ ϕ
θ ε θ

θ θ ϕ
= = =  (2.25) 

where the subscript j=1 is for the perpendicular polarization component and j=2 for the 

parallel polarization component of light with respect to the scattering plane, and  

 ( ) ( ) ( )
( )

1 22 2

' 1 22 2

sinsin cos sin cos, ,
sinsin ( ) 2 cos sin

ip i i i i
i

p i i i i

m
D p m

d d p m

θθ θ θ θθ
θθ θ θ θ θ θ

−
= = ×

 − −  

(2.26) 

is the so-called divergence or convergence factor.  

The divergence given in Eq. (2.26) can be infinite when ( )' 0p i id dθ θ θ = . Combining Eq. (2.23) 

with the Snell’s law, after some algebra, one can obtain: 

 ( )' cos2 1 0
cos

p i i

i r

d p
d m
θ θ θ
θ θ

= − =        (2.27) 

To apply the Snell’s law to Eq. (2.27), one can obtain  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 1 2 2 2

2 2 2 2 1 2 2 2 2

sin 1 , sin 1 ,

sin 1 , sin 1 .

i i

r r

p m p p m p

p m m p p m m p

θ θ

θ θ

−

−

= − − = − −

= − − = − −
  (2.28) 

By substituting Eq. (2.28) into Eq. (2.23), the scattering angle for the first rainbow (p=2) is 

given by: 

 
2 2

1 1
2

4 42sin 4sin
3 3rg
m m

m
θ π − −− −

= + −       (2.29) 

Therefore in geometrical optics, the rainbow angle is a function of relative refractive index. 

The relative refractive indices are 1.330 and 1.432 for red light and violet light (for a water 

scatterer in air) respectively. The rainbow angle is 137.5o for red light, but 139.38o for violet 

light. 

The fraction jε  in the scattering intensity is given as: 

 
( )( )( )-12

                              0
   1, 2

1       1, 2,3,

j j

p

j j j

r p
j

r r p

ε

ε

= = =
= − − = 

     (2.30) 
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where r1 and r2 are the Fresnel reflection coefficients (Born, et al., 1999) given by, 

1 2
cos cos cos cos,      
cos cos cos cos

i r i r

i r i r

m mr r
m m

θ θ θ θ
θ θ θ θ
− −

= =
+ +

     (2.31) 

For computation convenience, one can introduce at this point the dimensionless intensity 

( ) ( ), ,p
j ii mα θ  defined as, 

 ( ) ( ) ( ) ( ) ( )2 2, , , , ,       1, 2p p
j i j i ii m m D p m jα θ α ε θ θ= =     (2.32) 

One can further define a corresponding amplitude function of scattering light for each 

polarization component by: 

( ) ( ) ( ) ( ) ( )
1 2

, , , , exp 1,2p p
j i i i i iS m D p m i jα θ αε θ δ ζ = + =       (2.33) 

The phase jδ  due to the length of optical path and the phase jζ  due to focal lines are given 

by (van de Hulst, 1981): 

 
( )2 cos cos

    1, 21 11 2
2 2 2

j i r

j

pm
j

p l s q

δ α θ θ
πζ

 = −
 =  = + + + −   

                (2.34a) 

where the integer ,p l  and q  are defined above, and s  denotes +1 or -1, on the contrary 

the sign of ' /p id dθ θ , i.e.  

 

cos1 1 0,
cos
cos1 1 0.
cos

i

r

i

r

pfor
m

s
pfor
m

θ
θ
θ
θ

 − >= 
− − <


                  (2.34b) 

To study the phase shift of reflection and refraction, the Fresnel formulae are given as 

follows: 

1 1

2 2

cos cos 2cos,      
cos cos cos cos

cos cos 2cos,      t
cos cos cos cos

i r i

i r i r

i r i

i r i r

mr t
m m

mr
m m

θ θ θ
θ θ θ θ
θ θ θ
θ θ θ θ

−
= =

+ +
−

= =
+ +

     (2.35) 

The Fresnel coefficients as a function of incident angle are shown in Fig. 2.3. One can see the 

refraction coefficients t1 and t2 are always positive. The reflection coefficient r1 is always 

negative, but the sign of reflection coefficient r2 changes from positive to negative as the 

incident angle increase. This special angle at which the reflection coefficient r2 equals zero is 

called polarizing angle or Brewster angle (Born, et al., 1999). Therefore the reflection may 



2.3   Approximation methods 

28 
 

change the sign of the amplitude of light and introduces a phase shift π. Figure 2.4 shows 

phase shift of the coefficients as a function of angle of incidence. The possible changes of the 

sign have already been taken into account in the definition of the factors ε1 and ε2.  

If the light ray impinges on the boundary at Brewster angle, the reflected light has no 

component in the plane of incidence, which means the reflected light is perpendicularly 

polarized. The Brewster angle is given as, 

 ( )1tanb mθ −=           (2.36) 

 
Fig. 2.3.   Fresnel coefficients as a function of angle of incidence. 

 
Fig. 2.4.   Phase shift of the coefficients as a function of angle of incidence. 

 

So far the case when the light propagates from an optically denser medium into other one 

which is optically less dense is excluded, that is, the relative index defined as m=m2/ m1 is 

smaller than 1. That case is shown in Fig. 2.5. Snell’s law is then written in the following form: 

 sin sint i mθ θ=          (2.37) 
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Provided sinθi equals m, then sinθt=1, i.e. θt=90o, so that the light emerges in a direction 

tangent to the boundary. The critical angle is defined as:  

 ( )1sinc mθ −=           (2.38) 

For example, if the light propagates from water into air, the relative refractive index is 

around 0.75. And the critical angle is 48.59o. 

If the incident angle exceeds the limiting angle, no light ray enters the second medium and 

the incident light ray is totally reflected. More precisely, although there is a field in the 

second medium, the time average of Poynting vector vanishes which implies the energy 

flows to and fro, but there is no lasting energy flow into the second medium. The field in the 

second medium is a kind of evanescent wave. 

When θi>θc, the value sinθr is larger than 1. The cosine of the refraction angle is given as: 

 
2

2
2

sincos 1 sin 1 1i
r r m

θθ θ= − = − × −       (2.39) 

and  

 1 i− = ±           (2.40) 

So  

 
2

2

sincos 1i
r i

m
θθ = −                    (2.41a) 

or   

2

2

sincos 1i
r i

m
θθ = − −                   (2.41b) 

 
Fig. 2.5.   Schematic view of light ray propagating from optically denser medium into 

optically less dense medium. 
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As mentioned in Chapter 2, the set of exp( )i t iω − ⋅k r  is adopted. In this adoption, the 

exponent of the transmission can be written as:  

 
2

sin cosexp r rx zi t θ θω
ν

  +
−  

  
       (2.42) 

Substituting Eq. (2.41) into Eq. (2.42), one can obtain; 

 
2

2
2 2

sin sinexp exp 1i ix zi t
m m

θ θω
ν ν

   
− × ± −         

     (2.43) 

It is obviously that only the negative sign in front of the square root in Eq. (2.43) corresponds 

to the physical situation. Otherwise the scattering amplitude would tend to infinite as the 

light propagates. When the sign in Eq. (2.43) is set to negative, Eq. (2.41b) exists and 

1 i− = − . However, in the choice of exp( )i t iω− + ⋅k r , Eq. (2.41a) exists and 1 i− = .    

To apply the Fresnel formulae to the case of total reflection, that is, substituting Eq. (2.41b) 

into Eq. (2.35), one could rewrite them in the form of; 

 
( ) ( )

( ) ( )

1 1 2 2

1 1 2 22 4 2 2 2

exp 2 ,      exp 2 ,
2cos 2 cosexp ,      exp ,
1 cos sin

i i

i i

r i r i
mt i t i

m m m

δ δ
θ θδ δ

θ θ

′ ′= =

′ ′= =
− + −

   (2.44) 

where 

 
2 2 2 2

1 1
1 2 2

sin sin
2 tan ,      2 tan

cos cos
i i

i i

m m
m

θ θ
δ δ

θ θ
− −
   − −
   ′ ′= =
   
   

   (2.45) 

 
Fig. 2.6.   Fresnel coefficients as a function of angle of incidence for m=0.75. 
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               Fig. 2.7.   Phase shift of the coefficients as a function of angle of incidence. 

 

The absolute values of Fresnel coefficients as a function of angle of incidence for m=0.75 are 

shown in Fig. 2.6.  Even though the absolute value t1 and t2 can be larger than 1, there is no 

lasting energy flow in the second medium. Most notably, as shown in Fig. 2.7, the phase 

shifts of the total reflected ray shift continuously from 0 to  when the angle of incidence 

overruns the critical angle. When the incident angle is less than the critical angle, the phase 

shift is of 0 or  lying on the sign of reflection coefficients r1 and r2. 

It can be seen that geometrical optics approximation gives a close form solution for spherical 

particle. However for non-spherical particle, no close form solution can be given. 

2.3.2   Airy approximation 

With the Airy approximation (or called Airy theory) (Airy, 1838), the exit wavefront is 

assumed to be cubic. Applying Huygens’s principle, a compact closed form for the scattered 

light can be obtained. For a more detailed derivation one can refer the book (van de Hulst, 

1981) or the dissertation (van Beeck, 1997). The Airy approximation provides the scattering 

intensity in the region of the rainbow as a function of scattering angle, is valid for a spherical 

particle, and offers a greatly simplified computation compared with the Lorenz-Mie theory 

especially for large particles. Nevertheless, Lorenz-Mie computations are nowadays feasible 

for large spherical particles and offer a method of validation for Airy approximation. In Ref. 

(Wang, et al., 1991) for instance, agreement between the two approaches had been shown 

with increasing refractive index, even for very small particles. More explanations also can be 

found in Ref. (Jackson, 1999) and (Saengkaewa, et al., 2006). The scattering intensity 

evaluated by Airy approximation is given as (Wang, et al., 1991): 
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 ( ) ( ) ( ) ( )1 62 2 4 7 3 281 16 sin cos 1,2j irg rgI h F z jε π θ α θ = × =     (2.46) 

here the subscript j=1 is for the perpendicular polarization component and j=2 for the 

parallel component of the light respect to the scattering plane, and F(z) is the Airy integral 

also called rainbow integral: 

 ( ) ( )3

0
cos 2F z zt t dtπ

∞
 = − ∫        (2.47) 

The Airy integral could be related to the Airy function ( )Ai x : 

3

0

1 1( ) cos
3

Ai x xv v dv
π

∞  = + 
 ∫        (2.48) 

After some algebra operations, one could obtain: 

 

( )

( ) ( )

( )

1 2 3 2

1 3

2 3 2
3

1 2 3 2 3 2

1 3 1 3

2( ) , 0
2 6 3 2

1 , 0
3

1 2 2( ) 0
2 3 2 3 2 3 2

az a az azF z a Ai K for z

F z a for z

az az az azF z a Ai a J J for z

π

−

    = ⋅ = <    
     

= ⋅ =
Γ

         = ⋅ − = + >                      

(2.49) 

and  

 
1 32

3
a π

π
 =  
 

          (2.50) 

where 1 3K  denotes the modified Bessel function, Γ  the Gamma function, and 1 3J  and 1 3J−  

the Bessel functions. 

The variables and parameters in Eqs. (2.46)-(2.49) are defined as follow: 

 

( ) ( ) ( )
( ) ( ) ( )

( )( )( )

1 32 2 3

2 1 2 3 22 2 2 2 2

12

1 2

;

12 ;

1 1 ;

1 , 1,2 2;

cos cos cos cos
; .

cos cos cos cos
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p

j j j

irg rrg irg rrg

irg rrg irg rrg

d

z q h

h p p m p m

r r j and p

m m
r r

m m

α π λ

π α θ θ

ε

θ θ θ θ
θ θ θ θ

−

=

 = − − 
 = − − −  

= − = ≥

− −
= =

+ +

     (2.51) 

where α is the dimensionless size parameter, d the diameter of the particle, λ the 

wavelength of the incident light, q an integral equaling to +1 or -1, whose physical meaning 

can be found in Ref. (Yu, et al., 2009), θirg the incident angle for rainbow ray, θrrg the 
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refractive angle for rainbow ray, θrg the rainbow angle and θ scattering angle. r1 and r2 are 

the Fresnel coefficients.  

According to geometrical optics, the incident angle and refractive angle for rainbow ray are 

given by: 

 ( ) ( ) ( ) ( )1 2 1 21 2 2 2 1 2 2 2 2sin 1 , sin 1irg rrgp m p p m m pθ θ− −   = − − = − −     (2.52) 

And the rainbow angle is:  

 
2 2

1 1
2

4 42sin 4sin
3 3rg
m m

m
θ π − −− −

= + −       (2.53) 

The parameter z in Eq. (2.51) can be written as other form:  

 ( ) ( )
( ) ( )

( )
1 33 21 3 22 3

2 3
1 22 2 2 2 2

16 116 cos
sin 1

irg
rg rg

irg

md
z

p m p

θ
θ θ α θ θ

λ θ π

 −   = − = −    − −   
  (2.54) 

 
Fig. 2.8.   Distribution of the square of the Airy integral. 

 

According to Eq. (2.46), one can see the intensity of scattered light in the rainbow region is 

proportional to the square of Airy integral ( ( )2F z ). And the square of Airy integral is plotted 

in Fig. 2.8. It is evident that there are successive maxima and minima on the curve. The 

heights of the maxima and the values of z  for which the maxima and minima are reached 

are given in Table 2.1 ((van de Hulst, 1981) and (van Beeck, et al., 1995)).  
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Fig. 2.9.   Scattered light intensity distribution calculated using Airy approximation for the 

perpendicular polarization component. 

 

Table 2.1.   Maxima and minima in the square of the Airy integral 

 z F2(z) 

Main rainbow 

First minimum 

1.0874 

2.4956 

1.0075 

0 

First subsidiary maximum 

Second minimum 

3.4668 

4.3632 

0.6165 

0 

Second subsidiary maximum 

Third minimum 

5.1446 

5.8922 

0.5081 

0 

Third subsidiary maximum 

Fourth minimum 

6.5782 

7.2436 

0.4498 

0 

Fourth subsidiary maximum 7.8684 0.4114 

 

In Fig. 2.9, the light scattering intensity distribution calculated by Airy approximation for the 

perpendicular polarization component is shown. θ1, θ2, θ3….. are used to denote the 

successive scattering angles for which the maximal intensity is observed.  

For the first and second maxima of square of Airy integral shown in Table 2.1, 

 1 21.0874, 3.4668z z= =         (2.55) 

By substituting Eq. (2.55) into Eq. (2.54), one can obtain: 

 1

2

1.0874
3.4668

rg

rg

C
θ θ
θ θ

−
= =

−
        (2.56) 

So the rainbow angle can be expressed as: 
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 1 2

1rg
C
C

θ θθ −
=

−
         (2.57) 

If one can detect the 1θ  and 2θ  from experiment, then one could obtain the rainbow angle 

rgθ  according to using Eq. (2.57). Finally, one can calculate the refractive index using Eq. 

(2.53). From Eq. (2.54), the diameter can be expressed by the following formula: 

 
( )
( )

1 21 23 2 2
1 2

3 22
1 2

3 4
4 1

mz zd
m

λ
θ θ

 − −  =    −  − 
       (2.58) 

The above equations will be used to calculate the refractive index and diameter in Chapter. 6.  

In ref. (Roth, et al., 1996), an inversion algorithm based on inflection points was used to 

calculate the refractive index and size of droplet. Further inversion algorithms can be found 

in Ref. (van Beeck, et al., 2001). 

 
Fig. 2.10.   Comparison of the intensity distribution calculated by Lorenz-Mie theory and Airy 

approximation for a water droplet in air in the rainbow region: (a) for the perpendicular 

polarized component and (b) for the parallel polarized component. 

 

In the above discussion, only the perpendicularly polarized component is taken into account. 

As is well known, rainbow light is strongly polarized (Können, et al., 1979), with the 

perpendicularly polarized component completely dominating. The polarization character 

also depends on the material of the droplet, which will be discussed in the following. 

In the Airy approximation, the polarization character was not considered. Wang and van de 

Hulst (1991) generalized the Airy approximation to the two polarization directions. The 

comparison of intensity distributions calculated by using Lorenz-Mie theory and Airy 

approximation for water droplet is shown in Fig. 2.10. To facilitate comparing two simulation 

results, the intensity distributions are normalized by setting the maximum to be 1 for the 
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two methods respectively. The Airy approximation agrees with Mie theory very well for the 

perpendicular polarization component as shown in Fig. 2.10a. In the Airy approximation, 

only the second-order refractions are taken into account. So, only supernumerary arcs can 

be seen, without ripple structures, which can be observed in the Lorenz-Mie simulation. 

However, for the parallel component, the deviation of Airy simulation from Lorenz-Mie 

simulation is obvious, which is evident in Fig. 2.10b. So the Airy approximation cannot be 

used to calculate the parallelly polarized component of scattered light in the rainbow region.  

In summary, there remains a feature of the rainbow where Airy's description breaks down. 

The reason for this is that light rays, responsible for the rainbow, are always at least 

reflected once inside the water droplet; for the Descartes ray this reflection occurs close to 

the Brewster angle. As mentioned before, the scattered light in rainbow region is strongly 

polarized and the perpendicular component dominates strongly. Therefore, Airy 

approximation is a very good approximation of the rainbow. 

2.4   Polarization character of light scattering in rainbow region 

Light, being a transverse wave, exhibits an orientation direction perpendicular to the 

direction of propagation, known as the polarization. The orientation of the transverse 

oscillation can be resolved into components along two mutually perpendicular axes and any 

light ray can be described in terms of these two independent states of linear polarization. 

The polarization character of reflected and transmitted rays at the interface between two 

media can change. However at some angle of incidence, the reflection is almost completely 

polarized. The Brewster angle is such an angle. 

The Brewster angle, also known as the polarization angle, is an angle of incidence at which 

light with a particular polarization is perfectly transmitted through a transparent dielectric 

surface, exhibiting no reflection. The polarization angle is given by (Born, et al., 1999): 

 ( )1tanb mθ −=          (2.59) 

As shown by Eq. (2.59), the polarization angle varies with the relative refractive index (m) of 

medium. Since the relative refractive index for a given medium changes depending on the 

wavelength of light, the polarization angle will also vary with wavelength. For an air-water 

interface, the polarization angle is 53.06o for the light with wavelength of 632.8 nm. For the 

same interface, it is 53.27o for the light with wavelength of 400 nm (Bashkatov, et al., 2002). 



Chapter 2   Light Scattering Theories 

37 
 

Consider the polarization character of a light ray that reaches an air-water droplet surface. 

As shown in Fig. 2.11, the incident ray, the reflective ray and the transmitted (refractive) ray 

are in the same plane. The polarization states of the incident light can be defined as being 

parallel to that plane and perpendicular to the plane. For the condition that the angle of 

incidence is the Brewster angle, the parallel polarized component is entirely transmitted. So, 

there is no parallel component in the reflected ray (p=0), that is, the reflected ray is 

completely perpendicularly polarized.   

 
Fig. 2.11.   Illustration of the polarization of light transmission in a sphere with the incident 

angle impinging at the Brewster angle. 

 

Using Snell’s law, the refractive angle is θr=tan-1(1/m) if the incident angle is the Brewster 

angle. Exploiting the symmetry of the sphere, one can know that the incident angles are also 

rθ  for the first inner reflection (at point B), for the second inner process (at point C), and for 

the high order inner processes. When a light ray hits the inner droplet-air surface, the 

Brewster angle also equals tan-1(m). So the reflected ray at point B, i.e. the incident ray for 

the second inner process, is completely polarized (see Fig. 2.11). However, the refracted ray 

(p=1) at point B is partially polarized, in which the parallel component dominates. Because 

the incident ray is completely polarized, the transmitted ray (at point C) is also completely 

polarized. According to geometric optics, when the light ray is incident on the droplet at the 

Brewster angle, the transmission ray (p=2) is completely polarized. As for all analysis based 

on geometric optics, the polarization of scattering orders will not depend on the size of the 

droplet. 
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From geometrical optics, the angle of deflection ( ),p imθ θ  between the pth emerging ray 

and the direction of the incident ray is given as (van de Hulst, 1981):  

( ) ( ), 1 2 2      0,1, 2,3 p i i rm p p pθ θ π θ θ= − + − =        (2.60) 

using Snell’s law sinθi=msinθr, where θi is the incident angle, θr the refractive angle, and m 

the relative refractive index of the particle to the surrounding medium. According to 

geometrical optics, if the ray is incident at some special angle, the scattering angle given by 

Eq. (2.60) exhibits a minimal value, which is called the geometrical optics rainbow angle. The 

rainbow angle is given by: 

( )
11 222 2

1 1
2

4 112cos 4cos
3 3rg

mm
m

θ π − −
 − −  = + −      

     (2.61) 

Suppose the incident angle is the Brewster angle given by Eq. (2.59), one can obtain other 

special scattering angles. Here it is called as polarization scattering angle θpsa. By substituting 

Eq. (2.59) into Eq. (2.60), one can obtain:  

 ( ) ( )1 12 tan 4 tan 1psa m mθ π − −= + −        (2.62) 

 
Fig. 2.12.   Comparison between the rainbow angle and the polarization scattering angle. 

 

In Fig. 2.12 the relation between the rainbow angle θrg and the relative refractive index is 

shown by the black curve. For different relative refractive indexes, the polarization 

scattering angle θpsa of a ray whose incidence is the Brewster angle is shown by the red 

curve. For small relative refractive indexes, the rainbow angle is not close to the polarization 

scattering angle. However, when the refractive index is larger than 1.30 and smaller than 

1.60, the two angles are almost the same. The relative refractive index of the water droplet 

is 1.333 at a wavelength of 632.8 nm, for which the rainbow angle is very close to the 
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polarization scattering angle. This explains why the rainbow is almost completely polarized. 

As shown in Fig. 2.11, it is the perpendicular component that strongly dominates. 

 
Fig. 2.13.   Polarization character of scattering for a spherical particle in the rainbow region. 

The particle diameter is 500 μm; (a) m=1.333 at a wavelength 632.8 nm; (b) m=1.121 at a 

wavelength 632.8 nm. 

 

Then the intensities of the parallel and perpendicular polarized light for different scattering 

angles are examined. Figure 2.13a shows the light intensity distribution scattered by a 

spherical particle having d=500 μm and m=1.333 at a wavelength of 632.8 nm in the rainbow 

region. These distributions were calculated by using Lorenz-Mie theory (Mie, 1908). It can be 

seen that the perpendicular component is much stronger than the parallel component (more 

than 10 times). That is consistent with the analysis given in Fig. 2.11. Figure 2.13b shows the 

intensity distribution for a particle having the same parameters as Fig. 2.13a, but with 

m=1.121. According to geometric optics, the rainbow angle is 91.81o for this refractive index. 

So, the scattering angle region is between 90o and 100o
 shown in Fig. 2.13b. It can be seen 

that the parallel component is not weak compared to the perpendicular component. 

However for relative refractive indexes larger than 1.30 and smaller than 1.60, the rainbow 

angle is close to the polarization scattering angle. It means that the perpendicular 

component of the rainbow completely dominates for 1.30<m<1.60. 
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Chapter 3   Vector ray tracing model  

The vector ray tracing (VRT) model (Yu, et al., 2013) for a spheroid is presented in this 

chapter, which of course can be used for spheres and particles with complex shape. Firstly, 

the vector formulation of reflection and refraction are given. Then the light propagation at 

interfaces is discussed, including propagation of a ray from an optically less dense medium 

into an optically denser one and vice versa. Then the VRT model is presented. For a given 

incident light ray, the reflected ray, transmitted rays, and the intersection of the inside ray 

with the particle are given in detail. Furthermore, results of the vector ray tracing simulation 

for a sphere and spheroid are given. 

3.1   The vector formulation of reflection and refraction 

 
Fig. 3.1.   The illustration of light ray propagation in two media.  

 

It is assumed that light propagates from medium 1 to medium 2 (see Fig. 3.1a) or from 

medium 2 to medium 1, whereby the wavelength dependent refractive indices are given by 

m1 and m2 respectively.  

Let n0 be the unit vector along the direction of the incident ray, n1 the unit vector along the 

reflection ray, n2 the unit vector along the refractive ray, n the normal at the incident point 

on the interface between the two media, which points from medium 2 to medium 1. Then 

the vector formulations for reflection and refraction can be written as: 

 ( )2= − ⋅1 0 0n n n n n      (3.1) 



3.2   The illustration of vector ray tracing in ellipse 

42 
 

 ( ) ( )
1 2

2
2 2

1 1 11
m m m

 = − ⋅ − − + ⋅     
2 0 0 0n n n n n n n n     (3.2) 

which is for the case of light rays propagating from medium 1 to medium 2 as shown in Fig. 

3.1a. Here m is the relative refractive index defined by the ratio of m2 to m1 (m=m2/m1).  

For the second case as shown in Fig. 3.1b, the vector formulations for reflection and 

refraction ray are: 

 ( )2= − ⋅1 0 0n n n n n          (3.3) 

( ) ( )
1 222 21m m m = − ⋅ + − + ⋅    2 0 0 0n n n n n n n n      (3.4) 

Suppose m2 is larger than m1, which means m is smaller than 1. The physical meaning is that 

the light propagates from an optically denser medium into an optically less dense one. 

Attention has to be paid to the total reflection. When the incident angle exceeds the critical 

angle, the square root in Eq. (3.4) is a complex number.  

By comparing Eq. (3.1) with Eq. (3.3), one can see that the two vector reflection formulations 

are same for the two cases. However, for refraction, the two vector formulations for Fig. 

3.1a and Fig. 3.1b are different. The two cases correspond to the light ray propagating from 

outside into a particle, and the light ray propagating from the inner side of a particle to 

outside respectively. Equations (3.1)-(3.4) will be used to trace the light ray propagation in 

spheroidal particles in the following section.  

3.2   The illustration of vector ray tracing in ellipse  

 
Fig. 3.2.   The illustration of vector ray tracing for ellipse. 
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Suppose the origin of the coordinate is in the center of the particle and the surface of the 

particle obeys the following equation: 

 
2 2 2

2 2 2 1x y z
a a c

+ + =          (3.5) 

where a and c are the long semi-diameter and the short one of the ellipse as shown in Fig. 2.  

An oblate spheroid can be considered as a quadratic surface obtained by rotating the ellipse 

about its minor axis. 

Consider a light ray L0 encountering on the surface of the particle at the point A, whose 

direction can be expressed as a unit vector: 

 (0,1,0)=0L           (3.6) 

If the coordinate of incident point A is (x0, y0, z0), the normal of the surface at point A is given 

by:  

 
2 2 2

0 0 0
4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2

0 0 0 0 0 0 0 0 0

, ,A
c x c y a z

c x c y a z c x c y a z c x c y a z

 
 =
 + + + + + + 

n   (3.7) 

In a simple case, the incident ray is in the yz plane, that is, the coordinate of A can be (0, y0, 

z0). The normal of the surface at point A is given by:  

 
2 2

0 0
4 2 4 2 4 2 4 2

0 0 0 0

0, ,A
c y a z

c y a z c y a z

 
 =
 + + 

n       (3.8) 

By using the vector reflection formula Eq. (3.1) and refraction formula Eq. (3.2), one can 

obtain the reflection ray and refraction ray at point A: 

 
[ ] ( )2

1 2 2

2( ) ,

1 1 1( ) 1 .

A A

A A A Am m m

= − ⋅

= − ⋅ − − + ⋅

r 0 0

0 0 0 0

L L L n n

L L L n n L n n
    (3.9) 

here m is the relative refractive index of particle to that of the surrounding medium. Then, 

the reflection and refraction rays at point B, C, and D are given as follows: 

 
[ ] ( )22 2

2( ) ,

( ) 1 ,
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B B B Bm m m

= − ⋅

= − ⋅ + − + ⋅

12 01 01

1 01 01 01

L L L n n

L L L n n L n n
    (3.10) 

 [ ] ( )

[ ] ( )

22 2
2

22 2
3 23 23 23

2( ) ,

( ) 1 ,

( ) 1 ,

C C

C C C C

D D D D

m m m

m m m

= − ⋅

= − ⋅ + − + ⋅

= − ⋅ + − + ⋅

23 12 12

12 12 12

L L L n n

L L L n n L n n

L L L n n L n n

    (3.11) 

here nB, nC, and nD are the surface normals at point B, C, and D respectively.  
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To calculate the incident angle θi at incident point A is to measure the acute angle between 

the vectors L0 and nA. The refractive angle θr equals the acute angle between L0 and nA. The 

two angles are given as:  

 
( )
( )

1
0

1

cos ,

cos .
i A

r A

θ

θ

−

−

= ⋅

= ⋅01

L n

L n
         (3.12) 

where the two angles, which will be used to calculate the reflection and transmission 

coefficients in Fresnel’s formulae, obey Snell’s law.  

 
Fig. 3.3.   Definition of the scattering angles. 

 

Using Eqs. (3.7)-( 3.11), the direction of the second-order refracted ray associated with the 

primary rainbow can be calculated in for a three-dimensional geometry, yielding L2=(ax, ay, az) 

(see Fig. 3.3). Projecting L2 onto the xy-plane yields L2=(ax, ay, 0). Furthermore, one can 

define θ as an off-axis angle measured from the y-axis to be: 

( )1 21 2 2cos ,y x ya a aθ −  = +  
              (3.13) 

and φ as an elevation angle with respect to the xy plane to be: 

 ( ) ( )1 2 1 21 2 2 2 2 2cos .x y x y za a a a aφ −  = + + +  
           (3.14) 

3.3   Intersection point of a light ray and surface of particle 

Suppose the directional vector of a light ray can be described by n=(m0, n0, p0). And point (x0, 

y0, z0) is any point on the light ray. The light ray may be an incident ray, reflection ray or 

refraction ray. The equation of the light ray can be expressed as:  
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 0 0 0

0 0 0

x x y y z z
m n p
− − −

= =         (3.15) 

In Eq. (3.15), it is assumed that m0≠0, n0≠0, and p0≠0. If one or two of the three parameters 

(m0, n0, and p0) equals zero, the physical meaning of the light ray can be explained as follows. 

Supposing m0=0, n0≠0, and p0≠0, the light ray is perpendicular to the x-axis. If m0=0, n0=0, 

and p0≠0, the light ray perpendicular to x-axis and y-axis, that is, it is parallel to z-axis. 

And suppose the particle is an ellipsoid. Then the surface of the particle is a closed quadric 

surface and is a three dimensional analogue of an ellipse, i.e. an ellipsoid. The standard 

equation of an ellipsoid centered at the origin of a Cartesian coordinate system is given as: 

 
2 2 2

2 2 2 1x y z
a b c

+ + =          (3.16) 

where a, b and c are called the semi-principal axes along the coordinate axes. If two of the 

three parameters equal each other, the ellipsoid reduces to a spheroid. For example, for an 

oblate spheroid, a= b and a>c. 

Consider a light ray impinging on the particle surface at the point (x0, y0, z0). The light ray will 

intersect the particle surface at other points. However when the light ray is tangent to the 

particle surface, the ray only intersects the particle surface only at one singular point. The 

other intersection point (x2, y2, z2) can be calculated. The detailed derivations can be found 

in Appendix A.  

In summary, given the direction of the light ray described by the vector (m0, n0, p0), the 

functional form of the particle surface, and one intersection point (x0, y0, z0) of the light ray 

and particle surface, the other intersection point can be calculated according to Appendix A. 

3.4   Vector ray tracing simulation 

 
Fig 3.4.   Vector ray tracing for water droplets: (a) a=100, a/c=1.00; (a) a=100, a/c=1.25. 
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Figure 3.4 displays the vector ray tracing for spherical and spheroidal water droplets 

(m=1.333). For clarity, only rays close to the primary Descartes ray are presented. The 

reflected rays (p=0) and refracted rays (p=1, 2, 3 respectively) for sphere are shown in Fig 

3.4a. Figure 3.4b presents the rays for a spheroidal droplet with aspect ratio a/c=1.25. It can 

be seen from Fig 3.4 that the second-order refracted rays (green lines) are more tightly 

focused for a spheroid than that for a sphere. Attention must be paid to the fact that total 

internal reflection occurs for a spheroid, while not for a sphere. 

Based on the vector ray tracing model described above, the optical caustics observed in the 

light scattering from an oblate spheroidal droplet will be investigated in next chapter.  
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Chapter 4   Simulation of optical caustic structure for oblate droplets 

Optical caustics exist in light scattering from spherical and oblate droplets. The hyperbolic 

umbilic (HU) diffraction catastrophe in the primary rainbow region of an oblate water 

droplet was first observed by Marston and Trinh (Marston, et al., 1984). The optical caustic 

structures, including the location of cusp caustic and opening rate of the cusp diffraction etc., 

were successfully described by some theoretical approximation models ( (Marston, 1985), 

(Marston, 1987), (Marston, et al., 1989), (Dean, et al., 1991), and (Marston, 1999)). Most 

notably, Nye studied the landmark features of the far-field caustics including HU foci, lip 

events and the E6

In this chapter, a vector ray tracing (VRT) model is employed to simulate the optical caustic 

structures near the primary and the secondary rainbow scattering angles of oblate water 

droplets. The location of the cusp caustics in the two rainbow regions are calculated from 

the VRT model and compared with that calculated from analytical solutions and excellent 

agreement is found. Moreover, in order to apply the optical caustic structures to particle 

diagnostics, the evolution process of the optical caustic structures in response to shape 

deformation of the water droplet are discussed in detail.  

 catastrophe according to geometrical optics (Nye, 1992). In addition, the 

optical caustics have also been observed from the light scattering by oblate droplets with 

white light illumination ( (Simpson, et al., 1991) and (Kaduchak, et al., 1994)). Both the 

primary and higher order rainbow caustics of the scattering of light from oblate water 

droplets ( (Kaduchak, et al., 1994), (Marston, et al., 1994) and (Langley, et al., 1998)) and 

internal caustic structures of illuminated liquid droplets (Lock, et al., 1991) have been 

observed and analyzed. Recently, Debye series has been developed to analyze the formation 

of rainbow caustic, transverse cusp and HU caustics for a spheroid. Compared to the analysis 

within the framework of diffraction catastrophe and catastrophe optics ( (Berry, et al., 1979) 

and (Berry, et al., 1980)), Debye series is an exact analysis tool for studying Mie scattering by 

a spheroid. However, it has not been applied to droplet size of hundreds of microns due to 

the numerical problems in computation. 
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4.1   Location of cusp caustic of the primary rainbow 

 
Fig. 4.1.   Rays associated with the cusp caustic.  

 

As is well known, the cusp caustic is associated with the contribution from two equatorial 

rays and two skew rays (Marston, et al., 1984) and the VRT model allows the cusp caustic to 

be identified (see Fig 4.1). On the other hand, Nye obtained a derivation for calculating the 

droplet aspect ratio when the hyperbolic umbilici catastrophe can be observed (Nye, 1984). 

Furthermore, an analytical solution to predict the location of cusp caustic was given based 

on Herzberger’s formalism (Marston, 1985). In the present study the analytical solution for 

calculating the cusp location is derived based on geometric optics (see Appendix B): 

( ) ( ) ( )
1 21 2 1 22 2 2 2 2/ 2 sin 2 sin 1 sin .i i ia c m m mθ θ θ
−

 = − − − −  
   (4.1) 

Equation (4.1) is as same as that obtained by Marston using Herzberger’s formalism 

(Marston, 1985). For the spheroid with an aspect ratio satisfying the condition Eq. (4.1), the 

skew rays will focus vertically. The two skew rays are above and below the equatorial plane 

respectively. Together with the two equatorial rays, they focus in the same direction, giving 

rise to the cusp caustic. According to geometrical optics, the scattering angle of the cusp ray 

is given by θ=π+2θi-4sin-1(sinθi/m) and the primary Descartes ray satisfies sinθi=(4-m2/3)1/2. 

Substitution into Eq. (4.1) yields the critical aspect ratio:  

( ) 1 22 2/ 3 4 4a c m m = −           (4.2) 

 i.e. the ratio at which HUFS arises. This result is identical to that given by Nye (Nye, 1984).  
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Fig. 4.2.   Comparison of the cusp location calculated by VRT and that by the analytical 

solution in the primary rainbow region for oblate water droplets with different aspect ratios. 

 

Then the location of cusp caustic is calculated by use of the analytical solution Eq. (4.1) and 

compared with that calculated by VRT simulations. Figure 4.2 displays such a comparison. 

The cusp caustic first appears at θ=165.57° for oblate water droplets with aspect ratio 

a/c=1.069389. When the ratio increases, the cusp moves to smaller scattering angles until it 

merges with the primary rainbow caustic at θ=137.92° for a/c=1.309779. Then the cusp 

shifts to larger scattering angles and disappears at θ=179.96° for a/c=1.414742. The 

agreement between the analytic solution (Marston, 1985) and the VRT simulations is 

excellent, with only minor deviations due to the finite grid resolution of incident rays.  

4.2   Optical caustic structures of the primary rainbow  

On the basis of VRT validation in terms of the location of cusp caustic, the shape of the 

rainbow and HU fringes, referred to as structures of optical caustics are computed. For the 

second-order refracted rays (p=2 in geometrical optics), there is a revolution (turning point) 

at the deflection angle of the primary Descartes ray. This angle is where the primary rainbow 

fringe forms. In VRT model, the rainbow fringe can be identified from infinitively large 

density of the emergent rays. As the HU caustics are associated with the contribution from 

skew rays (Nye, 1984), it can be identified by the VRT model. Considering the beam 

divergence in the droplet, a sufficient number of rays have to be used to ensure the 

numerical accuracy. To display the extremely high sensitivity of optical caustics on aspect 

ratio of oblate droplet, the precision of the aspect ratio is given to the sixth decimals in some 

places of the following studies.   
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For water droplets with the relative refractive index m=1.333 and equatorial radius 100μm, 

but with different aspect ratios, the rainbow fringe and HU fringe in the primary rainbow 

region are computed. To fully display the caustic structures, only part of the caustic structure 

(within -10o≤φ≤10o) is given in the numerical demonstrations. Figure 3a shows the primary 

rainbow fringe for a spherical droplet (a/c=1). For this aspect ratio the primary rainbow 

fringe exhibits a weak curvature with respect to the elevation angles and bends towards 

larger scattering angles (the backward direction). The left-most point (apex point) of this 

fringe is the rainbow caustic point in the equatorial plane. Its relevant pattern is the fold 

diffraction catastrophe symbolized by A2 in catastrophe optics (Berry, et al., 1980). The cusp 

caustic first appears for a droplet with aspect ratio a/c =1.07 (θ=165.52°), which is consistent 

with theoretical prediction ( (Marston, 1985) and (Nye, 1992)). Four rays are responsible for 

its formation. Two are in the equatorial plane focusing horizontally whereas the other two 

are skew rays offset vertically from the equatorial plane but also focusing in the horizontal 

direction. For a/c =1.07, only a cusp point appears in Fig. 4.3b. When the aspect ratio further 

increases, the HU fringe unfolds in Fig. 4.3c and the cusp caustic shifts towards smaller 

scattering angles (the forward direction). Further increment of the ratio makes the HU fringe 

gradually unfold, as shown in Fig. 4.3d. Together with the unfolding of HU fringe, the 

rainbow fringe exhibits an increased curvature because the primary Descartes rays off the 

equatorial plane shift backward more as the aspect ratio increases. For a droplet with 

a/c=1.27, the rainbow fringe partly overlaps with the HU fringe (Fig. 4.3e) and for a/c=1.31 

the cusp caustic merges completely with the primary rainbow caustic (Fig. 4.3f), creating the 

so-called hyperbolic umbilic focal section (HUFS) symbolized by 4D+ , which is consistent with 

experiment (Marston, et al., 1984) and theoretical prediction ( (Marston, 1985) and (Nye, 

1992)). HUFS is described by three control parameters C1, C2 and C3 in catastrophe optics 

(Berry, et al., 1980) and its apex angle is experimentally measured to be 43.5±1° (Marston, 

et al., 1984). In VRT simulation the apex angle is 43.42°, which agrees very well with the 

experimental value, exhibiting only slight differences, all lying within the uncertainty band of 

the experimental value. An analytic expression for calculating the apex angle was also given 

by Marston (Marston, 1992), predicting it as 42.1o. The main reason for this small deviation 

of the apex angle between VRT simulation and the analytic expression is due to the fact that 

the two arms of the rainbow fringe are highly curved at the apex and the mesh size in the 

VRT simulation is not infinitely small. When the ratio further increases, the cusp shifts 
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further backward and the HU fringe gradually degenerates (Fig. 4.3g). For the aspect ratio 

a/c=1.414742 (Fig. 4.3h), the fringe collapses into the cusp caustic point at 179.96° also 

agreeing with theoretical prediction ( (Marston, 1985) and (Nye, 1992)). Then no cusp 

caustic is observed for 1.414742<a/c<1.525000 (Fig. 4.3i). However, it reappears at large 

ratios such as a/c =1.60 (Fig. 4.3j), creating the E6 diffraction catastrophe also called symbolic 

umbilic focal section (Berry, et al., 1980). Note that for E6, the rainbow fringe is bent towards 

smaller scattering angles. The progression of optical caustic structures in response to the 

change of aspect ratio of oblate droplet is consistent with change of the first and HU bows of 

the generalized rainbow patterns observed in experiment (Marston, et al., 1984) and Nye’s 

simulation based on geometrical optics (Nye, 1992).  

 

 

 

 

 
Fig. 4.3.   Evolution of the primary rainbow fringe and the HU fringe as the aspect ratio of an 

oblate water droplet increases. 
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Then Fig. 4.4 displays the primary rainbow fringes for oblate droplets with the same 

refractive index (m=1.333) and aspect ratio (a/c=1.21) but different equatorial radii (100µm, 

500µm, and 1000µm respectively) (Yu, et al., 2013). All rainbow fringes present the same 

concave shape (bending towards larger scattering angles), symmetric about horizontal plane 

and overlapping completely due to the independence of rainbow fringe on droplet size. 

However simulations for other types of liquid droplets show that the rainbow fringe shape is 

dependent on the refractive index of droplet. The comparison of the rainbow fringes for 

oblate droplets with the same aspect ratio and equatorial radius but different refractive 

indices are shown in Fig. 4.5. The rainbow fringe for a silicone oil droplet (m=1.400) is bent 

much more than that for water droplet (m=1.333). The rainbow caustic appears at 146.75o 

for a silicone oil droplet in the equatorial plane and at 137.92o for a water droplet.  

 
Fig. 4.4.   Primary rainbow fringes for oblate droplets with the same refractive index and 

aspect ratio but different equatorial radii. 

 
Fig. 4.5.   Primary rainbow fringes for oblate droplets with the same aspect ratio and 

equatorial radius but different relative refractive indices.  
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Fig. 4.6.   Primary rainbow fringes for oblate water droplets with different aspect ratios. 

 
Fig. 4.7.   Curvature of the primary rainbow fringe calculated from VRT simulations for 

oblate water droplets with different aspect ratios. 

 

In addition, Figure 4.6 shows the primary rainbow fringes for oblate water droplets with 

aspect ratios 1.00, 1.10, 1.21 and 1.25 respectively. As the aspect ratio increases, the 

rainbow fringe exhibits an increase of curvature at the apex and a decrease of the opening 

rate of the rainbow fringe. For all these aspect ratios, a prominent feature is that the 

location of the rainbow caustic remains unchanged. This is because the cross-section of the 

oblate droplet remains circular in the equatorial plane so that the second-order refracted 

rays always exit at the same angular direction in the equatorial plane of the droplet. Further 

increasing the aspect ratio brings in the rainbow fringe, firstly unfolding and then folding and 

the appearance of HU fringe as shown in Fig. 4.3. It is demonstrated from the VRT 

simulations that the rainbow fringe is dependent on the refractive index and aspect ratio but 

independent on the equatorial radius of an oblate droplet. 
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Furthermore, the curvatures of the simulated rainbow fringe for oblate water droplets are 

given in Fig. 4.7. As is the convention for comparison, only the curvature at the apex point of 

the rainbow fringe is calculated. It can be seen that the curvature increases gradually as the 

aspect ratio increases. Here, the curvature of the rainbow fringe is shown only for an oblate 

water droplet with aspect ratio a/c≤1.23. The curvature of the rainbow fringe provides an 

avenue to measure the oblateness of droplet according to the relation between the rainbow 

fringe curvature and the aspect ratio of oblate droplet as shown in Fig. 4.7. To validate the 

simulations, the curvature of the rainbow fringe obtained from VRT simulation will be 

compared with that from experiment in Chapter 6. 

4.3   Location of cusp caustic of the secondary rainbow 

For the secondary rainbow, the location of the cusp caustic can be calculated from the VRT 

simulation of caustic structures. In addition, the analytical solutions to the cusp location 

were also given by Marston and Kaduchak (Marston, et al., 1994) based on generalized ray 

tracing and the symmetry condition that the vertical wave front curvature is infinite at the 

midpoint of the second chord of the rainbow ray.  They are given as: 

( ) ( ) 1 22/ 1+ 2 4a c yρ ρ
−

 =   ，       (4.3) 

( ) ( ){ } ( )
1 21 2 1 22 2/ 3 2 3 2 16 8 .a c y y y yρ ρ ρ ρ = + + + −      (4.4) 

here 

cos cos ,r iy mθ θ= −          (4.5) 

and 

cos .rρ θ=           (4.6) 

where θi and θr are the incident angle and refractive angle respectively, m the refractive 

index of the droplet. 
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Fig 4.8.   Comparison of the cusp location calculated by VRT simulation and that by the 

analytical solution in the secondary rainbow region for oblate water droplets with different 

aspect ratios. 

 
Fig 4.9.   Same parameters as Fig. 4.8, but with different aspect ratio range. 

 

A comparison of the cusp location calculated by the VRT simulation and Marston’s analytical 

solutions Eqs. (4.3)-(4.4) are shown in Figs. 4.8 and 4.9. Figure 4.8 shows the cusp location 

for 1.311450≤ a/c≤1.500499. The cusp caustic appears at θ=111.983o for a water droplet 

having a/c=1.311450. As the aspect ratio increases, it shifts to larger scattering angles until it 

merges with the secondary rainbow caustic at θ=129.109o. Then the cusp caustic shifts back 

to smaller scattering angles and disappears at θ=0o for a/c=1.500499. It can be seen from 

the comparison that the agreement between VRT and the analytical solution is excellent. 

Figure 4.9 displays the location of two kinds of cusp caustics. For a/c=1.514736, the first kind 

of cusp caustic appears at θ=112.144o. For higher aspect ratios, it shifts into larger scattering 

angles until it merges with the secondary rainbow caustic at θ=129.109o for a/c=1.551039. 
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For a/c=1.523214 the second kind of cusp caustic appears, which corresponds to the lip 

event and also merges with the secondary rainbow caustic for a/c=1.551039 related to the 

E6 diffraction catastrophe. As shown by Fig. 4.9, the VRT also agrees with the analytical 

solution (Marston, et al., 1994) very well. 

4.4   Optical caustic structures of the secondary rainbow  

Furthermore, the VRT model is used to compute the shape of the rainbow and HU fringes of 

the secondary rainbow, which are termed structures of optical caustics, because they do not 

represent interference patterns/fringes. For the third-order rays associated with the 

secondary rainbow, there is also a revolution (turning point) at the deflection angle of the 

secondary Descartes ray as with the second-order refracted rays (Yu, et al., 2013). This angle 

is where the secondary-rainbow fringe forms. The secondary rainbow fringe can be 

identified from the emergent rays. As with the primary rainbow, the HU caustics are 

associated with the contribution from skew rays (Kaduchak, et al., 1994), which can also be 

identified by the VRT model. Considering the beam divergence in the droplet, a sufficient 

number of rays have to be used to ensure the numerical accuracy. To display the extremely 

high sensitivity of optical caustics on aspect ratio, the precision of the aspect ratio is given to 

six decimals. In order to investigate the progression of caustic structures in response to the 

shape deformation of oblate water droplet in detail, and to apply this information to particle 

diagnostics, only part of the caustic structure is monitored, i.e. -10o≤ϕ ≤10o

 

. Moreover, total 

internal reflection, which does not exist for ray tracing in a sphere, has to be accounted for 

in the VRT model for a spheroid. For example, 72.90% of the incident light rays exit an oblate 

water droplet with a/c=1.55 while the remaining are totally reflected within the droplet for 

the order p=3.  
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Fig. 4.10.   Evolution of the secondary rainbow fringe and HU fringe as the aspect ratio of an 

oblate water droplet increases. 
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In the secondary rainbow region, a sequence of optical caustic structures are first simulated 

and analyzed systematically for a number of oblate water droplets with refractive index 

m=1.333, equatorial radius a=100μm, and different aspect ratios (Yu, et al., 2013). Not 

surprisingly, the evolution of the caustic structures is similar to that observed in the primary 

rainbow region. Figure 4.10a displays the secondary rainbow fringe for a spherical droplet 

(a/c=1), which arises due to the fact that the horizontal curvature of outgoing virtual wave 

front vanishes along the secondary Descartes ray (Kaduchak, et al., 1994). The secondary 

rainbow fringe exhibits a weak curvature with respect to elevation angle, as with the primary 

rainbow fringes (see Fig. 4.3). The fringe presents a concave shape bending towards larger 

scattering angles. Compared to the caustic structures for the primary rainbow (see Figs. 

4.3a-4.3e), the secondary rainbow fringe undergoes a gradual change as the aspect ratio 

increases. For a droplet with aspect ratio a/c=1.260, a prominent fringe is shown in Fig. 

4.10b, in which the fringe is almost a straight line vertical to horizontal plane. However this 

salient fringe is not observed in the primary rainbow region (Yu, et al., 2013). The fringe is 

similar to the structure of the bows in generalized rainbow pattern observed in experiment 

(see Fig. 2b in Ref. (Kaduchak, et al., 1994)). However, only the rainbow fringe is shown here 

without the interference pattern.  

As the aspect ratio further increases to a/c=1.300, the secondary rainbow fringe undergoes a 

curvature reversal (Fig. 4.10c). In contrast to the fringe in Fig. 4.10a, the secondary rainbow 

fringe takes on a convex shape bending toward smaller scattering angles. As predicted by 

Marston (Marston, et al., 1994), a cusp caustic appears at θ=111.983o for a/c=1.311450 (Fig. 

4.10d). When the aspect ratio increases, the HU fringe unfolds (Fig. 4.10e) and the cusp 

caustic shifts towards larger scattering angles. For a/c=1.418, the HU fringe overlaps with the 

secondary rainbow fringe (Fig. 4.10f). For a/c=1.426003, the cusp caustic merges completely 

with the secondary rainbow caustic at θ=129.109o (Fig. 4.10g) creating the hyperbolic 

umbilic focal section (HUFS) in the language of catastrophe optics (Berry, et al., 1980), which 

agrees with experimental observation (Kaduchak, et al., 1994) and theoretical prediction 

(Marston, et al., 1994). This cusp caustic is due to the vanishing of horizontal and vertical 

curvatures of wave front at the secondary rainbow angle.  

A further increase of the aspect ratio leads to a separation of the secondary rainbow fringe 

and the HU fringe. The cusp caustic shifts back towards smaller scattering angles and the HU 
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fringe degenerates gradually. The fringes for a/c=1.470 and a/c=1.480 are shown in Figs. 

4.10h and 4.10i respectively. For a/c= 1.490, the HU fringe degenerates more (Fig. 4.10j). 

Then the cusp caustic disappears at θ=0o for a/c=1.500499 (Fig. 4.10k), which also agrees 

with the theoretical prediction (Marston, et al., 1994). The progression of secondary rainbow 

fringes and HU fringes are consistent with the shape of the first bow and HU bow of the 

generalized rainbow patterns observed in experiment (see Fig. 2 in Ref. (Kaduchak, et al., 

1994)).  

On further increasing the aspect ratio, the caustic structures undergo rapid transitions 

between events and they are highly sensitive to changes in the aspect ratio. The cusp caustic 

reappears at θ=112.144o for a/c=1.514736 (Fig. 4.10l) and then shifts into the larger 

scattering angles, which also agrees with theoretical prediction (Marston, et al., 1994). For 

a/c=1.523, the major of the secondary rainbow fringe around 129.109° is close to a straight 

line (Fig. 4.10m). Then the secondary rainbow fringe undergoes a curvature reversal, that is, 

the convex shape is changed into a concave shape again. For a/c=1.523214, the second kind 

of cusp caustic occurs at the extreme left of Fig. 4.10n, which corresponds to a lip event 

(Kaduchak, et al., 1994). For a/c=1.540, the secondary rainbow fringe takes on a concave 

shape, bending towards larger scattering angles (Fig. 4.10o). And the two HU fringes 

gradually unfold as shown in Figs. 4.10n and 4.10o. The first HU fringe intersects with the 

secondary rainbow fringe at the secondary rainbow angle for a/c=1.551039 (Fig. 4.10p), in 

which the two fringes take on two V shapes. It corresponds to the E6 diffraction catastrophe 

( (Kaduchak, et al., 1994) and (Marston, et al., 1994)). Note that the secondary HU fringe is 

not shown in Fig. 4.10p as it overlaps with the first HU fringe.  

It can be seen from VRT simulation that the secondary rainbow fringes become highly 

sensitive to changes of the aspect ratio of oblate droplet. That is the reason why the 

precision of the aspect ratio is given to six decimals for some particular ranges. For an oblate 

droplet with aspect ratio a/c=1.49, the primary and secondary generalized rainbow patterns 

were shown in Fig. 3a in Ref. (Kaduchak, et al., 1994), in which the secondary rainbow 

exhibits a concave shape. However, the simulation also shows that the secondary rainbow 

should take on a convex shape for a/c=1.49 (Fig. 4.10j). This apparent contradiction is simply 

a manifestation of the very high sensitivity of the caustic structure on the aspect ratio. These 

measurements were obtained by suspending oblate droplets in an acoustic levitator. Due to 

the instability of the droplet in the levitator, especially for large aspect ratios, the 
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experimental uncertainty in aspect ratio is ±0.05 (Kaduchak, et al., 1994), making 

1.44≤a/c≤1.54. It can be seen from the VRT simulation that the caustic structures for 

a/c=1.44, a/c=1.49, and 1.54 are totally different. Even though there are some differences 

between simulation and observation due to experimental uncertainty, the progression of 

optical caustic structures in response to the change of droplet aspect ratio is consistent with 

the change of the first bow and HU bow of the generalized rainbow patterns observed in 

experiment. 

 
Fig. 4.11.   Secondary rainbow fringes and HU fringes for oblate droplets with the same 

refractive index and aspect ratio but different equatorial radii. 

 
Fig. 4.12.   Secondary rainbow fringes for oblate droplets with the same aspect ratio and 

equatorial radius but different relative refractive indices. 
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Fig. 4.13.   Secondary rainbow fringes for oblate water droplets with different aspect ratios. 

 
Fig. 4.14.   Curvature of the secondary rainbow fringe calculated from VRT simulations for 

oblate water droplets with different aspect ratios. 

 

Then Fig. 4.11 shows the secondary rainbow fringes and HU fringes for oblate droplets with 

the same refractive index (m=1.333) and aspect ratio (a/c=1.37) but different equatorial radii 

(100µm, 500µm, and 1000µm respectively). As well as the primary rainbow fringe, all the 

secondary rainbow fringes exhibit the same shape, symmetric about horizontal plane and 

overlapping completely due to the independence of rainbow fringe on droplet size. Also the 

HU fringes overlap with each other. The simulations for other types of liquid droplets show 

that the rainbow fringe shape is dependent on the refractive index of droplet. A comparison 

of the secondary rainbow fringes for oblate droplets with the same aspect ratio and 

equatorial radius but different refractive indices is shown in Fig. 4.12. The secondary 

rainbow fringe for a droplet with m=1.333 is bent much more than that for droplet with 
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m=1.300. The secondary rainbow caustic appears at 129.11o for a droplet having m=1.333 in 

the equatorial plane and at 138.16o for a droplet having m=1.300.  

Figure 4.13 shows the secondary rainbow fringes for oblate water droplets with aspect ratios 

1.00, 1.26, 1.32 and 1.38 respectively. For small aspect ratios, the secondary rainbow fringe 

takes on a concave shape. As the aspect ratio increases, it exhibits a convex shape and a 

decrease of the opening rate of the rainbow fringe. However, for all these aspect ratios, a 

prominent feature is that the location of the secondary rainbow caustic remains unchanged. 

This is because the cross-section of the oblate droplet remains circular in the equatorial 

plane so that the third-order refracted rays always exit at the same angular direction in the 

equatorial plane of the droplet. As well as the primary rainbow fringes, it is shown from the 

VRT simulations that the secondary rainbow fringe is dependent on the refractive index and 

aspect ratio but independent on the equatorial radius of an oblate droplet. 

Furthermore, the curvature of the secondary rainbow fringe for oblate water droplets is 

shown in Fig. 4.14. As is the convention for comparison, only the curvature at the apex point 

of the secondary rainbow fringe is calculated. The curvature is defined as positive for 

concave shape and as negative for convex shape. It can be seen that the curvature almost 

keeps the same value for a/c≤1.20. As the aspect ratio increases, the curvature deceases 

rapidly. The curvature of the rainbow fringe also reveals the possibility of measuring the 

oblateness of droplet according to the relation between the curvature of the rainbow fringe 

and the aspect ratio of oblate droplet as shown in Fig. 4.14. 

4.5   Conclusion 

By developing the VRT model, optical caustic structures including the rainbow and HU 

fringes in the primary rainbow region of light scattering from oblate water droplets are 

simulated. As a validation of VRT model, the location of cusp caustics are calculated by the 

VRT model and compared with the analytic solution, by which good agreement is found. Then 

the evolution of the optical caustic structures (in terms of rainbow fringe and HU fringe) in 

response to shape deformation of oblate water droplets is investigated by VRT simulations 

and is found to be consistent with experimental observation. The dependence of the primary 

rainbow fringe on the refractive index and equatorial radius and the curvature of the 

rainbow fringe are shown.  
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Then the VRT model is employed to simulate the optical caustic structures in the secondary 

rainbow region of oblate droplets. The location of cusp caustic is calculated by use of the 

VRT simulation and compared with that calculated using analytic solutions, again leading to 

excellent agreement. For the secondary rainbow, optical caustic structures are first 

simulated and analyzed systematically according to the VRT model and the evolution process 

of the optical caustic structures is consistent with the change observed in experiments. The 

dependence of the secondary rainbow fringe on the refractive index and equatorial radius 

and the curvature of the rainbow fringe are also shown. It reveals that the optical caustic 

structures in the secondary rainbow region also can be used to measure the non-sphericity 

of oblate droplets. 

Although the computational efficiency of VRT model is not as high as that of analytical 

solutions, the VRT model provides a more straightforward and intuitive view of optical 

caustic structures from oblate droplets. The VRT model can also be used to simulate and 

predict the optical caustic structures observed in higher-order rainbows. The secondary 

rainbow fringe, the location and opening rate of the cusp caustic also provide an avenue for 

non-sphericity measurement of oblate droplets. 
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Chapter 5   Experimental measurement of light scattering by oblate 

spheroidal particle in the primary rainbow region 

In this chapter, the experimental investigation of light scattering by oblate spheroidal 

particle in primary rainbow region is shown. The generalized rainbow patterns are shown 

and discussed in detail. By comparison of experimental result with Airy approximation, the 

validity of Airy approximation for spheroidal droplets is confirmed.  

5.1   Experimental setup 

 
Fig. 5.1.   Experimental setup used for the generalized rainbow measurement: (1) He-Ne 

laser, (2) beam expander, (3) ultrasonic acoustic levitator, (4) suspended droplet, (5) 

background light, (6) camera 1 focused on the droplet and (7) camera 2 focused at infinity. 

 

The experimental setup used for the generalized rainbow measurement is shown in Fig. 5.1. 

A linearly polarized Helium-Neon laser beam with wavelength of 632.8 nm illuminates a 

droplet. The typical laser power is 18 mW and the beam diameter (1/e2) is 1mm. The laser 

beam is expanded by a beam expander so that the light beam is large compared to the 

droplet size. The degree of linear polarization of the laser is larger than 500:1. An ultrasonic 

acoustic levitator working at a frequency of 58 kHz is used to suspend the droplet. For taking 

a photograph of the droplet, a background light (LED) is also used. An image of the droplet is 

obtained from camera 1 which is focused on the droplet. Camera 2, focused at infinity, is 

used to record the generalized rainbow patterns. Both cameras are CCD cameras. The sensor 

size and sensor type of the camera are 1392x1040 pixels and Sony ICX267/AK, progressive 
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scan CCD respectively. The pixel size of the camera is 4.65x4.65 microns. The ambient 

temperature is about 296 K. 

A standing acoustic wave is generated between a piezoelectrically driven transducer and a 

curved reflector, resulting in alternate high and low pressure nodes, shown pictorially in Fig. 

5.2. The distance between the transducer and the reflector, which can be adjusted by a 

micrometer screw below the reflector, should equal some multiple half-wavelength of the 

acoustic wave. Droplets can be levitated in this field and reside just above pressure nodes; 

the operating principle of the levitator can be found elsewhere ( (Tian, et al., 1993) and 

(Yarin, et al., 1998)). Fig. 5.3 illustrates a levitated water droplet imaged by camera 1. The 

oblate shape arises from the balance of the gravitational force on the droplet with the 

radiation pressure exerted by the ultrasonic field. Although the vertical force acting on the 

droplet is sufficient to carry its weight, the lateral force is typically much weaker and minute 

movement of the droplet can be observed. This could effectively smooth some features of 

the rainbow, in particular the ripple structure arising from the interference between 

reflection (p=0) and second-order refraction (p=2). However, in the present work only the 

supernumerary bows are utilized and the ripple structure is of secondary importance 

(Marston, et al., 1984). 

 

 
Fig. 5.2.   Ultrasonic acoustic levitator and the standing pressure wave distribution in the 

resonator. 
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Fig. 5.3.   Photograph of an acoustically levitated droplet. 

 

The droplet diameters will be denoted by a in the horizontal equatorial plane, and by c along 

the vertical axis of the rotational symmetry as shown in Fig. 5.3. The aspect ratio (defined by 

a/c) can be varied by adjusting the sound pressure level of the levitator and/or the distance 

between the transducer and the reflector, which effectively changes the pressure exerted on 

the droplet surface. To calibrate the magnification factor of the lens system, one records an 

image of a grid positioned between the transducer and reflector. The diameter of the grid is 

21 mm. The smallest square of the grid is 0.1 mm X 0.1 mm. Subsequently, the relation 

between the pixel number and the droplet size is found.  

5.2   Generalized rainbow patterns from water droplets 

The generalized rainbow patterns including the fold rainbow, transverse cusp caustics and 

the hyperbolic umbilic catastrophe for water droplets are shown in following. The scattering 

patterns were taken by camera 2 for randomly and linearly polarized illumination from a He-

Ne laser with a wavelength of 632.8 nm. A receiving lens with the focal length 60 mm is used. 

This camera was focused at infinity so that the pattern recorded was equivalent to that in 

the far field (Marston, et al., 1984), that is, the CCD sensor is placed at the position of the 

focal plane of the receiving lens. Horizontal and vertical coordinates in each photograph are 

more or less linearly related to the horizontal and vertical scattering angles θ and ϕ, 

respectively. The field of view of the camera is approximately 137.3o<θ<143.5o and 

2.3o<ϕ<2.3o. 
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Fig. 5.4.   Generalized rainbow patterns from spheroidal water droplets in order of increasing 

aspect ratio: (a) a/c=1.02; (b) a/c=1.15; (c) a/c=1.21 and (d) a/c=1.32. 

 

Light scattered from the water droplet in the vicinity of the primary rainbow region has been 

observed to contain a varity of characteristic diffraction patterns. Figure 5.4a shows the 

scattering pattern from a slightly non-spherical droplet having a=1.58mm and a/c=1.02. The 

fringes are almost straight in the viewed region. Figures 5.4b-c are patterns from spheroidal 

droplets, which are a generalization of primary rainbow formed by a spherical droplet. These 

generalized rainbow patterns include transverse cusp caustic, hyperbolic umbilic, and other 

catastrophes in the language of catastrophe optics (Berry, et al., 1980). Figure 5.4b shows 

the generalized pattern for spheroidal droplet with a=1.77 mm and a/c=1.15. Comparing 

with Fig. 5.4a, an obvious  phenomenon is that the fringes are curved, arising from the non-

sphericity of droplet. The pattern from a spheroidal droplet having a=1.76 mm and a/c=1.21 

is shown in Fig. 5.4c. The fringes are curved even stronger and a distinct cusp point arises on 

the right side of the pattern. The cusp point arises from the interference of the two light rays 

in the horizontal (equatorial) plane and two skew light rays which do not lie in the horizontal 

plane on entering the droplet, but are confined to the horizontal direction upon exiting the 

droplet (Marston, et al., 1984). As the ratio is further increased, the cusp shifts to the left 
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towards the smaller θ  until it merges with the rainbow caustic. The resulting pattern is that 

of a hyperbolic umbilic focal section, which means the four light rays come out with the 

same angle, i.e. at the rainbow angle. Nye gave the critical ratio value for such hyperbolic 

umbilic section as a/c=[3m2/(m2-1)]1/2  (Nye, 1984). It is approximately 1.310 for the 

refractive index m=1.333. Figure 5.4d shows the 4D+  pattern from a droplet having a=1.71 

mm and a/c=1.318. It can be seen that the observed value of a/c agrees with the theoretical 

prediction very well. When the ratio is further increased, other characteristic catastrosphe 

diffraction patterns can be also obtained. It is noticed that the cusp reappears and shifts 

back towards larger θ. Here attention has only been paid to droplets with small aspect ratios, 

because the generalized patterns for small aspect ratios can be used to measure the 

refractive index and the equatorial diameter as shown in the following sections. 

5.3   Validation of Airy approximation for spheroidal droplet 

The Airy approximation  of the rainbow (Airy, 1838) provides the scattering intensity in the 

areas of the rainbow as a function of scattering angle, is valid for a spherical particle, and 

offers a greatly simplified computation compared with the Lorenz-Mie theory, especially for 

large particles. Nevertheless, Lorenz-Mie computations are nowadays feasible for large 

spherical particles and offer a method of validation of the Airy approximation. In Ref. (Wang, 

et al., 1991) for instance, agreement between the two approaches had been shown with 

increasing refractive index, even for very small particles.  

For non-spherical particles, rigorous theories and most numerical approaches are feasible 

only for small sizes, i.e. several tens of wavelengths (Ren, et al., 2011). Thus, a comparison 

between Airy approximation and rigorous computations are no longer available for large 

non-spherical particles. On the other hand, one can compare experimental results with Airy 

predications to explore to what extent the Airy approximation is valid for large spheroidal 

particles. 

In a gravitational field, and taking into account the surface tension, a droplet suspended in 

an acoustic levitator can be approximated by an oblate spheroid if the size parameter is not 

too large (Yarin, et al., 1998). Therefore, attention is henceforth focused on an oblate 

spheroidal droplet. An oblate spheroid is a surface of revolution obtained by rotating an 

ellipse about its minor axis. In the horizontal equatorial plane the section of the oblate 

spheroid is a circle. So, the rays transmitting on the equatorial plane will be confined to this 
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same plane. One can imagine the intensity distribution in this plane could be described by 

Airy approximation. As shown in Section 2.3.2, it is the perpendicular polarized component 

which dominates in the pattern and our calculations are restricted to this component. The 

scattering intensity evaluated by Airy approximation is given by ( (van de Hulst, 1981) (Wang, 

et al., 1991)): 

 ( ) ( ) ( ) ( )1 62 2 4 7 3 2
1 81 16 sin cosirg rgI h f zε π θ α θ = ×      (5.1) 

here f(z) is the Airy integral: 
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The variables and parameters in Eqs. (5.1) and (5.2) are defined by:  
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where α is the dimensionless size parameter, q an integral equaling to +1 or -1, whose 

physical meaning can be found in Ref. (Yu, et al., 2009), θirg the incident angle for rainbow 

ray, θrrg  the refractive angle for rainbow ray. θrg and θ are the rainbow angle and scattering 

angle respectively.  

To simulate the intensity distribution using Airy approximation, one only need to know the 

size parameter a in the equatorial plane and the relative refractive index m of the droplet. 

Figure 5.5a shows the comparison of intensity distribution calculated by Airy approximation 

and that by experiment for a nearly spherical water droplet with a=1.58 mm and a/c=1.02. 

The intensity distribution shown in this figure is that obtained on the equatorial plane. For 

comparison purposes, the two results have been normalized to the same maximum value. 

The Airy approximation agrees well with the experimental result in the scattering angle 

region 137.5o<θ<140o. Figure 5.5b shows the comparison for an oblate spheroidal having 

a=1.76 mm and a/c=1.21. Good agreement is also found.  
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Fig. 5.5.   Comparison of the intensity distribution calculated by Airy approximation and that 

by experiment for water droplet: (a) a=1.58mm and a/c=1.02; (b) a=1.76 mm and a/c=1.21 

and (c) a=1.71 mm and a/c=1.32. 

 

However, for large aspect ratios, other skew rays enter the rainbow region, the hyperbolic 

umblic arises, as shown in Fig. 5.4d. Figure 5.5c shows the comparison for an oblate 

spheroidal droplet with a=1.71 mm and a/c=1.32. The Airy approximation no longer 

compares well with experimental results. The additional caustic structures lead to a 

saturation of measured intensity from the camera. In summary, comparison of the 

experimental data of spheroidal droplet scattering with Airy approximation reveals that in 

many respects the near-spherical particles behave like spheres when the measurements are 

performed in the horizontal scattering plane in which the drops display circular cross 

sections. So, the Airy approximation appears to offer a reliable avenue for characterising 

spheroidal particles with smaller aspect ratios. 
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5.4   Conclusion  

In an experiment, an ultrasonic acoustic levitator was used to levitate a water droplet whose 

shape could be varied between spherical and spheroidal. The light scattering patterns 

(generalized rainbow patterns) in the primary rainbow region from spheroidal water 

droplets are detected. The recorded generalized rainbow patterns include transverse cusp 

caustic, hyperbolic umbilic, and other catastrophes. The intensity distribution of the 

generalized rainbow patterns in the horizontal equatorial plane has been compared with the 

Airy simulation. For spheroidal water droplets having 0.80 mm<a<2.00 mm, and a/c<1.28, 

the experimental result matches the Airy approximation very well, at least in the scattering 

angle range 137.5o to 140o. This suggests that the rainbow patterns generated from those 

droplets can be used for characterizing particle, which will be shown in Chapter 6. 
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Chapter 6   Spheroidal droplet measurement from generalized 

rainbow patterns 

Based on the generalized rainbow patterns and Airy approximation, the refractive index and 

equatorial diameter of spheroidal water droplets can be determined. It is shown that 

absolute error of the refractive index is less than 0.5x10-4 and of the droplet diameter 5%. 

Furthermore, the relation between the curvature of the rainbow fringes and the aspect ratio 

of spheroidal water droplets is shown. Therefore, the aspect ratio of spheroidal droplets can 

be inferred from the corresponding generalized rainbow patterns with relative errors lying 

between -1% and 1%. 

6.1   Inversion of refractive index of droplet  

The first extreme value of the Airy approximation is denoted θ1. The angle for the second 

maximum in the Airy approximation is denoted θ2. In order to obtain the value θ1 and θ2 

from the experimental data, the intensity curve is filtered to remove the ripple structure. A 

Gaussian low-pass filter was used for this purpose. The filtered experimental result is shown 

in Fig. 6.1. It is obvious that the angular positions of first two extreme values agree very well. 

The values of θ1 and θ2 found experimentally can then be used to calculate the relative 

refractive index and size parameter. 

 
Fig. 6.1.   Comparison of intensity distribution calculated by Airy approximation with the 

filtered experimental result for a water droplet: a=1.77 mm and a/c=1.15. 
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According to Airy approximation given in Chapter 2, the relation between the rainbow angles, 

θ1, and θ2 is given by: 

 ( )1 2 (1 )rg C Cθ θ θ= − −         (6.1) 

where C is a constant defined by C=α1/α2, (α1=1.0874, α2=3.4668). The parameters α1 and α2 

can be calculated from the Airy integral (van de Hulst, 1981). After knowing θ1 and θ2, the 

rainbow angle can be calculated and then the refractive index can be inferred. Based on 

geometric optics, the relation between the rainbow angle and the refractive index is given as 

(Yu, et al., 2013): 

( )
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θ π − −
 − −  = + −      

     (6.2) 

To differentiate the relative refractive index of a pure water droplet and that calculated from 

the rainbow pattern, they are denoted as m and mGRP respectively. Then the error ∆m of 

refractive index is defined as:  

 m GRPm m∆ = −          (6.3) 

  
Fig. 6.2:   (a) Refractive index of pure water droplet and that calculated from the 

corresponding generalized rainbow patterns. (b) Errors of refractive indices inverted from 

the corresponding generalized rainbow patterns.   

 

Based on Eqs. (6.1)-(6.2), the relative refractive indices calculated from the relevant 

generalized rainbow patterns are shown in Fig. 6.2a, in which the refractive indices are 

shown with error bars corresponding to one standard deviation. It can be seen that the 

inversion results of refractive index are consistent with that of pure water (m=1.333 at 632.8 

nm). Water droplets have been studied only in the range 0.80-2.00 mm and aspect ratios 
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smaller than 1.28, since larger and smaller droplets are not held stable in the acoustic 

levitator. Figure 6.2b shows the error of relative refractive index inverted from the 

corresponding generalized rainbow patterns. It can be seen that absolute error is smaller 

than 0.5x10-4 (Yu, et al., 2013).  

6.2   Inversion of droplet size  

The diameter aGRP in the equatorial plane can be calculated by (Yu, et al., 2013): 

( )
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      (6.4) 

For evaluating the precision of aGRP, the relative error ∆a of diameter is also defined:  

( ) 100a GRPa a a∆ = − ×         (6.5) 

where α1, α1, θ1, θ2, and λ have been defined above. a is the diameter of droplet in the 

equatorial plane, which for purposes of evaluating the precision is measured by direct 

imaging with camera 1. The uncertainty of this diameter estimation is about four pixels, 

which for the current measurements corresponds to approximately 9.81 µm.  

 
Fig. 6.3:   (a) Water droplet diameters in the equatorial plane measured by imaging and that 

calculated from the corresponding generalized rainbow patterns. (b) Relative errors of 

droplet diameters inverted from the corresponding generalized rainbow patterns.  

 

Figure 6.3a shows the water droplet diameters in the equatorial plane calculated by Eq. (6.4), 

in which the droplet diameters are also shown with error bars relevant to one standard 

deviation. The equatorial diameter calculated from the corresponding rainbow pattern 

matches well the values obtained by imaging with the camera. The relative error calculated 
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by Eq. (6.5) for equatorial diameter associated with the rainbow is shown in Fig. 6.3b. It can 

be seen that the absolute relative error is less than 5%; hence very reliable droplet diameter 

estimation can be obtained from the corresponding generalized rainbow patterns.  

6.3 Relationship between droplet aspect ratio and rainbow pattern and inversion of 

droplet aspect ratio 

 
Fig. 6.4.   A  generalized rainbow pattern for a spheroidal water droplet with a=1.79mm, 

c=1.61mm, a/c=1.11. 

 
Fig. 6.5.   Rainbow fringes for the generalized rainbow pattern as shown in Fig. 6.4. 

 

A generalized rainbow pattern for a spheroidal water droplet with a/c=1.11 is shown in Fig. 

6.4. The change of the bows’ shape of the generalized rainbow pattern in response to the 

droplet deformation reveals the possibility of measuring the oblateness of the droplets from 

the curvature of the corresponding rainbow fringes as shown in Fig. 5.4. Then the bow’s 

shape (in terms of main rainbow fringe) is calculated for the generalized rainbow pattern. 

Figure 6.5a shows the first four main rainbow fringes for the generalized rainbow pattern as 

shown in Fig. 6.4. Then the geometrical optical (GO) rainbow fringe can be calculated 
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according to Eq. (6.1). It can be seen from Fig. 6.5b that the GO rainbow fringe is not smooth 

due to the minute movement of the droplet. To calculate the curvature of the GO rainbow 

fringe, the curvature is fitted using the third-order polynomial. A smooth GO rainbow fringe 

is given in Fig. 6.5b. For consistency with Chapter 4, the GO rainbow fringe calculated from 

the generalized rainbow pattern is also called the rainbow fringe in the following discussion.  

 
Fig. 6.6:   (a) Comparison the curvatures of the rainbow fringes calculated from VRT 

simulations and that from generalized rainbow patterns for water droplets. (b)  The relation 

between aspect ratios of water droplets and curvatures of the corresponding rainbow 

fringes calculated from VRT simulations. 

 
Fig. 6.7:    (a) Comparison of water droplet aspect ratios observed from direct imaging and 

that inverted from the corresponding generalized rainbow patterns. (b) Relative errors of 

inverted aspect ratios from the corresponding generalized rainbow patterns. 

 

Then, the curvature of the rainbow fringe can be calculated. On the other hand, the 

curvature of the rainbow fringe from the VRT simulation is shown in Fig. 4.7. Therefore, a 

comparison of the curvature of rainbow fringes obtained from a vector ray tracing (VRT) 
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simulation and that from experiments for water droplets is shown in Fig. 6.6a. As is the 

convention for comparison, only the curvature at the apex point of the rainbow fringe is 

calculated. The curvatures calculated from the experimental rainbow patterns are shown 

with error bars corresponding to one standard deviation. It can be seen that the agreement 

between the VRT model and measurement is excellent at most aspect ratios: most 

deviations are within the experimental uncertainty. Attention has to be paid to the fact that, 

for large aspect ratio (e.g. a/c>1.23), the droplet vibrates significantly in the levitator and the 

relevant generalized rainbow pattern becomes highly instable and blurry. It is difficult to 

distinguish the rainbow fringe without using a high- speed camera. For this reason the 

curvature of the rainbow fringes are shown only for droplets with aspect ratio a/c≤1.23.  

Figure 6.6b plots the droplet aspect ratio against the curvature of the corresponding 

rainbow fringes simulated by VRT model, which reveals that the aspect ratio of droplet can 

be calculated based on the curvature of the rainbow fringe measured from experiment and 

relation between the aspect ratio and curvature shown in Fig. 6.6b. For a measured 

generalized rainbow pattern, the corresponding rainbow fringe can be calculated; then the 

curvature of the rainbow fringe can be obtained; finally the aspect ratio of the relevant 

water droplet can be inverted according to Fig. 6.6b.   

Based on the relation between the aspect ratio and the curvature of rainbow fringe (Fig. 

6.6b), the aspect ratio (rGRP) of the water droplet can be inverted from the corresponding 

generalized rainbow patterns and is compared with observed value (rImaging) from the directly 

recorded droplet image. Figure 6.7a gives such a comparison. The aspect ratios inverted 

from the generalized rainbow patterns are also shown with error bars relevant to one 

standard deviation. It reveals that the inverted droplet aspect ratios agree well with that 

from direct imaging. To evaluate the accuracy of inverted aspect ratio, the relative errors in 

percentage ((∆=(  rGRP - rImaging)x100/ rImaging) are shown in Fig. 6.7b. The relative errors lie 

between -1% and 1%, which indicates good measurement accuracy of droplet non-sphericity 

(in terms of aspect ratio) from the corresponding generalized rainbow patterns. 

6.4   Conclusion 

According to the generalized rainbow patterns and Airy approximation, the refractive index 

and equatorial diameter of water droplets can be inverted from the corresponding 

generalized rainbow patterns. Comparison of the refractive indices inverted from the 
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generalized rainbow patterns with that of pure water shows good agreement with absolute 

errors less than 0.5x10-4. The water droplet diameters in the horizontal equatorial plane are 

calculated from the corresponding generalized rainbow patterns and compared to that 

measured by direct imaging. It is shown that the relative errors of droplet diameters 

associated with the generalized rainbow patterns lie between -5% and 5%; hence reliable 

diameter estimations of droplets can be obtained from the relevant generalized rainbow 

patterns. The curvatures of simulated rainbow fringes are compared with observed ones 

from the corresponding generalized rainbow patterns, in which good agreement is also 

shown. Since for a given type of droplet, the curvatures of the rainbow fringes are only a 

function of the aspect ratios, the non-sphericity (in terms of aspect ratio) of water droplets 

are inferred from the relevant generalized rainbow patterns. The relative errors of aspect 

ratios calculated from the generalized rainbow pattern lie between -1% and 1%. Accordingly, 

the complete information of a spheroidal water droplet in terms of geometric and optical 

properties are obtained. 
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Chapter 7   Preliminary investigation of tilted spheroidal droplet 

In the following chapter, the evolution of the optical caustic structures (in terms of rainbow 

fringe) in response to the change of tilt angle is studied based on vector ray tracing. The 

generalized rainbow pattern for a tilted spheroidal droplet is shown. 

7.1   Vector ray tracing model for a tilted spheroidal droplet 

 
Fig. 7.1.   VRT model for tilted a spheroidal droplet. 

 

The surface of a spheroidal particle is a closed quadric surface that is a three dimensional 

analogue of an ellipse. The standard equation of an ellipsoid centered at the origin of x’ y’ z’ 

coordinate system (see Fig. 7.1) is given by:  

 
( ) ( ) ( )2 2 2' ' '

2 2 2 1.
x y z
a b c

+ + =         (7.1) 

where a, b and c are called the semi-principal axes aligned along the coordinate axes.  

Suppose the spheroid is tilted relative to light beam direction, that is, the spheroid is rotated 

counterclockwise by an angle ϕ around the x-axis (see Fig. 7.1). The transform of x’ y’ z’ and 

xyz coordinates is given as: 
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       (7.2) 

Combining Eqs. (B2) and (B1), one can obtain the function for the tilted spheroid in xyz 

coordinates: 
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Equations (7.3)-(7.4) can be used for a spheroid which is rotated about the x-axis clockwise. 

In that case, the angle ϕ is set to negative.  

Suppose the directional vector of incident light ray is parallel to the x-axis (see Fig. 7.1). Then 

the refracted ray (L01) at point A, the reflection ray (L12) at point B, and the refracted ray (L2) 

at point C can be calculated according to Eqs. (3.9)-(3.11). The definition of the scattering 

angles θ and φ remain the same as in Eqs. (3.13) and (3.14). The calculation of the 

intersection points of the light ray inside the spheroid and the spheroidal surface is given in 

Appendix A. According to the vector ray tracing formula and intersection of a light ray with 

the surface of a tilted spheroid, one can trace the light ray transmission from the spheroid.  

7.2   Optical caustic structures for tilted spheroidal droplet 

The rainbow fringe and HU fringe for an aligned spheroidal droplet have been given in 

Chapter 4 based on VRT. The principle of computing the fringes for a tilted spheroidal 

droplet is the same as that for a spheroidal droplet aligned with the xyz coordinate system. 

Again it must be emphasized that the term fringe will refer to structures of optical caustics, 

not to interference patterns/phenomena. 

A comparison of the fringes for the aligned spheroidal droplets with refractive index 

m=1.333 and that for tilted spheroidal droplets with different tilt angles are shown in Figs. 

7.2-7.4. For small tilt angles (ϕ=2o), the rainbow fringes for different droplets and aspect 

ratios (1.05, 1.10, 1.15, and 1.23) are all very similar (see Fig 7.2). For ϕ=5o and an aspect 

ratio a/c≤1.10  (see Fig. 7.3a and 3b), the fringes for the aligned droplet and tilted droplet 

almost overlap. However, for larger aspect ratios, the fringes for tilted spheroidal droplets 

deviate significantly from that for the aligned spheroidal droplets, as shown in Fig. 7.3c and 

7.3d. As the tilt angle increases, the rainbow fringe for tilted droplets also rotates in the 

same direction. In contrast to the symmetry of fringes for aligned spheroidal droplets, the 

rainbow fringes for tilted spheroidal droplets become asymmetrical about the horizontal 

plane (see Fig. 7.4). Furthermore, the geometrical rainbow angle, i.e. the most left point of 
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the rainbow fringe, shifts to the left side as the tilt angle increases (see Fig. 7.4). However, 

for droplets with small aspect ratios, the difference of rainbow fringes for tilted droplet to 

those for aligned droplets is not large (see Figs. 7.2a, 7.3a, and 7.4a). This is because the 

spheroid with small aspect ratio is close to a spherical shape.  

In summary, the rainbow fringes are tilted counterclockwise as the spheroidal droplet is 

tilted counterclockwise and vice versa. And the geometrical rainbow angle shifts to the left 

side when the spheroidal droplet is tilted counterclockwise. The changes of the fringes 

depend on the aspect ratio and tilt angle. 

 

 
Fig. 7.2.   Comparison of the rainbow fringe for aligned droplets and tilted droplets with ϕ=2o: 

(a) a/c=1.05, (b) a/c=1.10, (c) a/c=1.15, and (d) a/c=1.23.  
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Fig. 7.3.   Same parameters as Fig. 7.2, but with ϕ=5o. 

 

 
Fig. 7.4.   Same parameters as Fig. 7.2, but with ϕ=10o. 
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Fig. 7.5.   Comparison of the curvature of rainbow fringe for aligned droplets and tilted 

droplets: (a) ϕ=2o, (b) ϕ=5o, (c) ϕ=10o, and (d) ϕ=15o.  

 

The purpose of computing the rainbow fringes is to check if the rainbow fringe can be used 

to measure the aspect ratio and tilt angle for tilted spheroidal droplets. Therefore, the 

curvature of the rainbow fringe for tilted spheroidal droplets is calculated using the VRT 

simulation and is compared with that for aligned spheroidal droplets. For comparison, only 

the curvature at the apex point in the equatorial plane of the rainbow fringe is calculated. 

Such a comparison is given in Fig. 7.5. It can be seen that for spheroidal droplets with small 

tilt angles, the curvature is in close agreement with that for aligned spheroidal droplets (see 

Fig. 7.5a and 7.5b). As the tilt angle increases, the difference of the curvatures becomes 

more pronounced (see Fig. 7.5c and 7.5d). For 1.15≤a/c≤1.23 the curvature differ ence 

increases as aspect ratio increases. However, for small aspect ratios, the curvature for tilted 

droplets still agrees with that for aligned spheroidal droplets. It can be seen that, for 

spheroidal droplets with small tilt angle, the rainbow fringe can still be used to calculate the 

aspect ratio. 
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7.3   Preliminay experiment investigation for tilted spheroidal droplet 

 

 
Fig. 7.6.   A generalized rainbow pattern for a spheroidal water droplet with ϕ=-5.21o, 

D=1.79mm, H=1.61mm, D/H=1.11. 

 
Fig. 7.7.   Main rainbow fringes for the generalized rainbow pattern as shown in Fig. 7.6. 

 

The generalized rainbow pattern for tilted spheroidal droplets has also been experimentally 

investigated. In experiment, the acoustic levitator is tilted in order to obtain a tilted droplet. 

The levitator is rotated clockwise about an axis perpendicular to the light beam. In this case, 

the droplet is not stably positioned in the levitator, since the lateral forces are quite weak. 

Therefore, only small tilt angles can be realized.  

The parameters of the tilted droplet are as follows: D is the droplet diameter in the 

horizontal equatorial plane and H is the diameter along the vertical axis of the rotational 

symmetry. Figure 7.6 shows the generalized rainbow pattern for a tilted spheroidal droplet 

with ϕ=-5.21o, D=1.79mm, H=1.61mm, D/H=1.11. As the droplet is tilted clockwise, the 

generalized rainbow pattern is rotated clockwise and the pattern no longer exhibits 
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symmetrical about the horizontal plane. However, the generalized pattern is symmetrical 

about the horizontal plane for an aligned droplet (see Fig. 5.4). The main rainbow fringe of 

generalized rainbow pattern is calculated and shown in Fig.7.7. From VRT simulations, it is 

known that the rainbow fringe is tilted clockwise for the clockwise tilted droplet and vice 

verse. In this respect, the experiment agrees with the VRT simulation. 

In summary, the changes of the optical caustic structures in response to the tilt angle are 

studied based on vector ray tracing. The rainbow fringes are tilted counterclockwise as the 

spheroidal droplet is tilted counterclockwise and vice versa. The changes of the fringes 

depend on the aspect ratio and tilt angle. The generalized rainbow pattern for a tilted 

spheroidal droplet has also been measured experimentally, exhibiting good agreement with 

simulations. 
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Chapter 8   Deviation between geometrical rainbow position of an 

ellipse and that of a sphere  

Möbius’s approximation (Möbius, 1910) has been used to calculate the deviation between 

the geometrical rainbow angle for an ellipse and that for a sphere ( (van Beeck, et al., 1995) 

and (Lohner, et al., 1999)). However, there was some misuse of Möbius’s approximation as 

will be shown in this chapter. Here the modified Möbius equation is given and the vector ray 

tracing model is used to compute the rainbow angle deviation for an ellipse, which agrees 

with the modified Möbius equation for small eccentricity. Moreover, the application range 

of Möbius’s approximation is also investigated. 

8.1   Modification of Möbius’s approximation 

 
Fig. 8.1.   Schematic of the deviation between rainbow angle of an ellipse and that of a 

sphere.  

 

The deviation ∆θrg (see Fig. 8.1) between the geometrical rainbow angle for an ellipse and 

that for a sphere can be written as (Möbius, 1910): 

( )3
0 016 sin cos cos 2rg gn rg r r rgθ θ θ ρ θ θ ψ θ∆ = − = − − +     (8.1) 

Here θgn and θrg are the rainbow angle for an ellipse and that for a sphere in the sense of 

geometric optics respectively. θr0 is the corresponding incident angle of the rainbow angle 

for a sphere and ψ the oblique angle of incident light ray with respect to the major axis. And 

ρ is the eccentricity of the elliptical profile defined by:  
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         (8.2) 

here a and c are major and minor semi-axes of the elliptical profile respectively and a/c the 

aspect ratio of the ellipse. 

Based on Eqs. (8.1) and (8.2), the angular difference between rainbow position of an ellipse 

and that of a sphere (refractive index m=1.333) is shown in Fig. 8.2. For an ellipse with 

a/c=1.002, the rainbow angle of ellipse deviate 0.195o from that of a sphere. However the 

deviation angle increase to 0.973o for an ellipse with for a/c=1.010. As shown in Fig. 8.1, the 

ellipse is symmetrical about the major axis. Thereby the deviation curve should be 

symmetrical around ψ=0o.  However the deviation curve in Fig. 8.2 is not this case. The 

results similar to Fig. 8.2 were shown in several references, which were not symmetrical 

about the around ψ=0o. That is because the misunderstanding of oblique angle in Eq. (8.1). 

The value of oblique angle in Eq. (8.1) should be kept positive. That is Eq. (8.1) is modified as: 

( )
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  (8.3) 

On the other hand, the rainbow angle for an ellipse also can be calculated according to 

vector ray tracing (VRT). Then the above argument can be validated. 

 
Fig. 8.2.   Angular difference between the geometric rainbow position of an ellipse and a 

sphere. 

 

8.2   Comparison of modified  Möbius’s approximation and VRT simulation   

Then the difference between the geometric rainbow angles of an ellipse and a sphere are 

calculated by Eq. (8.3) and by vector ray tracing. Figure 8.3 shows the angular difference for 
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ellipses with aspect ratios a/c=1.002, 1.010, 1.020, and 1.050 respectively. It can be seen 

that the angular difference calculated by the modified Möbius equation agrees well with 

that by vector ray tracing for small aspect ratios (see Figs. 8.3a-3c). Furthermore, the 

deviation curve are symmetrical around ψ=0o, which demonstrates that the modified 

equation is correct. However, for an aspect ratio of a/c=1.050, the larger differences 

between the modified equation and vector ray tracing are observed, as shown in Fig. 8.3d. 

That is because the Möbius equation is only available for an ellipse with small eccentricity 

(Marston, 1980). For an aspect ratio a/c=1.002, the angular difference of the geometric 

rainbow angle for an ellipse and sphere is less than 0.5o. As the aspect ratio increases, the 

corresponding angular difference becomes larger. However, the shapes of the curve are 

similar in Figs. 8.3a-8.3d. That is because for different ellipses, only the eccentricity ρ is 

changed, leaving other parameters unchanged in Eq. (8.3). 

 

 
Fig. 8.3.   Comparison the angular difference between the geometric rainbow position of an 

ellipse and a sphere calculated from Eq. (8.3) and that by vector ray tracing. 



8.2   Comparison of modified  Möbius’s approximation and VRT simulation 

92 
 

 

 
Fig. 8.4.   Same parameters as Fig 8.3, but with different aspect ratios. 

 

Figure 8.4 shows the comparison of the modified equation and vector ray tracing for an 

ellipse with varying aspect ratio a/c=0.998, 0.990, 0.97, and 0.95. Similar to Fig 8.3, modified 

equation is consistent with vector ray tracing for small eccentricity. For a/c=0.95, that is the 

absolute eccentricity equals 0.026, the difference between the two methods are observed in 

Fig. 8.4d. 

Furthermore, the application range of the Möbius’s approximation is investigated. For 

aspect ratios between 0.95 (ρ=0.026) and 1.05 (ρ=0.024), vector ray tracing agrees with the 

Möbius’s approximation, as shown in Fig. 8.5a. The difference between the two methods is 

around 0.4o for a/c=0.95. However for large eccentricities, the differences observed increase 

(Fig. 8.6a). For a/c=0.5 (ρ=0.333), a difference up to 25.71o (see Fig. 8.6b) is observed, while 

for small eccentricity, that is 0.95≤a/c≤1.05, the Möbius’s approximation can predict the 

rainbow angular difference of ellipses. 
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Fig 8.5.   Comparison of the rainbow angular difference calculate by Möbius’s approximation 

and that by vector ray tracing. 

 
Fig 8.6.   Same parameters as Fig 8.5, but with different aspect ratio range. 

 

8.3   Conclusion 

In summary, Möbius’s approximation is modified to calculate the deviation between the 

geometrical rainbow angle for an ellipse and that for a sphere. The vector ray tracing model 

is also used to compute the rainbow angle deviation for an ellipse, which agrees with 

modified Möbius equation for small eccentricity. Moreover, the application range of 

Möbius’s approximation is also investigated. It is demonstrated that for small eccentricity, 

that is 0.95≤a/c≤1.05, the Möbius’s approximation can predict the rainbow angle difference 

of ellipse. 
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Chapter 9   Conclusion and perspectives 

9.1   Conclusion 

In summary, the VRT model is employed to simulate optical caustic structures including the 

rainbow and hyperbolic umbilic (HU) fringes in the primary rainbow region of light scattering 

from oblate water droplets. The location of cusp caustics are calculated by VRT simulation and 

compared with that by analytic solution, for which good agreement is found. The evolution of 

the optical caustic structures in response to shape deformation of oblate water droplets is 

investigated by VRT simulation and is found to be consistent with experimental observation. 

For the secondary rainbow, the location of cusp caustic is also calculated by use of the VRT 

simulation and compared with that calculated using analytic solutions: excellent agreement 

is also found. The optical caustic structures for the secondary rainbow are first simulated 

and analyzed systematically according to VRT model and the evolution process of the optical 

caustic structures is consistent with experimental observation.  

The generalized rainbow patterns from spheroidal water droplets are measured in an 

experiment. According to the generalized rainbow patterns and Airy approximation, the 

refractive index and equatorial diameter of water droplets can be inverted from the 

corresponding generalized rainbow patterns. Comparison of the refractive indices inverted 

from the generalized rainbow patterns with that of pure water shows good agreement, with 

absolute errors less than 0.5x10-4. The water droplet diameters in the horizontal equatorial 

plane are calculated from the generalized rainbow patterns and compared to that measured 

by direct imaging. It is shown that the relative errors of droplet diameters associated with 

the corresponding generalized rainbow patterns lie between -5% and 5%; hence reliable 

diameter estimations of droplets can be obtained from the generalized rainbow patterns. 

The curvatures of simulated rainbow fringes are compared with observed ones from the 

generalized rainbow patterns, in which good agreement is also shown. Since for a given type 

of droplet, the curvatures of the rainbow fringes are only a function of the aspect ratios, the 

non-sphericity (in terms of aspect ratio) of water droplets are inferred from the relevant 

generalized rainbow patterns. The relative errors of aspect ratios calculated from the 

generalized rainbow pattern lie between -1% and 1%. Accordingly, the complete information 

of a spheroidal water droplet in terms of geometric and optical properties are obtained. 
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And then, the changes of the optical caustic structures in response to the tilted angle are 

studied based on vector ray tracing. The rainbow fringes are counterclockwise tilted as the 

spheroidal droplet is counterclockwise tilted and vice versa. The changes of the fringes 

depend on the aspect ratio and tilted angle.  And a generalized rainbow pattern for a tilted 

spheroidal droplet is investigated. 

Furthermore, Möbius’s approximation is modified to calculate the deviation between the 

geometrical rainbow angle for an ellipse and that for a sphere. The vector ray tracing model 

is also used to compute the rainbow angle deviation for an ellipse, which agrees with 

modified Möbius equation for small eccentricity. It is demonstrates that, for small 

eccentricity, that is, 0.95≤a/c ≤1.05, the Möbius’s approximation can predict the rainbow 

angle difference of ellipse. 

9.2   Perspectives 

The VRT model has been employed for the first time to investigate the optical caustic 

structures, whereby the generalized rainbow pattern is used for measuring the refractive 

index, size, and shape (in terms aspect ratio) of a spheroidal water droplet. Nevertheless, 

there are several interesting investigations that still need to be carried out.   

1. Whole optical caustic structure 

 VRT model is used to study the optical caustic structure in primary and secondary rainbow 

regions of oblate spheroid. And the rainbow and HU fringes are analyzed and good 

consistence with experiment is found. However only partly of the caustic structures are 

shown and investigated. The whole optical caustic structure for oblate and prolate spheroids 

should be investigated; 

2. Application range of generalized rainbow technique 

Because of smaller or larger droplets or droplets with larger ratios are unstable in the 

levitator, only water droplets in the size range of 0.80-2.00 mm and aspect ratios smaller 

than 1.23 are investigated. And the refractive index, size, and shape (in terms aspect ratio) of 

spheroidal water droplets are inverted from the corresponding generalized rainbow patterns. 

The application range of the generalized rainbow pattern on size measurement of particle 

needs further study; 

3. Application of secondary rainbow pattern on droplet measurement 
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For water droplet with aspect ratio around 1.31, the hyperbolic umblic diffraction 

catastrophe appears and make it is difficult to measure the droplet. However, it can be seen 

from VRT simulation that the secondary rainbow pattern can be used for droplet 

measurement in this aspect ratio range. That need be investigated in experiment; 

4. Analytical solution of the relation between rainbow fringe curvature and aspect ratio of 

spheroid 

The relation between rainbow fringe curvature and aspect ratio of spheroid has been 

established by simulation and experiment. However the analytical simulation need to pursuit; 

5. Investigation of tilted droplet 

Due to the droplet orientation are arbitrary in many industrial processes, further 

experimental investigations of abnormally oriented droplet also are is worthy carrying out; 

6. Application of generalized rainbow technique 

Furthermore, because of the high measurement accuracy, the generalized rainbow 

technique perhaps can be used for designing an optical instrument for particle 

characterization including the refractive index, temperature, size, and shape. 
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Appendices 

Appendix A   Intersection point of a light ray and surface of a spheroidal particle 

In this appendix, the calculation of the intersection point of a light ray and surface of a 

spheroidal particle is summarized. The functions of a straight line and a spheroid and the 

solutions of a quadratic equation are recalled. 

Suppose the directional vector of a light ray can be described by (m0, n0, p0). And point (x0, y0, 

z0) is any point on the light ray (see Fig. A1). The light ray may be an incident ray, reflection 

ray or refraction ray. In each case, the vector (m0, n0, p0) is parallel to the direction of the 

light ray. The equation of the light ray can be expressed as:  

 0 0 0

0 0 0

x x y y z z
m n p
− − −

= =         (A1) 

It is assumed that m0≠0, n0≠0, and p0≠0 in Eq. (A1). However, one or two of the three 

parameters (m0, n0, p0) can be zero. The meaning of these light rays will be given in detail in 

the following. 

 
Fig. A1.   Schematics of intersection points of light ray and particle surface.  

 

Suppose the particle is an ellipsoid. Then the surface of the particle is a closed quadric 

surface and is a three dimensional analogue of an ellipse. The standard equation of an 

ellipsoid centered at the origin of a Cartesian coordinate system is given as: 

 
2 2 2

2 2 2 1x y z
a b c

+ + =          (A2) 
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where a, b and c are called the semi-principal axes aligned along the coordinate axes. If two 

of the three parameters equal each other, the ellipsoid reduces to a spheroid. For example, 

for an oblate spheroid, a=b and a>c. 

Consider a light ray impinging on the particle surface at the point (x0, y0, z0). The light ray will 

intersect the particle surface at other point. However when the light ray is tangent to the 

particle surface, the ray intersects the particle surface only at one singular point. Since the 

point (x0, y0, z0) is on the surface of the ellipsoid, the following equation exists:  

 
2 2 2
0 0 0
2 2 2 1x y z

a b c
+ + =          (A3) 

The point (x0, y0, z0) is the given intersection point of the light ray and the particle surface. To 

look for the other intersection point is to solve Eqs. (A1)-(A3). The derivations are given as 

follows.  

(I) Case 1: m0≠0, n0≠0, and p0≠0  

In this case, the light ray does not parallel to any axis of the coordinate.  

By using Eq. (A1), one can get: 

 ( )0
0 0

0

ny y x x
m

= + −          (A4) 

 ( )0
0 0

0

pz z x x
m

= + −          (A5) 

Substituting Eqs. (A4) and (A5) into Eq. (A3), one could obtain: 

 ( ) ( )
2 22

0 0
0 0 0 02 2 2

0 0

1 1 1n px y x x z x x
a b m c m

   
+ + − + + − =   

   
    (A6) 

Combining Eq. (A6) with Eq. (A3), after some algebra, Eq. (A6) could be written as:  

 

2 2 2 2
20 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0

2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2
0 0 0 0

1 1 1 2

2 2 0

n p n x n y p x p zx x
a m b m c m b m b m c m c

n x n x y p x p x z x
m b m b m c m c a

   
+ + + − + − +   

   

+ − + − − =

  (A7) 

In a simple form, Eq. (A7) could be rewritten as:  

 2
1 1 1 0a x b x c+ + =          (A8) 

where 
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2 2
0 0

1 2 2 2 2 2
0 0

2 2
0 0 0 0 0 0 0 0

1 2 2 2 2 2 2
0 0 0 0

2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0

1 2 2 2 2 2 2 2
0 0 0 0

1 1 1 ,

2 ,

2 2 .

n pa
a m b m c

n x n y p x p zb
m b m b m c m c

n x n x y p x p x z xc
m b m b m c m c a

= + +

 
= − + − + 

 

= − + − −

     (A9) 

The roots of Eq. (A8) are given by:   

 
2

1 1 1 1

1

4
2

b b a c
x

a
− ± −

=          (A10) 

From Eq. (A9), one can obtain:  

 

4 2 2 2 4 2 2 2 3 2 2 2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 4 4 2 4 4 4 2 4 3 4 4 2 2
0 0 0 0 0 0

2 2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 2 3 2 2 2 2 2 3 4
0 0 0 0

4 2 2

2 2 2 2

n x n y p x p z n x y n p xb
m b m b m c m c m b m b c

n p x z n p x y n p y z p x z
m b c m b c m b c m c


= + + + − +




− − + − 


  (A11) 

 

4 2 4 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 4 4 4 4 4 2 2 4 2 2 2 2
0 0 0 0 0

3 2 2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 4 3 2 2 3 2 2 3 4
0 0 0 0

4 4 2 2 2

2 2 2 2

n x p x n p x x n x y p x za c
m b m c m b c a m a b m a c

n x y n p x z n p x y p x z
m b m b c m b c m c


= + + − − −




− − − − 


  (A12) 

and 

 
2

2 0 0 0 0 0
1 1 1 2 2 2

0 0

4 4 x n y p zb a c
a m b m c

 
− = + + 

 
      (A13) 

So the roots of Eq. (A7) are: 

 1 0x x=            (A14) 

 2 0 12x x M= −           (A15) 

where 

 

0 0 0 0 0
2 2 2

0 0
1 2 2

0 0
2 2 2 2 2

0 0

1 1 1

x n y p z
a m b m cM

n p
a m b m c

+ +
=

+ +
        (A16) 

Combining Eqs. (A4) and (A5) with Eqs. (A14) and (A15), the solutions for Eqs. (A1)-(A3) are 

given by: 
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1 0

1 0

1 0

,
,
.

x x
y y
z z

=
 =
 =

            (A17) 

and 

 

2 0 1

0
2 0 1

0

0
2 0 1

0

2 ,

2 ,

2 .

x x M
ny y M
m
pz z M
m


 = −


= −



= −


         (A18) 

here the intersection point (x0, y0, z0) of the light ray and the particle surface has been given. 

So the point (x2, y2, z2) is other intersection point of the light ray and the particle surface. 

In summary, if the direction of the light ray described by the vector (m0, n0, p0), the function 

of particle surface and one intersection point (x0, y0, z0) of the light ray and particle surface 

are given, the other intersection point can be calculated according to Eq. (A18). The above 

derivations are valid for m0≠0, n0≠0, and p0≠0. The other cases are given in the following. 

(II) Case 2: m0=0, n0≠0, and p0≠0  

If m0=0, n0≠0, and p0≠0, the light ray can be expressed as:  

 
0

0 0

0 0

,

.

x x
y y z z

n p

=
− −

=
         (A19) 

The physical meaning is that the light ray is perpendicular to the x-axis. 

The particle surface still satisfies the Eqs. (A2) and (A3). Here it is assumed that the light ray 

impinges on the particle surface at the point (x0, y0, z0). To look for the other intersection 

point of the light ray and particle surface is to solve the equations (A2), (A3) and (A19). 

Following the steps as given in case 1, we can obtain the coordinates of other intersection 

point: 

2 0

2 0 2

0
2 0 2

0

,
2 ,

2 .

x x
y y M

pz z M
n


 = = −

 = −


         (A20) 

where 
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0 0 0
2 2

0
2 2

0
2 2 2

0

1 1

y p z
b n cM

p
b n c

+
=

+
         (A21) 

(III) Case 3: m0≠0, n0=0, and p0≠0  

If m0≠0, n0=0, and p0≠0, the light ray can be given as:  

0

0 0

0 0

,

.

y y
x x z z

m p

=
− −

=
         (A22) 

here (x0, y0, z0) are defined as above. The physical meaning of the light ray is that it is 

perpendicular to the y-axis. 

By solving the equations (A2), (A3) and (A22), we could find the other intersection point of 

the light ray and particle surface. So the coordinates of the other intersection point are given 

as: 

 
2 0 3

2 0

0
2 0 3

0

2 ,
,

2 .

x x M
y y

pz z M
m


 = − =

 = −


         (A23) 

where 

 

0 0 0
2 2

0
3 2

0
2 2 2

0

1 1

x p z
a m cM

p
a m c

+
=

+
         (A24) 

(IV) Case 4: m0≠0, n0≠0, and p0=0 

If m0≠0, n0≠0, and p0=0, the light ray can be expressed as:  

0

0 0

0 0

,

.

z z
x x y y

m n

=
− −

=
         (A25) 

here (x0, y0, z0) are defined as above. The physical meaning is the light ray is perpendicular to 

the z-axis. 

To look for the other intersection point of the light ray and particle surface is to solve the 

equations (A2), (A3) and (A25). So the coordinates of the other intersection point are given 

as follows: 



Appendix A   Intersection point of a light ray and surface of a spheroidal particle 

104 
 

 

2 0 4

0
2 0 4

0

2 0

2 ,

2 ,

.

x x M
ny y M
m

z z

 = −

 = −

 =

         (A26) 

where 

 

0 0 0
2 2

0
3 2

0
2 2 2

0

1 1

x n y
a m bM

n
a m b

+
=

+
         (A27) 

(V) Case 5: m0≠0, n0=0, and p0=0 

If m0≠0, n0=0, and p0=0, the light ray can be expressed as:  

0

0

,
.

y y
z z
=
=

          (A28) 

The physical meaning of the light ray is that it is perpendicular to the y-axis and z-axis, that is, 

it is parallel to x-axis. 

By solving the equations (A2), (A3) and (A28), we could find the other intersection point of 

the light ray and particle surface. The coordinates of other intersection point are given by:  

 
2 0

2 0

2 0

,
,
.

x x
y y
z z

= −
 =
 =

          (A29) 

(VI) Case 6: m0=0, n0≠0, and p0=0 

If m0=0, n0≠0, and p0=0, the light ray can be expressed as:  

0

0

,
.

x x
z z
=
=

           (A30) 

The physical meaning is that the light ray is parallel to y-axis.  

To look for the other intersection point of the light ray and particle surface is to solve the 

equations (A2), (A3) and (A30). The coordinates of the other intersection point are expressed 

as follows: 

 
2 0

2 0

2 0

,
,

.

x x
y y
z z

=
 = −
 =

          (A31) 

(VII) Case 7: m0=0, n0=0, and p0≠0 

If m0=0, n0=0, and p0≠0, the light ray can be expressed as:  
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0

0

,
.

x x
y y
=
=

          (A32) 

That means the light ray is parallel to z-axis.  

By solving the equations (A2), (A3) and (A32), we could find the other intersection point of 

the light ray and particle surface. The coordinates of the other intersection point are given as: 

 
2 0

2 0

2 0

,
,
.

x x
y y
z z

=
 =
 = −

          (A33) 

(VIII) Case 8: m0=0, n0=0, and p0=0 

Mathematically, this represents a point in at the coordinate. So there is no physical meaning 

for this light ray.  

In summary, given the direction of the light ray described by the vector (m0, n0, p0), the 

functional form of the particle surface and one intersection point (x0, y0, z0) of the light ray 

and particle surface, the other intersection point can be calculated according to the above 

derivations. 
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Appendix B   Location of cusp caustic  

 
Fig. B1.   Rays associated with the cusp caustic.  

 

As is well known, the cusp caustic is associated with the contribution from two equatorial 

rays and two skew rays (Marston, et al., 1984) and the VRT model allows the cusp caustic to 

be identified. On the other hand, Nye obtained a derivation for calculating the droplet 

aspect ratio when the hyperbolic umbilici catastrophe can be observed (Nye, 1984). 

Furthermore, an analytical solution to predict the location of cusp caustic was given based 

on Herzberger’s formalism (Marston, 1985). In the present study the analytical solution for 

calculating the cusp location is derived based on geometric optics. In order to compare with 

Nye’s derivation (Nye, 1984), an O-x’y’z’ coordinate system is used as shown in Fig. B1. The 

spheroidal surface satisfies x’2/a2+ y’2/c2+ z’2/a2=1. Associated with the incident direction L0, 

the Descartes rainbow ray impacts the droplet at the point Q(0, 0, a) in the equatorial plane 

of the droplet. After being refracted into the droplet it intersects the surface at R(asin2θr, 0, 

acos2θr), where θr is the angle of refraction at the entry point Q. Letting the Q shift by an 

infinitesimal amount ε1 and ε2 in x’ and y’ directions respectively and keeping the incident 

direction fixed, the entry point moves to Q1(ε1, ε2, -a(1-ε1
2/a2- ε2

2/c2)1/2

The direction of the incident ray in the O-x’y’z’ coordinate system is given by L=(sinθi, 0, 

cosθi), where θi is the angle of incidence at point Q. To the first order, the normal to the 

), which is off the 

equatorial plane. Generally, the refraction of the skew ray passes above or below the point 

R. If the skew ray also passes R, the exiting ray will remain parallel to the equatorial plane to 

first order according to the symmetry of the oblate spheroid. It means that the skew rays 

focus in the vertical direction as well as that in the horizontal plane.  
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droplet surface at Q1 is n1=(ε1/a2, ε2/c2, -1/a). Provided that the skew ray passes through R, 

the ray of refraction is L’=(asin2θr-ε1, - ε2, acos2θr+a). The ray of incident direction L, the 

normal n1 at the incident point and the refracted ray direction L’ should be coplanar. It 

means that the vector triple product is zero ( '
1 0× × ≡L n L ), namely: 

2 2
1 2

1 2

sin 0 cos
1 0,

sin 2 cos 2

i i

r r

a c a
a a a

θ θ
ε ε
θ ε ε θ

− ≡
− − +

      (B1) 

After some algebra, one obtains: 

2

2 1 22 2 2 2 2

sin 2 cos2cos 1 1 1sin cos 0.
sin

r ir
i i

i

a
c c a c a

θ θθθ ε θ ε ε
θ

   − − + − =   
  

  (B2) 

To the first order, the first term of Eq. (B2) must be zero. Then applying Snell’s law, one 

obtains: 

( ) ( ) ( )
1 21 2 1 22 2 2 2 2/ 2 sin 2 sin 1 sin .i i ia c m m mθ θ θ
−

 = − − − −  
   (B3) 

Equation (B3) is as same as that obtained by Marston using Herzberger’s formalism (Marston, 

1985). For the spheroid with an aspect ratio satisfying the condition Eq. (B3), the skew rays 

will focus vertically. The two skew rays are above and below the equatorial plane 

respectively. Together with the two equatorial rays, they focus in the same direction, giving 

rise to the cusp caustic. According to geometrical optics, the scattering angle of the cusp ray 

is given by θ=π+2θi-4sin-1(sinθi/m) and the primary Descartes ray satisfies sinθi=(4-m2/3)1/2. 

Substitution into Eq. (B3) yields the critical aspect ratio a/c=[3m2/(4m2-4)]1/2, i.e. the ratio at 

which HUFS arises. This result is identical to that given by Nye (Nye, 1992).  
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