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a b s t r a c t

We present a numerical study of the formation of mini-bubbles in a 2D T-junction by means of the fluid

dynamics numerical code JADIM. Numerical simulations were carried out for different flow conditions,

giving rise to results on the behavior of bubble velocity, void fraction, bubble generation frequency

and length. Numerical results are compared with existing experimental data thanks to non-dimensional

analysis.

1. Introduction

In the recent years, a growing interest in the study of gas–liquid

flows has arisen as a consequence of their promising technological

applications in space [1–3]. Replacing the widely used single-phase

for two-phase systems could lead to an improvement in perfor-

mance as well as to significant reductions in weight in different

fields such as power generation and life support. A good under-

standing of the behavior of the gas–liquid interfaces is the corner-

stone of these new technologies.

Bubble generation in low gravity environments is a key issue

which requires an accurate control. This implies a good knowledge

of the interface geometry and the generation of bubbles in a regular

waywith the smallest possible size dispersion. In thisworkwe focus

on the analysis of the formation of a train of bubbles bymeans of the

cross flow generated in a capillary T-shaped junction [4–7]. In this

bubble generator, gas is injected from a capillary into another capil-

lary in a perpendicular direction in which liquid is flowing (see

Fig. 1).We consider here the simplest case, in which both capillaries

have the same circular cross-section of 1 mm i.d. Bubbles are gener-

ated as a result of the competition between the involved forces,

being capillary forces predominant over inertia and buoyancy.

In order to explore the behavior of the T-junction bubble gener-

ator in awide range of parameters, it is required a reliable numerical

code which can complement experimental results. Different

computational fluid dynamics methods have been recently used

to study the generation of bubbles and droplets in this type or in

similar devices. Qian and Lawal [8] used a commercial CFD package

to simulate the bubble formation in the squeezing regime of a T-

junction microchannel. Their work was focussed on the study of

the effects of pressure, surface tension and shear stress action on

the gas thread. Kashid et al. [9] discussed CFD modeling aspects of

internal circulations and slug flow generation. The slug flow forma-

tion in a 120° Y-junction was simulated and velocity profiles inside

the slug were obtained. More recently, DeMenech et al. [10] carried

out a numerical investigation bymeans of a phase-fieldmodel of the

breakup dynamics of streams of immiscible fluids in a microfluidic

T-junction. Three regimes of formation of droplets (squeezing, drip-

ping and jetting) were identified and studied. In spite of the prom-

ising results obtained in these recent numerical works, important

aspects in the flow characterization such as the bubble generation

frequency or the void fraction distribution were not addressed.

The numerical code JADIM developed in the Institut de Méca-

nique des Fluides de Toulouse (IMFT) has been applied to a variety

of fluid dynamics problems [11–20]. The Volume of Fluid (VoF)

module of JADIM is able to perform local analyses of deformable

two phase interfaces by resolving the Navier–Stokes equations

for incompressible fluids in non-stationary problems. An Eulerian

description of each phase is applied on a fixed grid and fluids are

supposed to be Newtonian. The interface is calculated by means

of the transport equation of the local volume fraction of one phase,

being the surface tension constant and uniform along the interface

in the absence of thermal exchange.
⇑ Corresponding author.
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In this paper we present a numerical study of the generation of

millimetric bubbles in a T-junction by means of JADIM. In Section 2

a dimensional analysis of the bubble generation phenomenon is

presented. The numerical code is presented in Section 3 and the

modeling of the T-junction is presented in Section 4. Numerical re-

sults on the characteristics of the generated flows are presented

and compared to existing experimental data in Section 5.

2. Problem statement

We consider a 2D T-junction bubble generator. The connection

between the two channels as well as the flow directions are shown

in Fig. 1. The problem is described using ten independent parame-

ters, namely the gas and liquid densities (qG and qL, respectively)

and viscosities (lG and lL, respectively), surface tension r, capillary
diameter U (the T-junction being formed by the connection of

equal size capillaries), contact angle between the capillaries and

the gas–liquid interface h (measured on the internal part of the li-

quid), gravitational constant g, and gas and liquid superficial veloc-

ities (USG and USL, respectively), which are obtained from the air

and water volumetric flow rates (QG and QL, respectively):

USG ¼ QG

A
; USL ¼

Q L

A
; ð1Þ

where A is the cross-sectional area of the capillary. Experiments

were conducted at a constant temperature around 20 °C and the

system can be assumed adiabatic. According to the Buckingham’s

p theorem, the system can be described by seven dimensionless

parameters. The appropriate dimensionless numbers in our study

are:

qL ÿ qG

qL

Bo ¼ DqgU2

r

ReSL ¼
qLUUSL

lL

ReSG ¼ qGUUSG

lG

WeSL ¼
qLUU2

SL

r
WeSG ¼ qLUU2

SG

r

ð2Þ

h

Any other dimensionless number should be obtained from the com-

bination of the previous ones. Typically, the Capillary number

Ca =We/Re is used to compare viscosity and surface tension effects

at the interface.

Experiments carried out in [5,6] are used as reference data for

the comparison with the simulations reported here. In these exper-

iments, air and water were mixed in a T-junction of two capillaries

with 1 mm of internal diameter. The superficial velocities selected

for the comparison with numerical simulations ranged from 0.106

to 0.531 m/s for water and from 0.081 to 0.344 m/s for air. We con-

sidered the following values of the physical properties:

qL ’ 103 kg/m3, qG ’ 1.2 kg/m3, lL ’ 10ÿ3 Pa s, lG ’ 10ÿ5 Pa s and

r ’ 0.072 N/m. According to these values, we obtain Dq/q� 1

and Bo = 0.13. The values of USL, USG, ReSL, ReSG, WeSL, WeSG, as well

as the flow regimes observed in each experiment are shown in

Table 1.

In order to carry out the numerical simulations, some changes

in the values of two dimensionless parameters (ReSL and ReSG)

had to be considered. In case of taking the same values as in the

experiments, the method used for the calculation of the surface

tension contribution in the momentum equation, the Continuum

Surface Force [21], generates the appearance of spurious currents

(see next section for a detailed explanation). These currents induce

vortices at the interface without any physical meaning, destabiliz-

ing the simulations and strongly distorting the interface [20].

Numerical instabilities produced by the spurious currents depend

linearly on the ratio r/l. For the flow conditions considered here,

gas and liquid viscosities had to be increased one order of magni-

tude in the simulations in order to avoid the spurious currents.

Consequently, ReSL and ReSG were decreased one order of magni-

tude for the simulated flows, although both experiments and sim-

ulations were carried out at intermediate Reynolds numbers in the

laminar regime.

We considered in the simulations g = 0 (thus, Bo = 0), while the

values of WeSL and WeSG were the same as in the experiments. We

also used the same geometry of the capillaries as well as the same

gas and liquid superficial velocities as in the experiments. The lat-

ter was possible since the width of the capillary in the 2D simula-

tions corresponds to the hydraulic diameter of the experimental T-

junction. Under this assumption, the non-dimensional analysis re-

mains valid and the two-phase flow behavior in the simulations is

expected to be similar to the observed in the experiments. The

superficial velocities, the values of Re andWe, as well as the regime

observed in each simulation, are shown in Table 2. The correspond-

ing range of the Capillary number is CaSL = 0.015 ÿ 0.074.

As regards to the contact angle used in the simulations, its value

was chosen in agreement with the observations of the experimen-

tal videos (see Section 4.4).

3. Numerical code

The implemented VoF method in JADIM consists of an Eulerian

description of each phase on a fixed grid, the interface between the

two phases being calculated using the transport equation of the lo-

cal volume fraction of one of the phases. The two fluids are as-

sumed to be Newtonian and incompressible with no phase

Fig. 1. Detail of the bubble generator. Gas is injected from the top and liquid from

the left side.

Table 1

Superficial velocities, dimensionless numbers and flow regime observed in each

experiment.

USL (m/s) USG (m/s) ReSL ReSG WeSL WeSG Regime

0.106 0.242 106 24 0.16 0.81 Slug

0.106 0.344 106 34 0.16 1.64 Slug

0.318 0.081 318 8 1.40 0.09 Bubble-slug transition

0.318 0.242 318 24 1.40 0.81 Slug

0.318 0.337 318 34 1.40 1.58 Slug

0.531 0.068 531 7 3.92 0.06 Bubble

0.531 0.236 531 24 3.92 0.77 Bubble-slug transition

Table 2

Superficial velocities, dimensionless numbers and regime observed in each numerical

simulation.

USL (m/s) USG (m/s) ReSL ReSG WeSL WeSG Regime

0.106 0.242 11 2 0.16 0.81 Slug

0.106 0.344 11 3 0.16 1.64 Slug

0.318 0.081 32 1 1.40 0.09 Bubble-slug transition

0.318 0.242 32 2 1.40 0.81 Slug

0.318 0.337 32 3 1.40 1.58 Slug

0.531 0.068 53 1 3.92 0.06 Bubble

0.531 0.236 53 2 3.92 0.77 Bubble-slug transition



change. Under isothermal conditions and in the absence of any sur-

factant the surface tension is constant and uniform at the interface

between the two fluids. In such conditions, the velocity field U and

the pressure P satisfy the classical one-fluid formulation of the Na-

vier–Stokes equations:

r:U ¼ 0 ð3Þ
@U

@t
þ U �rU ¼ ÿ 1

q
rP þ 1

q
r � Rþ g þ Fr ð4Þ

where q and l are the density and dynamical viscosity, respec-

tively. R is the viscous stress tensor, g is the gravity and Fr is the

capillary contribution:

Fr ¼ ÿr
q
ðr � nÞndI ð5Þ

where n denotes by arbitrary choice the unit normal to the interface

going out from phase 1 and dI is the Dirac distribution associated to

the interface. The location of each phase is given by a scalar C

(called volume fraction, VoF function or color function) which obeys

the transport equation:

@C

@t
þ U � rC ¼ 0 ð6Þ

This volume fraction is C = 1 (resp. C = 0) in cells filled with liquid

(resp. gas) and 0 < C < 1 in cells cut by the interface. Local density

and dynamic viscosity are deduced from the value of C by linear

interpolation:

q ¼ CqL þ ð1ÿ CÞqG ð7Þ
l ¼ ClL þ ð1ÿ CÞlG ð8Þ

Compared to the classical VoF or Level Set methods [22–24], the

specific aspect of our approach concerns the technique used to con-

trol the stiffness of the interface. In our approach no interface

reconstruction or redistancing algorithm are introduced. Interface

location and stiffness are both controlled by an accurate transport

algorithm based on FCT (Flux-Corrected-Transport) schemes [25].

This method leads to an interface thickness of about three grid cells

by the implementation of a specific procedure for the velocity used

to transport C in a flow region of strong strain and shear [18].

The numerical description of the surface tension is one of the

crucial points for the study of systems where capillary effects con-

trol the interface shape. This interfacial force is solved using the

classical CSF (Continuum Surface Force) model [21] and is distrib-

uted over grid points neighboring the interface:

Fr ¼ ÿr
q
r � rC

krCk

� �

rC ð9Þ

The volumetric expression of the capillary term is composed of two

terms: one representing the curvature, H =r � (rC/krCk), and the

other representing the location/orientation, rC, of the capillary

forcing. A classical problem with this formulation is the generation

of spurious currents [26,27] due to a sharp variation of C throughout

the transition region between the two phases. In order to decrease

the intensity of spurious currents, a classical solution introduced by

Brackbill et al. [21] consists of the calculation of the surface curva-

ture from a smoothed density gradient while the discretization of

the delta function uses a non-smoothed density. The spurious cur-

rents in our code were characterized by [20] and their maximum

magnitude was found to evolve as �0.004r/l, in agreement with

other codes using the Brackbill formulation.

The volume fraction C and the pressure P are volume-centered

and the velocity components are face-centered (see Fig. 2). Time

advancement is achieved through a third-order Runge–Kutta

method for viscous stresses. Incompressibility is satisfied at the

end of each time step through a projection method. The overall

algorithm is second-order accurate in both time and space. A de-

tailed description is given in [18,20]. The stability of the numerical

simulations is ensured by taking the minimum time step that lo-

cally satisfies both the CFL criterion (¼
ffiffiffi

3
p

) and the capillary crite-

rion given by

Dtr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqL þ qGÞDx3
8r

r

For the simulations reported here, the time step imposed by Dtr is

the most restrictive and is about 3 orders of magnitude smaller than

the one imposed by the CFL criterion.

The Volume of Fluid (VoF) module of JADIM has been previously

validated and used for studies dealing with bubble dynamics in un-

bounded situations [17,18], droplets in rectangular mini-channels

[19] and sliding drops on inclined walls and in mini-channels

[20]. The code is used in this study to simulate the generation of

mini-bubbles in a T-junction.

4. Modeling of the T-junction

4.1. Obstacle management

The T-junction geometry and the associated boundary condi-

tions are managed by the introduction of a Boolean variable,

namely IJP. In practice, all the variables are defined from i = 1 to

Nx and j = 1 to Ny in the x-and y-direction, respectively. The cells

(i, j) containing the fluid are defined by IJP(i,j) = 1, while the value

IJP(i, j) = 0 is used for the cells without fluid (see Fig. 3). Note that

this general formulation makes also possible the treatment of

obstacles located inside the fluid domain.

Hence, the calculation of the transport of the VoF function C(i, j)

is done if IJP(i, j) = 1, and tests using IJP allow to detect the bound-

Fig. 2. Staggered mesh variable locations and corresponding control volume.

Fig. 3. Variable locations in the fluid domain.



aries of the fluid domain. Considering the control volume of the

VoF function C(i, j), boundary conditions are imposed on the west

face if:

IJPði; jÞ ¼ 1 and IJPðiÿ 1; jÞ ¼ 0; ð10Þ

on the east face if

IJPði; jÞ ¼ 1 and IJPðiþ 1; jÞ ¼ 0; ð11Þ

on the south face if

IJPði; jÞ ¼ 1 and IJPði; jÿ 1Þ ¼ 0; ð12Þ

and on the north face if

IJPði; jÞ ¼ 1 and IJPði; jþ 1Þ ¼ 0 ð13Þ

The momentum balance is calculated for the components of the

velocity located inside the fluid domain and their calculation only

involves variables located in the fluid domain or located on the

boundaries. Due to the staggered mesh and the location of U(i, j)

and V(i, j) (see Fig. 2), the momentum balance is calculated for the

velocity component U(i, j) if:

IJPði; jÞ ¼ 1 and IJPðiÿ 1; jÞ ¼ 1 ð14Þ

and for the component V(i, j) if

IJPði; jÞ ¼ 1 and IJPði; jÿ 1Þ ¼ 1 ð15Þ

Similar tests as (10)–(13) are done in order to detect the boundaries.

Concerning the Poisson equation, all the nodes (fluid and not

fluid) are considered for the resolution. The pressure nodes inside

the fluid domain are not connected to the pressure nodes outside

the fluid domain since the boundary condition on the wall for

the auxiliary potential is:

@U

@n
¼ 0 ð16Þ

For the pressure nodes located outside the fluid domain, all the

coefficients of the matrix are 0 on the corresponding line except

the diagonal term equal to 1. Thanks to the finite volume formula-

tion and the staggered mesh, the calculation of the source term of

the Poisson equation (divergence of the predictor velocity) only in-

volves velocities in the fluid domain or normal to the boundaries

(see Fig. 3). For the pressure nodes outside the fluid domain the

source term is imposed to 0.

4.2. Mesh

Simulations were performed in a 2D domain with a regular

mesh, referred as M1. The overall dimensions of M1 were

10 mm � 2 mm (see Fig. 5). The gas and liquid capillary width

was 1 mm. M1 contained 600 � 180 cells, and a vertical diminish-

ing was applied in order to refine it at the T-junction area (see de-

tails in Fig. 4a–c). The normalized size by the capillary diameter of

the largest and smallest cells was 1.67 � 10ÿ2 � 2.45 � 10ÿ2 and

(a)

(b) (c)

Fig. 4. Mesh used in the simulations. Details of the mesh at (a) the T-junction zone, (b) the gas thread formation zone, and (c) zone at the bottom of the bubble, where the

vertical diminishing can be observed. The boundary of the bubble is also plotted as a guideline to the eyes. It does not correspond to the actual thickness of the interface

(about 3 grid cells).



1.67 � 10ÿ2 � 1.00 � 10ÿ2, respectively. A less refined mesh (re-

ferred as M2), with 300 � 90 cells, as well as a more refined mesh

with 800 � 240 cells (referred as M0) were also tested. Bubbles

with similar regularity and shape were obtained by means of the

three tested meshes. In order to test the grid convergence, relative

errors were calculated from the following expression:

�p ¼
kpi ÿ p0k

p0

ð17Þ

where �p corresponds to the relative error of a given parameter pi
obtained with the mesh Mi (i = 1,2) with respect to the value p0 ob-

tained by the more refined mesh M0. Table 3 shows these relative

errors for meshes M1 and M2, pi being the bubble velocity UG, the

generation frequency f, as well as the bubble and unit cell lengths

(LB and LUC, respectively). Tests were carried out with

USL = 0.318 m/s and USG = 0.242 m/s. A detailed analysis on the

behavior of UG, f, LB and LUC is presented in Section 5. As expected,

relative errors were smaller in mesh M1 than in M2. It is clear from

the table that the overall algorithm for the calculation of the bubble

characteristics is first-order accurate in space, which is attributed to

the numerical squeezing procedure discussed in Section 4.5. The

difference between M1 and M0 being less than 1%, the mesh M1

was used for the simulations reported in this work.

Three different time steps Dt0 = 5 � 10ÿ7, Dt1 = 10ÿ6, and

Dt2 = 1.31 � 10ÿ6 were tested in oder to analyze the time conver-

gence of the simulations. Tests were performed with

USL = 0.318 m/s and USG = 0.242 m/s. Table 4 shows the relative er-

rors computed for Dt1 and Dt2 by means of Eq. (17), in which the

value of pi was obtained with a time step Dti (i = 1,2). The results

obtained with Dt0 were taken into account in Eq. (17) as the refer-

ence values. The relative errors are found to decrease when

decreasing the time step, showing the convergence. The corre-

sponding accuracy for the bubble characteristics is found to be

first-order in time due to the numerical squeezing procedure. Con-

sidering the differences shown in Table 4, the simulations pre-

sented in Section 5 were performed with a time step

Dt = Dt2 = 1.31 � 10ÿ6.

4.3. Contact angle modeling

A constant contact angle associated to a non slip condition was

imposed at the contact point between the gas–liquid interface and

the walls defining the T-junction. The corresponding numerical

procedure is described in detail in Dupont and Legendre [20].

The value of the contact angle is necessary for the calculation of

the capillary term contribution given by Eq. (9) for cells in contact

with the wall. The numerical scheme consists in expressing the va-

lue of the gradient rC of the volume fraction as a function of the

contact angle h by means of the relation n =rC/

krCk = sinhnk + coshn\, where n is the normal to the interface

and nk and n\ are the unit vectors in the directions parallel and

perpendicular to the wall, respectively. In order to simplify the cal-

culation ofrC at the wall involved in the determination of the cap-

illary force given by Eq. (9), a ghost value for C at the wall is

introduced. A validation of the procedure for both constant and dy-

namic angles has been recently presented by Dupont and Legendre

[20].

4.4. Boundary conditions

Results were found to be very sensitive to the conditions im-

posed on the boundaries of the computational domain. These con-

ditions are summarized in Table 5 for each boundary defined in

Fig. 5.

The successful generation of bubbles relies especially on a good

selection of boundary conditions associated to wall 1, since they

determine the curvature of the rear interface and therefore the

bubble shape. The aim of this work is to provide numerical simu-

lations for the description of the hydrodynamic aspects of bubble

generation for given wetting conditions. The study of the wetting

effects on the bubble generation is in itself a very interesting sub-

ject but it is not addressed here. In order to make possible some

relevant comparisons with the experiments, it is important to

choose an appropriate set of parameters for the wetting conditions.

However, the wetting properties of the solid surface used in the

experiments are not known. Different values of the contact angles

are clearly shown in the experimental images (see Fig. 1). In order

to overcome this point, we have deduced the values of the contact

angles from the experimental images in one case, and the same

wetting conditions have been used for all the simulations reported

in this paper.

Considering wall 1, the contact angle determines the attach-

ment of the gas to the vertical capillary (see Fig. 6). Fixing a 0° con-

tact angle resulted in a too restrictive condition that forced the gas

to remain attached at the upper side of the wall and the rear inter-

face of the bubble to tilt back excessively in comparison with

experiments. On the other hand, imposing a 90° contact angle

quickly stabilized the gas at the lower corner of the wall resulting

in unrealistic interfaces. We used images obtained from the exper-

iments in order to determine the appropriate contact angle to im-

pose on wall 1 (see Fig. 7). The capillary curvature and the

insufficient illumination were disadvantages for the quality of

Table 3

Bubble velocity, generation frequency, and bubble and unit

cell lengths relative errors computed with Eq. (17) for

meshes M1 and M2. Results from M0 are used as a reference.

Simulations were carried out with USL = 0.318 m/s and

USG = 0.242 m/s.

M1 M2

�UG
� 10ÿ3 8.8 15.6

�f � 10ÿ3 2.4 5.0

�LB � 10ÿ4 1.3 3.5

�LUC � 10ÿ3 6.1 12.2

Table 4

Bubble velocity, generation frequency, and bubble and unit

cell length relative errors computed with Eq. (17) for time

steps Dt1 and Dt2. Results from Dt0 are used as a reference.

Simulations were carried out with USL = 0.318 m/s and

USG = 0.242 m/s.

Dt1 Dt2

�UG
� 10ÿ3 2.1 6.3

�f � 10ÿ3 1.2 3.7

�LB � 10ÿ2 1.1 2.5

�LUC � 10ÿ3 9.1 19.3

Table 5

Boundary conditions imposed on the system.

Wall Boundary conditions

1 h = 25°

2 Gas inlet: imposed USG; hydrophobic: h = 180°

3 h = 45°

4 Hydrophilic h = 0° and wettability

5 Outlet

6 Hydrophilic h = 0° and wettability

7 Liquid inlet: imposed USL

8 Hydrophilic h = 0° and wettability



the measurements. In addition, liquid drag and gas fluctuations

after the breakup of the bubble made the contact angle to be dy-

namic. However, selecting a fixed value h = 25°, we obtained a gen-

eration of bubbles whose interface shape at wall 1 was in good

agreement with experimental observations. We also observed that

small variations (±15°) around the selected value do not seem to

affect noticeably the results. One can observe in Fig. 6 the different

interfaces obtained with h = 0, 25 and 90°, where the case with an

intermediate value shows a shape closer to the experiments. Note

that during the bubble generation the contact line in wall 1 is first

observed to move from the liquid to the gas (advancing angle) be-

fore it stops and in wall 3 the contact line is observed to be fixed so

that both contact angles during bubble generation are somewhere

in the hysteresis. A 45° contact angle was imposed on wall 3 to

force the forward inclination of the frontal interface in agreement

with the experimental image. Nevertheless, some changes in the

contact angle value around 45° did not show any significant impact

on the results.

As regards to walls 4, 6, and 8, hydrophilic (h = 0°) and wet

boundary conditions were imposed in order to prevent bubbles

from attaching to them. Note that the value of the contact angle

in these walls have not an effect on the simulations. Walls 2 and

7 were defined as fluid inlets and wall 5 was defined as a fluid out-

let. The corresponding gas and liquid superficial velocities were

thus imposed on walls 2 and 7.

4.5. Gas squeezing

According to the experimental observations, bubble generation

results from the breakup of a gas thread that develops after the T-

junction. The explanation for the breakup is supported by different

theories. Its cause can be explained by the Plateau–Rayleigh insta-

bility [28] or by the effects of the flowing liquid from the tip of the

thread to the neck where pinch-off occurs [29]. In 2D, the surface

tension has a stabilizing effect and opposes any deformation of

the interface tending to create a bubble. This is in agreement with

our simulations since no natural pinch-off has been observed for

the range of parameters covered by our study. An example is

shown in Fig. 8, where a long thread of gas generated after the T

junction is clearly observed. It is found to be very stable and re-

mains after the bubble exits the computational domain. In addi-

tion, the thread width, h, was also found to be grid independent

when refining the grid. A comparison between the gas thread gen-

erated for the three different meshes considered (M0, M1 and M2)

was carried out. To this end, h was measured at x = 2 mm (see x-

axis in Fig. 5), which corresponds to one of the corners where the

two capillaries intersect. At this corner, h reaches a minimum in

our simulations in agreement with the experiments. Fig. 9 shows

the time evolution of h normalized with the capillary diameter

for meshesM0,M1 andM2. The figure clearly confirms the grid con-

vergence of the simulations.

In order to be able to generate bubbles in a 2D geometry, an

artificial gas squeezing mechanism was introduced in JADIM.

According to the experimental observations used for comparison

Fig. 5. Boundaries, overall dimensions and coordinate axis of the system.

Fig. 6. Influence of the contact angle imposed on wall 1 on the interface shape, for

USL = 0.318 m/s and USG = 0.182 m/s. Lines correspond to h = 0, 25 and 90°.

Fig. 7. Contact angle at wall 1 measured from experimental images.

Fig. 8. Gas thread generation without squeezing. USL = 0.318 m/s and

USG = 0.182 m/s.

Fig. 9. Time evolution of the normalized thread width �h for meshes M0, M1 and M2.

USL = 0.318 m/s and USG = 0.242 m/s.



in the next section (see Figs. 12–14), the gas squeezing is generated

where the curvature H of the interface cancels. An inflection point

(H = 0) is thus present at the interface. Close to this point the gas

thread reaches a minimum, making possible the development of

the squeezing mechanism. The same precursor behavior is ob-

served in our 2D simulations. Thus, we have implemented the

squeezing of the gas thread at the inflection point location

(H = 0) when h, the thread width at the right corner of the T-junc-

tion located at x = 2 mm, reaches its minimum stabilized value. The

time evolutions of h and the x ÿ position of the inflection point xbp
are shown in Fig. 10 in order to illustrate the numerical procedure.

h and xbp have been normalized by the capillary diameter. Fig. 10

shows a period of bubble generation once the steady state has been

reached. The plot starts just after the detachment of the previous

bubble. Consequently, h starts from a minimum value correspond-

ing to the beginning of the growth of a new bubble (point (a) in

Fig. 10). Then, h increases and reaches a maximum value at point

(b). The rear interface of the bubble is rounded during the early

stages of the bubble formation and it becomes mainly flattened

once h has reached its maximum value. Next, h decreases and

the sign of the interface curvature changes (point (c)). At this mo-

ment the time evolution of the point inflection location xbp starts.

The evolution of xbp shows that the inflection point moves down-

stream as the gas thread and the bubble grow. When h reaches

its minimum at the right corner of the T-junction the squeezing

procedure is applied (point (d) in Fig. 10). The artificial gas squeez-

ing mechanism consists in the removal of the gas cells where H = 0,

corresponding to x = xbp. For this purpose, the cells (i, j) and (i + 1,j)

are filled with liquid if i satisfies xCi,j 6 xbp 6 xC i + 1,j, where xC i,j is

the x-coordinate of C in cell (i, j). The total gas volume lost under

the application of this artificial squeezing mechanism is about a

few grid cells and can be considered negligible compared to the

bubble volume. This procedure is in agreement with experimental

observations where the 3D instability squeezes the thread at the

inflection point. The bubble thread before squeezing in both exper-

iments and simulations is shown in Fig. 11.

After squeezing, the shape of the injected gas jet is naturally ad-

justed as a result of the action of surface tension, generating the

appropriate initial conditions for the following bubble. Although

the initial shape of the gas jet in the simulations had a strong influ-

ence on the first generated bubble, it does not show any influence

on successive bubbles. The second generated bubble had the same

size as the following ones, fixing the periodicity of the process.

Thus, we can conclude that the initial shape of the gas jet does

not play any significant role in the generation of a train of bubbles.

This turned out to be an essential feature of the numerical simula-

tions, since no theoretical predictions or experimental data on the

initial shape were available.

5. Results and discussion

A set of seven numerical simulations were performed by means

of JADIM. We used the same injection conditions (liquid and gas

superficial velocities) as in the experiments. Tables 1 and 2 show

the injection conditions as well as the observed flow patterns in

the experiments and simulations, respectively. Simulations suc-

cessfully reproduced different trains of bubbles (see comparison

with experiments in Figs. 12–14, in which the process of genera-

tion of a single bubble is shown in each case), obtaining a regular

periodicity in the bubble generation and regularity in the bubble

size, as will be discussed in Sections 5.2 and 5.3, respectively. As

can be observed, the time required for the formation of a bubble

is shorter in the numerical simulations than in the experiments,

which will be discussed in Section 5.2.

Both bubble and slug flow patterns, defined as proposed by

Dukler et al. [30], were observed in the simulations. Under this def-

inition, the transition between bubble and slug regimes is consid-

ered to take place when the bubble diameter reaches the value of

the capillary diameter.

For a given USG and smaller values of USL than those proposed

here, a marginal churn flow pattern was also observed in the

experiments [6], although it is not considered in this numerical

study. Moreover, we did not expect to observe annular or stratified

flow patterns due to the small values of USG and the capillary diam-

eter (smaller than the critical diameter described in Suo and Grif-

fith [31]), respectively.

Fig. 12 shows a slug flow obtained with USL = 0.106 m/s and

USG = 0.344 m/s. A slight increasing of the value of USG would cause

the flow to enter into the slug-churn transition region. Figs. 13 and

14 show examples of slug and bubble flow patterns obtained with

USL = 0.318 m/s and USG = 0.242 m/s, and USL = 0.531 m/s and

USG = 0.068 m/s, respectively. Clear similarities in the bubble shape

in both patterns between experiments and numerical simulations

can be observed. Bullet-shaped bubbles rounded at the front and

flattened at the rear were obtained in the slug flow. Bubbles gener-

ated in the bubble flow regime were deformed as a consequence of

being longitudinally dragged by the continuous phase. Numerical

simulations reproduced the experimentally observed fluctuations

at the back of the bubbles following the breakup of the gas thread

and the subsequent action of surface tension to reduce the

interface.

Note that in the simulations the bubbles are moving along the

centerline while in the experiments gravitational effects are still

acting, which results in the bubble displacement from the capillary

centerline.

The flow patterns obtained in the experiments and numerical

simulations are compared in Fig. 15 for the same gas and liquid

superficial velocities. As can be observed, the same flow regimes

were obtained in experiments and numerical simulations when

Fig. 10. Time evolution of the normalized thread width, �h, and the normalized

position of the inflection point, �xbp . Details of the T-junction at (a) detachment of a

bubble, (b) maximum �h, (c) appearance of the inflection point, and (d) gas thread

breakup. USL = 0.318 m/s and USG = 0.242 m/s.

Fig. 11. Comparison of the bubble thread just before being squeezed in (a)

experiments and (b) numerical simulations. USL = 0.318 m/s and USG = 0.081 m/s.



Fig. 12. Slug flow close to the slug-churn transition in (left) experiments and (right) numerical simulations. USL = 0.106 m/s and USG = 0.344 m/s. Time (ms) is indicated in the

upper right corner.

Fig. 13. Slug flow in (left) experiments and (right) numerical simulations. USL = 0.318 m/s and USG = 0.242 m/s. Time (ms) is indicated in the upper right corner.

Fig. 14. Bubble flow in (left) experiments and (right) numerical simulations. USL = 0.531 m/s and USG = 0.068 m/s. Time (ms) is indicated in the upper right corner.



the superficial velocities of the experiments were used as inputs in

the simulations (see also Tables 1 and 2).

5.1. Bubble velocity and void fraction

The bubble velocity is known to exceed the average speed of the

fluid and is usually expressed using the drift-flux relationship,

which we express here considering zero-gravity conditions:

UG ¼ C0ðUSL þ USGÞ ð18Þ

Different values for C0 can be found in the literature depending on

both the geometry and the effects of inertia, viscosity and surface

tension. According to Nicklin et al. [33], the bubble velocity is

close to the axis liquid velocity far upstream so that C0 is about

2 for laminar pipe flow and about 1.2 for turbulent pipe flow. This

is confirmed by the experiments of Colin et al. [34], Bousman

et al. [35] where C0 is found to be close to 1.2 for turbulent pipe

flow, as well as by the experiments of Taylor [36] at small

Reynolds number where a nearly constant value of C0 � 2.3 is

observed for Capillary number CaL = lLUL/r larger than 1.5. In

the limit of small both Capillary and Reynolds numbers, the

difference between bubble velocity and liquid velocity is found

to evolve as Ca2/3 [37] so that C0 tends to unity as confirmed

by recent experiments [38,39].

Concerning 2D channel flows, the same trends are expected.

For laminar flows, the inviscid numerical solution reveals that

C0 = 1.4 [40], and Navier Stokes simulations for laminar flow but

in the limit of both large Reynolds and Capillary numbers gives

C0 = 1.37 [41]. This is in agreement with the consideration of

Nicklin et al. [33] that predicts C0 = 1.5 for the laminar channel

flow. The opposite limit for small Reynolds and Capillary numbers

is C0 = 1.

We estimated the bubble velocity in experiments and simula-

tions from the measurement of the displacement of the front part

of the bubble and the time employed in this displacement.

Fig. 16 shows the bubble velocity as a function of the mixture

superficial velocity UT = USL + USG. A linear behavior can be ob-

served in both the experiments and the numerical simulations. Fit-

ting the simulation data gives a slope C0 = 1.21, which agrees with

the value reported in the literature since C0 is expected to range

from 1 to 1.4 in 2D. The fitting of the experimental data shown

here gives a slope C0 = 1.08 which is also in agreement with previ-

ous results in pipes.

Rewriting Eq. (18), a prediction of the mean void fraction as a

function of the ratio between the gas and liquid superficial veloci-

ties can be obtained:

a ¼ 1

C0

1þ 1
USG

USL

 !ÿ1

ð19Þ

The mean void fraction was estimated from the bubble velocity and

the gas superficial velocity with:

a ¼ USG

UG

ð20Þ

Fig. 17 shows the mean void fraction as a function of the ratio

between gas and liquid superficial velocities. The theoretical pre-

diction given by Eq. (19) is plotted for both experimental and

numerical simulations data by using their respective C0. The

behavior of the void fraction obtained in the simulations repro-

duces the experimental behavior and coincides with the theoreti-

cal prediction. In agreement with the slightly larger UG observed

in simulations in comparison with experiments in Fig. 16, one

can observe smaller void fraction values in the simulations than

in the experiments in Fig. 17.

5.2. Bubble generation frequency

In order to ensure regularity in the formation of bubbles, we

generated trains of bubbles containing at least four of them. The

Fig. 15. Flow pattern map obtained from experimental and numerical data. Fig. 16. Bubble velocity as a function of the mixture superficial velocity. Symbols:

experimental and numerical data. Lines: linear fittings of experimental and

numerical data.

Fig. 17. Void fraction as a function of the ratio between gas and liquid superficial

velocities. Symbols: experimental and numerical data. Lines: theoretical prediction

given by Eq. (19).



generation frequency was estimated by measuring the time re-

quired to generate the bubbles. The first bubble of each train,

which was strongly dependent on the initial geometry as previ-

ously remarked, was not considered.

Fig. 18 shows the bubble frequency as a function of the super-

ficial gas velocity at USL = 0.106, 0.318 and 0.531 m/s for both

experimental and numerical simulation data. Lines correspond to

the fitting of the experimental data [6]. It can be observed that

the frequency increases with the superficial liquid velocity. Indeed,

the drag due to the liquid cross-flow increases when the superficial

liquid velocity is increased, thus causing the reduction of the gas

thread and bubble size [5,6].

Although the simulation data are qualitatively very similar to

the experimental results, it can be observed that frequency values

are always slightly larger in the simulations. This is associated to

the observation of smaller bubbles in the simulations. This discrep-

ancy could be explained by the fact that simulations were run in

2D and with liquid viscosities different than the experimental ones.

However, there is no clear evidence of which of these two effects

plays a more important role in this case.

The dimensionless frequency, or Strouhal number St = fU/UG, is

represented in Fig. 19 as a function of the void fraction for both

experiments and numerical simulations. Line represents the theo-

retical approximation for St in the saturation regime, given by [32]:

St ¼ 0:6ð1ÿ C0aÞ ð21Þ

For a > 0.2 experimental and numerical data show a linear behavior

in accordance with Eq. (21). Points with a < 0.2 correspond to the

linear regime and therefore we could not expect an agreement with

Eq. (21). Once again, the similarity is noticeable between the exper-

imental and simulation data despite the different geometry.

5.3. Bubble and unit cell lengths

The bubble length LB was directly measured from simulations

and compared to the experimental data. Bubble length, considered

as the gas displacement during the time required to generate one

bubble 1/f, can be estimated from:

LB ¼ USG

f
ð22Þ

Fig. 20 shows the dimensionless measured bubble length in simula-

tions and experiments as a function of USG/fU, as well as the ex-

pected behavior given by Eq. (22). One can observe that bubble

lengths were underpredicted by Eq. (22). This disagreement can

be explained by the fact that Eq. (22) corresponds to the length that

bubbles would have in case they filled the whole capillary cross-

section and were not longitudinally deformed by the liquid drag.

Fig. 21 shows the distinction between the bubble length given by

Eq. (22) and the actual bubble length which was measured in the

simulations and experiments. It can also be observed that the

experimental bubble lengths are slightly greater than the ones in

the 2D simulations, which agrees with the fact that the generation

frequencies are smaller in the experiments.

According to previous analyses [4–7], the bubble generation fre-

quency is basically controlled by the gas and liquid flow rates, and

hence must be LB. Fig. 22 shows the dimensionless bubble length as

a function of the liquid superficial velocity. An increase in bubble

Fig. 18. Bubble frequency as a function of the superficial gas velocity for different

superficial liquid velocities. Symbols: experimental and simulation results. Lines:

fitting of the experimental data [6].

Fig. 19. Strouhal number as a function of the void fraction. Symbols: experimental

and simulation data. Line: theoretical approximation (Eq. (21)).

Fig. 20. Dimensionless bubble length as a function of USG/fU. Symbols: experimental

and numerical data. Line: theoretical prediction given by Eq. (22).

Fig. 21. (Left) bubble length given by Eq. (22), and (right) actual bubble length.



size can be observed when increasing USG, as well as a decrease in

bubbles size is observed when USL is increased. In addition, a linear

relationship between LB and the gas and liquid superficial veloci-

ties ratio can be observed in Fig. 23, where the same slope of

�1.14 is obtained in the experiments and in the numerical simula-

tions. The behaviors shown in Figs. 22 and 23 are in agreement

with recently reported results [7,42].

A high regularity in the generation of bubbles and in the bubble

size was observed in the simulations. The standard deviation ob-

tained was smaller than 0.1, being this value two orders of magni-

tude smaller than the mean bubble length. Therefore, we assumed

that each train of bubbles could be represented by a unit cell com-

posed of one bubble and the liquid between two bubbles. The unit

cell length LUC was calculated as the distance between the tip of

two consecutive bubbles. Considering that 1/f is the time required

for a unit cell moving at a velocity UG to move a distance LUC, the

unit cell length can be expressed by:

LUC ¼ UG

f
ð23Þ

Fig. 24 shows the dimensionless measured unit cell length in

simulations and experiments as a function of UG/fU and the ex-

pected behavior given by Eq. (23). In this case, both experiments

and simulations coincide with the prediction.

6. Conclusions

We have presented a study of the formation of minibubbles in a

T-junction by means of the fluid dynamics numerical code JADIM.

Numerical simulation results were compared with previous exper-

imental works.

A dimensional analysis based on the Buckingham’s p theorem

was carried out in order to determine the dimensionless numbers

controlling the generation and detachment of bubbles in the sys-

tem. Simulations were carried out with the values of the gas and

liquid superficial velocities used in the experiments. Only viscosity

had to be changed in simulations from the experimental values in

order to avoid the development of numerical spurious currents.

The numerical modeling of the T-junction required an accurate

selection of boundary conditions and, in particular, of the contact

angle between the gas–liquid interface and the walls of the system.

Considering that we aimed to reproduce by means of numerical

simulations in 2D the existing 3D experimental results, we fo-

cussed on the squeezing process of the gas thread in the T-junction.

Since forces acting on the gas thread depend on the dimensionality,

an artificial squeezing mechanism based on the observation of the

thread behavior from the experimental images was implemented

in the numerical code in order to get rid of 2D effects.

The numerical generation of a train of bubbles in a mini-chan-

nel in conditions relevant to microgravity was satisfactorily ob-

tained. In particular, numerical simulations reproduced the

bubble and slug flow patterns observed experimentally. We ob-

tained results on the behavior of bubble velocity, void fraction,

bubble generation frequency and bubble and unit cell lengths. A

stable periodicity during the bubble generation and regularity in

bubble size were observed. A linear and a saturation regimes in

the bubble frequency as observed in the experiments were repro-

duced. Bubble shape and bubble position in the capillary centerline

agreed with the behavior observed in experiments. Bubble length

and unit cell length were also compared with experimental data.

Thus, since 2D simulations and 3D experimental results were

very similar, we can conclude that the squeezing process and, in

particular, the orientation of the gas thread in time, fully determine

the characteristics of the generated flows. In fact, we have shown

that 2D numerical simulations can reproduce 3D flow characteris-

tics in other regimes of the T-junction, provided that an adequate

squeezing mechanism is implemented. In addition, when no artifi-

Fig. 22. Dimensionless bubble length as a function of the liquid superficial velocity.

Symbols: experimental and numerical data.

Fig. 23. Dimensionless bubble length as a function of the gas and liquid superficial

velocities ratio. Symbols: experimental and numerical data. Lines: fittings.

Fig. 24. Dimensionless unit cell length as a function of UG/fU. Symbols: experi-

mental and numerical data. Line: theoretical prediction given by Eq. (23).



cial squeezing mechanism is applied in our simulations, one would

expect to generate flows similar to those which would be observed

in 2D or quasi-2D experiments.

We conclude that JADIM is an appropriate tool for the numeri-

cal study of two-phase flows generated in a T-junction. Future

works will focus on 3D simulations to make possible a direct com-

parison with experiments, specially concerning the pinch-off

mechanism. This may allow a future exploration of parameter re-

gimes of the system which are difficult to achieve experimentally.
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