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1. INTRODUCTION 

Lignocellulose biomass is one of the most abundant renewable resources and certainly one of the least 
expansive. lt was considered as a glucose source for obtain energetic or chemical molecules by 
bioconversion. This enzymatic conversion was sa complicate therefor a better scientific understanding 
and, ultimately, good technical control of these critical biocatalytic reactions, which involve complex 
matrices at high solid contents, is currently a major challenge if biorefining operations are ta become 
commonplace. Amongst the main parameters ta be studied, the rheological behaviour of the hydrolysis 
suspension and the fibre particle size, stand out as a major determinants of process efficiency and 
determine equipment ta be used and the strategies applied. Rheological behaviour of fibre suspensions is 
usually described by an apparent yield stress, a shear viscosity (Hershei-Buckley or Bingham models) and 
elasticity. During biological hydrolysis, the apparent viscosity of suspensions decreases in parallel with a 
decrease of particle size (Nguyen et al., 2013). This study focuses on the characterisation of cellulose 
suspensions (Microcrystalline cellulose, Whatman paper and extruded paper pulp) during enzymatic 
hydrolysis using in-situ and ex-situ physical analysis. The complex relationships between fibre structure, 
degradation, chemical composition and rheological behaviour was scrutinised. 

2. METHODS 

2. 1. Experimental setup 

The experimental set-up consists of a tank and an impeller system connected ta a viscometer working at 
imposed speed (Viscotester HaakeVT550, Thermo Fisher Scientific, ref: 002-7026). This allows on-line 
torque measurements. The rotational speed ranged between 0.5 and 800 rpm and torque between 1 and 
30mN.m. The bioreactor was a homemade glass tank {diameter: 130mm, Hmax: 244mm, V: 2.0L) fitted 
with a water jacket. Suspension homogeneity was maintained with a shaft equipped with double impeller. 
The first impeller consists in a 3 inclined blades (diameter: 73.5mm, angle: 45°, h=38mm) located at 
75mm height from the bottom ta ensure mixing. The second impeller is a close bottom mixer including 2 
large blades {diameter: 120mm, h=22mm) ta avoid substrate decantation. Temperature was controlled by 
circulation (cryostat Haake DC30 and 1<20) through the water jacket. The viscometer and the cryostat 
were controlled by software from HaakeRheoWin Job Manager (Thermo Fisher Scientific) which also 
ensured data recording (temperature, torque, mixing rate). A focused bearn reflectance sensor was 
located in bulk in arder ta measure the distribution of particle chords. 

2.2. ln-situ and ex-situ rheometry 

Power consumption curve was identified and modelled with the semi-empirical madel (Churchill, 1983) 
including laminar and transition regions. lt was considered as the reference curve: 



((](; )n Jy,; Np = :e + (Np0 )n with n=0.834, Kp=98.1, Np0=0.25. The in-situ viscosity of suspension was 

determined using the torque and mixing rate measurements and considering the Metzner & Otto concept 
(1957) and Rieger and Novak's approach (1973). 
Ex-situ viscous and elastic modules were measured by rheometer (MARS Ill, Thermo Scientific, 3.1 o·8 < C 
< 0.2 N.m) under oscillation with parallel striated plate (D: 60mm, gap: 1 mm, frequency range: 0.05 to 
20Hz, 20°C). 

2.3. ln-situ and ex-situ granulometry 

ln-situ particle size characterization was realised by chard length measurement of particles using a solid­
state laser light source (FBRM G400, Mettler-Toledo, range: 0.1 to 1 OOO~o~m). 

Ex-situ particle size distribution was determined through laser diffraction analyses (Mastersizer 2000 
Hydra, Malvern Instruments, red À=632.8nm and blue À=470.0nm lights, range: 0.02 to 20001Jm). 

2.3. Enzyme, substrate and operation conditions 

Three cellulose matrices were studied in arder to investigate different fibre morphologies and particle size 
distributions (Table 1 ): microcrystalline cellulose (ACROS Organics), a dried and milled Whatman paper 
(Whatman International Ltd., Maidstone, England) and paper-pulp (Tembec Co., Saint-Gaudens, France, 
type FPP31) after extrusion. The Tembec paper-pulp was made from coniferous wood and contained 
26.1% dry matter (75.1% cellulose, 19.1% hemicellulose, 2.2% Klason lignin and ash). An enzyme 
cocktail (ACCELLERASE® Genecor) containing exoglucanases, endoglucanases (2800 CMC U/g ie. 
57±2.8 FPU/ml cited by Alvira et al., 2011 ), hemicellulases and 13- glucosidases (775 pNPG Ulg) was 
used. lts optimal temperature and pH were sooc (range 50 to 65°C) and pH 4.8 (range 4 to 5). A dosage 
rate of 0.1 - 0.5 ml per gram of cellulose. 

Table 1: Substrate properties (MCC: microcrystalline cellulose. WP: Whatman paper and PP: extruded 

Dry matter (%) 
Cellulose(%) 
D[4,3] (IJm) 
p (g/L) 
Crystallinity (%) 

paper pulp) 
MCC WP 
99 99 
100 90 
70 250 
1623 ± 28 1200 ± 2 
79.0 88.6 

pp 
26 
75 
190 
1346 ± 2 
64.5 

Enzymatic hydrolysis was carried out at 40°C due to energy saving and the microbiological step du ring the 
fermentation process considering a simultaneous saccharification and fermentation (SSF) operation. The 
pH of the medium was adjusted to 4.8 using a solution of 85% orthophosphoric acid. To avoid 
contamination, 201JL of a solution of chloramphenicol (5 g/L) was added. Then enzymes were added when 
the suspension reached homogeneity and the torque values were stable. Hydrolysis was investigated over 
24h at a mixing rate of 100 rpm and using the selected concentrations: 1%, 3%dm at different 
enzyme/substrate ratios: 0.1 and 0.5 mUg cellulose. Samples were taken manually by a 6mm diameter 
flexible connected to a 50ml syringe. Each sample was about 15ml, sufficient to perform analyses on 8 
sub-samples. Glucose concentration was checked in the supernatant along enzymatic hydrolysis 
(Analyser YSI madel 27A; Yellow Springs Instruments, Yellow Springs, Ohio, range 0-2.5g/L ± 2%, 
sample volume=251JL). 

3. RESUL TS AND DISCUSSIONS 

3. 1. ln-situ and ex-situ rheometry 



Under the action of enzymes, the cellulose chains were eut giving simple products such as glucose 
(ultimate monomer). The glucose concentration (i.e bioconversion percentage) was increased with the 
time of hydrolysis (between 1 and 24 hours) to reach a final value that was very different for the three 
substrates (Table 2). For the lowest enzyme/substrate ratio, the enzymatic attack strongly depends on 
fibre structures and substrate compositions; by consequence the bioconversion rate of MCC was higher 
than PP and WP. On the contrary, this dependance was limited when the ratio enzyme/substrate 
increased. For MCC and PP, at the ratio 0.5 mllg cellulose, their bioconversion rates reached 61% and 
72% respectively which were superior to the results reported by Dasari et al., 2007; Pereira et al., 2011 
and Szijarto et al., 2011 (bioconversion rates between 3.6% and 45%). 

Substrate 
MCC 
MCC 
pp 
pp 
WP 

Table 2. Bioconversion percentage at 24h of hydrolysis 
Concentration (%dm) Ratio enzyme/substrate Bioconversion rate(%) 

1% 0.1 ml/g cellulose 34.8 
1% 0.5 ml/g cellulose 61.2 
1% 0.1 mllg cellulose 17.3 
3% 0.5 ml/g cellulose 72.1 
1% 0.1 ml/g cellulose 12.8 

The changes in the physical appearance of the slurry are associated to the biochemical changes of fibres. 
A sharp decrease of viscosity was observed with WP and PP during hydrolysis whereas with MCC its 
viscosity remain stable having value of water viscosity (=0.6mPa.s) (Fig 1-A). Under 100 rpm, it was the 
same observed phenomena for WP, 0.62 to 0.006 Pa.s and PP, 0.574 to 0.007 Pa.s. However, this 
reduction is faster for WP than for PP. lt takes 3h for one reduction of 100 times with WP comparing 10h 
with PP. This evolution of viscosity is supported by the literature over a wide range of matrices, particle 
sizes and enzyme/cellulose ratios (Geddes et al., 2010; Nguyen et al., 2013; Pereira et al., 2010; Um. 
2007; Wiman et al., 2010). The ex-situ rheometry results showed a typical viscoelastic behaviour being 
confirmed bath in the initial step and during hydrolysis for WP and PP (for MCC, it is impossible to realise 
this measurement because of substrate decantation). The elastic behaviour was predominately comparing 
with viscous module; however these two modules decreased regular during hydrolysis (fig 1-B). 
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Fig. 1. Evolution of in-situ viscosity (A) and ex-situ viscous and elastic modules (8) during enzymatic 
hydrolysis (Suspension at 3%dm and 0.1 mL enzyme/g cellulose). 

3.2. Evolution of particle size during enzymatic hydrolysis 

During hydrolysis, as the fibres were degraded, their morphology (shape, area, length ... ) significantly 
changed (Nguyen et al., 2012). The large particles were hydrolysed; their mean diameter decreased for ali 
substrates (Fig 2-B). This led to the reduction of viscosity suspension. The hydrolysis effect was mainly 
observed on coarse particles. The fine population increases and translates to a smaller diameter. The 
same result was reported by Nguyen et al., 2013; Um. 2007; Wiman et al., 2010. However, coherence of 
in-situ and ex-situ data need to be explored to strengthen our understanding of particle deconstructing. 
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Fig. 2. Evolution of volume cumulative distribution as a function of particle diameter or chard (A) and mean 
chard (number weighted) and mean diameter (volume weighted) as a function of bioconversion rate (B) 
(Suspension of PP 3%dm, 0.5mL enzyme/g cellulose) 

4. CONCLUSION 

This study focussing on the rheometry of lignocellulosic suspensions explored enzymatic hydrolysis based 
on physical parameters. A method for following viscosity and particle size on-line was proposed and used 
to characterise the cellulose suspensions. Du ring enzymatic hydrolysis, the change in viscosity was found 
due to enzymatic actions and modifications of fibre properties. The decrease of fibre mean diameter could 
lead to the decrease of suspension viscosity and the effect of enzymatic attack. 
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