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Dynamic Wetting by Viscous Liquids: Effects of 
Softness, Wettability and Curvature of the 

Substrate and Influence of External Electric 
Fields 

 
Abstract 

The wetting of solid surfaces by liquids is commonly observed in nature, and it 

is also a key to a number of industrial applications and biological processes. In the 

past two centuries, most studies about wetting were devoted mainly to equilibrium 

situations and thus to static measurements. However, in most cases the dynamic 

wetting is more relevant and it has received less attension. The goal of this thesis is to 

study the effects of softness, wettability and curvature of the substrate and influence 

of external electric fields on dynamic wetting of viscous liquids. 

 The thesis contains two main parts. The first part focuses on the early dynamic 

wetting of simple liquids on two types of surfaces that show different complexity: flat 

viscoelastic substrates and highly curved solid microparticles. On the viscoelastic 

substrates, a novel wetting stage dominated by inertia was found. The dynamics in 

this stage is characterized by the wetting radius,       , following a power law 

similarly as on rigid surfaces, with the exponent   only depending on surface 

wettability. After the inertial wetting stage, spreading slows down and enters another 

stage dominated by the viscoelasticity of the substrate. The transition between inertial 

and viscoelastic stage is controlled by the surface “softness”. A simple theory was 

developed with Prof. Martin E.R. Shanahan to explain these findings. An early inertial 

wetting stage was also observed during the snap-in process, i.e. the wetting, of single 

colloidal particles into large water drops. The snap-in time is dependent on the 

capillary force and on inertia, but is independent on surface wettability. In contrast, 

the snap-in force is larger for hydrophilic and smaller for hydrophobic particles. A 

scaling model was proposed to describe the snap-in or early wetting of individual 

colloids.        



 

  

 The second part of the thesis is devoted to study the dynamic wetting of rigid 

flat surfaces by simple and viscous liquids. First, the early spreading of drops of 

aqueous electrolyte solutions on various wettable surfaces driven by electrostatic 

forces, which was termed “electrospreading”, was investigated. It was found that early 

electrospreading is only dominated by inertia and electrostatics. The wetting dynamics 

is not only dependent on surface wettability and applied electric potential, but also on 

the concentration of the electrolyte solutions. The electrostatic energy stored in the 

electric double layer near the solid-liquid interface served as an additional energy for 

driving drop spreading. Based on molecular dynamics simulation done by Dr. Chunli 

Li, a simple scaling model was presented to describe the wetting dynamics. Finally, a 

systematic study of dynamic wetting of various wettable surfaces by viscous liquids 

was carried out. Both surface wettability and liquid viscosity influence the inertial 

stage of wetting as well as the viscous stage. During the inertial wetting stage, the 

effective mass of the spreading drop is affected by surface wettability and liquid 

viscosity. This results in a slower spreading speed on hydrophobic surfaces, or of 

highly viscous liquids. Viscous wetting did not take place on all substrates, but only on 

those surfaces with equilibrium contact angles smaller than a critical value, which 

depended again on liquid viscosity. A scaling law was proposed to explain these 

experimental observations.  

 

 

 

 

 

 

 

 

 

 



 

  

 

Dynamic Wetting by Viscous Liquids: Effects of 
Softness, Wettability and Curvature of the 

Substrate and Influence of External Electric 
Fields 

  

Zusammenfassung 

Die Benetzung fester Oberflächen durch Flüssigkeiten ist nicht nur in der Natur 

weit verbreitet sondern auch ein Schlüsselprozess in zahlreichen industriellen 

Anwendungen und biologischen Vorgängen. In den letzten zwei Jahrhunderten wurde 

in erster Linie die Benetzung im Gleichgewichtszustand untersucht und zu diesem 

Zweck statische Messverfahren eingesetzt. In vielen Fällen ist jedoch die Dynamik der 

Benetzung von Bedeutung, die bisher weniger untersucht wurde. Ziel meiner Arbeit 

ist die Untersuchung Einflusses von Weichheit, Benetzbarkeit und Wölbung des 

Substrats und der Einfluss eines externen elektrischen Feldes auf die dynamische 

Benetzung mit viskosen Flüssigkeiten. 

Die Dissertation besteht aus zwei Hauptteilen. Der erste Teil beschäftigt sich 

mit der anfänglichen dynamischen Ausbreitung einfacher Flüssigkeiten auf zwei 

verschiedenen komplexen Oberflächen: Glatte, viskoelastische Oberflächen und feste 

Mikropartikel mit hoher Krümmung. Auf den viskoelastischen Oberflächen wurde ein 

neuer Benetzungsbereich gefunden, in dem das Benetzungsverhalten durch Trägheit 

bestimmt wird. Die Dynamik in diesem Bereich wird über den Benetzungsradius, 

      , charakterisiert, der einem ähnlichen Potenzgesetz wie auf festen 

Oberflächen folgt. Der Exponent   hängt hier nur von der Benetzbarkeit der 

Oberfläche ab. Nach dem Trägheits-dominierten Benetzungsbereich wird die 

Ausbreitung langsamer und erreicht einen neuen Bereich, in dem sie durch die 

Viskoelastizität des Substrates kontrolliert wird. Der Übergang zwischen Trägheits- 

und Viskoelastizitäts-kontrolliertem Bereich wird durch die „Weichheit“ der 

Oberfläche bestimmt. Zusammen mit Prof. M.E.R. Shanahan wurde eine einfache 

Theorie zur Erklärung dieser experimentellen Ergebnisse entwickelt. Ein anfänglicher, 

Trägheits-kontrollierter Bereich wurde auch während des Einschnappvorgangs, d.h. 



 

  

der Benetzung von einzelnen Kolloidpartikeln durch große Wassertropfen, 

beobachtet. Die Zeit für das Einschnappen hängt von der Kapillarkraft und der 

Trägheit ab, ist aber unabhängig von der Benetzbarkeit der Oberfläche. Andererseits 

ist Einschnappkraft für hydrophile Partikel größer als für hydrophobe. Ein 

Skalenmodell für die Beschreibung des Einschnappes und der anfänglichen Phasen 

der Benetzung einzelner Partikel wurde entwickelt. 

Im zweiten Teil der Dissertation wird die dynamische Benetzung glatter, fester 

Oberflächen mit einfachen und viskosen Flüssigkeiten behandelt. Zuerst wurde die 

anfängliche Ausbreitung von Tropfen einer wässrigen Elektrolytlösung auf 

verschiedenen benetzbaren Oberflächen, die durch elektrostatische Kräfte getrieben 

wurde untersucht, ein Prozess der hier mit „Elektroausbreitung“ bezeichnet wird. Es 

konnte gezeigt werden, dass die anfängliche Elektroausbreitung nur durch Trägheit 

und Elektrostatik kontrolliert wird. Die Benetzungsdynamik hängt nicht nur von der 

Oberflächenbenetzbarkeit und dem angelegten elektrischen Potential, sondern auch 

von der Elektrolytkonzentration ab. Die gespeicherte elektrostatische Energie in der 

elektrischen Doppelschicht nahe der Grenzfläche zwischen Flüssigkeit und Feststoff 

dient als zusätzliche Energiequelle für das Ausbreiten der Tropfen. Basierend auf 

molekular-dynamischen Simulationen von  Dr. Chunli Li wurde ein Skalenmodell zur 

Beschreibung der Benetzungsdynamik vorgestellt. Abschließend wurde eine 

systematische Untersuchung der dynamischen Benetzung vieler verschieden 

benetzbarer Oberflächen mit hochviskosen Flüssigkeiten durchgeführt. Es zeigte sich, 

dass sowohl die Oberflächenbenetzbarkeit als auch die Viskosität der Flüssigkeit 

sowohl den Trägheits-kontrollierten als auch den viskosen Bereich beeinflussen. Im 

Trägheits-kontrollierten Benetzungsbereich wird die effektive Masse des sich 

ausbreitenden Tropfens von der Benetzbarkeit der Oberfläche und der Viskosität der 

Flüssigkeit bestimmt. Dies führt zu einer geringeren Ausbreitungsgeschwindigkeit auf 

hydrophoben Oberflächen oder von hochviskosen Flüssigkeiten. Viskose Benetzung 

trat nicht auf allen Substraten, sondern nur auf solchen auf, die Gleichgewichts-

Kontaktwinkel unterhalb eines kritischen Wertes hatten. Dieser kritische Wert hängt 

wiederum von der Viskosität der Flüssigkeit ab. Auch hier wurde ein Skalengesetz zur 

Erklärung der experimentellen Daten vorgeschlagen. 
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1 Brief Introduction about Wetting 1 

1 Brief Introduction about Wetting 

Wetting of solid surfaces by liquids is one of the most common phenomena in 

our daily life, from taking a bath in the morning, to washing dishes after dinner, to 

painting a wall, and so on. Actually, wetting also plays a key role for many industrial 

applications, such as oil recovery, drainage of water from highways, cooling of 

industrial reactors, printing, and ink-jet printing. Moreover, wetting is very crucial for 

biological systems as well.  For example, the liquid thin film between the toe-pad of a 

tree frog and a surface generates an attractive capillary interaction, by which the frog 

can adhere and move along various surfaces. Thus, understanding the underlying 

physics of wetting at the liquid-solid-vapor interfaces can improve our life quality and 

help technological development. The aim of this chapter is to give a brief introduction 

on the basics of wetting. Specifically, I will first introduce the concept of interfacial 

tensions, then discuss static wetting, and finally dynamic wetting. 

 

1.1 Surface tension and interfacial tensions 

 

Figure 1-1 A steel needle floats on the surface of water due to surface tension. 

 

Surface tension is an important physical property of liquids and it is responsible 

for all wetting phenomena. One beautiful phenomenon owing to the surface tension 

of water is that some small objects - though with high density like a steel needle - 

(Fig. 1-1), can float on the surface of water. The unit of surface tension ( ) is force 

per unit length (N/m) or equivalently energy per unit area (J/m2). As a result, the 

surface tension can be understood from both mechanical and thermodynamic points 

of view.  

Mechanical explanation. The origin of surface tension is due to the cohesive 

forces among liquid molecules. Here, we consider a liquid drop in a vapor ambient. In 
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the bulk liquid, each molecule is attracted by neighbor molecules in all directions, 

which leads to a net force of zero (Fig. 1-2). In contrast, at the interface of the liquid 

with the surrounding vapor, the attraction force between liquid molecules and gas 

molecules is much weaker than the cohesive force among liquid molecules, which 

results in a net force at the interface pointing inwards. This force on a unit length is 

surface tension, and it drives the interface to minimize its total area. 

 

Figure 1-2 Sketch of the molecular organization at the interface. The arrows are 

illustrations of intermolecular interactions. 

 

Thermodynamic explanation. Surface tension can also be interpreted in terms of 

free energy. Inside the liquid, each liquid molecule is surrounded by others from any 

direction, and thus it stays in the lowest state of free energy. In contrast, at the 

interface, half of the neighbors are missing for a liquid molecule compared to the one 

in the bulk liquid, which results in a higher free energy. Therefore, the surface tension 

can be defined as the increase of free energy   by the increase unit of surface area  , 

while other parameters are constant [1]: 

  [
  

  
]
     

 (1.1) 

where   is the absolute temperature,   is the volume of the system and   is the total 

number of molecules. In the course of thermodynamics, equation (1.1) can be used to 

define any interfacial tension, such as the two other interfacial tensions encountered 
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in wetting: the liquid-solid interfacial tension     and the solid-vapor interfacial 

tension    . 

 

1.2 Laplace equation 

Due to surface tension, a liquid drop in air or a gas bubble in a liquid tends to 

adopt a spherical shape to minimize its total surface energy. Due to the curved 

interface a pressure difference is generated across the interface between the “inside” 

and the “outside” of a drop or a bubble. This pressure difference was considered by 

Laplace in 1805 [2]. Thus, it is called Laplace pressure and takes the form  

   
  

  
 (1.2) 

where    is the radius of the drop/bubble. Equation (1.2) indicates that the smaller 

the drop/bubble is, the bigger is the pressure difference. The derivation of equation 

(1.2) can be done with the principle of virtual work. Considering the interface of a 

spherical drop/bubble (initial radius is   ) moves a small distance of    , the change 

of total energy is from the mechanical work done by the pressure and the change of 

surface energy,            . Where        
     and           . At 

equilibrium, the change of the total energy equals zero and equation (1.2) is obtained. 

The general form of Laplace pressure is  

    (
 

  
 

 

  
) (1.3) 

Here,    and    are the principle radii of curvature. 

 

1.3 Sessile drops on surfaces 

1.3.1 Sessile drops on rigid surfaces 

When a liquid drop is brought into contact with a solid surface, the drop 

spreads on the surface to minimize the free energy of the whole system. Eventually, 

the drop sits on the surface in a minimum energy state, as shown in Fig. 1-3 (in this 

case, a water drop on a silicon surface). There are two properties of the final state.  

First, the shape of the liquid-vapor interface is approximated as a truncated 

sphere (or spherical cap, Fig. 1-3a-b) if gravity can be neglected, i.e. the surface force 
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is larger than the gravity. This is due to surface tension, as discussed in the previous 

section. For a drop with a radius   , the surface force is proportional to     and 

gravity scales as     
 . One finds that the surface force dominates if  

      √
 

  
 (1.4) 

where   is the liquid density and   is the acceleration due to gravity.    is the so 

called capillary length. For water at room temperature and standard pressure, 

         . Drops larger than    form puddles flattened by gravity (Fig. 1-3c).  

 

Figure 1-3 Water drops sitting on a silicon surface with size           (a)-(b) and 

with           (c). The scale bar is 2.7 mm. The dashed line shows the 

spherical fittings and the dotted line denotes the solid surface.  

 

The second property is that the drop wets the surface with a contact radius     . 

    is the distance between the center of the drop and the triple phase contact line 

(TPCL) where solid-liquid-vapor meet (see Fig. 1-4). It is a parameter characterizing 

the interaction between the liquid and surface. If the volume of drops is similar, a 

large     indicates that the liquid “likes” the surface and a small     means the liquid 

“hates” the surface. However, if the volume of drops is different, it is more difficult to 

compare the interaction between drops and surfaces.  

 

 

Figure 1-4 Sketch of a drop sitting on the solid substrate in its equilibrium state.  
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The widely accepted parameter that is normally used to describe the wettability 

of surfaces is the contact angle  . The contact angle is defined as the angle at which a 

liquid-vapor interface meets with the solid surface. It is only determined by the liquid-

vapor ( ), solid-vapor (     and liquid-solid (   ) interfacial tensions (Fig. 1-4). While 

the drop is in the equilibrium state, the net force due to these three interfacial 

tensions in the horizontal plane is zero and Young’s equation [3] is obtained, 

       
       

 
 (1.5) 

where     denotes the equilibrium contact angle. Equation (1.5) is only valid for ideal 

surfaces, which are rigid, smooth at the atomic scale, and chemically homogenous. 

For a small drop (     ) in equilibrium on a surface, one can relate the 

equilibrium contact radius     to the equilibrium contact angle     with 

            [
 

(        )
 
(        )

]

   

 (1.6) 

Taking the limit       , one finds      , which means that the interaction of 

liquid and surface is so strong that the liquid tends to wet the surface completely. If 

        , one obtains      , which reflects that the surface extremely repels the 

liquid. Therefore, one can use     to define the degree of surface wettability. Indeed, a 

solid surface is called hydrophilic when the water contact angle     is smaller than     

[1]. If the water contact angle        , the solid surface is called hydrophobic [4]. 

In recent years, surfaces with water contact angle larger than      have been defined 

as superhydrophobic surfaces [5]. 

 

Drops on Physical or Chemical Heterogeneous Surfaces 

 In nature, surfaces are not ideal. They are normally decorated by physical 

structures or different chemical moieties. The physical or chemical heterogeneity of 

real surfaces leads to the so called contact angle hysteresis. As sketched in Fig. 1-5a, 

the contact angle measured when the maximum volume of liquid is added to the drop 

without the contact radius increasing, is called advancing contact angle,    .     has a 

value equal to or larger than    ,        . On the other hand, the contact angle 

measured as the maximum volume is withdrawn from the drop without the contact 
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line retreating is defined as receding contact angle,    , and         (Fig. 1-5b). The 

contact angle hysteresis,   , is the difference between the advancing and receding 

contact angle [6] 

           (1.7) 

The contact angle hysteresis characterizes the homogeneity of surfaces. The larger the 

value of    the more heterogeneous the surface is.  

 

Figure 1-5 Schematic of advancing contact angle (a) and receding contact angle (b). 

The red dotted lines indicate the initial equilibrium shapes.  

 

Since Young’s equation is only valid for ideal surfaces, it cannot be used to 

predict precisely equilibrium contact angles on real surfaces. Wenzel was probably the 

first to modify Young’s equation by considering surface roughness [7]. He considered 

the contribution of surface energy due to roughness and introduced a roughness 

factor   - which is the ratio of actual surface area (   ) and projected surface area 

(   ) - into Young’s equation. Wenzel’s equation takes the form  

       
       

 
                       (1.8) 

The roughness factor,  , normally has a value larger than 1 (for flat surface,    ). 

   is the equilibrium contact angle on rough surfaces (also called Wenzel angle, Fig. 1-

6a).    is the intrinsic contact angle of a liquid on the flat surface of the same 

material, which can be determined by Young’s equation. Equation (1.8) shows that 
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the surface wettability can be tuned by roughening the surface. If the material is 

hydrophilic (      ), the increased roughness makes the surface even more 

hydrophilic, i.e. the larger the roughness factor  , the smaller the Wenzel contact 

angle   . On the contrary, if the material is intrinsically hydrophobic (      ), a 

large value of   can make the surface even more hydrophobic (     ) or even 

superhydrophobic (       ).  

 

Figure 1-6 A drop rests on a rough surface (a) and on a chemical heterogeneous 

surface (b). (c) The drop rests on top of the asperities (Cassie-Baxter state). 

 

 Later, Cassie and Baxter extended Wenzel’s analysis to porous surfaces formed 

by regularly aligned fibers [8]. They considered the different interfacial energies 

generated by two “chemical” components: the solid fibers and the air between fibers. 

They proposed the primary form of the Cassie-Baxter equation for chemical 

heterogeneous surfaces. However, a relatively rigorous derivation was achieved only 

much later [1, 9-11]. Fig. 1-6b shows a smooth solid surface made with a mixed 

chemical compositions, material   and  , which have liquid contact angles of    and 

   on smooth surfaces, respectively. If the liquid contact line is displaced by a small 

distance   , the change of the surface energy per unit length is 

                                                 (1.9) 

where   ,      ,       are respectively the length fraction, liquid-solid and solid-vapor 

interfacial tensions for each chemical species, and        .     is the equilibrium 

contact angle of this surface and is also called Cassie-Baxter angle. The total surface 

energy reaches the lowest state when the contact line is in equilibrium, i.e. 
  

  
  . 

Equation (1.9) simplifies to the below modified expression of Young’s equation 

                           (1.10) 
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Equation (1.10) is the Cassie-Baxter equation. Now, we consider the case that 

component   is air, which is the situation for water drops on some natural rough 

surface such as lotus leaf (Fig. 1-6c). Then,     has a value of       and the equation 

takes the form 

                     (1.11) 

The above relation is the key equation that indicates how to fabricate 

superhydrophobic surfaces [5, 11, 12]. First, the base material should be hydrophobic 

(      ). Second, the solid fraction of the roughness needs to be very small (   

 ). However, it is noted that the derivation of equation (1.11) is based on one strong 

assumption: the drop rests on top of the surface asperities, i.e. it is in the Cassie-

Baxter state. A drop being initially in the Cassie-Baxter state could jump to the Wenzel 

state if the surface roughness is not high enough [13], and eventually this will result 

in the failure of superhydrophobicity. Chen et al. carried out a systematic study of the 

geometric effects of roughness on superhydrophobicity and proposed a third 

dimensionless number, bulk aspect ratio, which compares the size, height and spacing 

of the surface asperities to achieve superhydrophobicity [14, 15]. They found that in 

addition to a small solid fraction the stable superhydrophobic surfaces should have a 

bulk aspect ratio larger than 4. 

 

Precursor Film 

 

Figure 1-7 Schematic of the zone near the three-phase contact line. The macroscopic 

spherical cap is connected to a thin film covering the substrate. 

 

When the thickness of the drop thins down to submicroscopic dimensions, the 

long-range van der Waals force between the molecules of the liquid and the solid 
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outweigh other forces. Instead of a sharp extrapolation of the liquid-vapor interface to 

the surface, the contact line extends via a thin film of a few nanometer thickness 

farther out than the macroscopic drop itself [1, 16-22] (Fig. 1-7). This thin film is 

called precursor film and its width can reach up to few hundred micrometers on 

nanostructured hydrophilic surfaces [23]. Till now, most experimenal observation of 

precursor films were reported for completely wetting surfaces only [1, 16-22] 

(                      ). On partially wetting surfaces the existence of a precursor 

film is still controversial. 

 

1.3.2 Sessile drops on soft substrates or surfaces 

Soft substrates are an important class of substrates in our living world. From 

small objects like proteins, organelles, single cells, or connective tissues to large 

systems such as plant leaves, organs or entire animal: all are made of “soft materials”. 

Actually, all life forms are built upon and organized around soft biogenic materials. 

Investigations of wetting phenomena on soft substrates appear to be very crucial and 

urgent, also for understanding the world around us [24]. 

Unlike rigid substrates, a sessile drop can deform a soft substrate, as illustrated 

in Fig. 1-8a. Two forces related to capillarity lead to the deformation. First, the 

vertical component of the liquid surface tension is applied to the surface near the 

contact line and causes a “wetting ridge” with a height of the order of [25-28] 

  
       

 
 (1.12) 

where   is the shear modulus of the soft material. This deformation is normally 

negligible for rigid substrates. Taking silicon, for example, the Young’s modulus is 

typically 130-190 GPa [29] which results in a wetting ridge of less than 1 pm. In 

contrast, biomaterials such as soft tissues have Young’s moduli of the order of 1 kPa 

[30-32] and the surface tension force leads to a wetting ridge of         , which can 

influence significantly dynamic wetting processes [26, 27, 33-37], drop impact [38-

40], dropwise condensation [41],  and sessile drop evaporation [42, 43]. 

 The second force is from the Laplace - or capillary - pressure. If the substrate is 

semi-infinite, the missing of a part of the spherical cap results in a net pressure, which 
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is applied perpendicular to the liquid-solid interface on the surface and leads to a 

quasi-spherical dimple underneath the drop (Fig. 1-8a). Since the Laplace pressure is 

inversely proportional to the size of the drop, the depth of the dimple is larger for 

small drops than that for large drops. However, if the thickness of the soft material is 

finite, the capillary force cannot be compensated by the soft film due to the 

appearance of the background rigid substrate. Eventually, the deformation under the 

drop is much shallower and the deformation profile is more complex (Fig. 1-8b) [44]. 

 The observation of the “wetting ridge” was pioneered by Carré et al. [33] with 

an optical method and followed by several other authors [45-50]. Only recently, 

however, Pericet-Camara et al. characterized the entire deformation of sessile micro-

drops on soft polydimethylsiloxane (PDMS) substrates using laser scanning confocal 

microscopy [44, 51]. They analyzed the profiles of the whole substrate deformation 

and also reported the influence of the finite film thickness and of the supporting rigid 

substrate [44]. 

 

Figure 1-8 Schematic of the deformation induced by surface tension   and Laplace 

pressure    on a bulk soft substrate (a) and on a thin soft film supported by a 

rigid substrate (b). 

 

 As a “wetting ridge” is pulled up by surface tension around the contact line and 

a dimple structure is formed underneath the drop by Laplace pressure, it is difficult to 

discern the actual position of contact line and the solid-liquid interface. The 

“apparent” equilibrium contact angle    which we observe on soft substrates with 

standard optical techniques differs from the Young’s angle    [49] (Fig. 1-8a).    is 

not only determined by the liquid-solid chemical interaction, but also by the softness 

of the substrate. In other words, the “apparent” contact angle    cannot be used to 

characterize the surface chemical properties, i.e. its wettability, any more. 
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1.4 Dynamic wetting  

 

Figure 1-9 The initial state of a drop touching a solid surface. 

 

The equilibrium state of a drop on a surface is reached when the liquid-solid-

vapor interfacial tensions,  ,    ,     are balanced, i.e. the drop attains a semi-

spherical shape with an equilibrium contact angle of    . How does a drop reach 

equilibrium after its first contact with a solid surface? Just after contact, the contact 

angle   is very large (     , see Fig. 1-9), which results in a net horizontal force per 

unit length of 

                  (           ) (1.13) 

This force pulls on the contact line and causes the liquid to spread on the surface until 

it reaches equilibrium, characterized by a contact angle    . 

 

1.4.1 Dynamic wetting on rigid surfaces 

Initial inertial wetting stage 

Just after contact, the capillary driving force,  (           ), is very large 

and leads to a high speed of spreading (in the order of 1 m/s). Both experimenal 

studies and molecular dynamics simulations showed that the spreading radius,  , 

grew with spreading time   according to a power law         [52], which is 

independent of surface wettability and liquid viscosity (it is valid, however, only for 

relatively low viscosity liquids).   is a coefficient. This wetting stage lasts only 

        and only weakly depends on drop size [52, 53]. There are two main forces 

resisting the spreading during this process: the kinetic energy of the moving drop and 

the viscous dissipation in the liquid. The Reynolds number,    
    

 
, which 

compares the inertial and the viscous force, is much larger than unity.  ,   , and   are 
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density, radius, and viscosity of the liquid drop.   is the speed of the moving contact 

line. Thus, inertia dominates the spreading. However, a complete model about fast 

drop spreading dynamics is still missing. 

 

Second inertial wetting stage 
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Figure 1-10 (a) Water droplets spread on four surfaces with different wettability. (b) 

Spreading radius vs. time for the spreading process in (a). The initial radius of all 

drops was          . 

 

When        , the spreading speed is still high ( 0.1 m/s), and now 

depends on the surface wettability. Figure 1-10a shows water drops spreading on four 

surfaces with different wettability (                   ). On the hydrophilic surface 

with       , the liquid near the liquid-solid interface spreads faster than that above 

it. Within  0.5ms, a dynamic contact angle smaller than     is formed. By contrast, 

spreading is slower on hydrophobic surfaces with         and the drop has a 

dynamic contact angle larger than    . A transition to dynamic contact angle of     

can be found on the surface with        . In general, the contact radius grows faster 

on hydrophilic than that on hydrophobic surfaces. This is clearly shown in the plot of 

spreading radii as a function of spreading time in Fig. 1-10b. 

 Figure 1-11 displays the same data of Fig. 1-10b in log-log scale. The spreading 

radius follows a power law growth with time,       . Each of these curves 

corresponds to a different     and has a different exponent  . For the most 
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hydrophilic surface (      ),      . For hydrophobic surfaces,   is smaller than 

0.5 and decreases monotonically with    . 
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Figure 1-11 Log-log plot of the experimental data in Figure 1-10b.  

 

 This spreading stage is still dominated by inertia, but not yet by viscosity. This 

can be rationalized in two ways. On one hand, the Reynolds number is still much 

larger than one. On the other hand, the spreading up to this point lasted only up to 10 

milliseconds, depending also on the drop size. This time is comparable to the 

characteristic inertial time, √
   

 

 
, and much different from the characteristic viscous 

time,      . A few theoretical models, though currently still partially empirical, were 

proposed to describe the spreading/wetting dynamics at this early time. Biance et al. 

proposed a scaling law based on Newton’s second law [54]. They found a power law 

with an exponent of 0.5 to describe the wetting on completely wetting surfaces. Bird 

et al. considered the energy dissipation during spreading [55] and derived a power 

law which relates   with    . They suggested that the change of surface energy during 

wetting was transferred into the kinetic energy of the moving drop, by which the 

governing equation is obtained 

∫
 

 
 | |     [                   ]

 

 (1.14) 

       is the velocity field at position   and at time  , and   is the “effective” volume 

of the moving drop.      is the surface area of the liquid-vapor interface. Adapting a 
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self-similar velocity field to vary over the length of     
   

 
     [56] and further 

assuming that the surface area of the spreading drop scales as   , i.e.           

        
 , equation (1.14) is simplified to  

 

 

  

  
 √ (   )         (1.15) 

       is an unknown function. Solving the above equation results in  

      , with    √ (   )         (1.16) 

Equation (1.16) shows that the exponent of the power law depends only on the 

equilibrium contact angle    . This matches with the experimental observations [55]. 

 

Viscous wetting stage 

 On strongly hydrophilic (                      ) or completely wetting 

surfaces (      ), a third wetting stage was found after the two inertial stages. In this 

stage, the wetting speed is much slower than in the previous two stages, and      . 

There are two theories describing this wetting stage: the Hydrodynamic Model (HDM) 

and the Molecular Kinetic Theory (MKT).  

 

Figure 1-12 Spreading flow near the wedge of the drop for    .  

 

 Huh and Scriven were probably the first to consider the complicated 

hydrodynamic problem of flow near the triple line of a liquid that spreads on a solid 

surface [57]. Since then, a larger number of researchers have started working on the 

problem, as is addressed in a classical review paper by de Gennes [18]. In the same 

paper, de Gennes developed a successful hydrodynamic model based on work of Huh 

and Scriven, in which the capillary driving force is compensated by the viscous 

dissipation in the liquid. 
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 As illustrated in Fig. 1-12, the wedge of the drop was treated as a flat film 

(   ), with a Poiseuille type of velocity field,        . Assuming that the velocity 

of the contact line   is the average velocity in a film with a height   one can find that  

     
  

   
          (1.17) 

The viscous dissipation in the wedge is 

  ̇  ∫   ∫   
  

  
     

    

 

 

 

    

    

  |
    

    
| (1.18) 

Where      is a cutoff length related to the macroscropic size of the drop,          

and      is a cutoff length close to molecular size. 

 One key assumption of this model is that a precursor film exists in front of the 

bulk contact line. Thus, the capillary driving energy is simplified to 

               
  

 
   (1.19) 

Balancing equations (1.18) and  (1.19) and denoting   |
    

    
|   , we obtain 

  
  

  
 

 

   
   (1.20) 

Neglecting the precursor film (the volume of the precursor film is much smaller than 

that of the drop), the volume of the drop can be expressed as       . By 

differentiation one obtains 

  

  
  

 

     
      (1.21) 

which ultimately leads to 

   
     

  
      or        

  

 
      (1.22) 

Equation (1.22) is also called Tanner’s law, since he pioneered investigations of 

spreading drops on completely wettable surfaces [58]. Indeed, a power law of 

          was observed in a number of experimental studies [54, 59-61]. 

  One shortcoming of the hydrodynamic model is the divergence of the viscous 

dissipation when the cutoff length        (see equation 1.18). Thus, microscopic 

models were proposed as complementary theories. Blake and Haynes suggested that 

the motion of the contact line is controlled by thermally activated liquid 
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displacements [62]. As illustrated schematically in Fig. 1-13, there are   adsorption 

sites per unit area and the average length of each molecular displacement is  . During 

drop spreading, liquid molecules are moving forward and backward with a defined 

“hopping” frequency. Applying Eyring’s theory of absolute reaction rates [63], the 

frequency of molecular displacements in the forward direction   
  and that in the 

backward direction   
  can be expressed as 

  
    

      
 

     
  (1.23) 

  
    

      
  

     
  (1.24) 

  
  is the frequency of molecular displacements at equilibrium (then   

    
    

 ). 

  is the work done by the shear stress per unit displacement of unit length of the 

wetting line.    is the Boltzmann constant and   is the absolute temperature. The 

speed of wetting is therefore defined as 

     
    

       
       

 

     
  (1.25) 

As the shear stress is applied by the surface tension, equation (1.23) becomes 

     
       

 (           )

     
  (1.26) 

The above model is called molecular kinetic theory (MKT model). In the MKT 

model,   
 ,  ,   are three unknown parameters. This results in a limited applicability 

of the model. To match the theory with experiments, these unknown parameters need 

to be fitted based on the experimental data, and it was found that   is always much 

larger than a molecular size [1]. If the term of sinh in equation (1.26) is very small 

and the surface is very hydrophilic, equation (1.26) can be further simplified to a 

power law [64] 

       (1.27) 

The different power laws between hydropdynamic model (Eq. 1.22) and molecular 

kinetic theory (Eq. 1.27) are due to the different dependence of wetting angle on 

wetting speed: HDM predicts that for small angles      (1.20) while MKT predicts 

that      (1.26).  
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Figure 1-13 Schematic representation of the molecular-kinetic model of wetting. 

 

1.4.2 Dynamic wetting on soft substrates 

On soft substrates, an extremely slow stage (       m/s) was observed and 

it was found that it does follow neither the inertial nor the viscous wetting law. Since 

the spreading speed is extremly slow, inertia is negligible, and thus there are only two 

possible dissipation sources resisting the spreading. The first one is the viscous 

dissipation in the liquid, as discussed in the previous section. The second one is 

related to the “wetting ridge” generated by capillary forces. As the contact line 

movies, the “wetting ridge” also moves, which leads to a viscoelastic dissipation inside 

the soft substrate [26, 27, 33, 34, 37],  ̇ , given by 

 ̇  
   

    
(
 

  
)

   

 (1.28) 

  is a cutoff distance near the contact line, which is of the order of 0.1-1   . Where 

   is a characteristic speed.    and     are related to the rate-dependent viscoelastic 

dissipation of the solid. Now, the new energy balance equation is 

            
    

  
 

 

    
(
 

  
)

   

 (1.29) 

If viscous dissipation dominates drop spreading, equation (1.29) recovers the viscous 

wetting law. On the other hand, if viscoelastic dissipation dominates drop spreading, 

we obtain another power law 

   (           )              
 

         
  (1.30) 

Carré and Shanahan were the first to study dynamic wetting on soft substrates [26, 

27, 33, 34, 37]. Their experimental results showed that wetting was independent of 
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liquid viscosity, but dependent on the surface softness. They confirmed the viscoelastic 

wetting law shown in equation (1.29).  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



 

  

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 



 

  

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Part I Effects of Substrate Softness and Curvature on Dynamic 
Wetting 
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2 Early Dynamic Wetting on Soft Substrates1 

In this chapter, the early dynamic wetting on soft substrates is studied. In the 

first step, dynamic wetting of various liquids with different surface tensions and 

viscosities on various viscoelastic soft substrates was investigated using a high speed 

camera. A novel fast wetting stage was found in the time scale 0.1–10 milliseconds. 

The wetting dynamics was dominated by inertia and followed a power law with the 

exponent depending on surface wettability, but not on substrate softness. On the 

other hand, the duration of this fast inertial wetting was controlled by the softness of 

the substrate. After the inertial stage, wetting entered into a slow viscoelasticity-

dominated stage. In the second step, a simple model was developed with Prof. Martin 

E.R. Shanahan (Université Bordeaux, France) to describe the early dynamic wetting 

on soft viscoelastic substrates. The theoretically predicted transition time between the 

inertial and the viscoelastic stage matched the experimental data in the order of 

magnitude.  

 

2.1 Motiviation 

Wetting phenomena on soft substrates are commonly encountered in our daily 

life, from washing hands, to painting a wall, to lubricating our eyes several times per 

minute, and so on. However, wetting dynamics on soft substrates is still not fully 

understood. In the late 20th century, Carré and Shanahan pioneered the study of 

wetting phenomena on soft substrates [26, 27, 33, 34, 37]. They found that the 

vertical component of surface tension of a drop leads to the deformation of substrate 

near the contact line. This deformation was called “wetting ridge”. When the drop 

spreads, the “wetting ridge” moves with the contact line and causes viscoelastic 

dissipation, which dominates and slows down the spreading by the so called 

“viscoelastic braking” [65]. Due to the low time resolution of the camera at that time, 

it was impossible for the authors to investigate the initial wetting stages just after the 

                                            

1 This chapter is based on “L.Q. Chen, G.K. Auernhammer, E. Bonaccurso, Short time wetting 

dynamics on soft surfaces, Soft Matter 7, 9084 2011” and “L. Q. Chen, E. Bonaccurso, M.E.R. 

Shananhan, Inertial to viscoelastic transition in early drop spreading on soft surfaces, Langmuir 
29, 1893 2013”. 
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drop touched the soft substrate. Since an inertial wetting stage was reported on rigid 

surfaces [54, 55, 66], one natural question is whether it exists on soft substrates as 

well. If yes, how long does it last? Are there any effects of substrate softness on the 

duration of inertial wetting? How and to which extent does the substrate softness 

influence the inertial wetting? These questions lead me to carry out a systematic study 

of the early dynamic wetting on soft substrates. 

 

2.2 Experiments 

2.2.1 Soft substrates 

Fabrication of soft PDMS thin films 

The soft substrates were fabricated with polydimethylsiloxane (PDMS, Sylgard 

184, Dow Corning, Wiesbaden, Germany). The polymer chain of the monomer can be 

branched or cross-linked by a curing agent. Through varying the mass ratio of the 

monomer and curing agent, the viscoelastic properties of the material can be 

controlled after a hard bake in an oven. In the experiments, monomer/curing agent 

ratios of 100:1, 75:1, 50:1, 20:1, and 10:1 were used. Since the chemical components 

of these PDMS are the same, the surface chemistry properties of them are always the 

same. 
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Figure 2-1 The thickness of PDMS film as a function of spin-coating rate. 
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Square glass slides with dimension of 22   22 mm2 (500  m-thickness) were 

first cleaned in acetone (Sigma-Aldrich, p.a.) and then in ethanol (Sigma-Aldrich, 

p.a.) in an ultrasonic bath for 5 min, respectively. After drying with purified nitrogen, 

well mixed PDMS solutions with different monomer/ curing agent ratios were spin-

coated on these glass slides for 1 min. The PDMS coated films were cured overnight at 

70 °C in an oven. The thickness,  , of the films was controlled by the spin coating 

rate. Figure 2-1 shows the thickness of the PDMS film as a function of spin rate. By 

increasing the spin rate from 500 to 3,000 rpm, PDMS films with thickness of 30-200 

µm were prepared. The film thickness was measured with a µ-Surf white-light 

confocal profiler (NanofocusAG, Oberhausen, Germany).  

 

Characterization of the soft materials at low frequency 

 

 

Figure 2-2 Sketch of the measurement cell of the homemade piezo-rheometer [67]. 

 

The shear modulus of the soft materials was measured with a homemade 

piezo-rheometer2 in shear mode at 0.1 1000 Hz. Figure 2-2 illustrates the sketch of 

measurement cell. Two piezo-ceramic stacks (12   20   2 mm3, PICA™ Shear Piezo 

                                            

2 The measurements were done in the Max-Plank Institute for Polymer Research, Mainz. The 

piezo-rheometer was built by Marcel Roth and Miao Wang assisted me for the 

measurements. 
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Actuators; PICeramic, Lederhose, Germany) each of which was glued to a glass 

substrate on one side and a massive glass holder on the other side. The glass holders 

were fixed together defining a gap between the two glass substrates, in which the 

sample was filled. The gap size could be adjusted with three fine thread screws. The 

parallelism of the two plates can be checked by the Newton rings generated by 

inteference of the light reflected by the surfaces of two plates. Detailed information 

and working principle of the setup could be found elsewhere [67]. 

Freshly mixed PDMS solution was filled between these two flat glass substrates 

with a gap width of 200 µm. Then, the measurement cell was transferred into a 

vacuum desiccator for degasing. After 1 hour, the measurement cell with the sample 

was put in an oven and heated overnight at 70 °C (the same cross-linking condition as 

the fabrication of soft substrates). Before the measurements, the setup was calibrated 

using highly viscous gauge oil (100000BW, 100 Pa s, DKD). All measurements were 

carried out at 20 °C (the temperature for wetting experiments). 
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Figure 2-3 (a) Plot of shear modulus   of PDMS with different monomer/cross-linker 

ratios as a function of frequency  . (b) The corresponding phase angle   of 

PDMS in (a) as a function of frequency  . 

 

Viscoelastic materials exhibit both viscous and elastic properties under 

oscillatory stress. In rheology measurements, the storage modulus    - which 

characterizes the elastic property - and the loss modulus     - which characterizes the 

viscous property – were measured. The shear modulus can be calculated with 

  √        . The storage modulus and loss modulus can be related with the phase 
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angle   (           ,          and          ).   is ideally    for purely 

elastic materials and     for purely viscous materials.  

Figure 2-3a shows the shear modulus,  , as a function of frequency,  , for five 

PDMS materials which used in the expeirments. Gerally,   increases with   for all 

samples and PDMS is harder for small monomer/cross-linker ratios than that with 

large ratios. Figure 2-3b illustrates   as a function of  . All materials show a 

comparatively more viscous property under high frequency than under low frequency. 

PDMS is almost purely elastic (  close to 0) for mixing ratios close to 10:1 and it 

becomes more and more viscous with increasing the ratio of monomer/curing agent. 

In the experiments, the five materials were denoted by the shear modulus measured 

at 1Hz, as shown in Fig. 2-4. 
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Figure 2-4 Shear modulus   and phase angle   for five PDMS samples at 1Hz. Solid 

lines are guides for the eye. 

 

Characterization of the soft materials at high frequency 

 When a drop spreads on soft substrates, a stress is applied on the substrate by 

the surface tension of moving drop. The frequency of the stress can be related 

approximately to the spreading speed with         [35]. In the inertial wetting 

stage,   is in the order of 1 m/s [35, 36, 55]. Taking a cutoff length of 1   , the 

calculated frequency is  8     Hz. Thus, it is essential to characterize these soft 

substrates under high frequency as well. 
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The storage modulus and loss modulus uder high frequency were measured3 

using a commercial angular rheometer (ARES mechanical spectrometer, Rheometric 

Scientific). PDMS substrates with a thickness of  1 cm were cut into pieces of 

       . The mechanical properties were measured with an angular frequency of 

0.1-100 rad/s between -140   and 20  . Then, the time-temperature superposition 

principles was employed to predict the influence of measurement frequency on 

dynamic viscoelastic properties up to     Hz at 20  . Figure 2-5 shows the shear 

modulus of the viscoelastic materials used in the experiments. 
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Figure 2-5 Plot of shear modulus   as a function of frequency  . 

 

2.2.2 Liquids 

Wetting experiments were done with deionized milliQ water, ethanol, 

deionized water/ethanol and deionized water/glycerol mixtures. These liquids have 

surface tensions ranging from 22.3 to 72.7 mN/m and viscosities in the range from 

0.89 to 10.80 mPa s. The equilibrium contact angle of these liquids on the most rigid 

PDMS (monomer/curing agent ratio is 10:1) surfaces are between     and     . More 

detailed information about the liquids and the corresponding     on rigid PDMS 

surface ( =510 kPa @ 1Hz) are collected in Table 2.1. 

                                            

3 The measurements were done by Andreas Hanewald in the Max-Plank Institute for Polymer 

Research, Mainz. 
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Table 2-1 Physical properties and contact angles on rigid PDMS ( =510 kPa @ 1Hz) 

of droplets of various liquids. 

Liquids 
   

(kg/m3) 
  (mN/m)[68, 

69]  
  (mPas, at 20 )[68, 

70]  
    ( ) 

Water 1000 72.7 1.00 114±2 

10 wt% ethanol/water 980 48.1 1.32 96±1 

40 wt% ethanol/water 931 30.7 2.35 65±1 

60 wt% glycerol/water 1154 67.2 10.20 92±3 

Ethanol 785 22.3 0.89 41±2 

 

2.2.3 Experimental setup 

 

Figure 2-6 Setup for drop spreading experiments. 

 

Figure 2-6 shows the scheme of the experimental setup. The PDMS substrate 

was placed on a vertical stage in a closed environmental chamber to prevent dust and 

acoustic vibrations which may affect the experiments. A steel needle with an inner 

diameter of 200-400 µm was placed above the substrate at a defined distance for 

generating a droplet. The needle was silanized by 1,1,1,3,3,3-hexamethyldisilazane 

(Roth GmbH, Germany) in a desiccator at room temperature for 12 h to prevent drops 

wetting it. Applying a syringe pump, drops with controlled initial radius of 0.79, 0.89 

and 1.00 mm were generated. The vertical stage was controlled by a micrometer 

screw and it moved the substrate quasi-statically toward the drop. A cold light source 
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with a diffuser was used to illuminate drop and substrate from the back. The drop 

wetting process was recorded using a high-speed video camera (FASTCAM SA-1, 

Photron Inc., USA) with a frame rate of 54,000 fps. The resolution of the recorded 

image was 10    per pixel. For each experimental parameter, at least six spreading 

drop events were acquired. In total, I evaluated data of around 1,000 drop spreading 

movies. 

 

2.2.4 Data analysis 

The videos of the spreading drops were processed by a self-programmed 

MATLAB® (MathWorks Inc., USA) algorithm. Zooming in the vicinity of the contact 

area between drop and surface by cutting each frame at ±125 µm aside the rim of the 

drop,  the contour of the drop was identified by thresholding the images. From each 

image, the contact diameter   and the contact angle   of the drop were extracted. 

On rigid surfaces, it is well known that the early wetting dynamics is 

dominated by inertia and drop spreading follows a power law [54, 55]. Therefore, it is 

also interesting to check if the early wetting on soft substrates can be described with a 

power law of the type      as well. Thus, the Pearson product-moment correlation 

coefficient,  , was applied to check the power law relationship between   and  .  

  
∑    

    ̅    
    ̅  

   

√∑    
    ̅   

    √∑    
    ̅   
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with        ,        ,   ̅  
 

 
∑   

  
   ,   ̅  

 

 
∑   

  
     

  has a value between -1 and 1.   equals to 1 or -1 corresponds to a very good 

linear relationship between      and     , i.e. a very strong power law relationship 

between   and  . 

 

2.3 Experimental results and discussion 

2.3.1 Spreading process 

In order to check if there are some influences of substrate softness on dynamic 

wetting, a rigid hydrophobic surface was used as a reference surface in the 
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experiments. The hydrophobic surfaces were oxygen plasma treaded glass slides 

further silanized with 1,1,1,3,3,3-hexamethyldisilazane, as described in the previous 

section. The equilibrium contact angle of water on these surfaces was      , which is 

close to that on rigid PDMS (     ).  

 

Figure 2-7 Spreading of 1.0 mm-radius water drop on five substrates with different 

softness: (a) hydrophobic glass surface, (b) PDMS substrate with          , 

(c) PDMS substrate with          , and (d) PDMS substrate with           . 

The scale bar is 1.0 mm. 

 

Figure 2-7 shows the images of spreading water drops on the hydrophobic glass 

surface (Fig. 2-7a) and on three different soft substrates (Fig. 2-7b-d,  200    thick). 

When droplets touched the four surfaces, they spread out spontaneously. The contact 

with the surface generated a capillary wave travelling along the surface of the droplet, 

as indicated by the arrows in Fig. 2-7a. On PDMS substrates with           

(      ), the droplet spread continuously like that on the hydrophobic glass surface 

(Fig. 2-7a-b). On a relatively soft substrate with           (δ = 15.8 ), spreading 

was also continuous and fast at the beginning. After  1ms, the moving of the contact 

line slowed down and proceeded with a stick/slip behavior. The stick/slip movement 



 

2 Early Dynamic Wetting on Soft Substrates 28 

was due to the formation of a so-called “wetting ridge” near the contact line, which 

will be discussed more in detail later. On the softest substrate (           and   = 

83.1 ) spreading almost stopped after  0.5 ms. Eventually, the wetted area was 

smaller on relatively soft than that on relatively rigid substrates for substrates with 

          (Fig. 2-7b-d). For PDMS substrates with          , the wetted area 

was similar to that on hydrophobic glass surface (Fig. 2-7a-b). 
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Figure 2-8 (a) Spreading radius   as a function of spreading time   of the wetting of 

1.0 mm-radius water drop on four surfaces in Fig. 2-7. (b) Log-log representation 

of the experimenal data in (a) and the corresponding Pearson product-moment 

correlation coefficient,  , of      and      as a function of time (color solid 

lines). The black dashed lines are power law fittings and the color dashed lines 

show the different transition time    or  .  

 

In order to quantify the effects of substrate softness on the wetting process, the 

spreading radius during wetting was extracted from the recored images. As shown in 

Figure 2-8a, the initial spreading on all four surfaces was similar and the average 

spreading speed was    ̇  0.5 m/s in 1 ms. The spreading on relatively rigid PDMS 

substrates (      kPa) was similar to that on the hydrophobic glass surfaces (the 

data is almost overlapping, as shown in Fig. 2-8a). The duration of the fast wetting 

was     or   8 ms (   for PDMS substrates and   for the hydrophobic glass surface). 

Afterwards, drops reached equilibrium. For soft PDMS substrates with       kPa, 

the fast wetting lasted only     1ms, depending on substrate softness. Then, 
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spreading entered into another, slower stage. In this wetting stage,   0.007 m/s and 

the motion of the TPCL proceeded with stick/slip behaviour (Fig. 2-7c-d & Fig. 2-8a). 

The wetting dynamics on rigid surfaces always followed a power law,       ,  

depending on the main driving and resistance forces [22, 36, 54, 55, 58, 59]. Thus, I 

checked if the early dynamics on soft substrates was similar. Figure 2-8b illustrates the 

linear correlation coefficient   between      and      as a function of time  , for the 

data in Figure 2-8a.     when      or  , which indicates a nearly perfect power-

law correlation between   and  . For      or  ,   shows a sharp downward kink 

when the drop reached the equilibrium contact angle on hard substrates or when 

spreading switched to a new slow stage on soft substrates. Therefore, the spreading 

radius   for      or   was fitted as a power law of   with the least square method 

(LSM). It was found that the spreading radius grew according to          on the 

hydrophobic and on the PDMS substrates (only the coefficients were slightly 

different), as shown in Fig. 2-8b. The exponent     0.3 is consistent with the inertial 

wetting dynamics on other hydrophobic surfaces with similar equilibrium contact 

angle      110° [55]. In summary, I found that the early wetting on PDMS substrates 

was similar to that on rigid hydrophobic surfaces and that wetting followed a power 

law within some characteristic time scales depending on the substrate softness. 

 

2.3.2 Inertial wetting 

The early wetting speed observed in the experiments was typically of the order 

of  0.5 m/s, which was much faster than the viscoelastic wetting velocity on soft 

substrates observed by Carré and Shanahan (of the order of      m/s or less) [26, 27, 

33, 34, 37, 65]. This indicates that the early wetting dynamics was independent of 

substrate softness and only viscosity or inertia resisted wetting. If inertia dominates 

the dynamics, i.e. the surface energy is transferred into the kinetic energy of the 

moving drop, the spreading radius could be expressed as    (         ).   is the 

capillary driving force, which scales as    ,    is the mass of the drop  equal to    
 , 

and     is some function. The characteristic time of any inertial processes is 

   √
   

 
, with    a characteristic length. For capillary driven inertial wetting, the 
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characteristic time should be    √
   

 

 
. Thus, one could derive that inertial wetting 

follows  

 

  
  (

 

  
    ) (2.2) 

Similarly, one can derive that viscosity dominated wetting follows 

 

  
  (

 

  
    ) (2.3) 

Here,    
   

 
 is the characteristic viscous time.  
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Figure 2-9 (a) Plot of   vs.   for the fast wetting process of three drop sizes. (b) 

Rescaling of the plot by drop radius    and characteristic inertial time    √
   

 

 
. 

The inset figure is the plot in log-log scale. 

 

Figure 2-9a shows the increase of the early spreading radius of water drops 

with different initial radii on three soft PDMS substrates when     . The spreading 

was faster for larger drops. By normalizing the spreading radius with the initial 

radius,     and the spreading time with the characteristic inertial time,    √
   

 

 
, all 

curves collapse onto one master curve, as shown in Fig. 2-9b. Similar results were 

reported by Bird et al. for water on different wettable surfaces [55]. In contrast, I 

cannot collapse the same data by normalization with the characteristic viscous time, 

   

 
, as illustrated in Fig. 2-10. These results confirm that the early wetting dynamics 
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of drops on soft substrates is dominated by inertia and not by viscosity. Indeed, the 

spreading follows a power law with an exponent of 0.3 which is much lager than 0.1 

for viscous wetting. 
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Figure 2-10 Normalized spreading radius,     , vs. the normalized spreading time, 

   
   

 
 . 

 

2.3.3 Inerial wetting exponent 

In the inertial wetting stage, the exponent of the power law is only dependent 

on the chemical interaction between liquids and surfaces, i.e. on    . During the 

spreading, the change of surface energy is transformed into the kinetic energy of the 

moving drop and is a motor for wetting. Thus, wetting on high energy surfaces should 

be faster than on low energy surfaces, i.e.   decreases with increasing    . In this 

experiment, it was difficult to modify the chemical properties of PDMS substrates 

while keeping similar mechanical properties. Therefore, I changed the surface tension 

of the wetting liquids instead of surface wettability, which was equivalent. Therefore, 

water/ethanol and water/glycerol mixtures with different mass proportions were used 

to obtain liquids with a wide range of surface tensions (from 22.3 to 72.7 mN/m), 

viscosities (from 0.89 to 10.8 mPas), and equilibrium contact angles (from 41 to 

114°). The contact angles were measured on a “rigid” PDMS surface with   = 510 

kPa, as summarized in Table 2-1. Figure 2-11a shows the exponent   for different 
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liquids spreading on different PDMS substrates during the early spreading stage. As 

expected, the exponent was similar for all liquids and independent on surface 

softness. Liquids with small surface tension showed a larger exponent than liquids 

with large surface tension, indicating that inertial spreading was faster for higher 

gains in surface energy, i.e. on more wettable liquids or surfaces. This is consistent 

with results on rigid surfaces [55]. It was further found that the exponent decreased 

with the equilibrium contact angle    , as illustrated in Fig. 2-11b. These values match 

very closely those reported in the paper by Bird et al. on rigid surfaces. All exponents 

are smaller than 0.5, which is the value of   for completely wetting surfaces or liquids 

[54, 55, 71]. 
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Figure 2-11 (a)   for various liquids spreading on different soft substrates. (b)   

plotted as a function of contact angle    .  

 

When a drop is sitting on a soft substrate in equilibrium, a “wetting ridge” is 

formed near the contact line of the drop due to the vertical component of the liquid 

surface tension force,         [44, 51, 72-75], as sketched in Fig. 1-8a. Moreover, the 

Laplace, or capillary, pressure in the drop deforms the liquid-solid interface as well. 

Due to these deformations, the value of     is difficult to determine with standard 

optical techniques on soft or deformable substrates, since it is very difficult to observe 

the actual solid-liquid-air contact line. In the experiment, I gently deposited a 4 µL 

water droplet on three soft substrates. The equilibrium shape of the droplet when the 

“apparent” triple phase contact line stopped moving is shown in Fig. 2-12. On 
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relatively rigid substrates (         ), the surface shape of the drop was still 

spherical. In contrast, on the softest substrate (          ), the drop was not 

spherical any more, especially for the area near the “apparent” contact line (Fig. 2-

12). The measured macroscopic “apparent” equilibrium contact angles on the 

substrates with   = 0.02, 5.8 and 204 kPa were      23±3 , 90±2  and 109±1 , 

respectively. Intrinsically, these three surfaces should have similar     for water since 

they have a similar chemical surface composition. Thus, measuring the equilibrium 

contact angle or trying to directly apply Young’s equation, yields poor information on 

the surface energy of soft substrates. Nevertheless, the early stage of spontaneous 

spreading showed similar dynamics (Fig. 2-11a) and was only dependent on 

wettability (Fig. 2-11b). Therefore, the wetting exponent  could be used to 

characterize dynamically the wettability of soft substrates, for which Young’s equation 

cannot be directly applied. 

 

 

Figure 2-12 The equilibrium shape of water drops on the substrates with   = 0.02, 5.8 

and 204 kPa.  

 

2.3.4 Inertial wetting time on “soft” PDMS substrates  

In sections 2.3.1-2.3.3, it was concluded that the initial wetting dynamics on 

soft substrates was dominated by inertia, as it was for hard surfaces. However, I found 

that the surface softness strongly influenced the duration of early inertial spreading 

(see Fig. 2-8a & b). Figure 2-13 summarizes the inertial spreading time    of various 

liquids on all soft PDMS substrates and on hydrophobic glass surfaces. On the softest 

substrates (   5.8 kPa), this spreading time for a water drop was less than 1 ms. It 

did increase slightly with the shear modulus, up to  8 ms on the harder substrate 
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(   204 kPa). On substrates with    204 kPa,    was independent on the surface 

softness. For liquids with surface tension slightly smaller than water, like 60 wt% 

glycerol/water or 10 wt% ethanol/water, the trend was similar, though    was 

slightly larger. However, if the surface tension was much smaller (40 wt% 

ethanol/water or pure ethanol), the inertial spreading time was independent on 

surface softness. The duration of the inertial spreading time    was inversely 

proportional to the surface tension of the liquid, but in a non-trivial way.   
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Figure 2-13 Transition times    as function of   and   for various liquid surface 

tensions on soft substrates (left) and inertial wetting times   on hydrophobic 

glass for three different liquids (right). 

 

The influence of substrate softness on    is remarkable. In a first step, I will 

give a qualitative explanation. I attribute this phenomenon to the balance between 

driving force for the formation of the ridge, i.e. the vertical component of the surface 

tension, and the viscous dissipation in the PDMS acting against a fast ridge formation. 

The height of the ridge depends on the vertical force and the time available to deform 

the surface. At any given point on the surface a ridge only forms if the contact line is 

close enough. In a simple picture, the height of the ridge should depend on the transit 

time of the contact line over a typical width of the ridge, i.e. on the speed of the 

contact line                . The contact line velocity decreases with time. Upon 

first contact with the surface the contact angle of the drop is very large ( 160 , see 
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Fig. 2-7). Since also the contact line speed is high, the “wetting ridge” due to the 

vertical component of the surface tension force          is still small and the drop is 

not hindered in its spontaneous spreading under the action of the horizontal force 

 (           ). With ongoing spreading, the contact angle decreases and the 

horizontal force decreases; the vertical component of surface tension force increases, 

the contact line speed decreases, and the wetting ridge grows; and the friction force 

on the contact line due to viscoelastic braking increases. For soft substrates, thus, a 

critical    does exist below which the substrate is not deformed sufficiently to affect 

inertial drop spreading (Fig. 2-13) [38]. This value depends on the balance between 

vertical force, velocity of the contact line, and viscous behavior of the PDMS. While    

is below the critical value, inertial spreading occurs, but a small ridge will start 

forming. I observed that when    reached the critical value inertial spreading still 

continued for some time   . During this time the drop spread with a constant 

advancing angle. Eventually, the contact line velocity is low enough to allow for the 

formation of a high enough wetting ridge, and inertial spreading stops. 
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Figure 2-14 Vertical component of surface tension force    during wetting on two soft 

substrates (a)            and (b)          . The radius of the drop is 1.0 

mm. The dashed and solid arrows indicate the time to reach the maximum    

and the end of inertial wetting time between which    is defined. 

 

Figure 2-14a-b shows the vertical component of surface tension force of 

droplets of three liquids on substrates with   = 0.02 and 5.8 kPa.    reached a 
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maximum value within 0.2 – 0.3 ms (indicated by dashed arrows) and thereafter 

remained constant at least until inertial spreading stopped (indicated by solid 

arrows). For the 10 wt% ethanol/water mixture and for water, the maximum    was 

 0.039 and  0.043 N/m (equal or larger than the critical   ), respectively, and the 

inertial time    was  0.5 and  1.0 ms on the substrate with   = 0.02 kPa (Fig. 2-13). 

In contrast, the drop of 40 wt% water/ethanol had a maximum    of  0.028 N/s 

(smaller than the critical   ) and    was comparable to that on “rigid” surfaces (Fig. 

2-13). A similar trend was also observed on the slightly harder substrates (  = 5.8 

kPa) (Fig. 2-14b). These results are consistent with the earlier hypothesis. 

For liquids with a maximum    larger than the critical value, Figure 2-14a-b 

also indicates that the inertial wetting time    is longer for liquids with smaller 

surface tension or on harder substrates and    is shorter for liquids with larger surface 

tension or on softer substrates. This is plausible, since pulling out a ridge of a defined 

height on similarly soft substrates is faster by applying a large rather than a small 

force. It should be pointed out that inertial spreading does not stop immediately when 

the vertical component of the surface tension force reaches a maximum    larger than 

the critical value, and spreading continues for some time    (Fig. 2-14a-b). This 

depends on the fact that the material is not purely elastic, but viscoelastic. The two 

PDMS substrates considered here have   = 0.02 and 5.8 kPa with respective phase 

angles  = 83.1 and 15.8 . As mentioned above, also the time over which the force is 

applied plays a role. In fact, a complete model would include the time dependent 

vertical component of the surface tension force, the motion of the contact line and the 

viscoelastic response of the PDMS on the localized force due to the moving contact 

line. Such a model will be proposed in the later sections. 

 

2.3.5 Inertial wetting time on “rigid” PDMS surfaces 

If the substrate is relatively rigid or the surface tension of the liquid is relatively 

small, the formed wetting ridge could be too small to influence the dynamic wetting. 

Eventually, some surfaces will behave like “rigid” surfaces. Indeed, as shown in Fig. 2-

13, the spreading of all liquids was similar to that on hard surfaces when    204 kPa 

or    30.7 mN/m. Since the early capillary driven wetting is compensated by inertial 
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force, the duration of wetting   for these cases should be close to the characteristic 

time scale of inertial phenomenon,    √
   

 

 
. However, it was found that   was 

always larger than    for all these experiments. Similar results were also reported by 

Biance et al. [54] and Bird et al. [55].  

Biance et al. proposed a model to predict   based on the transition from inertial 

to viscous wetting stage for complete wetting [54]. They concluded that the inertial 

wetting stops earlier for high than for low viscous liquids. However, in the 

experiments here, I did not observe the viscous wetting stage in all wetting 

experiments. These results indicate that Biance et al.’s model is not applicable here.  

Bird et al. suggested that the duration of inertial spreading was set by the 

capillary wave propagating along the droplet [55]. When a drop starts spreading, the 

capillary wave generated upon contact with the surface at the bottom of the drop 

propagates upwards to the top of the drop (see Fig. 2-7), and then back again. In the 

course of capillary wave dynamics, there is a critical wavelength,      √
 

    
, below 

which the propagation of the capillary wave is only dominated by surface tension [76-

78].    is the density of surrounding fluid. For the air-water interface,    is about 17 

mm. This is much larger than the maximum size of droplets used here. In the simplest 

picture this surface wave can be considered to be the lowest order eigen mode of the 

drop. Lamb [77] did show that the frequency of the eigen modes of a freely 

suspended drop of a inviscid liquid surrounded by a much lower density fluid is given 

by  

  
  

  
 √

           

   
  

√           

  
 (2.4) 

where   is the mode number (    being the lowest mode and corresponding to 

ellipsoidal drop vibration). The period of the lowest mode,   , is thus expected to be  

   
  

 √ 
           (2.5) 

Figure 2-15 shows results from various drop sizes and liquids on soft substrates. 

  is linearly dependent on   , and                   from fitting the experimental 

data points. The linear dependence of the inertial wetting time   on the characteristic 
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time    is consistent, in a first approximation, with the picture of similar time scales of 

capillary wave propagation    and inertial wetting  . The difference between   and    

may have two reasons. First, drop vibrations in contact with the surface were damped, 

which would result in     . Second, during spreading the contact radius of the drop 

constantly grew. These result in decreasing the drop resonance frequency and in 

slowing down the propagation of the capillary wave. This leads to     . 

2 3 4 5 6 7

6

8

10

12

14

16
Water

10 wt% EtOH/Water

40 wt% EtOH/Water

60 wt% Glycerol/Water

EtOH

 
(m

s
)


i
 (ms)

 

Figure 2-15 The actual inertial time   of various liquids is plotted as a function of the 

characteristic inertial time   . The slope of the linear fitting is           . 

 

2.3.6 Effects of film thickness 

Recently, Pericet-Camara et al. found that the vertical extrusion of the “wetting 

ridge” on soft substrates can be affected by the rigid solid supporting the PDMS film, if 

the film is thinner than a critical thickness [44]. This could influence spreading, as the 

friction force or viscoelastic dissipation due to the wetting ridge may be different for 

different thickness. In the experiments, measurements were done with soft PDMS 

films of d = 30, 100 and 200 µm thickness, as well as substrates that could be 

considered semi-infinite. As shown in Fig. 2-16, during the fast inertial spreading of 

water drops, both the exponent  and the time    were independent on film 

thickness. This does make sense. During the fast spreading, or in other word, under 

high frequency stress - if we treat the spreading process as a rheology process - the 

substrate behaves as a rigid, non deformable substrate. The typical frequency here is 
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     Hz, which would correspond to a shear modulus of      Pa (Fig. 2.5). Thus, the 

“wetting ridge” that could be formed is very shallow. In summary, I did not find any 

influence of film thickness on early wetting dynamics and wetting ridge formation in 

my experiments. 
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Figure 2-16 (a) The inertial exponent   of 1.0 mm-radius water drop spreading on 

PDMS films with three different thickness. The correponding inertial wetting 

time    is shown in (b).  

 

2.4 Theoretical model 

In this section, a simple model based on the balance of energy contributions 

during drop spreading will be presented. The theoretical model was developed in ita 

main lines by Prof. Martin E.R Shanahan. I assisted him for model modifications and 

for its testing against my experimental results.   

During the wetting, the main driving force is capillarity and the main braking 

(restraining) forces slowing down spreading are the kinetic energy of the spreading 

drop (i.e. inertia), viscous dissipation within the liquid, and viscoelastic dissipation in 

the deformed substrate. In early wetting dynamics, i.e. at the beginning of drop 

spreading, the Reynolds number is always larger than one, i.e.     , so that the 

viscous dissipation within the liquid could be neglected. Thus, the early wetting 

contains a fast inertial wetting stage and a slow viscoelastic wetting stage, which will 

be considered separately in the following sections.  
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2.4.1 Inertial wetting 

 

Figure 2-17 Schematic of a spreading drop on a surface with relevant notation.  

 

In the literature, a number of partially empirical models were proposed to 

describe the early spreading of low viscosity drops on solid surfaces [54, 55, 79]. 

Biance et al. treated the early wetting process on completely wetting surfaces as a 

liquid drop coalescence with a thin liquid film (precursor film) [54]. They derived a 

power law of          which was confirmed by numerous experiments. However, 

this model is only applicable for completely wetting cases. Bird et al. found that the 

initial wetting on partial wetting surfaces is also dominated by inertia.  They proposed 

a model based on energy balance during spreading, which predicts that the early 

inertial wetting follows a power law with the exponent depending on the equilibrium 

contact angle     [55, 79]. However, this model could not give a clear description of 

the relationship between   and    , or show the limit value of  . Here, a scaling 

discussion about the (early) inertial stage is engaged based on the existing work [54, 

55, 79]. 

 In the early wetting stage, the viscous dissipation in the drop and the  

viscoelastic dissipation in the surface are negligible. A dynamic balance is established 

between capillary and kinetic energy. Assuming that in the initial stages the drop 

remains essentially spherical, but for a a slightly flattened contact region with the 

substrate (Fig. 2-17), the mass of liquid entrained is given by          [54, 80, 81]. 

  is liquid density and   is of order    . Given the changing form of the travelling 

liquid body, its average speed is of order  ̇  , leading to a kinetic (inertial) spreading 

force term of 
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      ̇      (2.6) 

To within the multiplicative constant    , which is anyway only approximate, this is 

of the form which has been shown previously [54, 55]. 

The capillary spreading force implemented here is slightly different from the 

form in the literature. The drop is initially spherical and the volume of the drop 

remains constant during the spreading. After the spreading starts, the bottom of the 

drop becomes flattened (Fig. 2-7). As a result, the spreading drop can be treated as a 

truncated prolate ellipsoid with a missing cap of height   and radius r (Fig. 2-17). The 

equatorial radius is   and the polar radius is  . With a simple geometrical 

relationship, the height of the cap can be estimated by 

  
  

   
 or              (2.7) 

Combining the above two equations, the dynamic contact angle can be written as   

        
  

   
    (2.8) 

Inserting equation (2.8) into equation (1.12), the capillary force can be written as  

       (              )      (         
  

   
 ) (2.9) 

The second approximate expression is only valid for small  , or equivalently for large 

    . This condition is satisfied for in the experiments. Balancing    and    one 

obtains the governing equation of inertial wetting, 

    (         
  

   
 )  

 

  
      ̇        (2.10) 

In the very first instants,                   
  

   
 . Equation (2.10) can then be 

simplified to 

    (        )  
 

  
      ̇        (2.11) 

The above equation recovers the classic scaling law        by Biance et al., 

where      . Clearly, as   increases, simple scaling becomes impossible, but the 

effective value of   becomes smaller. The value of      for which   is no longer 

acceptable depends on the value of       , which occurs earlier for larger values of 
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   . However, it is difficult to derive the exact relationship between   and    . 

Nevertheless, one can estimate the range of  . As spreading proceeds, the contact 

angle decreases and approaches the equilibrium contact angle    . For hydrophobic 

surfaces, the dynamic contact angle is nearly constant and is very close to the 

equilibrium contact angle [66]. Thus, taking the limit as      , one finds 

 

  
      ̇        (2.12) 

which suggests that the limiting lower value of   should be 0.2. This is, at least 

qualitatively, in agreement with previous work [55], including the more recent 

contribution [52], but was derived on different assumptions.  

 

2.4.2 Viscoelastic wetting 

 

Figure 2-18 Zoom-in view of the moving contact line on soft substrate. 

 

In the viscoelastic wetting stage, the driving surface energy is dissipated by 

viscoelastic friction in the soft film. It is well known that the wetting ridge near the 

contact line has a vertical displacement of      ) and a radial displacement of        

(Fig.2-18). For a contact line moving a length of    at speed  , the work done is [26] 

          |
  

  
|      |

  

  
|       (2.13) 

The above equation can be further estimated as     
    

  
 [26].   is a cutoff length 

near the TPCL (typically of order  0.1 to  1 µm). For the viscoelastic dissipation, only 

a certain fraction   (     ) of the strain energy is dissipated and the remaining 

fraction       is recoverd [82]. Thus, the effective viscoelastic dissipation energy is 
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  (2.14) 

For the extremely low speed viscoelastic wetting stage, Shanahan and Carré adopted a 

power law for the fraction of the viscoelastic energy dissipation,    
 

   
   , based on 

experimental adhesion results [26, 27, 33, 34, 37]. Where    is a characteristic speed 

and     has a value of 0.5-0.6. However, this is not directly applicable to the high 

spreading speeds arising in this work. Here, the standard linear solid model of 

viscoelasticity is adapted [83], in which the dissipation energy fraction can be 

estimated as   
    

(      
 )

 and the viscoelastic dissipation term is obtained,      

   

 

    

(      
 )

.   
     

√    
 is a parameter depending on the unrelaxed (  ) and the 

relaxed (  ) shear modulus of the substrate and is of order unity,    is the relaxation 

time of the viscoelastic substrate, and   is the angular frequency from dynamic 

measurements. The angular frequency can be related approximately to spreading 

speed with       ⁄    ̇   ⁄ .  

Balancing    and    , the new governing equation takes a form of  

    (         
  

   
 )  

   

  

    

       
  

   (2.15) 

Substituting for   and considering sufficiently low velocity, as is the case at the 

transition between inertial and viscoelastic spreading, Equation (2.15) can be 

simplified to  

   
 (        )     

  
     

    
 ̇ (2.16) 

Redefining 
  

     

    
  , and    

 (        )    ,  Equation (2.16) can be finally 

written as         ̇. The solution of this differential equation is 

  
 
 

  
 
 

  
 

  
 

 
 (2.17) 

During the viscoelastic stage,       and the left term of equation (2.17) can be 

expressed as (  
 

 
)
 

. Thus, the final expression of the viscoelastic spreading law is 
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 (2.18) 

This spreading equation predicts that in this viscoelastic stage, spreading is faster on 

substrates with larger  , when all other parameters remain the same.  

 

2.4.3 Inertial to viscoelastic transition 

The crossover from inertial to viscoelastic spreading takes place when inertial 

and viscoelastic spreading radii cross, i.e. when 

      (   
 

 
 

 
) (2.19) 

Solving this equation for t should yield an estimate of the crossover time   . I must 

point out here that the above equations are only approximate solutions and that some 

of the parameters, such as  ̇      and  , vary during spreading while others, such as 

  and   , are themselves simplifications whose value cannot be determined 

accurately. In fact, a whole spectrum of relaxation times is present at any given 

moment during drop spreading: the closer to the TPCL, the smaller is the relaxation 

time and the faster is the relaxation. Moreover, the power law for inertial wetting is 

partially empirical. There is still no theory that can be used to calculate    and  . 

Nevertheless, it is believed that the equations derived for the two spreading stages 

capture the main physics involved in the spreading of a low-viscosity drop on a 

viscoelastic substrates. There are two reasons for such a conclusion: 

(i) For inertial spreading, a scaling law with an explanation why the spreading 

exponent   changes with the equilibrium contact angle     was derived. 

The predicted limiting value of   is consistent with all existing experimental 

findings.  

(ii) For viscoelastic spreading, the exponential decay links the most relevant 

rheological parameters of the material to the spreading dynamics. The 

influence of substrate viscoelasticity on wetting is captured by the derived 

wetting law. 
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Here, the crossover time was determined by asymptotically matching the 

experimental spreading radii with the power law,     , for the inertial stage and with 

equation (2.18) for the viscoelastic stage. The unknown paramters listed above were 

handled as follows: 

1.    and   were fitted by LSM on experimental data. 

2. I could not determine independently   and   , thus the term     was choosen 

as a fitting parameter. 

3.  , the drop contact radius at the end of the viscoelastic spreading stage, could 

not be determined as the viscoelastic wetting stage may last up to a few hours 

[38]. As a result, it was also determined from a fit to the experimental curves.  

4. The frequency at the inertial to viscoelastic transition,   , was used in the 

calculation.    was calculated using the transition speed,  ̇ , measured at the 

crossover between inertial and viscoelastic spreading, and a cutoff length of 

   1 µm. Then, the corresponding       from independent rheological 

measurements can be obtained in Fig. 2-5.  

Since the transition between inertial and viscoelastic spreading was observed 

for liquids with a relatively high surface tension, the fitting was carried out only for 

these cases. Figure 2-19a shows the experimentally obtained spreading radius of 

water drops in the transition zone, along with the fitted curves for inertial and 

viscoelastic spreading vs time. The fitting parameters where set so that inertial and 

viscoelastic curves met at one point, i.e. at   . This is indicated by arrows. Figure 2-

19b compares experimental and calculated    for all different liquids and substrates 

used. With the same liquid, the calculated    increased with  , which is consistent 

with experiments and with equation (2.18). The    obtained from fitting agree within 

an order of magnitude or better with experimental times. The agreement is best for 

the softer substrates, while for the more rigid substrates the calculated    deviates 

from the measured values. The more rigid substrates no longer behaved completely 

viscoelastic under the spreading drop and in this case the inertial spreading time was 

better described by the characteristic time   for rigid, undeformable substrates. 

Another clear trend in agreement with equation (2.18) is that    was larger for liquids 

with smaller surface tensions. In the range of low viscosities employed, I could not 
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find a relation between    and the viscosity of the liquid, as was found by Biance et al. 

[54].  
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Figure 2-19 (a) Spreading radii of water drops (colour symbols) on different 

viscoelastic substrates and asymptotic fits to the inertial (solid lines) and 

viscoelastic (dashed lines) parts of the curves. Only each 10th data point is 

shown; (b) comparison of all calculated and measured    as function of  . 

 

All the used or fitted parameters are listed in Table 2-2a-c. The fitted 

equilibrium contac radius,  , is in the order of     mm and decreases with   for each  

liquid. This matches my experimental observations. For relatively soft substrates, the 

“wetting ridge” is higher than for relatively rigid substrates, which leads to stronger 

viscoelatic dissipation and eventually a smaller wetting radius. The fitting parameter 

    has a value ranging from  710-5 to  710-7 s (see Table 2.2). If   is taken to be 
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of order unity, the relaxation times derived from fitting are consistent with the 

estimated relaxation times of relatively rigid substrates (      kPa) using the 

Maxwell model. For relatively soft substrates (      kPa), the fitted relaxation time 

is one to two orders of magnitude smaller than the estimated time. This is reasonable 

for such soft polymers as both   and    change during drop spreading. In summary, 

the model captures the main physics of the dynamics of drop spreading and with 

reasonable fitting parameters the predicted    matches with experimental 

observations better than in the order of magnitude. 

 

2.5 Summary 

In this chapter, the early dynamic wetting of various liquids on soft substrates 

was studied. It was found that the early wetting dynamics on soft surfaces is also 

dominated by inertia. The spreading radius grew with spreading time according to a 

power law,       , with    being only dependent on the equilibrium contact angle, 

   . Since a “wetting ridge” was always formed near the contact line of a drop sitting 

on a soft substrate, it was hard to detect the actual contact angle and the Young’s 

equation was not directly applicable to soft substrates. Thus, the study of inertial 

wetting exponent provided a new method to characterize the wettability of soft 

substrates.  

As the spreading proceeded, the wetting speed decreased. Thus, viscoelastic 

effects outweighed inertia and dominated the wetting dynamics in the following 

stage. The transition between the inertial and viscoelastic stages wasdependent on 

substrate softness and on capillarity, which could be described by a simple model 

based on linear model of viscoelasticity proposed by Prof. Martin E.R. Shanahan. 
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Table 2-2 The fitting parameters for water, 60% glycerol/water and 10% 

ethanol/water drops spreading on PDMS substrates.  

(a) Water drops spreading on PDMS substrates 

Sample 
 ̇  

(m/s) 

   

(m) 

   

(rad/s) 

      

†(Pa) 

   (  ) 

†(Pa s) 
   (s)ǂ   (m) 

    

(s) 

   (Exp.*)  

(ms) 

   (The.*) 

(ms) 

PDMS 1:10 0.072 4.8e-4 1.1e5 2.1e6 19 6.5e-5
 

6.3 e-4 5.7e-5 8.1 3.0 

PDMS 1:20 0.084 4.0e-4 1.3e5 1.1e6 9 2.0e-5 5.3 e-4 1.7e-5 7.8 2.2 

PDMS 1:50 0.097 3.4e-4 1.5e5 0.5 e6 4 4.4e-6 4.7 e-4 5.8e-6 1.0 1.9 

PDMS 1:75 0.117 3.1e-4 1.8e5 0.4e6 3 8.4e-7 3.8 e-4 1.3e-6 0.8 0.9 

PDMS 1:100 0.132 3.0e-4 2.1e5 0.3e6 2 5.4e-7
 

3.4 e-4 8.0e-7 0.7 0.7 

* Error bars are in the figures; † rheology data are affected by an error up to 10%; ǂ values were 

calculated with Maxwell model,     . 

(b) 60% Glycerol/water drops spreading on PDMS substrates 

Sample 
 ̇  

(m/s) 

   

(m) 

   

(rad/s) 

      

†(Pa) 

   (  ) 

†(Pa s) 
   (s)ǂ   (m) 

    

(s) 

   (Exp.*) 

(ms) 

   (The.*) 

(ms) 

PDMS 1:10 0.030 6.1e-4 4.7e4 1.8e6 43 2.4e-5
 

6.2e-4 7.0e-5 8.6 4.2 

PDMS 1:20 0.030 5.3e-4 4.7e4 0.9e6 20 2.2e-5 5.5e-4 3.0e-5 8.6 4.2 

PDMS 1:50 0.040 4.0e-4 6.3e4 0.3e6 6 2.0e-5 4.5e-4 6.3e-6 3.25 3.0 

PDMS 1:75 0.069 3.3e-4 1.1e5 0.3e6 4 1.4e-5 4.1e-4 3.5e-6 1.55 2.0 

PDMS 1:100 0.075 3.0e-4 1.2e5 0.2e6 2 1.3e-5
 

3.1e-4 7.0e-7 1.29 1.0 

* Error bars are in the figures; † rheology data are affected by an error up to 10%; ǂ values were 

calculated with Maxwell model,     . 

 

(c) 10% Ethanol/water drops spreading on PDMS substrates 

Sample 
 ̇  

(m/s) 

   

(m) 

   

(rad/s) 

      

†(Pa) 

   (  ) 

†(Pa s) 
   (s)ǂ   (m) 

    

(s) 

   (Exp.*) 

(ms) 

   (The.*) 

(ms) 

PDMS 1:10 0.036 6.8e-4 5.6e4 1.9 e6 35 1.8e-5
 

7.0e-4 1.1e-4 9.9 4.1 

PDMS 1:20 0.033 6.3e-4 5.2e4 0.9e6 18 1.9e-5 6.5e-4 4.8e-5 9.8 4.0 

PDMS 1:50 0.029 5.4e-4 4.5e4 0.3e6 8 3.1e-5 5.8e-4 1.1e-5 4.8 4.0 

PDMS 1:75 0.030 4.9e-4 4.7e4 0.2e6 6 3.3e-5 5.1e-4 5.1e-6 4.0 3.1 

PDMS 1:100 0.038 4.6e-4 6.0e4 0.1e6 3 3.0e-5
 

4.6e-4 1.7e-6 3.0 2.1 

* Error bars are in the figures; † rheology data are affected by an error up to 10%; ǂ values were 

calculated with Maxwell model,     . 
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3 Dynamic Wetting of Micron-sized Particles4 

In this chapter, I present a study on the early wetting dynamics of single 

micron-sized particles at the water-air interface. A home-made inverted particle 

interaction apparatus (I-PIA) allowed me to combine high time resolution (10   ) 

with sensitive particle displacement (10 nm) and force (10 nN) measurements. Unlike 

the wetting of large solid surfaces, the small particle was driven into the liquid by 

capillary forces after contact, which was called “snap-in” process. Both the snap-in 

time    and the snap-in force    of hydrophilic and hydrophobic glass particles were 

measured. It was found that the snap-in time was dominated by inertia and it was 

independent of particle wettability. The snap-in force, which originates from the 

capillary force, was larger for hydrophilic particles than that for hydrophobic particles. 

After the snap-in process, particles did not reach the equilibrium state yet, and instead 

a slower particle wetting started. This wetting stage with a much slower wetting speed 

may last up to months.  

 

3.1 Motivation 

One type of complex solids is small particles. Due to their small size, the surface 

forces outweigh the body forces, i.e. the surface area to volume ratio is much larger 

than unity and dominates the interaction with liquids. Understanding the interaction 

between particles and liquid-vapor interfaces is of great importance for industrial 

applications such as flotation processes, water purification, the deinking of paper, and 

so on [84-89]. In nature, most microorganisms live in contact with liquid-vapor 

interfaces [90]. For instance , it is well known that bacteria adhere to and move along 

water-air interfaces [91]. As a result, the interactions between solid particles and 

liquid-vapor interfaces also attracted considerable interest from environmental 

engineers and biologists [91-94]. 

Many techniques have been used to study particle interface interactions in the 

past years [84, 85, 95, 96]. The most commonly employed direct methods are 

                                            

4 This chapter is based on “L. Q. Chen, L.-O. Heim, D. S. Golovko, E. Bonaccurso, Snap-in 

dynamics of single particles to water drops, Appl. Phys. Lett. 101, 031601 2012”. 
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microsphere tensiometry [97, 98], atomic force microscopy (AFM) or colloidal probe 

technique (CPT) [99-101], or optical techniques [86, 102-104]. This short list is by no 

means exhaustive. Among these methods, the direct measurement of particle-interface 

interactions (attractive or repulsive) is only accessible by AFM or CPT. Indeed, the 

interaction between small particles and bubbles, drops, or thin liquid films has been 

investigated in recent years [87, 88, 99, 105-116]. In these studies, particles with 

radius   between 0.5 and 20  m were attached to the end of cantilevers and moved 

towards to or retracted from air bubbles [87, 88, 99, 105, 109, 110, 115], oil drops 

[107, 108, 116-118] or thin films on solid surfaces [105, 106, 111]. Typically, the 

force-distance curves which characterize the interaction force between the particle 

and the interface were recorded. Based on the evaluation of cantilever deflection, the 

contact angle between particles and bubbles or drops could be obtained [87, 88, 99-

101, 105, 106, 109, 110, 112, 113, 115]. 

 In contrast, the dynamic wetting process, which takes place spontaneously 

when a particle touches a liquid-vapor interface and snaps into it, received little 

attention by direct force measurements. One reason is the limited time resolution of 

cantilever deflection measurements (order of tens of milliseconds or more). Optical 

techniques have a better time resolution (order of milliseconds [98, 103, 104]), but 

suffer from the drawback that interaction forces cannot be directly measured. The 

inverted particle interaction apparatus (abbreviated as I-PIA) used in this study offers 

a high time resolution up to 10    or better, with which an accurate investigation of 

early dynamic wetting of single particles can be carried out. 

 

3.2 Experiments 

3.2.1 Hydrophilic and hydrophobic colloidal probes 

In the experiments, I investigated the dynamic wetting of single glass particles 

(glass-beads, Kisker Biotech GmbH & Co. KG, Steinfurt, Germany) with radius   in the 

range between 22 and 86   . The particles were sintered on tipless AFM cantilevers 

with the help of Dr. Lars-Oliver Heim in the group (processes shown in Fig. 3-1). First, 

a thermal glue drop (Epikote 1004, from Shell, melting point is    ) was deposited 
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on a thermal stage at      under the microscope. The tips of AFM cantilevers were 

brought into contact with the glue drop under optical microscope control with a three-

axes hydraulic micromanipulator (Model MMO-203, from Narishige Ltd., Japan). 

When the cantilever was retracted from the drop, the glue was transferred onto the 

tip. Then, the particle was attached to the AFM tip once it touched the tips. After that, 

the particle-decorated cantilevers (colloidal probes) were put into a high temperature 

oven (Therm Oncept, Germany) for 1 hour at     . Figure. 3-2 shows a SEM image 

of a colloidal probe with a glass particle with radius 86  m.  

 

Figure 3-1 The processes of putting particles on cantilevers. 

 

Before the measurements, the colloidal probes were first cleaned in acetone 

(Sigma-Aldrich, p.a.) and then in ethanol (Sigma-Aldrich, p.a.) for 2 min each. After 

rinsing in water for another 2 min, the colloidal probes were put on a clean glass slide 

and dried in an oven (Heraeus VTR5022, Gemini BV Labor) at    . 

 

Figure 3-2 SEM image of a glass particle with radius ∼86 μm glued onto a cantilever. 

The picture in the inset was taken on the surface of the particle. 

 

In order to increase the wettability of particles, the cleaned colloidal probes 

were treated in oxygen plasma for 5 min (Femto, Diener Electronic GmbH, Germany). 
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In a second step, the very same hydrophilic particles were hydrophobized after the 

measurements. The colloidal probes were treated with oxygen plasma for another 5 

min and then silanized by 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (Sigma-

Aldrich) in a desiccator at      overnight. For flat clean glass substrates which can 

be fully wetted by water (contact angle close to zero), the contact angle with a water 

drop was increased to      after silanization. A similar modification was expected as 

well for the particles. 

 

3.2.2 Spring constant of cantilevers 

 

Figure 3-3 An inelastic bending of a soft cantilever with            . The particle 

radius is      . 

 

To sense the movement of particles induced by capillary forces, cantilevers 

with spring constants in a certain range should be selected. If the spring constant of 

the cantilever is too small, the deflection of the cantilever will not be elastic, i.e. not 

anymore an ideal spring, as shown in Fig. 3-3. As a result, the capillary force can not 

be correctly detected by the bending of cantilever. The capillary force applied on the 

particles at the liquid-air interface scales as   , where   is the surface tension of the 

liquid (water in our case). In the present measurements, the deflection of the 

cantilevers never exceeded 4% of its length, so that I could consider the cantilever as 

an ideal spring and use Hooke’s law for calculating the force by     .   is the 

cantilever spring constant and D is the cantilever deflection. The longest cantilevers 
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were 250 lm long and the maximum deflection      never exceeded 10   . Thus, the 

smallest spring constants to be used are              , i.e., 0.16–0.63 N/m. On the 

other hand, the spring constant of the cantilever should not be too large, so that the 

deflection can still be measured. For the inverted particle interaction apparatus used 

here, the smallest deflection      that can be detected was around 10 nm. Therefore, 

the largest spring constants could be used are      
  

    
            . In the 

experiments, I used cantilevers with spring constants   between 0.55 N/m (250    

length, 35    width, and 2    thickness, NSC12/tipless/noAL, MikroMasch, Tallinn, 

Estonia) and 3.1 N/m (221    length, 29    width, and 3    thickness, TL-FM, 

Nanosensors, Neuchatel, Switzerland). The spring constants were slected also 

depending on the particles radius.  

 

Figure 3-4 Schematic of the measurement of spring constant of colloidal probe. (a) 

The colloidal probe is pushed against the reference cantilever. (b) The colloidal 

probe is pushed against a rigid substrate. 

 

The spring constants of the tipless cantilevers were measured with Dr. Lars-

Oliver Heim by the thermal noise method [119] using a commercial Atomic Force 

Microscope (AFM, MFP-3D, Asylum Research, Santa Barbara, CA). When a particle 

was attached to the end of a cantilever, the spring constant of the colloidal probe was 

measured with a reference cantilever of known spring constant     . As show in Fig. 

3-4, the reference cantilever was fixed to the substrate, and the colloid probe was 

pushed against the tip of it. The sensitivity      in this experiment was obtained from 
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the slope of the signal in the contact region. Repeating this experiment using a rigid 

silicon substrate instead of the reference cantilever leads to a different sensitivity   . 

Since the forces acting on the cantilevers during contact are equal, the spring constant 

of colloidal probe can be related to spring constant of the reference cantilever with 

[120, 121] 

  
       

  
     (3.1) 

 

3.2.3 Experimental setup 

 

Figure 3-5 Schematic of the reversed particle interaction apparatus. 

 

A homemade, inverted particle interaction apparatus was used to measure the 

dynamic wetting of single particles at the water-air interface (Figure 3-5). Millimeter 

sized water droplets were generated by a capillary tube, which was put above the 

cantilever. The capillary tube was attached to a step-motor with micrometer accuracy 

through which I could approach the water meniscus to the particle quasi-statically. A 

laser beam was pointed at the free end of the cantilever and the reflection of the beam 

was detected by a photodetector. By monitoring the position of the reflected laser 

spot, the deflection of the cantilever was detected with a sampling rate of at least 100 

kHz corresponding to a time resolution of 10   . To prevent influence of external 
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light, the setup was installed in a light-tight black box. More information about the 

setup can be found elsewhere [122, 123].  

Before the measurements, the colloidal probe was calibrated with a hard silicon 

surface. Then, the dynamic wetting process of single particles with different sizes was 

detected. For each particle, at least 10 single measurements were done. The dynamic 

wetting process was also recoreded with a high-speed camera at 10,000 fps, which 

offered a direct visualization.  

 

3.3 Experimental results and discussion 

3.3.1 The dynamic wetting/snap-in process 

 

Figure 3-6 Snap-in process of a hydrophilic glass particle with radius of         at the 

water-air interface.  

 

Figure 3-6 shows the optical images of the wetting process of a single 

hydrophilic glass particle with a radius of       . There were two wetting stages. 

First, once the particle touched the water-air interface, it was driven into the liquid 

very quickly. At the same time, a capillary wave was generated and propagated along 

the meniscus, as indicated by an arrow in Fig. 3-6. After  2 ms, wetting entered into a 

second stage and the water wetted the particle very slowly. It was impossible to 

analyze details of the wetting process from these images due to two reasons. On the 

one hand, the time resolution ( 0.1 ms) of the recorded movie did not allow to 
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capturing the very early wetting stage ( 0.1 ms). On the other hand, the space 

resolution of the image was poor ( 1   /pixel) compared to the maximum cantilever 

deflection ( 2   ). 

 The early dynamic wetting/snap-in process can be precisely detected by I-PIA. 

Figure 3-7 shows the deflection of the cantilever with a hydrophilic (black symbols) 

and a hydrophobic (red symbols) particle measured with I-PIA. I monitored the 

cantilever bending over a time of  6 s. There are two time scales of wetting: a fast 

and a slow one (Fig. 3-7a). Similar results were also observed by Kaz et al. using a 

holographic microscope [103]. They analyzed their data with MKT model for the slow 

stage of wetting experiments for times         and concluded that the slow wetting 

stage can last up to months. In my experiments, I did not observe equilibriation after 6 

s, which confirmed their results somehow. 

Here, my interests were in the very early stage of wetting. Figure 3-7b shows a 

zoom-in look at the deflection data for times         . It seems that the particles 

were driven into the liquid in less than 5 ms and after that the cantilever started to 

oscillate with a frequency of some hundreds of Hz ( 150 Hz for the hydrophilic 

particle and  230 Hz for the hydrophobic particle). These oscillations were due to the 

excitation of capillary waves at the drop surface upon contact with the particles. For a 

drop with a volume of  , the resonance frequency of capillary wave on the surface 

scales as [124] 

  √
 

  
 (3.2) 

Taking the radius of the capillary of       for estimation, the frequency is  132 Hz, 

which is similar to the ones observed in Figure 3-7b. A detailed study of the oscillation 

of sessile drops by AFM was carried out recently by McGuiggan et al. [124]. 

 If further zoom-in the cantilever deflection curves for time       , the very 

early dynamic wetting process can be observed. As shown in Fig. 3.7c, the dynamic 

wetting or snap-in process lasted only  0.1 ms and the particle plunged into the liquid 

with a speed of  0.01 m/s. After that, some other damped oscillations of the 

cantilever with a frequency of some kHz were found, arising from the snap-in process. 
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These oscillations were independent of the drop size and particle wettability, and 

corresponded to the damped resonance frequency of the cantilever. 
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Figure 3-7 Cantilever deflection versus time during wetting for a hydrophilic (black 

symbols) and a hydrophobic (red symbols) particle. (a) Particle wetting process 

from       to 6 s, showing a fast and a slow process; (b) Zoom-in from       to 

100 ms, showing the start of the slow wetting process for t>1 ms and the 

damped oscillations of the drop interface with a frequency       ≈ 200 kHz; (c) 

Zoom-in from       to 3 ms, showing the fast wetting process for t<1 ms and 

the cantilever oscillations with a frequency     ≈ 5 kHz. The particle radius is 

∼60 μm and the spring constant of the cantilever is ∼3.0 N/m. 
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Figure 3-8 Top: (a)-(f) Schematic of the snap-in process of a particle by the water-air 

interface.   indicates the velocity of the particle. (g) Zoom in the initial contact 

area between the particle and water drop in (b). Bottom: Cantilever deflection 

versus time during the fast snap-in processes for a hydrophilic (black line) and a 

hydrophobic (red line) particle. The particle radius is ∼60 μm and the cantilever 

spring constant is ∼3.0 N/m. The inset shows the snap-in time tS  in more detail. 

 

Now, I would like to connect the cantilever deflection to the snap-in of a 

particle at the water-air interface. Figure 3-8 sketches the snap-in process (top) and 

corresponding cantilever deflection versus time (bottom) for the same hydrophilic and 

hydrophobic particles in Fig. 3-7. When the particle is far away from the interface, 

there is no force applied on the particle. The deflection of the cantilever is zero (Fig. 

3-8a). Once the particle is brought into contact with the water-air interface, the initial 

contact angle between the liquid and particle is        and the capillary force normal 

to the particle is still zero (Fig. 3-8g). However, the surface tension of the water,  , 
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interfacial tension between solid (particle) and vapor    , and interfacial tension 

between liquid (water) and solid (particle)     are not balanced. As a result, there is a 

net interfacial force parallel to the particle surface and it causes the liquid to wet the 

surface, similar to what happens on bulk flat surfaces [35, 36, 55]. During wetting, 

the contact angle   decreases and the normal component of the surface tension, 

     , increases, and this leads to another net force,             that drives the 

particle into the interface (Fig. 3-7 & 3-8b).   is the contact radius between the liquid 

and particle, as shown in Fig. 3.8g. At the same time, the cantilever is bent by this 

force (Fig. 3-8 right). After a time, the cantilever reaches a position with a deflection 

of   , where the capillary force is compensated by the elastic restoring force of the 

cantilever (Fig. 3-8c). However, the particle continues to move in the water drop due 

to its inertia (Fig. 3-8d-e & Fig. 3-8 right). Eventually, the cantilever reaches an 

equilibrium state with a cantilever deflection of    after 1-2 ms of damped oscillations 

(Fig. 3-8f & Fig. 3-8 right). The deflection of the hydrophilic colloidal probe is larger 

than that of hydrophobic colloidal probe. A similar trend is also found for   . This is 

because the capillary force applied on the hydrophilic particle is larger than that on 

the hydrophobic particle, which will be further discussed in later sections.  

 

3.3.2 Snap-in time 

From Fig. 3.7 and Fig. 3.8, it was found that the particle was driven into the 

water by the capillary force and the cantilever rested at a deflection    for a few 

milliseconds until the capillary wave starts to propagate along the water-air interface. 

Since the next wetting stage is much slower (up to weeks or months), the state with 

deflection of    could be treated as a quasi-equilibrium state. Thus, the time needed 

to reach the deflection    during the snap-in process was defined as the snap-in time, 

   (inset of Fig. 3.8 bottom). In the next step, the characteristic time scale of    was 

estimated with a scaling analysis. 

During the snap-in process, the momentum change of the particle,    , which 

resists wetting is  

      

  

  
 (3.3) 
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Here    is the mass of the particle and   is the snap-in velocity. The capillary force 

due to the direct action of surface tension is  

                             (3.4) 

Where      is the angle which describes the position of the three-phase contact line as 

shown in Fig. 3-9. Balancing these two terms, one can obtain the equation of motion 

  

  

  
                           (3.5) 

Equation (3.5) cannot be solved as      and      are not known. Nevertheless, I 

carried out a scaling analysis. The momentum term can be scaled as          
  and 

the capillary force is proportional to    . Where    is the density of particle,    is a 

characteristic length comparable to the particle radius and    is the characteristic 

inertial time. Balance these two terms yields the time scale of the snap-in process, 

   √
    

 
 (3.6) 

The characteristic snap-in time obtained here has the similar format as the one for 

inertial wetting of liquids on bulk surfaces [35, 36, 55]. Equation (3.6) also predicts 

that    is independent on the wettability of the particles. 

 Figure 3-9 shows the snap-in time as a function of the characteristic time for 

particles with   between 22 and 86   . The snap-in has a typical value of 0.1 ms, 

which is consistent with the calculated values from literatures for the interaction of 

particles and bubbles [125] or for capillary wetting [126].    is slightly larger than   . 

Fitting the data with a linear regression leads to a factor of         . One reason for 

this result could be that the inertial effects were underestimated as the inertia of the 

cantilever was not considered. The mass of the cantilever scales as       and the 

momentum of the particle plus cantilever is proportional to                  
  .    

is the density of the cantilever, and  ,   and   are the width, thickness and length of 

the cantilever. Rebalancing momentum term and capillary force results in a new 

characteristic inertial time scale   
  

  
  √

          

 
 (3.7) 
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The new characteristic inertial time is larger than the old one, i.e.   
    . Taking 

some characteristic values of particle and cantilever dimensions (       ,        , 

        ,          and              ), one obtains   
        , which is close to 

the slope of the linear fit of experimental data. 
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Figure 3-9 The snap-in time    of hydrophilic/hydrophobic particles with various sizes 

is plotted as a function of the characteristic inertial time   . The solid line is the 

best fitting line with a slop of 1.2 ± 0.13. The inset shows the relevant 

parameters. 

 

 Figure 3-9 also indicates that the snap-in time is independent on the wettability 

of particles. This is again consistent with the outcome of the scaling analysis. The 

early snap-in process is only dominated by the capillary force and by inertia. In a 

recent paper about dynamic wetting of low viscous liquids, Winkels et al. showed that 

the very early wetting dynamics is independent on wettability [52]. Here, a similar 

phenomenon was observed in the early dynamic wetting of single particles. 

 

3.3.3 Snap-in force 

The snap-in and oscillation process lasted only  2 ms. After that, the particle 

was trapped in a well defined position at the water-air interface, corresponding to a 

cantilever deflection of   . As shown in Fig. 3-7, for       , the wetting of particle 
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proceeded with an extremely slow velocity (        ) and the deflection of the 

cantilever increased accordingly slowly. In other words, the slow wetting stage has a 

time constant (months were reported in the literature) much larger than the time 

scale of the snap-in process ( 0.1 ms). Therefore, I treated    as a “quasi-

equilibrium” position with respect to the time scale considered. In section 3.3.1, it was 

found that    was dependent on the wettability of the particles, which indicates that 

the capillary driving force is different for different wettable surfaces. As a result, the 

elastic bending of the cantilever at the deflection    was further defined as the snap-

in force,   . With Hook’s law, the snap-in force can be calculated with       . 

 Figure 3-10 shows the snap-in force of hydrophilic and hydrophobic particles 

with different radii  .    was larger for hydrophilic than for hydrophobic particles if 

the size of the particles is the same. Moreover, the snap-in force increased with 

particle size. The source of snap-in force is the capillary force. However, it is 

impossorble to directly relate the snap-in force with the capillary force since  ,      

and      could be estimated only within a certain approximation, and moreover they 

change with time. Nevertheless, an order of magnitude estimation can be carried out. 

The capillary force                     has a maximum at 
   

  
   [106] 

   

  
                 (3.8) 

From equation (3.8), one obtains          . Substituting       
 

 
 into 

equation (3.4), one finds the maximum capillary force with a value of 

              
 

 
  (3.9) 

For estimation, I inserted the equilibrium contact angle of     and       measured 

on the flat hydrophilic and hydrophobic surfaces into equation (3.9). As shown in 

Figure 3-10,       and    agreed on the order of magnitude and showed a similar 

dependence on the particle radius and wettability. In fact, to the nearly doubled 

magnitude of    between a hydrophilic and a hydrophobic particle corresponded a 

nearly doubled magnitude of the calculated   . Similar relations are also known from 

literature [125]. 
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Figure 3-10 Snap-in force of hydrophilic/hydrophobic particles measured with two 

types of cantilevers with different stiffness as a function of particle radius  . The 

black and red solid lines represent the scaling capillary force        
 

 
  for 

hydrophilic and hydrophobic particles, respectively. 

 

3.4 Summary 

Using the advantage of high time and space resolution of the inverted particle 

interaction apparatus, I studied the dynamic wetting of single colloidal particles at a 

water drop surface. The dynamic wetting proceeded in two stages: a fast snap-in stage 

followed by a slow wetting stage. In the snap-in stage, the dynamics was dominated 

by inertia. The snap-in time ( 0.1 ms) was dependent on capillarity and inertia, but 

was independent on surface wettability. The snap-in force, and thus the adhesion, had 

a value of few micronewtons and was larger for hydrophilic surfaces. After the snap-in 

process, the particle was not yet in equilibrium. Wetting entered an extremly slow 

stage which might last up to weeks or months [103].  



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part II Effects of Surface Wettability, Liquid Viscosity and External 

Electric Field on Dynamic Wetting 
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4 Early Dynamic Electrowetting of Aqueous Electrolyte Drops5 

In the previous two chapters, I introduced my dynamic wetting studies with 

simple liquids on two types of complex surfaces: soft viscoelastic surfaces and small 

particles. Since this chapter, I will introduce dynamic wetting of simple and viscous 

liquids on simple, rigid surfaces. Specifically, the influence of external applied electric 

field, liquid viscosity and surface wettability on wetting dynamics will be disscussed. 

This chapter presents a systematic study of early dynamic wetting of aqueous 

electrolyte (simple liquid) drops driven by an electric potential. It was found that 

spreading dynamics not only depended on surface wettability and applied potential, 

but also on the electrolyte concentration. Molecular dynamics (MD) simulations done 

in the group of Computational Physical Chemistry (CSI, Technische Universität 

Darmstadt) supported these observations. Based on MD simulation results on the ion 

distribution in spreading nanodrops under an applied potential, a simple model was 

proposed in collaboration with Dr. Günter K. Auernhammer (Max-Plank Institute for 

Polymer Research, Mainz) to explain the relation between applied potential, surface 

wettability, electrolyte concentration, and early drop spreading dynamics. 

 

4.1 Motivation 

 As stated earlier, the fast development of high-speed video cameras has 

prompted a strong interest in investigating rapid dynamic wetting processes in recent 

years [18, 35, 36, 54, 55, 58-61, 79]. The main finding was that wetting may proceed 

in three stages, and that the dynamics follows a power law, as reviewed in the first 

chapter of this thesis. 

 Most of the spreading studies in the literature were carried out on grounded 

surfaces. In a most recent paper, Courbin et al. reported that the early spreading of a 

water drop on a completely wetting surface followed a power law with      , if an 

electric potential was applied between the drop and the surface [79]. The exponent 

was much larger than the maximum value,      , which was found on grounded 

                                            

5 This chapter is based on “L. Q. Chen, C. L. Li, N. F. A. van der Vegt, G. K. Auernhammer, E. 

Bonaccurso, Initial electrospreading of aqueous electrolyte drops, Phys. Rev. Lett. 110, 
026103 2013”. 
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solid surfaces [54, 55]. Thus, a fundamental question naturally came up: How and to 

which extent could an external potential influence early drop spreading or wetting? In 

nature and in many technical applications, an electric potential can be spontaneously 

induced by charging surfaces via friction, i.e. by the triboelectric effect [127]. For 

example, in the printing process, the friction between the paper and machine could 

charge the paper and cause a potential difference between ink and paper. Practically, 

applying an electric potential to assist ink transfer has been used in gravure printing 

for more than half a century [128, 129]. In recent years, electrostatic modulation of 

the interfacial tension between a solid electrode and conducting liquids, which is 

known as electrowetting [130-132], was robustly applied in manipulating tiny liquid 

drops in microfluidics [133, 134]. Thus, understanding the influence of electric 

potential on dynamic wetting of aqueous electrolyte drops is crucial for both 

fundamental understanding and for industrial applications.  

 

4.2 Experiments 

4.2.1 Surfaces 

 To demonstrate that everyday surfaces can be easily charged and the induced 

electric potential influences the spreading dynamics, I used microscopy glass slides. 

Glass is an insulator. The slides were cleaned in acetone and in ethanol in an 

ultrasonic bath for 5 min each. After rinsing in Milli-Q water for 5 min, they were 

dried with nitrogen and further treated with oxygen plasma for 2 min. The 

equilibrium contact angle of water on the surface was       . 

 To systematically study the effects of electric potential on dynamic wetting, 

highly doped, conductive silicon wafers (Boron doped, (100) orientation, resistivity 1-

20 Ω·cm, Crys Tec GmbH, Germany) were used. These silicon surfaces are covered by 

a native oxide layer with a thickness         . With the same cleaning treatment 

described above, completely wetting silicon surfaces were obtained. In order to vary 

the wettability, plasma treated clean silicon wafers were silanized with 3-

Aminopropyltriethoxysilane, Hexamethyldisilazane, and 1H,1H,2H,2H-

Perfluorodecyltriethoxysilane (Sigma-Aldrich) following a standard silanization 

procedure [1]. The thickness of the silane coating is          . The equilibrium , 
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advancing, and receding contact angles of these surfaces with water drops were 

measured with a contact angle meter (Krüss, DSA 100, Germany), as listed in Table 4-

1. 

 

Table 4-1 Equilibrium, advancing, and receding contact angles of water on the four 

silicon substrates modified by different silanes. 

Substrate    
 (°)    

 (°)    
 (°) 

Silicon dioxide  0       —       — 

3-Aminopropyltriethoxysilane 63±4 88±2 46±3 

Hexamethyldisilazane 90±2 106±2 83±3 

1H,1H,2H,2H-Perfluorodecyltriethoxysilane 107±3 116±3 100±2 

 

4.2.2 Liquids 

 In the experiments, I studied early dynamic wetting of five aqueous NaF 

solutions - prepared with MilliQ water - with concentrations of    0.001, 0.01, 0.04, 

and 0.091 mol/kg, respectively. The surface tension of these liquids varies by less than 

1 mN/m (         ) [135] and the viscosity of all solutions is similar (  

          ). The solutions have similar permittivity, but quite different conductivity 

(Table 4-2). 

 

Table 4-2 Properties of the five electrolyte solutions. The electrical permittivity as a 

function of electrolyte concentration was calculated with an empirical expression 

from Ref.137. 

NaF concentration 

c (mol/kg) 

Conductivity  

(mS/cm,at 25 ) 

[136] 

Permittivity 

(F/m) 

[137] 

0 5.5×10-5 7.08×10-10 

0.001 9.7×10-2 6.99×10-10 

0.01 0.92 6.98×10-10 

0.04 5.13 6.93×10-10 

0.091 7.67 6.82×10-10 
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4.2.3 Experimental setup 

 The experimental setup was the same as the one shown in section 2.2.3. The 

needle (inner radius          )  through which drops were generated was kept at a 

distance        from the surface. A direct current (DC) voltage was applied 

between the needle and the surface (Fig. 4-1), and the voltage   varied from 0 to 

1,000 V.  

 

Figure 4-1 Sketch of the setup: a drop of initial radius    hangs from a needle with 

inner radius          . The needle is at a distance        from the surface. 

Between the needle and the surface a potential   is applied. 

 

4.2.4 Drop spreading experiments and data analysis 

A high-speed video camera (FASTCAM SA-1, Photron Inc., USA) was used to 

capture the dynamic wetting process. The drop spreading process was first recorded 

with a frame rate of 54,000 fps. To have a higher time resolution, I focused on the 

contact area and recorded the very early process with a recording speed upto 200,000 

fps (the limit frequency of the camera). The resolution of the recorded image was 10 

   per pixel. Using the self-programmed MATLAB® (MathWorks Inc., USA) 

algorithm, the growth of contact radius was extracted from the images. Since the 

early dynamic wetting was dominated by inertia, the experimental data was fitted 

with a power law using the least square method (LSM). 
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4.3 Experimental results 

4.3.1 Early spreading on randomly charged surface 

 Here, I firstly show that natural surfaces can be easily charged and that the 

charges on the surface influence wetting. A glass slide was cleaned as described before 

and performed the wetting experiments with drops of water immediately after.  

 

 

Figure 4-2 High-speed video images of water drops spreading on completely wetting 

(a) charged glass and (b) uncharged glass. The last image in Figure. 4-2 a&b is 

the zoom-in view of the initial contact area.   is the angle formed between 

conical lower end of the drop and the glass surface. The scale bar is 1 mm. 

 

At a distance larger than 100 µm from the glass surface, the water droplet had 

a spherical shape. However, upon further approaching the surface the lower cap of 

the drop deformed into a cone shape with an angle       (Fig. 4-2a). This happened 

at a distances of few tens micrometers above the surface. There are two possible 

explanations for the formation of the cone. First, the surface could be charged during 

the cleaning process. That caused a potential difference between the drop and surface, 

which can lead to electrocapillary instabilities [138, 139]. I repeated the droplet 

generation experiments with connecting the needle to ground. The cone was formed 

again when the drop approached the surface. However, the cone was not observed 
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after the surface was uncharged6. This indicates that the surface was charged during 

the cleaning process. Another possibility is that the drop-surface attraction by 

interfacial forces induced the deformation when they became very close. The 

interaction between a droplet and flat surface scales as    
    

   [127], where    is 

the Hamaker constant (                J for the interaction between water and 

glass [140]) and D is the separation between droplet and surface. However, this force 

is several orders of magnitude less than the capillary force     at separations of 

several micrometers. Thus, surface forces cannot deform the droplet to such an extent. 
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Figure 4-3 Log-log plots of water drop spreading radius   vs. spreading time   of Figs. 

4-2a and 4-2b. 

 

When the tip of the cone shaped drop touched the surface, it instantly spread 

out, as illustrated in Fig. 4-2a. The spreading radius   as a function of spreading time 

  in log-log plot is presented in Fig. 4-3. The spreading followed a power law with the 

exponent being     . On randomly charged insulating glass surfaces, the measured 

exponents were between     and    . In contrast, water droplets did not spread out 

immediately after contacting uncharged surfaces. After some tens of milliseconds only 

they begun to wet the surface. The initial contact radius was larger on the uncharged 

than on the charged surfaces (Fig. 4-2a & b). The delayed spreading may be due to a 

                                            

6 The surface was put in a sealed petridish for at least 2 hours during which a natural 

discharging process was expected. This was confirmed by droplet generation 

experiments. 



 

4 Early Dynamic Electrowetting of Aqueous Electrolyte Drops 70 

thin air film entrapped between drop and surface, which was beyond the present 

work. The log-log plot in Fig.4-3b indicates that the spreading on the uncharged 

surface follows a power law with       , which is consistent with the value on a 

complete wetting surface as predicted theoretically [54] and demonstrated 

experimentally [54, 55]. In summary, it was found that surface charges make wetting 

faster, even if the charging of the surface was not controlled. 

 

4.3.2 Early spreading under electric potential 

In the previous section, I showed that surface charges which could also be 

induced by an applied electric potential, enhanced the wetting. This finding raises a 

number of questions. How and to which extent does electric potential influence the 

wetting dynamics? Does the concentration of the salt in electrolyte solutions influence 

the spreading? How does the surface wettability play a role in the wetting process? In 

order to answer these questions, a systematic study of early drop spreading with 

various aqueous electrolyte solutions was carried out on four surfaces with different 

wettability and changing electric potential. 
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Figure 4-4 The spreading radius   of a pure water drop vs. time   (log-log scale) on a 

completely wetting surface for                    . 

 

Figure 4-4 shows the log-log plot of   versus   of a water drop spreading on 

completely wetting surfaces with        under                     , 
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respectively.   increased with increasing voltage and the corresponding initial 

spreading radius decreased. However, the electrospreading exponent, which was 

called    to distinguish it from the spreading exponent   (with     V), increased 

with   irrespective of the wettability of surfaces. This agrees with the findings from 

electrowetting literature [130-132]. The spreading on relatively hydrophilic surfaces 

was always faster than on relatively hydrophobic surfaces. Moreover, it was also 

found that    increased with electrolyte concentration when the wettability of the 

surface and the applied voltage were kept the same. 
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Figure 4-5 (a) Exponent    as function of the applied voltage   for four wettable 

surfaces and for five aqueous electrolyte concentrations. (b) Relationship 

between exponent   and the wettability of the surfaces with     V. 

 

 Figure 4-5a shows the electrospreading exponent    as a function of applied 

voltage, surface wettability and electrolyte concentration. When no potential was 

applied, the exponent   was only dependent on surface wettability, i.e.     (Fig. 4-

5b). In the experiment,   was larger for relatively hydrophilic than for relatively 

hydrophobic surfaces (Fig. 4-5b), which is consistent with results reported in 

literature [55]. Upon increasing  , the exponent increased. The increase was more 

pronounced for higher NaF concentrations. It was also found that the exponent was 

independent of the polarity of  . For pure water and for the lowest electrolyte 

concentration (0.001 mol/kg), the exponent increased until       and      , 

respectively. With further increases of  ,    remained constant or reached saturation 

(Fig. 4-5 and Fig. S1). However, for higher electrolyte concentrations, the exponent 
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increased with  , but did not reach saturation even at          . This 

electrowetting behaviour differs from other electrowetting experiments which showed 

to be unaffected by the electrolyte concentration. Electrowetting is said to work also 

for electrolyte-free water, given that the frequency of the applied potential is below 

some kHz [131]. In my experiments, the dynamic wetting of the drop depended on 

surface wettability, the magnitude of the applied potential, and the electrolyte 

concentration. 

 

4.3.3 Drop recoiling  

For water and water with NaF of 0.001-0.04 mol/kg, I observed that the drops 

recoiled after the first contact with the surface when the applied voltage was larger 

than a critical value  800 V (Fig. 4-6). This is because the local curvature in the liquid 

thread results in a high pressure which prevented the contact when the cone angle 

was larger than      [141]. Similar results were also observed for oppositely charged 

drops coming into contact [141, 142]. After  0.18 ms, the recoiled drop contacted the 

surface again and then spread out. However, the growth of spreading radius after the 

second contact did not follow a power law any more, as shown in Figure 4-7.  

 

Figure 4-6 A water drop recoils after contact with the surface with       V.  
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Figure 4-7 Log-log plot of spreading radius   vs.   for the wetting case in Figure 4-6. 
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4.4 MD Simulation from CPC 

 In the experiment, the five aqueous electrolyte solutions had similar surface 

tension, viscosity, only slightly different permittivity, but strongly different 

conductivity (see Table 4-2). Thus, one possibility is that the molecular processes at or 

near the solid-liquid interface affected early electrospreading dynamics [143-145]. 

Indeed, few groups found that ionic processes influenced electrowetting in recent 

years [143]. Since the high speed imaging technique cannot capture these processes 

at the sub-micrometer or even lower scale, I asked support from the CPC group by 

Molecular Dynamics (MD) simulations. The MD simulations of dynamic wetting of 

aqueous electrolyte nanodrops were done by Dr. Chunli Li. 

 

4.4.1 MD Simulation method 

 The simulations were carried out by using the package GROMACS [146]. The 

temperature was set to 300 K according to the experimental condition. A 4.5 nm-

radius nanodrop containing more than     water molecules with 200     and    ion 

pairs was used (first snapshot of Fig. 4.8a & b). The composition of the nanodrop 

corresponded to a bulk electrolyte concentration of             . In order to have 

good statistics, the NaF concentration in simulation was slightly larger than the 

maximum concentration in the experiments. The silicon substrate contained 5 layers 

of silicon atoms with 36,000 atoms in total that were fixed during simulations and 

were modeled as Lennard-Jones (LJ) particles with             nm and             

kJ/mol [147].    is the LJ size parameter and    is the LJ well depth. The extended 

simple point charge (SPC/E) model was used for water [148]. For     and   , she 

used             nm,             kJ/mol,            nm, and           

kJ/mol [149]. For calculating the LJ forces between unlike atoms, the Lorentz-

Berthelot mixing rules were applied [150]. An external electric field of     V/nm was 

applied perpendicular to the surface. This value was in the range of previous MD 

simulations of spreading drops [145] and of electrowetting experiments. 
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4.4.2 Spreading of electrolyte nanodrops 

 Figure 4-8 shows the snapshots of spreading process of electrolyte nanodrops 

without (Fig. 4-8a) and with (Fig. 48b) external electric field. Prior to touching the 

surface the nanodrop was spherical, as shown in the first snapshot in Fig. 4.8a & b. 

We did not observe the formation of a cone shape at the lower part of the drop under 

the electric field, as in the millimeter-sized drops in macroscopic experiments. One 

possible reason is that the deformation is hard to observe at the nano scale, since the 

thermal vibration of the nanodrop is very strong. As a result, the electrocapillary 

instability could be masked. 

 

 

Figure 4-8 Snapshots of aqueous electrolyte nanodrops spreading on silicon surface 

without (a) and with (b) external electric field. Blue particles are Na+ ions and 

green particles are F- ions. 

 

 Once the drop touched the surface, it spread spontaneously (Fig. 4-8). The 

spreading was fast at the beginning and became slower after      ps. The drops 

reached equilibrium (    and    ) after      ps.     was larger with applied electric 

field (        nm) than without (        nm) it, which indicates the external 

electric field enhanced wetting. 

The growth of the spreading radius with time is shown in Fig. 4-9. Spreading 

can be divided into three stages. In the first stage (      ps), the spreading was 

extremely fast. The data of both drops without and with electric field could be fitted 

with a power law     . The exponent   was           , which is close to the 

exponent of inertial power law for comparably wetting surfaces [35, 55]. This 

indicates that the first wetting stage of nanodrops is also dominated by inertia, and 

the applied field has no influence on spreading until this point. Since a viscous stage is 
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known to follow an inertial wetting stage [35, 55], it was expected a similar 

phenomenon at the nanoscale as well. Indeed, in the second stage (          

ps), the spreading radius grew with time according to              without electric 

field, which is consistent with viscous spreading dynamics [54, 58, 61]. With applied 

electric field, we also found a power law dynamics with             . The simulations 

thus revealed a larger spreading exponent during the second stage only, while in the 

experiments the spreading exponent was larger during the first stage. A possible 

explanation is that fast spreading at the nanoscale was too short to observe the 

influence of ion migration induced by the applied field. The average inertial spreading 

speed was  10 m/s in simulations and  1 m/s in experiments, which was closer to 

the viscous spreading speed of the nanodrops. In the third stage, the nanodrops were 

in equilibrium. A larger wetted area was found with applied electric field. 
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Figure 4-9 Spreading radius   vs. spreading time  : equilibrium of the drop reached 

after  600 ps (a) without electric field (        nm) and (b) with electric field 

of 0.1 V/nm (        nm). The two dashed black lines separate the regions of 

inertial spreading (I), viscous spreading (II), and equilibrium (III). The other 

lines are power law fits of the spreading radius. 
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Though the physical scales of nanodrop simulations were orders of magnitude 

smaller than those scales of experiments, the physics of spreading was similar in both 

cases: it was characterized by fast inertial and slow viscous stages. Further, the 

simulations confirmed the experiments: spreading of aqueous drops on surfaces under 

the influence of an applied electric field yielded a larger spreading exponent and the 

wetted area at equilibrium was larger compared to the case with no applied field. 

 

4.4.3 Electric double layer near the interface 

When a charged surface is immersed in electrolyte solution, the electric field 

induced by surface charges attracts counterions to the liquid-solid interface. The 

counterions attracted directly to the surface neutralize the surface charges and reduce 

the electric potential. Therefore, the concentration of counterions decreases far from 

the interface. Eventually, there is a layer of counterions beyond which the electric 

potential is close to zero, as shown in Fig. 4-10. This counterions layer is called 

“electric double layer” (EDL) or Debye length. For aqueous electrolyte solutions, the 

thickness of the EDL can be estimated by [127] 

     
     

√ 
 (4.1) 

For the five solutions used in the experiment, the thickness of the EDL is shown in 

Table 4-3.  

 

Figure 4-10 Schematic of the electric double layer (left) and the corresponding electric 

potential (right) near a negatively charged surface. 
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Table 4-3 The thickness of the electric double layer for five aqueous NaF solutions.   

NaF concentration (mol/kg) Debye length (nm) 

0 ≥100 

0.001  10 

0.01  3 

0.04  1.5 

0.091  1 

 

1 2 3 4 5 6

0.0

0.2

0.4

0.6

 d (nm)

 n
u

m
b

e
r 

d
e

n
s
it
y
 (

n
m

-3
)

 Na
+
, E = 0

 F
 -
, E = 0

 Na
+
, E = 0.1 V/nm

 F
 -
, E = 0.1 V/nm

 

 

0.5 nm

 

Figure 4-11 Number density distribution of Na+ (square) and F- (circle) in a water 

nanodrop with respect to the distance   to the silicon surface at equilibrium, 

with (dashed lines) and without (solid lines) an applied electrical field of 0.1 

V/nm. 

 

It was also expected that the electric double layer formed during spreading. 

Thus, we calculated the average ion number density in the equilibrated nanodrops, 

from  500 to  1,000 ps. Figure 4-11 shows the number density of Na+ and F- ions as 

a function of the distance to silicon surface. Without electric field, both Na+ and F- 

ions were homogeneously distributed in the nanodrop. However, with the applied 

electric field, close to the positively charged surface the density of F- increased by 

 22%, while that of Na+ increased by  12.5% within 0.5 nm from the surface. With 
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      nm, both F- and Na+ concentrations were nearly constant. Ions moved to the 

liquid-solid interface and away from the liquid-air interface during spreading, as 

observed also by Daub et al. [143]. From the number density profile, we recognized 

that anions and cations formed electric double layers close to the interface, with 

alternating layers of cations and anions, even in the absence of an applied electric 

field. Upon applying the field, however, the number of ions in the layers closer to the 

charged surface increased. 

 

4.5 Scaling model 

 Till now, the only successful model proposed to describe the inertial wetting 

dynamics on partial wetting surfaces was done by Bird et al. [55]. The scaling model 

presents in the following section is a modified one based on Bird’s model by 

consideratiing additionally the electrostatic energy. 

 For dynamic wetting on uncharged surfaces, the only driving force is from the 

change of surface energy. While the surface is charged or an electric potential is 

applied, an electric double layer is formed. Since the double layer can be treated as a 

plate-plate capacitor [127],  the electrostatic energy stored in the capacitor serves as 

additional driving energy. According to the MD simulations, the local ion density (Na+ 

and F-) increased by 12.5-22% near the solid-liquid interface in  500 ps when a 

potential was applied (Fig. 4-11). In the experiments, inertial spreading lasted several 

milliseconds. For this reason, it seems justified to assume that the building up of the 

electric double layer by ion migration is much faster compared to spreading in the 

experiments. Thus, the new energy balance is 

∫
 

 
 | ⃗       |     [                      ]     

 

 (4.2) 

Where   ⃗        is the velocity field as a function of position    and time t,   is the 

volume of the drop.           is the change of the area of the liquid-air interface 

during spreading that can be expressed as        (   ), with   some function 

depending on drop geometry.              is the change of the liquid-solid interface 

area during spreading, depending on contact angle and on applied potential.     is 

the variation of electrostatic energy of the drop during spreading. I assumed that the 
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drop is a good conductor and thus the electric field inside is zero, except for the 

region close to the surface, i.e. the extent of the electric double layer with thickness 

    . Therefore, I take that     scales as           .    
    

    
 is the capacitance per 

unit area of the electric double layer, strongly depending on electrolyte concentration. 

   and    are the permittivities of vacuum and liquid, respectively. For any given 

electrolyte concentration the voltage drop across the double layer has to be corrected 

for the voltage drops across the oxide layer of thickness     and the silane monolayer 

with thickness of     . I account for this by scaling   with a constant  . Substituting it 

into equation (4.2) and adapting the self-similar velocity field as suggested by Bird et 

al., a new power law is obtained 

          (4.3) 

Where      is a coefficient and the exponent 

   
√

 (   )         

 
 

    

    
     

 
 

(4.4) 

From equation (4.4), one finds that the electrospreading exponent    depends 

on the equilibrium contact angle and on four other parameters: surface tension and 

permittivity of the liquids, thickness of the electric double layer, and applied potential. 

For the five electrolyte solutions used, surface tension and permittivity were nearly 

the same (see Table 4-2). The thickness of electric double layer depends on the 

electrolyte concentration. With increasing concentration the thickness decreases, as 

shown in Table 4-2. Thus, the exponent increased with the surface wettability, applied 

potential, and electrolyte concentration. This is fully consistent with the experimental 

results shown in Fig. 4-5. 

Equation (4.4) also indicates that the degree of enhancement of spreading 

should be independent of surface wettability. With uncharged surfaces, the exponent 

only depends on the equilibrium contact angle    , i.e.   √ (   )        . By 

substituting   into equation (4.4), one obtains 
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(4.5) 

Fig. 4.12 plots        as a function of   . As expected, the data points from different 

wettable surfaces collapsed onto a single curve for each of the five electrolytes. This is 

consistent with the model.  

It must be pointed out here that there is a saturation of    for pure water at 

        and for water with    0.001 mol/kg NaF at        , but not at higher 

electrolyte concentrations (Fig. 4.5 and Fig. 4.12). This phenomenon is similar to 

electrowetting, where a saturation of the contact angle is observed as a function of the 

applied potential but is not yet understood [151]. The saturation of the spreading 

exponent observed in the experiments depended on salt concentration and applied 

potential. This is still an open question and will require further investigations. The 

value of        and the slope of the        vs.    curves is higher for drops with 

higher electrolyte concentration, as one would expect from equation (4.5). A more 

quantitative description of the dependence must also be addressed in future work. 
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4.6 Summary 

The early stage of dynamic wetting of aqueous electrolyte drops on various 

wettable surfaces was investigated under different applied potentials. The initial 

electrospreading radius followed a power law with an exponent increasing with the 

potential. This indicates that electrostatic effects did not only control the equilibrium 

contact angle, like in electrowetting, but also the speed of spreading and thus wetting 

dynamics. Moreover, the electrolyte concentration influenced the wetting exponent as 

well. Based on experimental and simulation results, a model at the level of a scaling 

law accounting for energy conservation was proposed to capture the dependence 

beween the wetting exponent and surface wettability, applied potential, and 

electrolyte concentration.  
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5 Effects of Surface Wettability and Liquid Viscosity on Dynamic 
Wetting 

In this chapter, I will present the effects of surface wettability and liquid 

viscosity on wetting dynamics. In particular, dynamic wetting of various viscous 

liquids on solid surfaces with different wettability was investigated. In order to show 

the viscous effects, aqueous solutions with surface tensions similar to water but very 

different viscosities (maximum 60 times) were used. To identify the effects of surface 

wettability, surfaces with equilibrium contact angles from     to       were studied. 

The experimental results indicated that both liquid viscosity and surface wettability 

influence the wetting dynamics. In the inertial wetting stage, the inertial wetting 

coefficient was influenced by both surface wettability and liquid viscosity, while the 

inertial exponent was only dependent on the surface wettability. These findings will 

be discussed based on the analysis of the effective mass of the moving drop. The 

duration of the inertial wetting was longer for highly viscous liquids than for low 

viscous liquids due to viscous damping. The viscous wetting stage was only observed 

on surfaces with     smaller than a critical value   , which depended on viscosity. A 

scaling analysis was developed based on Navier-Stokes equations and the proposed    

matches with experimental observations. 

 

5.1 Motivation 

 As reviewed in the first chapter, dynamic wetting may proceed with three 

stages. About 1 to 100    after the drop contacts the surface, inertia of the moving 

drop resists the capillary force that drives spreading. The spreading dynamics follows 

a power law        , which is independent of the liquid viscosity and surface 

wettability [52, 54].   is the spreading radius,   is the spreading time and   is a 

coefficient. With time between      to    ms, wetting is still dominated by inertia. 

However, the surface wettability starts to influence spreading and the spreading 

radius grows with time according to another power law,        [35, 36, 55].    is 

another coefficient and the exponent   is only dependent on surface wettability, i.e. 

   . Experimental study showed that   increases from  0.25 for          to  0.5 

for        [35, 36, 55]. On very hydrophilic surfaces (                      ) or 
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completely wetting surfaces (      ), a slow wetting stage was observed after the 

inertial stages. In this stage, the viscous friction inside the drop is the main source 

opposing capillarity. The wetting dynamics follows the Tanner’s law: 

    (
 

   
)
   

     [1, 18, 57, 58]. 

 In literature, much efforts were devoted to study the influence of surface 

properties, such as wettability [52, 54, 55], softness [35, 36] and solubility [66] on 

dynamic wetting. In contrast, the influence of liquid properties, such as viscosity, has 

attracted little attention [152]. Intrinsically, one would expect that highly viscous 

liquids spread slower than low viscous liquids. Thus, a natural question is if liquid 

viscosity influences the early dynamic wetting? If it does, how and to which extent? 

The viscous wetting stage, well described by Tanner’s law, was only observed on very 

hydrophilic and completely wetting surfaces [54, 58, 59, 61]. Does it also exist on 

partial wetting surfaces? Keeping these questions in mind, a study of the influence of 

surface wettability and liquid viscosity on dynamic wetting was carried out.  

 

5.2 Experiments   

5.2.1 Surfaces and liquids 

Five types of wettable surfaces were prepared using a variety of coatings (Table 

5-1). Smooth glass slides were cleaned in acetone (Sigma-Aldrich, p.a.) and then 

ethanol (Sigma-Aldrich, p.a.) in an ultrasonic bath for 5 min each. After rinsing in 

Milli-Q water, the surfaces were dried with nitrogen. With treatment of oxygen 

plasma (Femto, Diener Electronic GmbH, Germany) for another 5 min, completely 

wetting surfaces were obtained, i.e. surface 1. The other two hydrophilic surfaces, 

surface 2 and surface 3, were prepared following a standard silanization procedure 

[1]. The two hydrophobic surfaces, surface 4 and surface 5, were fabricated by 

silaniztion of oxygen plasma treated glass slides in a vapour phase in a desiccator at 

100   overnight. Wetting experiments were done with pure water and four water-

glycerol mixtures. These liquids have a similar surface tension (the difference is less 

than 17%) but a remarkably different viscosity. The maximum viscosity is 60 times 

that of water (Table 5-1). The equilibrium contact angles of these liquids on the five 
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used surfaces were measured after each wetting experiment and are also shown in 

Table 5-1. 

 

Table 5-1 Physical properties of the liquids and corresponding equilibrium contact 

angles on substrates modified by different types of coatings. 

Surfaces           

Wt. % glycerol 0 40 60 75 80 

Viscosity   (cP) [153] 1.0 3.7 10.7 35.5 60.1 

Density   (kg/m3) [154] 998.2 1099.3 1153.8 1194.9 1208.5 

Surface tension   (mN/m) [155] 72.8 69.2 67.2 63.5 62.3 

1. Silicon dioxide 0 0 0 0 0 

2. Triethoxysilylbutyraldehyde 41±4 41±6 34±5 40±7 41±5 

3. 3-Aminopropyltriethoxysilane 63±5 56±5 57±10 54±3 60±11 

4. 1, 1, 1, 3, 3, 3-Hexamethyldisilazan 92±5 85±3 92±6 87±8 104±5 

5. 1H,1H,2H,2H-

Perfluorodecyltriethoxysilane 
112±4 105±6 107±5 109±11 110±6 

 

5.2.2 Observation of the wetting process 

Pendant drops with radii    of 0.5-1.2 mm were generated and quasi-statically 

approached to the surfaces using a syringe pump (the approaching speed was  0.1 

mm/s before drops touched the surface). Both the needle and substrate were 

grounded to prevent the influence of electrostatics on spreading [79, 156]. The 

spreading process was recorded using a high-speed camera (FASTCAM SA-1, Photron 

Inc.). The early wetting stage was recorded a rate of 54,000 fps and the later wetting 

stage was recorded with 10,000 fps. Each wetting experiment was repeated at least 6 

times. In total, I analyzed more than 350 experiments. 

 

5.2.3 Data analysis 

The spreading radius   was extracted from the recorded movies with an ad-hoc 

developed MATLAB (MathWorks Inc.) algorithm. Since the early wetting dynamics is 
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dominated by inertia, the Pearson product-moment correlation coefficient,  , was 

used to check the power law relationship between   and  .  
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Figure 5-1 Spreading radius   and the linear correlation coefficient   between      

and      as a function of time  . The substrate is silicon oxide and the drop is 

water with     1.2 mm. 

 

The inertial wetting time was determined from the curve of   vs.  . For 

example, Fig. 5-1 shows the spreading radius   and corresponding   as a function of 

time   for the spreading of a water drop on a completely wetting surface.   is  1 

when   is smaller than a characteristic time    12 ms, beyond which   starts to 

diverge. This indicates that the wetting with     follows a power law,       , and 

the wetting is dominated by inertia. Thus, the experimental data with     was fitted 

by a power law using the least square method (LSM). Since viscous wetting may 

proceed after the inertial wetting stage [1, 18, 58], the remaining spreading data was 

also fitted with power law. 
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5.3 Results and discussion 

5.3.1 Effects of surface wettability 
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Figure 5-2 Log-log plot of spreading radius   as a function of time   of water drops on 

five wettable surfaces. Drop radius was always          . 

 

Figure 5-2 shows the log-log plot of   vs.   of water drops spreading on five 

surfaces with different wettability. Drops spread faster on relatively hydrophilic 

surfaces than on relatively hydrophobic surfaces. The wetting followed a power law 

       for     ms. The slope, i.e.    was dependent on the surface wettability and 

increased from      to      while     decreases from       to    , which was 

consistent with previous studies [36, 54, 55, 66]. On partially wettable surfaces (here 

       ), water drops reached equilibrium after the inertial wetting stage, as shown 

in Figure 5-2. In contrast, on completely wetting surfaces, a slower wetting process 

was observed for     ms. The power law fitting of the data gave a slope of     , 

which indicates that spreading was dominated by viscous dissipation [1, 18, 58, 61]. 

Generally, it was found that the surface wettability influenced both inertial and 

viscous wetting stages. 
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5.3.2 Effects of liquid viscosity 

Figure 5-3 displays the growth of spreading radius as a function of time for 

various liquids on a partial wetting surface (       ). Early spreading was also 

dominated by inertia and followed a power law with          for all liquids. However, 

the growth of spreading radius was slower for liquids with higher viscosity. This 

shows that the inertial coefficient    decreased with  . Moreover, the inertial wetting 

time   slightly increased from  8 ms to  10 ms as   increased from 1 cP to 60.1 cP.  

 For low viscous liquids with        cP, no viscous wetting was observed and 

the drops reached equilibrium after inertial wetting. For liquids with        cP, the 

drops were not at equilibrium after the inertial stage, and they further spread 

according to the viscous power law,       . In summary, I observed that the liquid 

viscosity influenced inertial and viscous wetting dynamics. 
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Figure 5-3 Log-log plot of spreading radius   as a function of time   of various liquids 

on a partial surface (       ). Drop radius was always          . 

 

5.3.3 Inertial wetting 

Inertial wetting exponent 

The experimental data for     was fitted with the power law       , using 

the LSM. The inertial wetting is well known that the exponent is only dependent on 
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the chemical interaction between liquids and surfaces, i.e.     [9, 36, 55]. Figure 5-4a 

summarizes   of different liquid drops spreading on various surfaces.   has a value of 

0.3-0.5 and  decreases with     regardless of drop viscosity, density, and size. This is 

consistent with theoretical predictions [35, 55] and experimental results [35, 54, 55, 

66] in the literature. Most recently, Legendre and Maglio reported in a theoretical and 

simulation paper that if the early wetting was dominated by viscous dissipation, the 

spreading should follow a power with        [157]. However, in my experiments, I 

found that the maximum   for all liquids was 0.5 and that   was only dependent on 

   . This confirms that the early stage of spreading or wetting is dominated by inertia. 
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Figure 5-4    as a function of     for drops with five different viscosity and three sizes. 

Dashed line is a guide for eyes. 

 

Inertial wetting coefficient 

Figure 5-5a-c shows the coefficient    for all spreading experiments. With the 

same surface and liquid,    was larger for larger drops, which is an evidence for 

inertial wetting and was also observed by Bird et al. [55]. For a specific drop size,    

was smaller for higher viscous liquids. Moreover, with increasing    ,    decreased 

(Figure 5-5b-d). Generally,    was determined by drop size, liquid viscosity, and 

surface wettability, i.e.      (        ). 
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Figure 5-5d shows the normalized inertial coefficient,   
    

 

  
, from the 

normalized power law, 
 

  
   

 

  
  , as a function of     and   for three different drop 

sizes.    √
   

 

 
 is the characteristic inertial time. The coefficient for different drop 

sizes collapsed into five curves, each of which corresponding to one viscosity, and 

each curve decreased with    . This is a further evidence that the early wetting 

dynamics is dominated by inertia, but it is influenced by liquid viscosity and surface   

wettability as well. 
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Figure 5-5 (a)-(c) coefficient of power law    as function of     and   for three drop 

sizes. (d) Normalized inertial coefficient   as a function of     and  . The dashed 

lines are guides for the eye. 

 

Now, the question is how do surface wettability and liquid viscosity influence 

the inertial wetting coefficient? In the paper by Bird et al., the authors derived the 

power law for inertial wetting based on energy conservation [55]. They considered 

that the change of surface energy during spreading was transferred into the kinetic 
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energy of the moving drop within a self-similar velocity field over a length scale of 

    
   

 
    . In other words, the effective mass of the moving drop scales as    

 . Thus, 

one possibility is that surface wettability and liquid viscosity influence the effective 

mass of spreading drops, i.e. the scale of the velocity field   .  

In order to estimate the dimensions of the velocity field, I tracked the profiles 

of the spreading drops. As illustrated in Fig. 5-6, I overlapped the surface profiles of a 

spreading drop at time   and     . I found a length scale above the surface,  , below 

which the liquid in the drop spread during   . Thus,   can be treated as a length scale 

characterizing the velocity field at time     . However, it was found that    should 

not be too small to still allow identifying the changing profiles. The minimum time 

step that used to extract   from the experimental data is        ms. 

 

 

Figure 5-6 Schematic of the change of the drop surface profile during spreading. 

 

 Figure 5-7a shows   versus   for a 0.9 mm-radius water drop spreading on 

various surfaces. Indeed,   initially grew with   according to      
   

 
     on all five 

surfaces. Similar trends were also observed for liquids with different viscosities (Fig. 

5-7b). These confirm the assumption by Bird et al. [55] that  liquid flows within a self-

similar velocity field with     
   

 
    . However, the process describing the 

developing velocity field was related to surface wettability and liquid viscosity, i.e. 

     (     ). As shown in Fig. 5-7a & b,    is smaller for more hydrophobic surfaces 

and for more viscous liquids.  
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After a characteristic time   , which is always smaller than  ,   reached a 

maximum extension    and then kept nearly constant until the end of inertial wetting. 

Both    and    are also dependent on     and  , as summarized in Fig. 5-7c and Fig. 

5-7d, respectively. For the same liquid, both    and    increased with    , i.e. it took 

longer to reach the maximum extension of the velocity field on hydrophobic surfaces, 

and the corresponding    was larger (Fig. 5-7c). For the same surfaces, both    and 

   were larger for higher viscous liquids. In summary, the velocity field in the 

spreading drop develops in a self-similar way, which is controlled by surface 

wettability and liquid viscosity. 
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Figure 5-7 (a) The extension of the velocity field   as a function of spreading time   for 

water on various wettable surfaces. (b) The extension of the velocity field   as a 

function of spreading time   for different liquids on a completely wetting surface. 

The arrows in (a) and (b) indicate the maximum length scale   . (c) The time    

needed to reach the maximum length scale as a function of     and liquid 

viscosity. (d)    as a function of     and liquid viscosity. Drop radius was always 

         . 
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 Since     and   influence the development of the self-similar velocity field 

during drop spreading, they eventually influence the inertial power law. However, this 

effect is difficult to integrate into the inertial wetting power law. Instead of a 

quantitative analysis, a qualitative explanation is given here. For spreading with a 

large value of    and   , i.e. for wetting of highly viscous liquids or on hydrophobic 

surfaces, the effective mass of the spreading drop is large, and hence the spreading 

velocity will be slower, as the driving capillary force is always similar during the 

whole inertial wetting stage. Since the early wetting dynamics is dominated by inertia 

and the inertial exponent   is independent of  , a smaller coefficient   or    can 

reasonably be expected. This argument is consistent with our observation in Fig. 5-5a-

d.   

Most recently, Carlson and co-workers considered the influence of surface 

wettability and liquid viscosity on dynamic wetting by introducing additional energy 

dissipations such as contact line friction due to molecular process,  viscous dissipation 

in the liquid, as well as a diffusive dissipation [158-160]. However, these 

contributions are hard to be directly integrated into the inertial wetting power law as 

well. 

 

Inertial wetting time 

The inertial wetting of these liquids lasted only from a few to few tens of 

milliseconds, depending on drop size. Then the drop reached equilibrium or entered 

into the slower viscous wetting stage. Figure 5-8a shows the inertial time   as a 

function of     for four different liquids. Similar to other studies [36, 54, 55], I found 

that inertial time   was independent of     and was always larger than the 

characteristic inertial time    √
   

 

 
. Moreover, I also observed that   was larger for 

higher viscous liquids. Biance et al. suggested that the inertial wetting stops at the 

crossover from the inertial to the viscous wetting stage [54]. They found that inertial 

wetting is shorter for higher viscous liquids, which contradicts the results observed 

here. Another model to explain the duration of  inertial wetting was proposed by Bird 

et al. [55]: inertial wetting lasts as long as the capillary waves propagates along the 

drop. Based on the vibration model of suspended drops proposed by Lamb [77], I 
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found the actual inertial time          for low viscosity liquids, as discussed in 

Chapter 2. Figure 5-8b summarizes the inertial wetting time   as a function of    for 

various drop sizes and liquids.   linearly increased with    and was very close to the 

theoretical prediction for low viscosity liquids, such as water. For higher viscosity 

liquids,   was larger than the prediction and increased with   (for the most viscous 

liquid,        ). This phenomenon may due to the viscous damping of the capillary 

wave propagation. In Lamb’s model [77], the vibrating drop was treated as a spring, 

as the liquid was considered to be inviscid. For the vibration of viscous drops, the 

viscous damping effects will causes a decreases of the vibration frequency [161], and 

hence results in         . 
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Figure 5-8 (a) Inertial wetting time   as a function of     for four liquids with 

different viscosity on completely wetting surfaces. The drop size    is 1.2 mm (b) 

  as a function of    for various liquids with different drop sizes.  

 

5.3.4 Viscous wetting 

With ongoing spreading, the inertial resistance lessens and the viscous 

dissipation in the drop may become dominant [54, 55]. However, the viscous wetting 

stage was only observed on surfaces with an equilibrium contact angle smaller than a 

critical value    for each liquid. As illustrated in Figure 5-9,    increased with  . Since 

the Reynolds number compares inertial and viscous forces, I analyzed    during the 

spreading. Due to the symmetry of the spreading, the two dimensional Navier-Stokes 

(N-S) equations with the incompressibility condition were applied, 
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Where   and   are the velocity components in the tangential and the vertical 

directions, respectively.   is the pressure. The left terms in equation (5.1) and (5.2) 

are inertial terms and the last terms in equation (5.1) and (5.2) are viscous terms. Let 

   and    be the characteristic velocities, and    and    the characteristic length of 

contact radius and height of the spreading drop. From the nondimensional form of 

equation (5.3) one obtains 

                
  

  
 (5.4) 

With the above expression, the inertial and viscous terms in equation (5.1) can be 

further estimated as 
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In the inertial stage,         ,  
   

     
   

    
   

   . In the viscous stage, the drop 

height is always much smaller than the contact radius [1, 18, 57], i.e.     , which 

leads to  
   

     
   

   . Thus, the Reynolds number in both wetting stages takes the 

same form 

   
  

  
  

 
   
   

   
 
     

 
 (5.7) 

At the end of the inertial wetting stage,       and the characteristic tangential 

velocity scales as    √
 

   
. The viscous wetting can only be observed while the 

viscous force dominate over the inertial force 
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Solving equation (5.8), one finds that a viscous spreading drop should have a shape of 

   
    

         . Making a reasonable assumption that the shape of the drop is 

hemispherical and the contact angle is close to    , I finally obtain the criteria for 

surface wettability for viscous wetting 

            
    

     
 

         
    

         
 (5.9) 

As shown in Figure 5-9, the critical    predicted in equation (5.9) (red dashed line) 

matches our experimental results very well.  
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Figure 5-9 Wetting phase diagram of drops spreading on solid surfaces as a function 

of liquid viscosity   and equilibrium contact angle    . Symbol shapes indicate 

different drop size   : (■, □) 1.2 mm, (●, ○) 0.9 mm and (▲,  ) 0.5 mm. The 

open symbols denote that one stage was observed and the closed symbols denote 

that two stages were observed. The red dashed line represents             

     
 . 
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5.4 Summary 

Both surface wettability and liquid viscosity influence inertial and viscous 

wetting. During the inertial wetting stage, the inertial exponent only depends on 

surface wettability, while the inertial wetting coefficient is controlled by both surface 

wettabilty and liquid viscosity. This is because the effective mass of the spreading 

drop is influenced by the surface wettability and the liquid viscosity. On the other 

hand, the viscous wetting stage only exists on surfaces with equilibrium contact angle 

smaller than a critical value, which depends on the liquid viscosity. Based on the two 

dimensional Navier-Stokes (N-S) equation, a scaling analysis was proposed to 

interpret these experimental results. 
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6 Conlusion 

In this work, dynamic wetting of simple liquids on complex surfaces and 

viscous liquids on simple surfaces has been investigated. The early wetting dynamics 

was always dominated by capillarity and inertia, i.e. the change of surface energy was 

transferred into the kinetic energy, but influenced by surface and liquid properties, 

and external forces.  

 On bulk flat surfaces, the inertial wetting was slower for higher viscous liquids 

or on more hydrophobic surfaces, as both increases of liquid viscosity and 

surface hydrophobicity increased the effective moving mass of drop. On rigid 

surfaces, inertial wetting lasted as long as the capillary waves propagate along 

the drop. Since viscous damping could decrease the frequency of capillary 

waves, inertial wetting was longer for higher viscous liquids. The inertial 

wetting was shorter on relatively soft substrates than that on rigid surfaces. 

This was due to the “viscoelastic braking” induced by the “wetting ridge” near 

the contact line. 

 The inertial wetting of flat rigid surfaces could be enhanced by applying an 

external electric field, as the electrostic energy served as additional driving 

force. The wetting speed was not only dependent on the surface wettability and 

on the applied potential but also on the electrolyte concentration. 

 For small particles, the particles were driven into the liquid spontaneously by 

capillary force. The capillary force was larger for hydrophilic particles than for 

hydrophobic particles.  

The above findings do not only provide us the fundamental knowledge of early 

wetting dynamics but also tell us how to actively control the early wetting process. 

After the inertial wetting stage, wetting stopped or proceeded with another 

dynamics depending on the liquid viscosity, surface wettability and surface softness. 

On rigid surfaces, wetting only continued on specifically wettable surfaces, i.e. on 

surfaces showing a characteristic contact angle, whose value was dependent also on 

the liquid viscosity. This wetting stage was dominated by viscous dissipation in the 

drop and could be observed only while the viscous force dominated over the inertial 

force. On soft substrates, viscoelatsic dissipation was the main source to resist 
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spreading in the second wetting stage. It was only observed for liquids with high 

surface tension on very soft substrates. 
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