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A ‘reciprocal’ theorem for the prediction of loads
on a body moving in an inhomogeneous flow at

arbitrary Reynolds number

Jacques Magnaudet†

Institut de Mécanique des Fluides de Toulouse, UMR CNRS/INPT/UPS 5502, Allée Camille Soula,
31400 Toulouse, France

Several forms of a theorem providing general expressions for the force and torque
acting on a rigid body of arbitrary shape moving in an inhomogeneous incompressible
flow at arbitrary Reynolds number are derived. Inhomogeneity arises because of
the presence of a wall that partially or entirely bounds the fluid domain and/or a
non-uniform carrying flow. This theorem, which stems directly from Navier–Stokes
equations and parallels the well-known Lorentz reciprocal theorem extensively
employed in low-Reynolds-number hydrodynamics, makes use of auxiliary solenoidal
irrotational velocity fields and extends results previously derived by Quartapelle &
Napolitano (AIAA J., vol. 21, 1983, pp. 911–913) and Howe (Q. J. Mech. Appl.
Maths, vol. 48, 1995, pp. 401–426) in the case of an unbounded flow domain and
a fluid at rest at infinity. As the orientation of the auxiliary velocity may be chosen
arbitrarily, any component of the force and torque can be evaluated, irrespective of
its orientation with respect to the relative velocity between the body and fluid. Three
main forms of the theorem are successively derived. The first of these, given in (2.19),
is suitable for a body moving in a fluid at rest in the presence of a wall. The most
general form (3.6) extends it to the general situation of a body moving in an arbitrary
non-uniform flow. Specific attention is then paid to the case of an underlying time-
dependent linear flow. Specialized forms of the theorem are provided in this situation
for simplified body shapes and flow conditions, in (3.14) and (3.15), making explicit
the various couplings between the body’s translation and rotation and the strain rate
and vorticity of the carrying flow. The physical meaning of the various contributions
to the force and torque and the way in which the present predictions reduce to
those provided by available approaches, especially in the inviscid limit, are discussed.
Some applications to high-Reynolds-number bubble dynamics, which provide several
apparently new predictions, are also presented.
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1. Introduction
Given its many applications in all sorts of domains (e.g. oceanography, meteorology,

flight dynamics, and mechanical, chemical and marine engineering, to mention
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just a few), predicting the forces and torques acting on bodies moving in an arbitrary
flow field has always been a central concern in fluid mechanics. General formulations
of the problem have been developed in the two limits where the governing equations
are linear, namely Stokes flows and potential flows. The general case where inertial
and viscous effects are both present poses much greater difficulties, owing to the
nonlinear interplay between the various contributions involved. In particular, the
determination of the pressure distribution at the body surface is generally inordinately
difficult, and most attempts try to by-pass it by expressing the hydrodynamic loads
on the body as the sum of various surface and volume integrals involving solely the
velocity field and its derivatives, especially the local vorticity.

Among these approaches, the so-called ‘dissipation’ theorem has been found to
be useful for evaluating the viscous drag acting on bubbles rising in a liquid at
rest, especially in the high-Reynolds-number regime (Levich 1949, 1962; Batchelor
1967); some extensions to drops have also been considered (Harper & Moore 1968).
Basically, this theorem states that the rate at which the drag force works just balances
the viscous dissipation in the entire flow. In this regime, the boundary layer induced by
the shear-free condition at the bubble surface only induces secondary changes in the
flow field, in contrast to what happens with solid bodies. For that reason, at leading
order the flow can be considered irrotational everywhere except right at the bubble
surface. It is then a simple matter to calculate the dissipation throughout the flow
and deduce the drag. The calculation of this force through a direct integration of the
surface stress was performed by Kang & Leal (1988) for a spherical bubble and offers
a good view of the technical difficulties related to the evaluation of viscous corrections
in the pressure field.

The major limitation of the ‘dissipation’ theorem is that it only gives access to
the drag force. Indeed, since the lift component of the force does not produce any
work, it does not enter the kinetic energy budget of the flow. The same problem arises
for the torque components in directions about which the body does not rotate. For
these reasons, a more general theorem from which any component of the force and
torque could be obtained, irrespective of its orientation with respect to the relative
motion of the body in the fluid, appears desirable. In the Stokes flow regime, this
goal is classically achieved with the Lorentz reciprocal theorem (Lorentz 1907). In
its application to the determination of forces and torques on moving bodies, this
theorem makes crucial use of auxiliary velocity and stress fields, which are easier
to evaluate than the primary fields of direct interest. The auxiliary velocity fields,
which satisfy both the kinematic and dynamic boundary conditions at the body surface
as well as on any other surface that may bound the flow domain, correspond to
body motions performed in a fluid at rest with a unit velocity or rotation rate in
an arbitrary direction. Lorentz’s reciprocal theorem has, for instance, been extensively
used to evaluate the Stokes resistance of a particle of arbitrary shape (Brenner 1963),
the inertia-induced lateral migration of rigid particles in wall-bounded flows (Cox &
Brenner 1968; Ho & Leal 1974; Vasseur & Cox 1976) and the impact of surface
deformation on the near-wall migration of deformable drops and bubbles (Chan &
Leal 1979) or on the propulsion of microorganisms (Stone & Samuel 1996).

From a mathematical viewpoint, Lorentz’s reciprocal theorem is the counterpart
of Green’s well-known second identity for harmonic functions: both formulations
involve two mathematical solutions satisfying the same governing equation (the Stokes
equation for Lorentz’s reciprocal theorem, the Laplace equation for Green’s identity)
and eliminate the product of their gradients by considering the difference between
two dot products involving both solutions (Pozrikidis 1997). This remark suggests



that it might be possible to build a useful finite-Reynolds-number version of the
reciprocal theorem by using auxiliary velocity fields derived from harmonic functions.
Such auxiliary velocity fields are thus irrotational and can only satisfy the kinematic
boundary condition at the body surface. Hence in such an approach the primary and
auxiliary velocity fields do not exactly satisfy the same set of boundary conditions
(this is why the word ‘reciprocal’ is put in quotation marks throughout the paper).
Nevertheless it is clear that potential flow theory provides the only tractable solutions
that can approach the actual structure of high-Reynolds-number flows through most of
the fluid domain. It is therefore both mathematically relevant and practically natural
to think of irrotational solutions as the auxiliary velocity fields required to duplicate
the creeping flow approach based on Lorentz’s reciprocal theorem at high (actually
arbitrary) Reynolds number.

The approach outlined above is that developed throughout this paper. It turns out
that, from a technical viewpoint, this approach has already been explored in the case
of a fluid at rest at infinity (or of a uniform carrying flow), although the motivations
were somewhat different and the parallel with Lorentz’s reciprocal theorem was not
invoked. The initial step was performed by Quartapelle & Napolitano (1983), who
recognized that the contribution of the pressure field on the body surface can be
expressed solely in terms of the velocity field by projecting the Navier–Stokes
equations onto the subspace of solenoidal irrotational velocity fields. This result
enabled them to obtain the force and torque acting on a translating rigid body as the
sum of three distinct contributions. The first of these is a surface integral involving the
time rate of change of the body velocity. Since this term is the only one involving the
time derivative of the velocity, it corresponds to nothing but the familiar added-mass
effects. A second surface integral involves the vorticity at the body surface and thus
expresses the contribution of viscous effects related to the dynamic boundary condition
(often referred to as skin friction effects in the case of a non-slip condition). Finally, a
volume integral over the entire fluid domain gathers nonlinear effects.

This stream of ideas was pursued by Howe (1989) and Chang (1992) with the
main objective of disentangling the irrotational and vortical contributions to the total
force and interpreting these contributions in terms of added-mass, bound and free
vorticity effects, respectively. A major step forwards was achieved by Howe (1995),
who extended this approach to derive general formulae for the force and torque acting
on bodies of arbitrary shape experiencing both translational and rotational motions.
This formulation was also extended to the case of multiple bodies by Howe (1991),
Grotta Ragazzo & Tabak (2007) and Chang, Yang & Chu (2008). Implementations
in numerical simulation approaches, where the auxiliary harmonic functions are part
of the computation, owing to the geometrical complexity of the configuration under
consideration, have also been carried out (Protas, Styczek & Nowakowski 2000; Pan &
Chew 2002).

To put the present work into a broader context, it is worth emphasizing that the
aforementioned contributions are part of the general objective of expressing the force
and torque on a moving body solely in terms of the velocity and vorticity fields.
This quest has been around for almost a century, at least since the pioneering paper
of Burgers (1920). Since then, important contributions to this subject, where the
concepts of body impulse and vortex impulse play a central role, have been provided
by Wu (1981), Lighthill (1986a,b) and Kambe (1987). The various approaches to
that problem and their interconnections have recently been comprehensively reviewed
by Biesheuvel & Hagmeijer (2006). A broad discussion of the subject, including
numerous applications, is provided in § 4.5 of the recent textbook by Howe (2007).



The main motivation of the present paper is to set up a rational framework for
determining the various contributions to the forces and torques acting on bodies
moving in inhomogeneous flow fields, the inhomogeneity being due either to velocity
gradients in the carrying flow or to the presence of a bounding wall. Part of the
objective is to obtain as many contributions as possible in closed form so as to restrict
further numerical evaluation of flow-dependent quantities to a minimum and allow
for a detailed physical understanding of the couplings between the characteristics of
the body (shape, translational and rotational velocities) and those of the carrying flow
(e.g. acceleration, strain rate and vorticity). In the moderate- or high-Reynolds-number
regime, a complete analytical evaluation of the force and torque on a solid body is
generally hopeless, owing to the strength of the boundary layer and wake effects.
Inviscid effects may, however, be valuably estimated if a model for the vorticity
distribution in the wake is available, such as that provided by the classical lifting
line theory for wings of finite span (see also Howe, Lauchle & Wang (2001) for
the evaluation of wake-induced fluctuating forces on a sphere). The situation may
be different with bubbles of prescribed shape for the aforementioned reasons. In
particular, a consequence of the weakness of vortical effects induced by the shear-
free condition is that the flow does not separate at high enough Reynolds number
(although it may separate and give rise to an unsteady wake in an intermediate range
of Reynolds number (see e.g. Magnaudet & Mougin 2007)). For this reason, no-slip
and shear-free boundary conditions are both considered during the derivations carried
out below. A secondary, more technical point examined during the derivation process
regards the conditions under which the contributions provided by the fictitious surface
externally bounding the fluid domain become negligibly small as this surface recedes
to infinity. Depending on these conditions, which are related to the compactness of
the vorticity distribution in the flow, two different final forms of the theorem are
obtained. This point may have some bearing on the interpretation of computational
predictions of the force and torque obtained through direct numerical simulations,
which necessarily make use of a finite control volume.

The structure of the paper is as follows. Section 2 presents the derivation of the
theorem in the case where the fluid is at rest far from the body and the flow
domain is partially or entirely bounded by a wall. The physical content of the
various contributions is discussed as well as the conditions of validity of the two
final expressions that are obtained. In § 3 we extend this theorem to the case of a body
moving in an arbitrary non-uniform flow. Once this more general form is obtained
and its conditions of validity are specified, we focus on the particular case of broad
practical interest in which the carrying flow is linear and the size of the body is
much smaller than the inhomogeneity length scale of this flow. General expressions
for the force and torque acting on bodies of arbitrary shape are established in this
situation and compared with available predictions derived in the inviscid limit. These
expressions are then specialized to bodies with three perpendicular symmetry planes
for which the reduced number of couplings between the effects of translation and
rotation enables a simpler physical interpretation of the various inertial contributions.

Section 4 presents some applications of the forms of the theorem derived in §§ 2 and
3 to bubble dynamics in the high-Reynolds-number regime. These applications aim to
illustrate the versatility of the corresponding expressions and their ability to predict
both the viscous and inertial contributions to the force and torque whatever their
orientation with respect to the relative motion of the body and fluid. Some apparently
new results are derived in this section, such as the expression of the viscous torque
on a bubble rotating in a fluid at rest or the inertial lift force on a cylindrical bubble



moving parallel to a wall. Final remarks are provided in § 5. The main text is followed
by six technical appendices, the first of which examines the kinematic connections
between velocity, strain and vorticity on a surface of arbitrary geometry. The other
five detail the mathematical steps required to obtain the various forms of the theorems
derived in §§ 2 and 3; in the course of appendices C, D and E, the conditions that the
flow must satisfy at large distance of the body for some of these steps to be valid are
discussed.

2. The ‘reciprocal’ theorem for a body moving in a fluid at rest
2.1. Governing equations

We consider a body of fixed shaped moving with a translational velocity V and a
rotation rate Ω relative to an ambient fluid with uniform density ρ and kinematic
viscosity ν that fills the volume V and is at rest at infinity (figure 1). We normalize
distances and velocities by some characteristic length R and velocity V0 of the body,
respectively, and pressures by ρV2

0 .
In a coordinate system fixed in the laboratory frame, the absolute fluid velocity U

and the pressure P satisfy the Navier–Stokes equations

∇ ·U = 0, (2.1)
1
Re
∇ ·Σ = ∂U

∂t
+∇U ·U

2
+ ω × U, (2.2)

where Σ =−RePI + τ is the stress tensor, whose viscous part is τ =∇U + T∇U , and
ω = ∇ × U is the vorticity. Let r denote the local position from the body centre of
mass and n the unit normal pointing towards the fluid interior. Since any point of the
body moves with the velocity W = V +Ω × r, the fluid velocity U at the body surface
SB obeys the kinematic condition

U ·n=W ·n= V ·n+Ω · (r× n), (2.3)

together with either the shear-free condition

n× (Σ ·n)= 0, (2.4)

or the no-slip condition

n× U = n×W . (2.5)

A fixed wall SW extending to infinity may partially bound the flow domain or may
entirely enclose the fluid. The no-slip condition generally holds on SW , so that

U ·n= 0 (2.6)

and

n× U = 0. (2.7)

Finally, the velocity disturbance vanishes on the outer surface S∞ located at large
distance from the body, so that

U→ 0 on S∞. (2.8)

In what follows we also need the auxiliary irrotational velocity field Û and the
associated pressure field P̂ corresponding to those induced by the body as it translates
with a unit velocity î along some arbitrary fixed direction and rotates at a unit rate ĵ
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FIGURE 1. Sketch of the general flow configuration. The undisturbed velocity field UU(x, t)
is non-zero only in § 3. In the auxiliary problem, the body translates with a unit velocity along
the î direction and rotates with a unit rotation rate about the ĵ axis, the fluid being at rest at
infinity.

about an arbitrary fixed axis passing through the origin O of the coordinate system.
This auxiliary velocity field is governed by

∇ · Û = 0, (2.9)

1
Re
∇ · Σ̂ = ∂Û

∂t
+∇ Û · Û

2
, (2.10)

where Σ̂ = −ReP̂I + τ̂ , with τ̂ = ∇Û + T∇Û . We may then introduce the velocity
potential φ̂ such that Û = ∇φ̂. In cases in which the flow domain is not simply
connected, φ̂ is made unique by requiring that there is no circulation around the body.
The momentum balance for this viscous potential flow yields two separate conditions
valid throughout the flow domain V , namely

∇ · τ̂ =−∇ × (∇ × Û)= 0, (2.11)

and the Bernoulli integral

∂φ̂

∂t
+ Û · Û

2
+ P̂= C(t), (2.12)

where C is a constant. As will be seen later, the condition (2.11), which expresses the
property of zero flux of viscous stresses in an irrotational incompressible flow, plays a
key role in the derivation of the theorem.

Owing to the irrotationality constraint, Û only satisfies the kinematic condition at
the body surface SB and on the wall SW . Hence denoting with r0(t) the position of the
body centre of mass with respect to the origin of the coordinate system and defining
Ŵ = î+ ĵ × (r+ r0)= Î + ĵ × r with Î = î+ ĵ × r0, one has

Û ·n= ∂φ̂
∂n
= Ŵ ·n on SB, (2.13)

Û ·n= 0 on SW, (2.14)



while at large distances one has

Û→ 0 on S∞. (2.15)

2.2. Derivation of the theorem
Duplicating the classical procedure employed to establish reciprocal theorems, we start
by forming the difference between the dot product of (2.2) and Û and that of (2.11)
and U , so as to eliminate the pseudo-dissipation rate 2Re−1τ : τ̂ . Then, integrating over
V , making use of the divergence theorem and of the divergence-free condition yields∫

SB∪SW

Û ·
[

1
Re

Σ ·n− 1
2
(U ·U)n

]
dS

= 1
Re

∫
SB

U · (τ̂ ·n) dS−
∫

V

[
∂U
∂t
+ ω × U

]
· Û dV, (2.16)

where the no-slip condition (2.7) has been assumed to hold on SW . Contributions from
S∞ vanish as r = ‖r‖ → ∞, thanks to the r−3 decay of Û . Similarly, the volume
integral on the right-hand side of (2.16) is convergent, provided U decays as r−n with
n> 0 (and hence ω decays as r−n−1) in the wake of the body.

Conditions (2.13) and (2.14) allow the left-hand side of (2.16) to be transformed
into ∫

SB∪SW

Û ·
{

1
Re

Σ ·n− 1
2
(U ·U)n

}
dS

= Î ·F+ ĵ ·Γ −
∫

SB

1
2
(U ·U)Ŵ ·n dS

+ 1
Re

∫
SW

ÛS · (τ ·n)S dS+ 1
Re

∫
SB

(Û − Ŵ )S ·(τ ·n)S dS, (2.17)

where F= Re−1
∫

SB
Σ ·n dS and Γ = Re−1

∫
SB
r×(Σ ·n) dS are the hydrodynamic force

and torque experienced by the body, respectively, and the subscript index S denotes the
tangential component of the corresponding vector (for instance, ÛS = n× (Û×n)). The
last term in (2.17) vanishes for a bubble submitted to the shear-free condition (2.4).

A series of manipulations based on the kinematic results established in appendix A
and on the Stokes theorem are then required to make vorticity apparent in the
viscous contributions on SB in (2.16) and (2.17), irrespective of the dynamic boundary
condition that holds at the body surface. Similarly, the volume contribution involving
the acceleration ∂U/∂t in (2.16) may be transformed to make added-mass effects
apparent by employing Leibnitz’s rule and the divergence theorem. The details of these
transformations are given in appendix B. Making use of (B 1) and (B 7), (2.16) finally
yields the desired ‘reciprocal’ theorem in the form

Î ·F+ ĵ ·Γ = dW

dt

∫
SB

φ̂W ·n dS+
∫

SB

{(
1
2
U ·U

)
Ŵ − Dφ̂

Dt
W

}
·n dS

− 1
Re

∫
SB

{
(Û − Ŵ )× (ω − 2Ω)

}
·n dS− 2

Re
ĵ ·
∫

SB

n× (U −W ) dS

−
∫

V

(ω × U) · Û dV − 1
Re

∫
SW

(Û × ω) ·n dS, (2.18)



where dW/dt is the time derivative following the motion of the body centre of mass,
D/Dt = ∂/∂t+U ·∇ is the material derivative, and (A 6) has been employed to express
the contribution of the shear stress (τ ·n)S on SW in terms of vorticity. All the terms
in (2.18) have a straightforward physical interpretation, except for the second term on
the right-hand side. However, another series of transformations detailed in appendix C
and involving Green’s second identity and repeated use of the divergence theorem
may be applied to that term. In the course of these transformations, it is natural to
introduce the bound vorticity ωB = n × (U − ∇Φ)δB, δB being the Dirac function,
which is zero everywhere except on SB. This bound vorticity is due to the difference
at the body surface between the tangential component of the actual velocity field U
and that of the virtual irrotational velocity field ∇Φ that satisfies the same kinematic
boundary conditions (2.3) and (2.6) on SB and SW . Then, provided the decay of the
flow disturbance in the far field is fast enough (see below), use can be made of (C 9)
so as to write (2.18) in the physically clearer form

Î ·F+ ĵ ·Γ = dW

dt

∫
SB

φ̂W ·n dS+
∫

V

{(ω + ωB)× U} · (Ŵ − Û) dV

− 1
Re

∫
SB

{[(Û − Ŵ )× (ω − 2Ω)] ·n+ 2ĵ · [n× (U −W )]} dS

−
∫

SW

{
1
2
(U ·U)Ŵ ·n+ 1

Re
(Û × ω) ·n

}
dS. (2.19)

A final step may be carried out to recast the first integral on the right-hand side of
(2.19) in terms of elementary classical added-mass contributions. Thanks to the linear
dependence of φ̂ with respect to Î and ĵ emphasized by (2.13), one may set

φ̂ =ΨT · Î +ΨR · ĵ, (2.20)

where the two vectors ΨT and ΨR are harmonic functions that, according to (2.13) and
(2.14), satisfy

∂ΨT

∂n
= n and

∂ΨR

∂n
= r× n on SB, (2.21)

∂ΨT

∂n
= 0 and

∂ΨR

∂n
= 0 on SW . (2.22)

Introducing the usual second-order added-mass tensors A, B, C and D such that

A= TA=−
∫

SB

ΨT
∂ΨT

∂n
dS, B = TC =−

∫
SB

ΨT
∂ΨR

∂n
dS, (2.23)

C = TB =−
∫

SB

ΨR
∂ΨT

∂n
dS, D = TD =−

∫
SB

ΨR
∂ΨR

∂n
dS, (2.24)

one has

−
∫

SB

φ̂W ·n dS= Î · (A ·V + B ·Ω)+ ĵ · (C ·V + D ·Ω). (2.25)

Keeping in mind that Î = î+ ĵ×r0, noting that dWr0/dt = V and that the time derivative
of any time-dependent vector Q in the laboratory frame and that in the reference frame
rotating with the body, say dΩ/dt, are related by dΩQ/dt = dWQ/dt − Ω × Q, one



obtains in the most general case

−dW

dt

∫
SB

φ̂W ·n dS = Î ·
{

dΩ(A ·V)
dt

+ dΩ(B ·Ω)
dt

+Ω × (A ·V + B ·Ω)

}
+ ĵ ·

{
V × (A ·V + B ·Ω)+ dΩ(C ·V)

dt
+ dΩ(D ·Ω)

dt

+Ω × (C ·V + D ·Ω)

}
, (2.26)

where the derivatives dΩA/dt = V ·∇A etc. are non-zero only if the body moves in the
presence of a wall and its velocity V has a non-zero component perpendicular to that
wall.

2.3. The various contributions to the force and torque
In the specific case of a rigid body subject to a no-slip condition and moving in an
unbounded fluid, (2.19) is equivalent to the separate expressions (2.24) for the force
and (3.7) for the torque obtained by Howe (1995). When the body moves in a bounded
fluid, the expression for the force in (2.18) is also equivalent to equation (6) of Grotta
Ragazzo & Tabak (2007).

The interpretation of all the contributions on the right-hand side of (2.19) is clear.
The first term, which is entirely determined by the auxiliary potential φ̂ and the
kinematic boundary condition at the body surface, represents the so-called added-mass
loads. This contribution is independent of any effects of both vorticity and viscosity
(Mougin & Magnaudet 2002). Consequently, it is not influenced by any possible
separation of the flow past the body, although this is sometimes erroneously thought to
be the case. Note that this is the only contribution to the force and torque involving
the current fluid acceleration. The second term represents the contribution resulting
from the presence of vorticity in the body of the fluid (the so-called free vorticity),
supplemented by that of the bound vorticity on SB. Note that, on SB, Ŵ − Û is tangent
to the body surface owing to the kinematic condition (2.3). Therefore, in the vicinity
of the body, the leading contribution to this volume integral comes from fluid elements
for which the cross product between ω and U has a non-zero component tangent to SB.
This remark helps one to appreciate correctly the role of boundary layers in the total
force. The third term is due to the dynamic boundary condition at the body surface.
Hence it represents the viscous loads produced by the surface vorticity (often referred
to as skin friction when the no-slip condition applies). If the body is submitted to a
shear-free condition, the slip between the body and the fluid results in an additional
viscous contribution to the torque that was not present in Howe’s equation (3.7), nor in
equation (17) of Grotta Ragazzo & Tabak (2007), since both groups only considered
the torque balance on a body obeying a no-slip condition. The fourth term results from
the presence of the wall and generally comprises an inertial and a viscous contribution.
The former, which is non-zero only if the fluid is able to slip along the wall (e.g.
when SW is a symmetry plane), does not contribute to the force in the direction
parallel to the wall, since Ŵ · n = Î · n = 0 in that case. In contrast, whatever the
direction of the body motion, this term results in an additional non-zero force normal
to the wall and in a torque. When the no-slip condition holds on SW , this inertial
contribution is still physically present but takes a different form in (2.19); indeed
it may then be shown that it results from the near-wall contribution to the volume
integral

∫
V
(ω × U) · (Ŵ − Û) dV (this may be established by splitting U into an outer



and an inner contribution, the latter being due to the no-slip condition on SW , and
using arguments similar to those employed later at the end of § 4.1).

The viscous contribution on SW vanishes if the wall reduces to a symmetry plane
since the vorticity may only have a normal component on such a surface. In that
case there is also an extra viscous term Re−1

∫
SW

US · (τ̂ ·n)S dS in (2.16), but this
contribution also vanishes since the tangential stress (τ̂ ·n)S is zero by virtue of (A 9).
From the above remarks it can be concluded in particular that a symmetry plane does
not provide any contribution to the drag force, be it viscous or inertial, when the
body translates parallel to it. Thus D’Alembert’s paradox still holds for such a body in
steady motion in a viscous potential flow.

2.4. Influence of the flow behaviour at large distance from the body

Some comments about the conditions that the flow disturbance must fulfil on S∞
for the transformation from (2.18) into (2.19) to be valid seem in order. From a
theoretical point of view, the compactness of the vorticity distribution, i.e. the fact that
ω is vanishingly small outside a finite region of the control volume V over which
integration is carried out, suffices to guarantee that all integrals on S∞ vanish when
the surface recedes to infinity. In cases in which ω is not naturally compact within
V , the difficulty is classically by-passed by defining an extended vorticity distribution
within the body volume VB of surface SB and beyond the outer surface S∞ of V
so as to reconnect properly the vortex tubes that cross SB and S∞. Integration may
then be performed within the extended control volume V+ of outer surface S+ in
which all vortex tubes are closed and vorticity is vanishingly small outside some finite
subvolume Vω (Batchelor 1967; Saffman 1992). Then the velocity field is irrotational
within V+ − Vω and the Biot–Savart law implies that it decays like r−3 with the
distance r to the body at large distances from Vω, which guarantees the convergence
of the various integrals on V+ and S+. Therefore (2.19) is always a valid theoretical
result.

The situation may be different if one is to use the present results to evaluate
the various contributions to the force or torque by post-processing direct numerical
simulation (DNS) data, as has been done in several studies (Chang & Chern 1991;
Protas et al. 2000; Pan & Chew 2002; Chang et al. 2008). In DNS it is generally
not possible to use a control volume satisfying the above properties. Although
the computational domain VC extends far downstream from the body, vortices are
generally shed across part of the surface SD that bounds it externally. Hence, within
some parts of VC, velocities decay much more slowly than r−3 and may remain
significant on parts of SD. For instance, if an axisymmetric (Oseen) wake crosses SD

normally, the normal velocity on this downstream surface is of O(r−1) within the wake
and of O(r−2) outside it (Batchelor 1967). Under such conditions, several technical
steps used in the transformation from (2.18) to (2.19) may no longer be legitimate, as
they may result in finite or even diverging contributions on SD and diverging volume
integrals over VC (see the discussion in appendix C after (C 7)). This is why it is then
necessary to examine carefully how the actual velocity field decays at large r before
trying to compare computational results with (2.19). In summary, the main message
to be kept in mind is that the form (2.19) of the ‘reciprocal’ theorem is certainly not
always appropriate to compare DNS results with theoretical predictions, whereas the
form (2.18) remains valid whatever the decay rate of the velocity disturbance in the far
field.



3. A body moving in a non-uniform flow
3.1. The generalized form of the theorem

It is obviously of great interest to examine how the above theorem may be extended to
the general case of a body moving in an ambient non-uniform flow. The determination
of forces and torques acting on bodies immersed in such flows has been a subject
of active research since the pioneering works of Taylor (1928) and Tollmien (1938),
who performed experiments on bodies of various shapes held fixed in converging,
diverging or curved channels. Using an energy method, they also derived approximate
expressions for the inviscid force and torque acting on non-rotating bodies placed
in an irrotational weakly non-uniform stream. Since then, the problem has been
reconsidered in greater generality by Galper & Miloh (1994, 1995) in the case
of rotating bodies of arbitrary shape moving in an irrotational linear flow field.
Obviously, the case of ambient non-uniform flows with non-zero vorticity poses
much greater difficulties. Combining a direct evaluation of the force in the case of
a two-dimensional circular cylinder with an asymptotic estimate of leading-order force
contributions in the case of a sphere (which in particular makes use of the prediction
for the stationary inviscid shear-induced lift force obtained by Auton (1987)), Auton,
Hunt & Prud’homme (1988) derived an expression for the inviscid hydrodynamic force
acting on point-symmetric bodies moving in a weakly unsteady, slowly varying, linear
flow. The problem was revisited by Miloh (2003), who obtained expressions for the
inviscid force and torque acting on rotating and translating bodies of arbitrary shape
moving in a general linear flow field, with no restriction on the relative magnitude
of the inhomogeneity, nor on that of unsteady effects. However Miloh’s results were
obtained under the highly restrictive assumption that the vorticity disturbance due to
the distortion of the ambient vorticity by the body remains negligibly small, which
prevents his results from being applicable to three-dimensional bodies, except at very
short time after they have been introduced into the flow. The purpose of the present
section is to extend the ‘reciprocal’ theorem derived in the previous section to such
non-uniform situations so as to remove the limitations of the previous studies. The
results available in the aforementioned literature should then be recovered as particular
cases corresponding to the inviscid limit and to an unbounded flow domain.

To this end, let us consider the undisturbed incompressible flow whose velocity and
pressure fields are UU(r + r0, t) and PU(r + r0, t), respectively. If the flow domain is
partially bounded by a wall, UU satisfies the corresponding boundary conditions on SW .
In particular, one always has UU ·n= 0 on SW . It is then suitable to work with the flow
disturbance Ũ = U − UU, which obeys

∇ · Ũ = 0, (3.1)
1
Re
∇ · Σ̃ =

{
∂

∂t
+ UU ·∇

}
Ũ + ω̃ × Ũ + 1

2
∇(Ũ · Ũ)+ Ũ ·∇UU, (3.2)

Ũ ·n= 0 and Ũ × n= 0 on SW, (3.3)

Ũ→ 0 on S∞, (3.4)

where Σ̃ =Σ −ΣU and ω̃ = ω − ωU, with ΣU and ωU denoting the stress tensor and
the vorticity associated with the undisturbed flow, respectively. Except for the last term
on the right-hand side, which is intrinsically new, (3.2) is formally identical to (2.2)
provided the time derivative ∂/∂t is replaced by the Lagrangian derivative following
the undisturbed flow DU/Dt = ∂/∂t + UU · ∇. Similarly, provided W is changed into
W̃ =W −UU = V −UU+Ω × r, the kinematic boundary condition (2.3) still holds for



the disturbance velocity Ũ . It is then straightforward to obtain the counterpart of (2.18)
in the presence of a non-uniform underlying flow except for two points. First one
needs to establish how terms involving DUŨ/Dt transform. Then one has to consider
the contributions on S∞ encountered during the derivation and establish the conditions
under which they are vanishingly small. Both points are addressed in appendix D.
Combining the results of this appendix, especially (D 2), with the above remarks allow
most other steps leading to (2.18) to be readily repeated so as to obtain

Î ·F+ ĵ ·Γ = Î ·FU + ĵ ·ΓU + dW

dt

∫
SB

φ̂W̃ ·n dS−
∫

SB

Dφ̂
Dt

W̃ ·n dS

+ 1
2

∫
SB

(Ũ · Ũ)Ŵ ·n dS−
∫

V

(ω̃ × Ũ) · Û dV − 2
∫

V

(Ũ ·∇UU) · Û dV

− 1
Re

∫
SB

{(Û − Ŵ )× (ω − 2Ω)} ·n dS− 2
Re

ĵ ·
∫

SB

n× (Ũ − W̃ ) dS

+ 1
Re

∫
SB

{(Û − Ŵ )(τU ·n)− UU · (τ̂ ·n)} dS

− 1
Re

∫
SW

(Û × ω̃) ·n dS, (3.5)

where FU = Re−1
∫

SB
ΣU ·n dS and ΓU = Re−1

∫
SB
r× (ΣU ·n) dS are the hydrodynamic

force and torque exerted by the undisturbed flow on the volume of fluid VB enclosed
by SB, and τU = Re−1(∇UU + T∇UU).

Again, it is desirable to transform to fourth and fifth terms on the right-hand side
of (3.5) to allow for a clearer physical interpretation of the result. The corresponding
transformations are detailed in appendix E. Provided the required conditions hold for
some of these transformations to be valid (see again the discussion in § 2.4), (E 8)
allows (3.5) to be finally recast in the form

Î ·F+ ĵ ·Γ = Î ·FU + ĵ ·ΓU + dW

dt

∫
SB

φ̂W̃ ·n dS−
∫

SB

Φ̃(ĵ × UU) ·n dS

+
∫

SB

Φ̃Ŵ ·∇UU ·n dS−
∫

V

(ωU × Ũ) · Û dV

+
∫

V

[(ω̃ + ω̃B)× Ũ] · (Ŵ − Û) dV

− 1
Re

∫
SB

{(Û − Ŵ )× (ω − 2Ω)} ·n dS− 2
Re

ĵ ·
∫

SB

n× (Ũ − W̃ ) dS

+ 1
Re

∫
SB

{(Û − Ŵ )(τU ·n)− UU · (τ̂ ·n)} dS

−
∫

SW

{
1
2
(Ũ · Ũ)Ŵ + 1

Re
Û × ω̃

}
·n dS, (3.6)

where the velocity potential Φ̃ satisfies n · ∇Φ̃ = W̃ · n on SB and n · ∇Φ̃ = 0 on
SW and the bound vorticity is now defined as ω̃B = n × (Ũ − ∇Φ̃)δB. The first two
terms on the right-hand side of (3.6) represent the body force and torque resulting
from the possible acceleration of the undisturbed flow, while the sum of the next two
terms is the added-mass contribution. Three extra terms result from the non-uniformity



of the undisturbed flow. Two of them involving either ∇UU or τU appear in the
form of surface integrals on SB and generally provide non-zero contributions even
when the undisturbed flow is irrotational. There is also a third, contribution throughout
V involving the possible non-zero vorticity ωU of the undisturbed flow. Since the
corresponding term takes the form of the cross product of ωU by the relative velocity
Ũ , it clearly provides a lift component to the force experienced by the body.

The form (3.6) of the ‘reciprocal’ theorem is the most general result derived in
this paper, since it is valid for any undisturbed flow provided the conditions for the
vanishing of contributions on S∞ established in appendix D are satisfied. Note that,
if UU is uniform, it may readily be proved that (3.6) satisfies Galilean invariance, as
it should. This may be seen by noting that (B 3) implies that

∫
SB
UU · (τ̂ · n) dS = 0

when UU is uniform and by using (2.25) and (2.26), which show that the added-mass
contribution keeps the same form as in the case of a fluid at rest, except for the fact
that V has to be replaced by Ṽ = V − UU everywhere in (2.26).

3.2. A body in a general linear flow

To reveal the various effects of the undisturbed velocity gradients, we now specialize
(3.6) to the widely encountered situation where the carrying flow can be considered
linear, in which case

UU(r0, r, t)= U0(r0, t)+ r ·∇U0(t)= U0(r0, t)+ r ·S0(t)+ 1
2ω0(t)× r, (3.7)

where r0 still denotes the instantaneous position of the body centre of mass, and
S0 and ω0 are the constant-strain-rate tensor and vorticity of the undisturbed flow,
respectively. Note that the presence of a wall imposes severe restrictions on the form
of the linear flow that may exist in V , owing to the kinematic boundary condition
UU · n = 0 on SW . For instance, if ω0 = 0 and the undisturbed flow is a planar
extensional flow, SW may be one of the two symmetry planes of that flow. Similarly,
if S0 = 0 and the flow configuration corresponds to a solid-body rotation in a circular
cylinder, SW may be the lateral wall of the cylinder.

The kinematic boundary condition at the body surface now reads

W̃ ·n= Ṽ ·n+ Ω̃ · (r× n)− 1
2 S0 : (rn+ nr), (3.8)

where Ṽ(r0, t) = V − U0 and Ω̃(t) =Ω − ω0/2. Hence the velocity potential Φ̃ takes
the form

Φ̃ =ΨT · Ṽ +ΨR · Ω̃ −ΨS : S0, (3.9)

where ΨT and ΨR have been defined in § 2.2 and ΨS is a symmetric second-order
tensor satisfying

∇2ΨS = 0 in V,
∂ΨS

∂n
= 1

2
(rn+ nr) on SB,

∂ΨS

∂n
= 0 on SW . (3.10)

From (3.8) we deduce that the integral
∫

SB
φ̂W̃ ·n dS may be expressed in the form

−
∫

SB

φ̂W̃ ·n dS = Î · (A · Ṽ + B · Ω̃ − ET : S0)

+ ĵ · (C · Ṽ + D · Ω̃ − ER : S0), (3.11)



where ET and ER are two third-order tensors, respectively defined by

ET =
∫

SB

ΨT
∂ΨS

∂n
dS=

∫
SB

∂ΨT

∂n
ΨS dS,

ER =
∫

SB

ΨR
∂ΨS

∂n
dS=

∫
SB

∂ΨR

∂n
ΨS dS.

 (3.12)

The form (3.9) of the velocity potential makes it clear that quadratic contributions with
respect to ω0 and S0 are present in every inertial term of (3.6). However, to avoid too
cumbersome formulae while capturing the leading effects of the inhomogeneity, we
shall neglect these terms and consider only linear contributions. This simplification is
based on the assumption that, in many situations of practical interest, ‖r ·S0‖/‖Ṽ‖� 1
and ‖r×ω0‖/‖Ṽ‖� 1 for ‖r‖ = O(1), i.e. the typical length scale of the body is small
compared to the characteristic length scale of the inhomogeneity. Quadratic terms have
been considered in the inviscid approximation, either in the irrotational case by Galper
& Miloh (1995) or in the short-time limit in rotational flows by Miloh (2003). A
consequence of the above assumption is that ω0 must be considered independent of
time from now on, since in a linear flow the evolution of the vorticity is governed by
the Helmholtz equation dω0/dt = ω0 ·S0.

With a linear undisturbed flow, the viscous contribution at the body surface in
(3.6) may be simplified by recognizing that ∇ · τU = 0, a property implying that∫

SB
Ŵ · (τU ·n) dS= 0. Since τ̂ is also divergence-free, Green’s second identity implies

that
∫

SB∪SW
{Û · (τU · n) − UU · (τ̂ · n)} dS = 0, which allows the contribution of the

undisturbed flow on SB to be transformed into a contribution on SW . Applying the
‘weak inhomogeneity’ approximation defined above, (3.6) then becomes

Î ·F+ ĵ ·Γ = Î ·F0 + ĵ ·Γ0 + dW

dt

∫
SB

φ̂W̃ ·n dS− (ĵ × U0) ·

∫
SB

Φ̃n dS

+
∫

SB

Φ̃0{Ŵ ·∇U0 − ĵ × (r ·∇U0)} ·n dS

+
∫

V

[(ω̃ + ω̃B)× Ũ]0 ·(Ŵ − Û) dV −
∫

V

(ω0 × Ũ0) · Û dV

− 1
Re

∫
SB

{(Û − Ŵ )× (ω − 2Ω)} ·n dS

− 2
Re

ĵ ·
∫

SB

n× (Ũ − W̃ ) dS

−
∫

SW

{
1
2
(Ũ · Ũ)0 Ŵ +

1
Re

Û × ω
}
·n dS, (3.13)

where Φ̃0 =ΨT · Ṽ + ΨR ·Ω and Ũ0 = U − U0, and [(ω̃ + ω̃B)× Ũ]0 (respectively,
(Ũ · Ũ)0) denotes the corresponding cross product (respectively, dot product) linearized
in the sense defined above. In (3.13), F0 = (D0U0/Dt)VB = {∂U0/∂t + U0 · ∇U0}VB is
the linearized body force acting on the volume VB and Γ0 =

∫
VB

r × (r · dS0/dt) dV
is the associated body torque, which is non-zero only if the undisturbed velocity
gradients are time-dependent (the contribution

∫
SB
{r × (D0U0/Dt)} dS to the torque is

zero since r = 0 corresponds to the body centre of mass). Note that the vortical part



of the viscous contributions on both SB and SW involves the total vorticity ω, not the
vorticity disturbance ω̃.

To obtain a detailed view of the effects produced by the base flow, two more
steps are necessary. First, all inertial contributions over the body surface (first three
integrals on the right-hand side of (3.13)) must be expanded with respect to S0, ω0

and D0U0/Dt. The result of this expansion is provided by (F 1)–(F 4) in appendix F.
Then the volume integral involving ω0 must be transformed so as to disentangle
contributions provided by the potential and vortical parts of the velocity disturbance
Ũ0. This transformation yields (F 6), which reveals the existence of the surface
contribution ω0 ·

∫
SB
φ̂(n × ∇Φ̃0) dS, which only depends on the irrotational velocity

field ∇Φ̃0 and hence may, under certain conditions, be connected to the added-mass
tensor.

Results (F 1)–(F 6) may finally be injected into (3.13) to obtain the final form of the
‘reciprocal’ theorem in a linear flow without any restriction on the body shape (but still
in the weakly inhomogeneous approximation). As (F 2)–(F 4) make clear, numerous
couplings between the body rotation Ω and the strain rate S0 or the ambient vorticity
ω0 contribute to the force and torque balances in the case of a general body shape.
Those that subsist when the carrying flow is irrotational have been examined by Galper
& Miloh (1994, 1995) and the discussion will not be repeated here.

Fortunately, applications frequently involve bodies exhibiting geometrical
symmetries that suppress most of these couplings and clarify the interpretation of the
most important physical effects. Here we focus on the class of bodies exhibiting three
orthogonal symmetry planes, which in particular encompasses axisymmetric bodies
with fore–aft symmetry, among which are ellipsoids. However, even for such simple
body geometries, the presence of a wall still maintains couplings between translational
and rotational motions. Therefore, only two physical situations lead to significant
simplifications. The first of these corresponds to the case of an unbounded flow
domain or equivalently to a situation where the body moves at large distance from
the wall so that wall effects can be ignored. The second corresponds to the situation
where the body moves close to a plane wall without rotating, one of its symmetry
planes being parallel to that wall. For such body shapes and flow conditions, the
irrotational disturbance induced by the translational motion becomes uncoupled with
those resulting from rotation (if any) and deformation. Hence ET = 0 and the only
two added-mass tensors that subsist are A and D. Moreover, as shown by (F 7) and
(F 8), all contributions to the torque involving the combined effect of the possible
body rotation Ω and of the background vorticity ω0 are expressible via the third-order
tensor K defined through the relation D = 2(K · J) : ε, where J = ∫

VB
{(r · r)I − rr} dV

is the inertia tensor and ε denotes the usual third-order alternating tensor.
Thus, making use of the various results established in appendix F, the form of

(3.13) suitable for bodies exhibiting the symmetries defined above and moving in an
unbounded flow domain is finally found to be

Î ·F+ ĵ ·Γ

= Î ·
{

D0U0

Dt
VB − A ·

(
dV
dt
− D0U0

Dt
−Ω × Ṽ

)
−Ω × (A · Ṽ)

+ [A ·S0 − S0 ·A] · Ṽ +
(
I
2
+ A

VB

)
· [ω0 × (A · Ṽ)] − 1

2
A · (Ṽ × ω0)

}



− ĵ ·
{
Ṽ × (A · Ṽ)+ D ·

(
dΩ
dt
+ 1

2
Ω × ω0

)
+Ω ×

(
D ·

(
Ω − 1

2
ω0

))
+ER :

dS0

dt
− 2ε : (Ω ·ER ·S0)+ 2(ER ·S0) : (Ω · ε)+Ω × (ER : S0)

− 4(K · J) · (TK ·Ω) : (ε ·ω0)− (Ω ·K ) · (J ·ω0)+ J · (ω0 ·
TK ·Ω)

}
+
∫

V

[(ω̃ + ω̃B)× Ũ]0 ·(Ŵ − Û) dV −
∫

V

φ̂ω0 · (ω̃ + ω̃B)0 dV

− 1
Re

∫
SB

{(Û − Ŵ )× (ω − 2Ω)} ·n dS

− 2
Re

ĵ ·
∫

SB

n× (Ũ − W̃ ) dS, (3.14)

where the time derivatives are expressed in non-rotating axes and the integrand in the
last volume integral has been linearized in the sense defined above, so that (ω̃0 + ω̃B)0
does not depend on S0 and ω0. Now the interaction of S0 with the body rotation Ω
only contributes to the torque. Moreover, most contributions to the torque related to
the ambient strain rate and vorticity in (3.14) vanish when the body does not rotate.
More precisely, the only term due to the inhomogeneity of the undisturbed flow that
still influences the torque when Ω = 0 is that associated with the possible unsteadiness
of S0.

In (3.14) the ambient strain rate and vorticity contribute to the Lagrangian
acceleration D0U0/Dt, whose direction is generally not aligned with that of the
body’s relative velocity Ṽ . In addition, the ambient strain rate still influences the
hydrodynamic force through the term [A · S0 − S0 · A] · Ṽ , which is non-zero only
when the principal axes of S0 are not aligned with those of the body. In this case,
this term is orthogonal to Ṽ and hence contributes to the lift force. The pair of terms
1
2ω0× (A ·Ṽ)− 1

2 A ·(Ṽ ×ω0) also contributes to that component of the force. Moreover,
these two contributions are supplemented by the term A · [ω0 × (A · Ṽ)]/VB resulting
from (F 7), which is quadratic with respect to the translational added-mass tensor.
For a point-symmetric body such as an infinitely long circular cylinder or a sphere,
D = ER = K = 0 and A = A I , where A /VB is the usual added-mass coefficient.
Hence the closed-form contributions to the torque vanish identically, whereas those to
the force reduce to (VB +A )D0U0/Dt −A dV/dt +A (1+A /VB)ω0 × Ṽ .

On the right-hand side of (3.14), all terms resulting from the inhomogeneity of the
ambient flow are similar to those obtained by Miloh (2003), although contributions
to the torque involving S0 and ω0 are expressed in a different way. However, the
fundamental difference between the two sets of results is that Miloh’s derivation
assumes an inviscid flow with a negligible vorticity disturbance throughout the
fluid, so that all four volume and surface integrals in (3.14) do not appear. What
the present result shows is that the inviscid contributions predicted in Miloh’s
approach survive in the presence of viscous effects and of a non-zero vorticity
disturbance throughout the flow, and that a clear splitting between these various
effects is naturally achieved by the extended form of the ‘reciprocal’ theorem
derived in this section. The result (3.14) may also be seen as the generalization
to anisotropic bodies and to finite-Reynolds-number conditions of the well-known
expression F = (VB + A )D0U0/Dt − A dV/dt + CLVBω0 × Ṽ derived in the inviscid



limit by Auton et al. (1988) in the particular case of a two-dimensional circular
cylinder and a sphere moving in a weakly unsteady shear flow, respectively.

As pointed out above, the group of terms 1
2 {ω0 × (A · Ṽ) + A · (ω0 × Ṽ)} + A ·

[ω0 × (A · Ṽ)]/VB in (3.14) contributes to the lift force. Nevertheless, owing to the
Helmholtz equation, the vorticity disturbance ω̃ is generally non-zero in the presence
of an ambient vorticity ω0, even though the flow is considered inviscid, and the
arrangement of ω̃ and ω̃B around the body results in a non-zero value of the remaining
volume integrals that make additional contributions to this force. Therefore, evaluating
the net lift force generally requires the vorticity disturbance (and velocity) to be known
throughout the flow field, as exemplified by Auton’s calculation for the steady lift
force on a sphere in a weak shear flow (Auton 1987). It is only in particular situations
that the inertial closed-form terms in (3.14) represent the entire lift force. Inviscid
two-dimensional flows provide such a situation, since ω̃ and ω̃B are both zero in that
case, making both volume integrals in (3.14) vanish. For a two-dimensional circular
cylinder, A /VB = 1, so that, when the cylinder moves in an inviscid shear flow with
ω0 parallel to its axis, the lift force is found to be 2VB ω0 × Ṽ , in agreement with
a classical result (Batchelor 1967). In three-dimensional flows, although ω̃ is zero
right at the time the body is introduced into the flow, the volume integrals in (3.14)
become non-zero as the flow disturbance sets in, owing to the stretching/tilting term
ω0 · ∇Ũ . Therefore it is only in the short-time limit that the above closed-form terms
provide the entire lift force. Miloh (2003) considered this limit for a sphere (for which
A /VB = 1/2), in which case (3.14) predicts that the lift force is 3

4VB ω0 × Ṽ , in
agreement with the asymptotic determination of Legendre & Magnaudet (1998). In
contrast, in the nearly steady approximation considered by Auton et al. (1988), the
vorticity disturbance around the sphere is non-zero, yielding CL = 1/2 in the above
simplified form of F.

Finally, if the flow domain is bounded by a plane wall, the form of the ‘reciprocal’
theorem suitable for a non-rotating body having one of its three symmetry planes
parallel to the wall is

Î ·F+ ĵ ·Γ = Î ·
{

D0U0

Dt
VB − A ·

(
dV
dt
− D0U0

Dt

)
− (V ·∇A) · Ṽ

+ [A ·S0 − S0 ·A] · Ṽ +
(
I
2
+ A

VB

)
×[ω0 × (A · Ṽ)] − 1

2
A · (Ṽ × ω0)

}
− ĵ ·

{
Ṽ × (A · Ṽ)+ ER :

dS0

dt
− 1

2
(V ·∇D) ·ω0 + (V ·∇ER) : S0

}
−
∫

V

φ̂ω0 · (ω̃ + ω̃B)0 dV +
∫

V

[(ω̃ + ω̃B)× Ũ]0 ·(Ŵ − Û) dV

− 1
Re

∫
SB

{(Û − Ŵ )× (ω − 2Ω)} ·n dS− 2
Re

ĵ ·
∫

SB

n× (Ũ − W̃ ) dS

−
∫

SW

{
1
2
(Ũ · Ũ)0 Ŵ + φ̂Ũ0 × ω0 + 1

Re
Û × ω

}
·n dS. (3.15)

Note that (3.15) is still valid for a rotating circular cylinder or a rotating sphere
since rotation does not induce any inviscid effect for such point-symmetric bodies. In



addition, ER = D = 0 in that case, so that the last three terms in the expression for
the torque vanish. In contrast, A is generally not spherical even for point-symmetric
bodies, since the added-mass coefficients corresponding to an acceleration parallel or
perpendicular to the wall may differ from each other.

4. Some applications to high-Reynolds-number bubble dynamics
In this section we consider three applications of the various forms of the theorem

derived in §§ 2 and 3 to the prediction of high-Reynolds-number bubble motion. The
fact that the surface vorticity generated by the shear-free boundary condition is of
O(1) (once normalized by the ratio of the slip velocity V0 over some characteristic
length scale R of the bubble) instead of being of O(Re1/2) when the no-slip condition
holds makes viscous corrections much weaker for bubbles than for solid bodies. More
precisely, the normalized tangential velocity changes by O(Re−1/2) within the boundary
layer surrounding a bubble, instead of changing by O(1) near a no-slip surface (Moore
1963; Batchelor 1967). Therefore, in the limit of very large Reynolds number, the
bound vorticity ωB in (2.19) (or ω̃B in (3.6)) is negligibly small and the effect of
the shear-free condition can be considered as merely resulting in a vortex sheet right
at the bubble surface. This major difference with solid bodies makes it possible
to perform asymptotic calculations in the limit Re→∞ so as to obtain consistent
force and torque expressions including both inertial and leading-order viscous effects.
Conversely, in situations where inviscid theory predicts a non-zero force or torque,
viscous effects can only induce a small correction to that prediction, not a contribution
of similar or even larger magnitude as may be the case with the no-slip condition.
For these reasons it sounds interesting to examine how results derived in the previous
sections may be applied to predict inertial and/or viscous loads on shear-free bubbles
in some contrasting situations.

4.1. Two spherical bubbles rising side by side in a liquid at rest

To illustrate the ability of (2.19) to predict both drag and lift components of the
force, we first consider how it applies to the well-understood situation of two
identical spherical bubbles rising steadily in such a way that their line of centres
stays perpendicular to their rise velocity (Legendre, Magnaudet & Mougin 2003). The
dimensional distance between the two bubbles is 2L, so that it is convenient to define
the dimensionless quantity κ = R/L, which represents the inverse of the separation
from one bubble to the symmetry plane of the system. Hence this symmetry plane now
stands at r · e⊥ = −1/κ , where e⊥ is the unit vector in the direction of the line of
centres pointing away from the symmetry plane (figure 2a). We assume the separation
L to be much larger than the bubble radius R, i.e. we consider the limit κ � 1. In a
first step we assume that the Reynolds number is infinite but the fluid is still viscous,
so that the velocity disturbance may be considered irrotational except right at the
surface of the bubbles. Corrections related to the finiteness of Re will be considered
later. Consequently, at leading order in Re−1 and in κ (i.e. in the limit κ → 0), the
velocity disturbance about the bubble centred at r = 0 (say bubble A) is merely the
dipole solution U0 = −V · ∇(r/2r3) (hence V is the rise velocity in the limit κ→ 0).
To cancel the normal velocity created by this dipole on the symmetry plane, a dipole
of similar strength must be introduced at the image point r = −(2/κ)e⊥ (i.e. at the
centre of the second bubble, say B). The velocity field induced by this image dipole is
of course U∗0 =−V ·∇(r∗/2r∗3), with r∗ = r+ 2κ−1e⊥ and r∗ = ‖r∗‖. Expanding U∗0 in
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FIGURE 2. Flow configurations considered in (a) § 4.1 and (b) § 4.3.

the vicinity of bubble A yields

U∗0 (κ‖r‖� 1)= U∞(r)=−κ
3

16
V + 3κ4

32
((e⊥ · r)V + (V · r)e⊥)+ O(κ5). (4.1)

Hence bubble A experiences a ‘far-field’ velocity made up of a uniform velocity
−(κ3/16)V and a straining field (3κ4/32)((e⊥ ·r)V+(V ·r)e⊥). To satisfy the kinematic
condition (2.3) at the bubble surface up to terms of O(κ4), one has to add a dipole
and a quadrupole with the proper strengths. The final velocity field near bubble A then
reads

UA(r)= U∞(r)− 1
2

(
1+ κ

3

16

)
V ·∇

( r
r3

)
− κ

4

48

{
e⊥V :∇∇

( r
r3

)}
+ O(κ5). (4.2)

The auxiliary velocity field required to apply the ‘reciprocal’ theorem in
the V direction corresponds to the particular choice Ŵ = î = V/‖V‖, so that
Û = UA/‖V‖. Since the flow is steady, the first contribution on the right-hand side
of (2.19) is zero. The vorticity is zero except right on the bubble surface, which
indicates that the second contribution is also zero, although we do not know yet how
it goes to zero when Re→∞. Moreover V · n = î · n = 0 on SW since the motion is
parallel to the symmetry plane, so that there is no contribution from SW . Hence only
the third integral is non-zero. The corresponding contribution is more easily evaluated
using the form (B 6), namely

V ·F=−2‖V‖
Re

∫
SB

(UA
S − VS) ·∇Sn · (ÛS − V̂S) dS. (4.3)

In a system of spherical coordinates (r, θ, φ) with the axis θ = 0 corresponding to
the direction of V , we have VS = −eθ sin θ and the curvature tensor can be written as
∇Sn= eθeθ + eφeφ . Evaluating (4.3) then yields

V ·F=−12
Re
π

(
1+ κ

3

8

)
V ·V + O(κ6). (4.4)

Hence, provided the volume integral on the right-hand side of (2.19) decays faster than
Re−1 when Re→∞ (which we shall show later to be the case), the leading-order
drag is given by (4.4), so that the dimensional drag is F = −12πρνRV0(1 + κ3/8)V .



This prediction agrees with that derived by Kok (1992) at O(κ3) in the limit
κ � 1, Re→∞ using the ‘dissipation’ theorem. When κ → 0, the above result
obviously corresponds to Levich’s prediction for the drag of a single spherical bubble
rising with an infinitely large Reynolds number in an unbounded liquid at rest at
infinity (Levich 1949, 1962; Batchelor 1967).

To make use now of (2.18) in the direction of the line of centres, we need the
auxiliary velocity field corresponding to î = e⊥. By a similar method, we find that the
velocity field induced near bubble A by the corresponding image dipole is

U∞(r)= κ
3

8
e⊥ + 3κ4

32
(r− 3(r · e⊥)e⊥)+ O(κ5). (4.5)

Hence, near bubble A, the required auxiliary velocity field correct up to terms of O(κ4)

is found to be

Û(r)= U∞(r)− 1
2

(
1− κ

3

8

)
e⊥ ·∇

( r
r3

)
+ κ

4

32

{
e⊥e⊥ :∇∇

( r
r3

)}
+ O(κ5). (4.6)

The force on the bubble can now be evaluated through (2.19) in which, still in the
limit of infinite Reynolds number, only the third integral and the first part of the fourth
integral can be non-zero. However, the integrand of the former is an even function of
the angular position along the bubble surface and hence integrates to zero. To avoid
the determination of U on SW , the latter contribution may be evaluated using the form
(2.18) together with (C 3), thanks to which one obtains

F · e⊥ =
∫

SB

{(
1
2
UA
·UA

)
e⊥ − (UA

· e⊥)V
}
·n dS=− 3

16
πκ4 + O(κ5). (4.7)

Therefore, at leading order, the dimensional transverse force is −(3/16)πκ4ρR2V2
0e⊥,

which is the classical result provided by irrotational flow theory (Milne-Thomson
1968). However, what (4.7) additionally shows is that this prediction is not
altered by the non-zero vorticity present right at the bubble surface. We shall
see below how the contribution of the volume integral in (2.19), which depends
on the vorticity distribution throughout the boundary layer, influences this force
component.

To complete the determination of both components of F we need to evaluate the
leading-order corrections induced by the finiteness of the Reynolds number. These
corrections are provided by the volume integral I = ∫

V
{(ω + ωB)× U} · (Ŵ − Û) dV

in (2.19). However, they can be more straightforwardly estimated by starting from the
form (2.18) of the theorem. Then, splitting the complete velocity field about bubble A
into the form U = UA + u, where u is the vortical correction that vanishes outside the
boundary layer and wake, and making use of (C 4), we have

I +
∫

SW

1
2
(U ·U)Ŵ ·n dS =

∫
SB

{
1
2
(U ·U)Ŵ − Dφ̂

Dt
W

}
·n dS−

∫
V

(ω × U) · Û dV

=
∫

SB

{
1
2
(UA
·UA)Ŵ − (UA

· Ŵ )W
}
·n dS

+
∫

SB

1
2
(u ·u)Ŵ ·n dS



+
∫

SB

{(u ·UA)Ŵ − (u · Û)W } ·n dS

−
∫

V

(ω × (UA + u)) · Û dV. (4.8)

The first integral on the right-hand side is the irrotational contribution that leads to
(4.7) when Ŵ = e⊥. The kinematic conditions (2.13) and (2.14) may be used to
transform the second and third integrals on the right-hand side, the former becoming
− 1

2

∫
V
∇(u · u) · Û dV . The entire vortical contribution in (4.8) may then be written in

the form

I =
∫

SB

{u× (Û × UA)} ·n dS−
∫

V

ω · (UA × Û) dV −
∫

V

(u ·∇u) · Û dV. (4.9)

Selecting Ŵ = e‖ implies that UA = ‖V‖Û , which shows that the first two integrals
on the right-hand side of (4.9) vanish. Up to terms of O(κ3), the boundary layer
that surrounds the bubble is axisymmetric and its characteristics are similar to those
determined by Moore (1963) for a single bubble moving at large Reynolds number
in a fluid at rest at infinity. Therefore the tangential (respectively, normal) component
of u is of O(Re−1/2) (respectively, O(Re−1)) within the O(Re−1/2)-thick boundary
layer. In the last integral of (4.9) the integrand is thus of O(Re−1), yielding an
O(Re−3/2) contribution to the drag. Owing to the straining contribution in (4.1), the
vortical velocity correction has an additional non-axisymmetric O(κ4) component. In
the spherical coordinate system introduced above, this component, say uNA(r, θ, φ), is
necessarily a linear function of sinφ and cosφ, so that

∫ 2π
0 uNA(r, θ, φ) dφ = 0. The

last integral in (4.9) involves contributions of the form
∫

V
(uA ·∇uNA+uNA ·∇uA) ·Û dV

(uA denoting the axisymmetric part of u) but such terms are actually zero and the
first correction to the drag provided by uNA is expected to be associated with the term∫

V
(uNA ·∇uNA) ·Û dV , which is of O(κ8). In other words, up to that order, the finite-Re

correction to (4.4) is merely that computed by Moore (1963), so that one has

V ·F=−12
Re
π

(
1+ κ

3

8

)
(1− 1.56Re−1/2)V ·V + O(κ6), (4.10)

where it must be kept in mind that the present Reynolds number is based on the
bubble radius, so that the factor 1.56 in (4.10) is equivalent to the more familiar
factor 2.21 in Moore’s original paper. The prediction (4.10) was already obtained by
Legendre et al. (2003), who found that it agrees well with DNS results for Re > 20.
Let us finally examine the contribution of I to the transverse force. Now UA and Û
are no longer collinear, so that the first two integrals on the right-hand side of (4.9)
are in principle non-zero and are dominated by contributions proportional to Re−1/2.
However, within the boundary layer, the vorticity is dominated by the radial variations
of the tangential components of u, i.e. one has ω ≈ −(∂uφ/∂r)eθ + (∂uθ/∂r)eφ .
Moreover, the relative variation of the irrotational fields UA and Û across the
boundary layer is only of O(Re−1/2), while that of uθ and uφ is of O(1) and
both vortical velocity components vanish at the outer edge of the boundary layer.
Using these remarks and the kinematic conditions (2.13) and (2.14), the leading-
order contribution to the first volume integral in (4.9) can be evaluated, yielding∫

V
ω · (UA × Û) dV ≈ ∫SB

{(UA
θ uθ + UA

φuφ)Ŵr − Wr(Ûθuθ + Ûφuφ)} dS, which is just
the surface integral in (4.9); in other words, the leading contribution of ω to I



is balanced by that of the bound vorticity ωB. Hence, the first two integrals on
the right-hand side of (4.9) cancel at leading order and the first non-zero difference
between them arises because of the O(Re−1/2) relative variations of UA and Û across
the boundary layer and of the O(Re−1/2) secondary contributions to ω, yielding a net
contribution proportional to Re−1. Since the first non-axisymmetric component of ω
arises at O(κ4), we conclude that the difference between the leading two integrals
in (4.9) yields an O(κ4Re−1) contribution to the transverse force. Indeed, a viscous
correction to that force component behaving as κ4Re−1 was detected numerically by
Legendre et al. (2003), who observed it to be repulsive and found the corresponding
prefactor to be approximately 7.5 with the present definitions.

From a theoretical point of view, evaluating this viscous contribution requires
solving the non-axisymmetric boundary layer problem at O(κ4). This is obviously
a significant effort that is beyond the scope of the present paper. Nevertheless,
even at the present qualitative stage, the formulation (2.18)–(2.19) has the decisive
advantage of providing a formal expression and an order-of-magnitude estimate of
this contribution and of showing by which mechanisms it is generated. None of
these conclusions could have been reached with the ‘dissipation’ theorem, since this
viscous transverse force does not produce any work. After the present investigation
was completed, it was realized that results (4.4) and (4.7) and several of the above
qualitative conclusions were already obtained using a formulation close to the present
one by Grotta Ragazzo & Tabak (2007).

4.2. Viscous force and torque on an oblate spheroidal bubble translating and rotating in a
liquid at rest

Although the flow domain is unbounded and the fluid is at rest at infinity in that
case, it is of interest to use (2.19) in order to evaluate all viscous contributions
that can affect the motion of oblate spheroidal bubbles in the limit of very large
Reynolds numbers, as this simplified geometry is known to provide a valid first-order
approximation of the actual shape of millimetric bubbles moving in low-viscosity
liquids (Magnaudet & Eames 2000). The corresponding inviscid contributions provided
by the Kelvin–Kirchhoff equations or equivalently by the first integral on the right-
hand side of (2.19) are well known and will not be discussed here (they correspond to
(2.26) with B = C = 0 and dWA/dt = dWD/dt = 0).

Let us first introduce the classical oblate ellipsoidal coordinate system (ζ, µ, φ) such
that (Lamb 1945)

x= kζµ, y= k (1+ ζ 2)
1/2
(1− µ2)

1/2
cosφ,

z= k (1+ ζ 2)
1/2
(1− µ2)

1/2
sinφ,

}
(4.11)

where k is a constant that determines the volume of the spheroid. For µ ∈ [−1, 1] and
φ ∈ [0, 2π], the surface corresponding to ζ = ζ0 is that of an oblate ellipsoid of aspect
ratio χ = (1+ ζ 2

0 )
1/2
/ζ0 and volume V = 4πk3ζ0(1+ ζ 2

0 )/3. The corresponding metric
factors hµ, hζ and hφ are given by

hµ = k

(
ζ 2 + µ2

1− µ2

)1/2

, hζ = k

(
ζ 2 + µ2

1+ ζ 2

)1/2

,

hφ = k (1− µ2)
1/2
(1+ ζ 2)

1/2
.

 (4.12)

The surface curvature tensor ∇Sn may be written in the form ∇Sn = Hn
µ(ζ0)eµeµ +

Hn
φ(ζ0)eφeφ , where eµ and eφ are the unit vectors in the meridian and azimuthal



directions, respectively, and Hn
µ and Hn

φ are the two radii of curvature, given by

Hn
µ =

1
hµhζ

∂hµ
∂ζ
= ζ (1+ ζ 2)

1/2

k (ζ 2 + µ2)
3/2 ,

Hn
φ =

1
hφhζ

∂hφ
∂ζ
= ζ

k (1+ ζ 2)
1/2
(ζ 2 + µ2)

1/2 .

 (4.13)

We assume that the minor axis of the bubble is aligned with the unit vector ex,
whereas the equatorial plane is parallel to the (ey, ez) plane. According to Lamb
(1945), the velocity potential corresponding to an incident velocity î and satisfying the
kinematic condition (2.13) is φ̂T =ΨT · î with

ΨT = kµ
1− ζcot−1ζ

ζ0 (1+ ζ 2
0 )
−1− cot−1ζ0

ex

+ k
(1− µ2)

1/2[ζ/ (1+ ζ 2)
1/2− (1+ ζ 2)

1/2 cot−1ζ ]
(2+ ζ 2

0 )ζ
−1
0 (1+ ζ 2

0 )
−1− cot−1ζ0

{cosφey + sinφez}. (4.14)

Similarly, the velocity potential corresponding to a rotation rate ĵ is φ̂R =ΨR · ĵ with

ΨR = 1
3

k2µ (1− µ2)
1/2 3ζ (1+ ζ 2)

1/2 cot−1ζ − (3ζ 2 + 2) (1+ ζ 2)
−1/2

(1+ 2ζ 2
0 )cot−1ζ0 − 2ζ0 − ζ0/3 (1+ ζ 2

0 )
−1

×{sinφey − cosφez}. (4.15)

Again, in the limit Re→∞, the velocity field U may be approximated by the
irrotational form U = ΨT · V + ΨR ·Ω throughout the body of the flow. Selecting
Û = ∇ΨT · î and implementing the above expressions in the form (B 6) of the viscous
contribution to (2.19), the viscous force acting on the bubble is found to be

F=−4πk{P‖exex + P⊥(eyey + ezez)} ·V , (4.16)

with

P‖(ζ0)= (1− ζ 2
0 )ζ

−2
0 cot−1ζ0 + ζ−1

0

(1+ ζ 2
0 ) {ζ0 (1+ ζ 2

0 )
−1−cot−1ζ0}

2 , (4.17)

P⊥(ζ0)= 2
ζ0(1− ζ 2

0 )+ (1+ ζ 2
0 )

2 cot−1ζ0

{(2+ ζ 2
0 )− ζ0(1+ ζ 2

0 )cot−1ζ0}2
. (4.18)

The expression for the drag along the short axis agrees with that of Moore
(1965), while that for the drag along any major axis agrees with the result derived
independently by van Wijngaarden (2005) and by the present author (unpublished),
all of them having made use of the ‘dissipation’ theorem in the limit Re→∞.
The normalized drag coefficients 4kP‖ and 4kP⊥ are plotted as a function of the
aspect ratio χ in figure 3. The above expressions indicate that the viscous force is
generally not aligned with the upstream velocity since P‖ 6= P⊥. Actually P‖ is larger
than P⊥ and the difference increases as the bubble becomes more oblate, i.e. as
ζ0→∞. Hence the angle Ψ = sin−1(‖F − (F · ex)ex‖/‖F‖) is smaller than the drift
angle Θ = sin−1(‖V − (V · ex)ex‖/‖V‖) and, the larger the oblateness, the larger the
difference Θ − Ψ . It is also worth noting that, given the geometrical symmetries of the
surface and the linearity of the viscous term in (2.19) with respect to the velocity, no
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viscous contribution to the force can be induced by the rotation Ω . Hence there is no
viscous Magnus-like force in the high-Re limit considered here.

As far as we are aware, no result is available in the literature for the viscous torque
acting on the bubble. Selecting Û =∇ΨR ·ĵ, long but straightforward calculations yield

Γ =−4πk3TΩ(eyey + ezez) ·Ω , (4.19)

with

TΩ(ζ0)= 1
18

Q2(ζ0)A(ζ0)− 1
3

Q(ζ0)B(ζ0)+ 1
2

C(ζ0), (4.20)

where

Q(ζ0)= 3(1+ ζ 2
0 )cot−1ζ0 − (3ζ 2

0 + 2)ζ−1
0

(1+ 2ζ 2
0 )(1+ ζ 2

0 )cot−1ζ0 − 2ζ0(1+ ζ 2
0 )− ζ0/3

, (4.21)

A(ζ0) = (1+ 2ζ 2
0 )(1− 6ζ 2

0 ) (1+ ζ 2
0 )

2
cot−1ζ0

+ ζ0(1+ ζ 2
0 )(12ζ 4

0 + 12ζ 2
0 + 1)+ 2ζ 3

0 /3, (4.22)

B(ζ0)= (1− 2ζ 2
0 ) (1+ ζ 2

0 )
2

cot−1ζ0 + ζ0(1+ 2ζ 2
0 )(1+ ζ 2

0 )− 2ζ 3
0 /3, (4.23)

C(ζ0)= (1+ ζ 2
0 )

2
cot−1ζ0 − ζ0(ζ

2
0 + 5/3). (4.24)

The normalized torque coefficient 4kTΩ is also plotted in figure 3 and is found to
increase gradually as the bubble becomes more oblate. Again note that, owing to the
linearity of the viscous contribution in (2.19) and to the geometrical symmetries of
the surface, no viscous torque is generated when the bubble translates with a non-zero
drift angle without rotating.

Owing to the absence of such couplings between F and Ω on the one hand
and between Γ and V on the other, (4.16) and (4.19) represent the complete
viscous contributions to the force and torque balances that govern the bubble motion
in the limit Re→∞. By adding them to the inviscid contributions provided by
the first integral in (2.19), one obtains rigorously the generalized form of the
Kirchhoff–Kelvin equations that includes both added-mass effects and leading-order
vortical contributions related to the shear-free condition (2.4). Although (4.16)–(4.18)
and (4.19)–(4.24) could have been obtained using the classical ‘dissipation’ theorem,
the task is significantly simplified by the use of (2.19), which avoids having to



evaluate the dissipation in the body of the fluid; this is especially valuable for the
calculation of TΩ , for which the ‘dissipation’ theorem has to be written in rotating
axes to make the flow stationary, which generates additional contributions in the
expression of the dissipation rate.

4.3. A two-dimensional circular bubble in a wall-bounded linear shear flow
We finally apply the results derived for linear flows in § 3.2 to a situation combining
a non-zero background vorticity with the presence of a nearby wall. For that purpose
we consider the case of a cylindrical bubble with a circular cross-section translating
steadily along a plane wall parallel to the steady linear shear flow defined by

UU(r)= U0 + α(r · e⊥)e‖ = (U0 + αr · e⊥)e‖, (4.25)

where α is the dimensionless shear rate, U0 is the undisturbed fluid velocity at the
distance κ−1 from the wall at which the bubble centre stands (with U0 = ακ−1 in
order for the undisturbed flow to satisfy the no-slip condition on the wall), and
e‖ and e⊥ again denote the unit vectors in directions parallel and normal to the
wall, respectively (figure 2b). In the inviscid limit, the problem reduces to that of
the flow past a circular cylinder translating near a plane wall; the corresponding
streamfunction was determined for arbitrary values of κ in the form of an infinite
series by Dériat (2002) but no evaluation of the hydrodynamic force was attempted.
Still in the limit Re→∞, the vorticity disturbance ω̃ is identically zero since the
base vorticity ω0 is not distorted by the presence of the bubble, nor by that of the
wall. Since the undisturbed vorticity is ω0 = −αe‖ × e⊥ and the undisturbed strain
rate is S0 = α/2(e‖e⊥ + e⊥e‖), the Lagrangian acceleration D0U0/Dt is identically zero.
Therefore (3.15) indicates that the inviscid lift force acting on the bubble is

e⊥ ·F= e⊥ ·
{

A‖

(
1+ A⊥

VB

)
ω0 × Ṽ

−
∫

SW

[
1
2
(Ũ · Ũ)0 e⊥ + e⊥ · (Ũ0 × ω0)ΨT⊥

]
dS

}
, (4.26)

where ΨT⊥ (respectively, ΨT‖) is the translational potential corresponding to a unit
bubble velocity in the direction perpendicular (respectively, parallel) to the wall, and
similar definitions apply to the components A⊥ and A‖ of the translational added-mass
tensor. To determine A‖ and A⊥, we need to know ΨT⊥ and ΨT‖ on the bubble surface.
Using techniques similar to those employed in § 4.1, we obtain

Ψ T‖(κ‖r‖� 1)=− r
r2
− κ

2

4

{
r+ r

r2

}
+ κ

3

4

{
(e⊥ · r)r− 1

2
e⊥ ·∇

( r
r2

)}
+ O(κ4), (4.27)

Ψ T⊥(κ‖r‖� 1)=− r
r2
− κ

2

4

{
r+ r

r2

}
− κ

3

4

{
r2

2
e⊥ − (e⊥ · r)r− 1

2
e⊥ ·∇

( r
r2

)}
+ O(κ4). (4.28)

Inserting these expressions in (2.24), it turns out that

A‖ = A⊥ = π
(

1+ κ
2

2

)
+ O(κ4). (4.29)



This result indicates that the translational added-mass tensor is still spherical at
O(κ2) in the presence of a plane wall. Actually, this property, which is specific to
circular cylindrical bodies, may be shown to subsist whatever the truncation order in κ
(Korotkin 2009).

We then need to determine the relative velocity field Ũ on SW to evaluate the
corresponding integral in (4.26). Combining the dipole and quadrupole required to
satisfy the kinematic boundary condition at the bubble surface with their images with
respect to the wall, one merely has at leading order

Ũ(r · e⊥ =−1/κ)=−Ṽe‖ ·∇
(

r
r2
+ r∗

r∗2

)
− α

4
e‖e⊥ :∇∇

(
r
r2
− r∗

r∗2

)
+ O(κ4), (4.30)

where Ṽ = (V − U0) · e‖ is the relative velocity of the bubble and r∗ is the current
distance measured from the centre of the image bubble as in § 4.1. Obviously
this velocity field does not satisfy the no-slip boundary condition on SW . The
corresponding tangential velocity is of O(κ2), inducing an O(κ2Re1/2) extra vorticity
along the wall. The associated viscous correction to the force could be evaluated by
solving the corresponding boundary layer equations (see e.g. Sherwood 2001 in the
axisymmetric case). However, this task is beyond the scope of the present work and
will not be attempted here, given that the resulting correction to the force is only of
O(κ2Re−1/2) and hence negligible compared to the inertial contribution in the limit
Re→∞.

On SW the translational potential ΨT⊥ is also at leading order

ΨT⊥(r · e⊥ =−1/κ)=−
(

r
r2
− r∗

r∗2

)
+ O(κ4). (4.31)

Making use of the above expressions, the wall contribution is obtained as

−
∫

SW

[
1
2
Ũ2

0 + e⊥ · (Ũ0 × ω0)ΨT⊥ · e⊥

]
dS= πκ2αṼ − π

2
κ3Ṽ2 + O(κ4). (4.32)

Note that terms proportional to α2 have been neglected in (4.32) to remain consistent
with the linearization procedure that led to (4.26). Introducing results (4.29) and (4.32)
within (4.26), the net inviscid lift force acting on the bubble is finally found to be

e⊥ ·F=−π
(

2+ κ
2

2

)
αṼ − π

2
κ3Ṽ2 + O(κ4). (4.33)

The interesting feature revealed by (4.33) is that, if the bubble lags behind the fluid,
i.e. Ṽ < 0, the shear-induced lift force tends to repel it from the wall, whereas the
second term tends to attract it to the wall. Therefore, there is a critical position of the
bubble given by 2/κ3 + 1/2κ = −Ṽ/2α, i.e. 1/κ ≈ (−Ṽ/4α)

1/3
for κ � 1, at which

the net lift force vanishes. This position is unstable, as the force becomes attractive
(respectively, repulsive) when the bubble is displaced towards (respectively, away from)
the wall.

In (3.15) it is easy to see that the only inertial term that could induce a force
component parallel to the wall is the contribution − ∫SW

e⊥ · (Ũ0 × ω0)ΨT‖ · e‖ dS.
However, the integrand turns out to be an odd function of the tangential coordinate



r · e‖ and hence integrates to zero. Therefore, the drag on the bubble entirely results
from viscous effects and is negligibly small compared to the inertial transverse force
in the limit Re→∞. Interestingly, we notice that the usual contribution to the drag
resulting from the non-zero vorticity at the bubble surface is of O(Re−1) whereas that
provided by the wall is of O(κ2 Re−1/2). Hence, depending on whether κ2 Re1/2 is
smaller or larger than unity, the drag scales differently with the Reynolds number.

5. Summary and concluding remarks
Motivated by the limitations of the classical ‘dissipation’ theorem, especially the

fact that it cannot predict the lift component of the force, and by the potentialities
of Lorentz’s reciprocal theorem in the Stokes flow regime, we have derived a general
‘reciprocal’ theorem capable of predicting all components of the force and torque
acting on a rigid body moving in an incompressible inhomogeneous flow at arbitrary
Reynolds number. The key to this approach, which extends that of Quartapelle &
Napolitano (1983) and Howe (1995), is the use of auxiliary velocity fields that are
both incompressible and irrotational. The introduction of such auxiliary fields offers
two main advantages. First, via the use of Green’s second identity and the fact that
the viscous stresses of such fields have zero flux, they allow the force and torque
on the body to be expressed solely in terms of the velocity field and its derivatives.
Second, by properly selecting the orientation of the auxiliary motion, all required
components of the loads can be evaluated, irrespective of their orientation with respect
to the relative motion between the body and fluid. In contrast with the primary
velocity field, these auxiliary fields do not satisfy the dynamic boundary condition
at the body surface. This complicates some steps of the derivation but offers the
decisive advantage of making the explicit building of these fields possible in many
flow configurations of interest, as they are not influenced by viscous effects and are
thus much simpler than the actual velocity field.

We have first derived a version of the theorem suitable for the case of a body
moving in a fluid at rest at infinity, possibly bounded by a rigid wall or a symmetry
plane. The case of no-slip and shear-free boundary conditions at the body surface have
both been considered; the latter yields an additional contribution to the viscous torque
due to the slip between the body and fluid. The inertial contributions from added-mass,
free and bound vorticity are similar to those found by Howe (1995). Terms provided
by the presence of the wall consist of an inertial contribution that acts in the direction
normal to it whatever the orientation of the body motion, and a viscous contribution
due to the vorticity of the flow disturbance at the wall.

Two forms of the theorem, (2.18) and (2.19), have actually been derived. They are
equivalent as far as the vorticity distribution in the flow is compact, a property that can
always be achieved from a theoretical point of view. Things may be different when
one is forced to use a control volume of finite, although large, size, such as in direct
numerical simulation. For this reason, the conditions that a real flow field must fulfil
for the transformation from one form of the theorem to the other to be valid have been
considered. In cases where these conditions are not fulfilled, only the first form of the
theorem holds.

When the body moves in a non-uniform carrying flow, three new contributions arise
in the most general form (3.6) of the theorem, in addition to the net force and torque
exerted by the undisturbed flow on the volume of fluid occupied by the body. Two of
them are inertial by nature and involve the undisturbed vorticity throughout the flow
and the undisturbed velocity gradient at the body surface, respectively. A third, viscous



contribution arises at the body surface owing to the presence of non-zero stresses
in the undisturbed flow. To make all couplings between the undisturbed velocity
gradients and the body translational and rotational velocities explicit and to compare
the predictions of the present approach with available results, we have considered the
case of a general linear carrying flow in the weakly inhomogeneous limit where the
undisturbed velocity varies over distances much larger than the body size. Expanding
the various contributions involving the undisturbed strain rate and vorticity allowed us
to recover all the inviscid predictions of Galper & Miloh (1995) – which themselves
encompass the theoretical findings of Taylor (1928) and Tollmien (1938) – and of
Miloh (2003) for irrotational and vortical undisturbed flows, respectively. Also, all
available inviscid predictions for spheres and circular cylinders immersed in linear
flows, such as those of Auton et al. (1988), appear as particular cases of (3.14)–(3.15).

We have finally applied the various forms of the ‘reciprocal’ theorem to the
prediction of inertial and viscous forces and torques acting on high-Reynolds-number
bubbles submitted to a shear-free condition in several flow configurations. This enabled
us to recover some well-known results classically obtained thanks to the ‘dissipation’
theorem or to the classical inviscid theory. In addition, we have derived several new
results valid in the limit Re→∞, such as the viscous torque acting on an oblate
bubble rotating in a fluid at rest, the inertial lift force on a circular bubble moving near
a plane wall in a linear shear flow, or the formal expression of the O(Re−1) viscous
correction to the transverse force acting on a pair of spherical bubbles rising side by
side.

Although the Reynolds number is large in all the examples we considered, it
must be stressed that the present approach remains valid at low Reynolds number.
More precisely, all forms of the theorems derived in the paper reduce to terms
involving a Re−1 prefactor in the limit Re→ 0, possibly supplemented with added-
mass contributions if unsteady and viscous effects have a comparable magnitude. In
the case of an unbounded flow domain and a fluid at rest at infinity, § 7.1 of Howe
(1995) illustrates this by considering the force acting on a rigid sphere. This section
shows how the theorem (which in that case is just the linear part of (2.19) with
ĵ = 0 and without the wall contribution) recovers three well-known results, namely
the Stokes drag and the Basset–Boussinesq history force for Re = 0, and the low
– but – finite Re Oseen correction to the drag. Owing to the neglect of nonlinear
terms in that limit, only contributions associated with the vorticity distribution at the
body surface contribute to the viscous force in all three cases. Given this capability
of the theorems derived here to deal with low-Re situations, they may be used as
an alternative to Lorentz’s reciprocal theorem for determining the loads on particles
moving in an inhomogeneous flow in that regime.

In the presence of finite viscous effects, expressions derived in §§ 2 and 3 are of
direct use to obtain closed-form predictions of the loads only in situations where
the vortical velocity disturbance is weak compared to the base flow, since it is only
under such a condition that the vorticity distribution can be determined through an
asymptotic approach. In practice, this makes the theoretical prediction of the force and
torque essentially possible for clean bubbles, with possibly the presence of a distant
solid wall. Nevertheless, when a solid body is involved, these theorems are still useful
in the context of experimental and computational studies. Indeed, once the vorticity
distribution has been experimentally or computationally determined, they provide a
direct tool for evaluating the various contributions to the loads without having to know
the pressure distribution at the body surface. This approach has already been found
fruitful for obtaining the time-dependent force components on bodies held fixed in



a uniform stream, either in experiments where vorticity is determined using digital
particle image velocimetry (Noca, Shiels & Jeon 1996, 1999), or in computations
carried out with vortex methods (Chang & Chern 1991; Protas et al. 2000; Pan &
Chew 2002). There is no doubt that it may also be helpful when the base flow is
inhomogeneous, and the results derived above provide the rational basis for this.

The present approach may be extended along several lines. For instance, combined
with the domain perturbation technique, it can be used to determine the inertial
and viscous force and torque acting on deformable bodies, as has been classically
achieved in low-Reynolds-number flows (Chan & Leal 1979; Magnaudet, Takagi &
Legendre 2003) or in the irrotational approximation (Galper & Miloh 1994, 1995).
These combined approaches may also be used to determine the loads on growing
or condensing vapour bubbles, for which specific questions related to momentum
conservation arise, especially in the late stages of the collapse process (Eames 2010).
Effects of density gradients such as those evidenced by Eames & Hunt (1997),
Palierne (1999) and Miloh (2004) may also be included. In all cases, the present
approach, which stems directly from the complete Navier–Stokes equations, is the
proper way to derive the correct form of the generalized Kelvin–Kirchhoff equations
governing the motion of a body in a viscous fluid (Mougin & Magnaudet 2002).
However, once these equations are rationally established, it is only in particular
situations, such as two-dimensional inviscid flows, that all contributions can be
evaluated in closed form. This is because part of the inertial contribution to the
loads (especially to the lift force) lies in volume integrals involving the bound and
free vorticity disturbances. Since evaluating these contributions explicitly requires the
determination of the vorticity disturbance throughout the flow, it remains the ‘Holy
Grail’ of the prediction of inertial loads acting on rigid or deformable bodies in most
situations of practical interest, most notably in three-dimensional geometries.

Appendix A. Strain rate and vorticity at the body surface
Let us define an orthogonal coordinate system in which n is the unit vector tangent

to one of the coordinate lines. Then any velocity field v may be split in the form
v = vS + vnn, where vS is the projection of v onto the surface locally normal to
n and vn = v · n. Similarly, the surface gradient operator ∇S may be written in
the form ∇ = ∇S + n ∂/∂n, with ∂/∂n = n · ∇. In addition to the obvious identities
∇S(n2) = 2∇Sn · n = 0 and ∂(n2)/∂n = 2n · ∂n/∂n = 0, the orthogonality condition
vS ·n= 0 yields the relations

∇S(vS ·n)=∇SvS ·n+∇Sn ·vS = 0,
∂(vS ·n)
∂n

= ∂vS

∂n
·n+ vS ·

∂n
∂n
= 0.

 (A 1)

Then the velocity gradient tensor takes the form

∇v= ∇SvS + (∇Svn)n− (∇Sn ·vS)n+ vn

(
∇Sn+ n

∂n
∂n

)
+n

∂vS

∂n
+
(
∂vn

∂n
− vS ·

∂n
∂n
− n ·

∂vS

∂n

)
nn, (A 2)

where ∇SvS is the 2× 2 surface velocity gradient tensor, ∇Sn+ n(∂n/∂n)+ (∂n/∂n)n
is the 3 × 3 symmetric curvature tensor of the coordinate system and ∇Sn is the
2 × 2 diagonal curvature tensor of the surface locally normal to n. The trace



Tr(∇Sn)=∇S · n is the mean curvature of the corresponding surface and (A 2) implies
that the incompressibility constraint can be written as

∇S ·vS + vn∇S ·n+ ∂vn

∂n
− vS ·

∂n
∂n
= 0. (A 3)

Introducing now the strain-rate tensor d = 1/2(∇v+ T∇v), we have

2d ·n= ∂vS

∂n
−
(
n ·
∂vS

∂n

)
n−∇Sn ·vS +∇Svn

+ 2
(
∂vn

∂n
− vS ·

∂n
∂n

)
n+ vn

∂n
∂n
. (A 4)

Similarly, we may split the vorticity ωv = ∇ × v in the form ωv = ωS + ωnn, with
ωn = ωv ·n. Then, noting that (∇ × v)× n= n ·∇v−∇v ·n, we also have

ωv × n= ωS × n= ∂vS

∂n
−
(
n ·
∂vS

∂n

)
n+ vn

∂n
∂n
+∇Sn ·vS −∇Svn. (A 5)

Combining (A 4), (A 5) and (A 3) we then obtain

2d ·n= ωv × n+ 2(∇Svn −∇Sn ·vS)− 2(∇S ·vS + vn∇S ·n)n. (A 6)

To make use of (A 6) in the derivation of the ‘reciprocal’ theorem, we need to
transform the term ∇Svn to take into account a kinematic boundary condition of the
form vn = w ·n, with w= a+b× r, a and b being two constant vectors. One may write

∇Svn =∇S(w ·n)=∇Sw ·n+∇Sn ·w=
(
∇w− n

∂w
∂n

)
·n+∇Sn ·wS. (A 7)

Then, since ∇w ·n= n× b, it turns out that (∂w/∂n) ·n= n ·∇w ·n= 0, so that

∇Svn = n× b+∇Sn ·wS. (A 8)

Combining (A 6) and (A 8) we find that the tangential component of the surface strain
rate obeys

2 (d ·n)S = 2n× (d × n)= ωv × n+ 2(∇Svn −∇Sn ·vS)

= ωv × n− 2{∇Sn · (vS − wS)+ b× n}. (A 9)

Hence, with an irrotational velocity field one simply has

2 (d ·n)S =−2{∇Sn · (vS − wS)+ b× n}, (A 10)

whereas in the case of a no-slip condition the tangential surface strain rate becomes

2 (d ·n)S = (ωv − 2b)× n. (A 11)

Finally, for a velocity field v satisfying a shear-free boundary condition, (A 9)
indicates that the tangential component of the vorticity is

ωS = n× (ωv × n)= 2n× (∇Sn · (vS − wS))+ 2(b− (b ·n)n), (A 12)

so that

n× (ωv − 2b)=−2∇Sn · (vS − wS). (A 13)

The first term on the left-hand side of (A 13) corresponds to the vorticity induced by
the relative motion of the fluid with respect to the surface, whereas the second term is
due to the rotation of the surface.



Appendix B. Partial transformation of (2.16)
Following Howe (1995), the contribution on the right-hand side of (2.16) involving

the acceleration ∂U/∂t may be transformed into a surface integral by writing the
integrand in the form Û · ∂U/∂t = ∇ · (φ̂ ∂U/∂t) = ∂{∇ · (φ̂U)}/∂t − ∇ · {U ∂φ̂/∂t}.
Then, applying Leibnitz’s theorem, keeping in mind that S∞ and SW are fixed and
taking advantage of the r−2 decay of φ̂ for r→∞, one obtains∫

V

∂U
∂t
· Û dV = dw

dt

∫
V

∇ · (φ̂U) dV +
∫

SB

∇ · (φ̂U)W ·n dS+
∫

SB

∂φ̂

∂t
U ·n dS

=−dW

dt

∫
SB

φ̂W ·n dS+
∫

SB

{
∂φ̂

∂t
+ U ·∇φ̂

}
W ·n dS

=−dW

dt

∫
SB

φ̂W ·n dS+
∫

SB

Dφ̂

Dt
W ·n dS, (B 1)

where dw/dt denotes the time rate of change following the arbitrary motion of the
control volume V , while dW/dt is the time derivative following the motion of the body
centre of mass and D/Dt = ∂/∂t + U ·∇ is the material derivative.

Now splitting the velocity U in the form U = US+Unn and making use of (2.3), the
first integral on the right-hand side of (2.16) may be written as∫

SB

U · (τ̂ ·n) dS=
∫

SB

US · (τ̂ ·n)S dS+
∫

SB

(W ·n)n · (τ̂ ·n) dS. (B 2)

To transform the second integral on the right-hand side of (B 2), we form the curl of
Û ×W − φ̂Ω , make use of the Stokes theorem and invoke the irrotationality condition
(2.11). A little algebra then yields

0= 2
∫

SB

{∇ × (Û ×W − φ̂Ω)} ·n dS=
∫

SB

W · (τ̂ ·n) dS. (B 3)

We note in passing that (B 3) shows that the contribution Re−1
∫

SB
U · (τ̂ · n) dS in

(2.16) vanishes when the no-slip condition U =W applies. From (B 3) we deduce the
identity ∫

SB

(W ·n)n · (τ̂ ·n) dS =−
∫

SB

WS · (τ̂ ·n)S dS. (B 4)

With (B 4) at hand, (B 2) may be rewritten in the simpler form∫
SB

U · (τ̂ ·n) dS=
∫

SB

(US −WS) · (τ̂ ·n)S dS. (B 5)

The right-hand side of (B 5) does not vanish on a bubble surface at which the shear-
free condition applies since the tangential component of the auxiliary traction, (τ̂ ·n)S,
does not obey any specific boundary condition on SB. As shown in appendix A, this
quantity may be transformed by exploiting the irrotational nature of Û . Using (A 10)
one then obtains∫

SB

U · (τ̂ ·n) dS =−2
∫

SB

(US −WS) · {∇Sn · (ÛS − ŴS)+ ĵ × n} dS, (B 6)



where ∇Sn is the curvature tensor of the surface. The integrand may be recast in terms
of vorticity using (A 13) thanks to which (B 6) takes the form∫

SB

U · (τ̂ ·n) dS =
∫

SB

{(ω − 2Ω)× (Û − Ŵ )} ·n dS

− 2 ĵ ·
∫

SB

n× (U −W ) dS. (B 7)

The first term on the right-hand side of (B 7) represents the effect of the relative
vorticity induced by the shear-free condition while the second is an additional
contribution to the torque associated with the vortex sheet of strength n × (U − W )
that exists at the bubble surface owing to the non-zero relative slip of the outer fluid.
Note that the contribution of the solid-body rotation 2Ω to the force is actually zero
because the part of Û − Ŵ associated with the translational velocity î may be rewritten
in the form ∇(φ̂− î ·r), so that

∫
SB
{(Û − Ŵ )×Ω} ·n dS= ∫SB

∇× {(φ̂− î ·r)Ω} ·n dS,
which is zero by virtue of the Stokes theorem.

If the body rather obeys the no-slip condition (2.5), the contribution (B 2) vanishes
but the last term in (2.17) is then non-zero. The surface tangential stress involved in
(2.17) may again be recast in terms of the local relative vorticity thanks to (A 11), so
that the corresponding contribution becomes∫

SB

(Û − Ŵ )S ·(τ ·n)S dS=
∫

SB

{(Û − Ŵ )× (ω − 2Ω)} ·n dS. (B 8)

Comparison of (B 8) with (B 7) indicates that the latter reduces to the former in the
case of a no-slip condition (U =W ), so that (B 7) represents the general form of the
contribution induced by the non-zero surface vorticity whatever the specific dynamic
boundary condition at the body surface. For bubbles, evaluation of (B 6) is however
more straightforward since only velocities are involved.

Appendix C. Partial transformation of (2.18)

Since Û · ∂U/∂t =∇ · (φ̂ ∂U/∂t), (B 1) may be written in the form∫
SB

Dφ̂
Dt

W ·n dS= dw

dt

∫
SB

φ̂U ·n dS−
∫

SB

φ̂
∂U
∂t
·n dS. (C 1)

If the flow is irrotational, we can set U = ∇Φ, and make use of the kinematic
conditions (2.6) and (2.13) and of the fact that Φ and φ̂ both satisfy Laplace’s
equation. Hence (C 1) may be expanded as∫

SB

Dφ̂
Dt

W ·n dS = dw

dt

∫
SB

{φ̂∇Φ −Φ(∇φ̂ − Ŵ )} ·n dS

−
∫

SB

{
φ̂
∂∇Φ

∂t
− ∂Φ
∂t
(∇φ̂ − Ŵ )

}
·n dS

=−dw

dt

∫
V

∇ · (ΦŴ ) dV +
∫

V

∇ ·

(
∂Φ

∂t
Ŵ
)

dV

− ∂

∂t

∫
SW∪S∞

ΦŴ ·n dS+
∫

SW∪S∞

∂Φ

∂t
Ŵ ·n dS, (C 2)



where n is directed into the fluid on SB, SW and S∞. Since SW and S∞ are fixed and Ŵ
does not depend on time, the last two integrals in (C 2) cancel each other and one is
left with ∫

SB

Dφ̂
Dt

W ·n dS=
∫

SB

∇ · (ΦŴ )W ·n dS=
∫

SB

(U · Ŵ )W ·n dS. (C 3)

If the flow is not irrotational, one may still define the velocity potential Φ such that
∇Φ ·n= U ·n on SB and ∇Φ ·n= 0 on SW and write∫

SB

Dφ̂
Dt

W ·n dS =
∫

SB

(U −∇Φ) · ÛW ·n dS+
∫

SB

{
∂φ̂

∂t
+∇Φ · Û

}
W ·n dS

=
∫

SB

{∇Φ · Ŵ + (U −∇Φ) · Û}W ·n dS. (C 4)

At this point one can introduce the bound vorticity ωB = n × (U − ∇Φ)δB, where
δB denotes the Dirac function, which is zero everywhere except on SB and satisfies∫

V δB dV = ∫SB
dS. Then ωB × U = (U −∇Φ)U ·nδB and (C 4) becomes∫

SB

Dφ̂

Dt
W ·n dS=

∫
SB

(∇Φ · Ŵ )W ·n dS+
∫

V
(ωB × U) · Û dV. (C 5)

Note that the terminology used here differs somewhat from that employed in Howe
(1995) where ωB as defined above is called the ‘excess bound vorticity’.

We may also derive the following relation∫
SB∪SW∪S∞

(U · Ŵ )U ·n dS =−
∫

V
∇ · ((Ŵ ·U)U) dV

=−
∫

V

Ŵ ·∇
(
U ·U

2

)
dV −

∫
V

Ŵ · (ω × U) dV

=−
∫

V

∇ ·

(
Ŵ

U ·U
2

)
dV −

∫
V

Ŵ · (ω × U) dV,(C 6)

which, owing to (2.6), yields∫
SB

(U · Ŵ )W ·n dS = 1
2

∫
SB∪SW

(U ·U)Ŵ ·n dS−
∫

V

Ŵ · (ω × U) dV

−
∫

S∞

{
(U · Ŵ )U − 1

2
(U ·U)Ŵ

}
·n dS. (C 7)

The behaviour of the integral over S∞ depends critically on the decay of the velocity
disturbance at large distance from the body. Axisymmetric wakes, as well as trailing
vortices, have cross-sectional areas growing like r (Batchelor 1964, 1967). Hence for
the contribution of the outer surface to the force to be negligibly small when r→∞,
it is required that U decays faster than r−1/2 in the wake. The situation regarding the
torque is more subtle. Clearly, a sufficient condition for the integral over S∞ to decay
to zero as the surface recedes to infinity is that U decays faster than r−1. However,
some important situations may require a less stringent condition. For instance, if the
body centre of mass moves in a straight line, S∞ may be chosen as a sphere (or
a part of a sphere if a wall is present) within which the body moves along one of



the diameters, which implies that r × n = 0 everywhere on S∞, so that the normal
component of the term ĵ × r in Ŵ is uniformly zero on the outer surface. Moreover
U · Ŵ = ĵ · (r × U), so that the contribution

∫
S∞(U · Ŵ )U · n dS can actually be

written as r ĵ ·
∫

S∞(n × U)U · n dS and thus involves the product of the tangential
and normal velocity components. In an axisymmetric wake, the latter decays like r−1

while the former decays like r−2, owing to continuity. Hence in this situation, the
overall contribution decays like r−1 and the last term in (C 7) is negligibly small.
It may well be that the above conditions are not naturally fulfilled in a large but
finite control volume such as those used in direct numerical simulations. In such a
case the contribution to the force and/or the torque provided by S∞ is not negligible,
making (C 7) useless and forcing one to stay with the form (2.18) of the theorem.
From a theoretical viewpoint, the use of an extended control volume within which the
vorticity distribution is compact and U then decays as r−3 in the far field can always
be invoked, making the contribution provided by S∞ negligible. Then we may again
introduce the bound vorticity ωB, so as to write the left-hand side of (C 7) in the form∫

SB

(U · Ŵ )W ·n dS=
∫

SB

(∇Φ · Ŵ )W ·n dS+
∫

V

(ωB × U) · Ŵ dV. (C 8)

Finally (C 5), (C 7) and (C 8) may be combined, yielding∫
SB

{
Dφ̂
Dt

W − 1
2
(U ·U)Ŵ

}
·n dS

= 1
2

∫
SW

(U ·U)Ŵ ·n dS−
∫

V

{(ωB × U) · (Ŵ − Û)+ (ω × U) · Ŵ } dV. (C 9)

Appendix D. Some steps required in the derivation of (3.5)
Two structural differences between (3.4) and (2.2) have to be taken into account to

obtain the counterpart of (2.18) in the case of a non-uniform undisturbed flow. One
of them obviously comes from the dynamic boundary condition (2.4) or (2.5), which
is still satisfied by the absolute velocity field, not by the disturbance Ũ . The other
is related to the non-uniformity of the undisturbed velocity field UU, which needs to
be properly accounted for during the transformation of terms involving DUŨ/Dt. The
derivation of the counterpart of (2.18)–(2.19) is greatly simplified by considering a
control volume V whose external boundary S∞ moves with the undisturbed velocity
UU, the inner boundary SB still moving with the body velocity W . Starting from the
vector identity

UU ·∇Ũ · Û =∇ · {UU∇ · (Ũφ̂)} −∇ · {Ũ∇ · (UUφ̂)} + Ũ ·∇UU · Û, (D 1)

and taking into account the kinematic condition on SW for both Ũ and UU, some
elementary manipulations show that (B 1) becomes∫

V

DUŨ
Dt
· Û dV = dw

dt

∫
V

∇ · (φ̂Ũ) dV +
∫

SB

Dφ̂
Dt

W̃ ·n dS

+
∫

V

Ũ ·∇UU · Û dV +
∫

S∞
(UU · Û)Ũ ·n dS, (D 2)

still with Dφ̂/Dt = ∂φ̂/∂t + U ·∇φ̂ = DUφ̂/Dt + Ũ ·∇φ̂.



It is then necessary to examine the way the contributions on S∞ encountered in the
derivation of the generalization of (2.18) evolve at large distance from the body. For
this purpose, let us assume that the undisturbed velocity UU grows like rm in the far
field (thus the undisturbed pressure PU grows like rm+1). Repeating the steps leading
to (2.18) for the disturbance Ũ and taking (D 2) into account, it is readily found that
these contributions can be written as

DU

dt

∫
S∞
φ̂Ũ ·n dS+

∫
S∞
{Ũ · τ̂ ·n− Û · Σ̃ ·n} dS

+
∫

S∞

{
1
2
(Ũ · Ũ)Û ·n−

(
∂φ̂

∂t
+ UU · Û

)
Ũ ·n

}
dS. (D 3)

It turns out that a sufficient condition for the largest contributions on S∞ to be
negligibly small is that ‖Ũ‖ decays faster than rN with N = Min(0, 1 − m). If the
vorticity distribution in V is compact, the velocity disturbance decays as r−3 in the
far field and any undisturbed flow with m < 4 satisfies the above condition. In the
opposite case, this condition is fulfilled at least by uniform and linear undisturbed
flows but the constraint is actually less severe in most cases. For instance, if the main
disturbance at large distance is due to a wake whose cross-section is of O(r) when
r→∞, the minimum decay rate N must only satisfy N =Min(1, 2 − m), which is
achieved at least up to quadratic carrying flows.

Appendix E. Partial transformation of (3.5)

Noting that Û ·DUŨ/Dt = ∇ · (φ̂DUŨ/Dt) − ∇ · (φ̂Ũ · ∇UU) + Ũ · ∇UU · Û , then
(D 2) leads to∫

SB

Dφ̂
Dt

W̃ ·n dS = dW

dt

∫
SB

φ̂Ũ ·n dS

−
∫

SB

φ̂
DUŨ

Dt
·n dS+

∫
SB

φ̂Ũ ·∇UU ·n dS. (E 1)

If the disturbance flow is irrotational, which implies that the undisturbed flow is also
irrotational, we can set Ũ = ∇Φ̃. The first two contributions on the right-hand side
may be transformed using the same procedure as in (C 2). Keeping in mind that the
outer boundary of the control volume now moves with the normal velocity UU · n, this
yields∫

SB

Dφ̂
Dt

W̃ ·n dS = dw

dt

∫
SB

{φ̂∇Φ̃ − Φ̃(∇φ̂ − Ŵ )} ·n dS+
∫

SB

φ̂Ũ ·∇UU ·n dS

−
∫

SB

{
φ̂

DU∇Φ̃

Dt
− DUΦ̃

Dt
(∇φ̂ − Ŵ )

}
·n dS

=−dw

dt

∫
V

∇ · (Φ̃Ŵ ) dV +
∫

V

∇ ·

(
DUΦ̃

Dt
Ŵ

)
dV

−
∫

V

Û · (∇UU + T
∇UU) · Ũ dV

− DU

Dt

∫
SW∪S∞

Φ̃Ŵ ·n dS+
∫

SW∪S∞

DUΦ̃

Dt
Ŵ ·n dS, (E 2)



where use has been made of the kinematic conditions for both UU and Û on SW and
of the O(r−2) (respectively, O(r−3)) decay of φ̂ (respectively, Ũ) as r→∞. It is then
convenient to express the first contribution on the right-hand side in the form

dw

dt

∫
V

∇ · (Φ̃Ŵ ) dV =
∫

V

DU

Dt
{∇ · (Φ̃Ŵ )} dV −

∫
SB

∇ · (Φ̃Ŵ )W̃ ·n dS. (E 3)

Then making use of the identity

∇ ·

(
DUΦ̃

Dt
Ŵ

)
− DU

Dt
{∇ · (Φ̃Ŵ )} =∇ · {(Ŵ ·∇UU − UU ·∇Ŵ )Φ̃}, (E 4)

and noting that UU · ∇Ŵ = ĵ × UU and that the undisturbed flow deforms the outer
surface of V according to DU(n dS)/Dt =−∇UU ·n dS (Batchelor 1967), one obtains∫

SB

Dφ̂
Dt

W̃ ·n dS =
∫

SB

{(Ũ · Ŵ )W̃ ·n+ Φ̃(ĵ × UU) ·n− Φ̃Ŵ ·∇UU ·n} dS

−
∫

V

Û · (∇UU + T
∇UU) · Ũ dV. (E 5)

When the flow is not irrotational, one can still define the bound vorticity ω̃B =
n× (Ũ −∇Φ̃)δB. Then repeating the procedure that led to (C 4) and (C 5) yields∫

SB

Dφ̂
Dt

W̃ ·n dS =
∫

SB

{(∇Φ̃ · Ŵ )W̃ ·n+ Φ̃(ĵ × UU) ·n− Φ̃Ŵ ·∇UU ·n} dS

+
∫

V

{ω̃B × Ũ − Ũ · (∇UU + T
∇UU)} · Û dV. (E 6)

The result (C 7) still holds with U replaced by Ũ and the discussion of the previous
appendix regarding the conditions under which the contributions on S∞ are or may
be made negligible still applies to the relative velocity. Therefore, provided these
conditions are fulfilled, one has∫

SB

(∇Φ̃ · Ŵ )W̃ ·n dS+
∫

V

(ω̃B × Ũ) · Ŵ dV

= 1
2

∫
SB∪SW

(Ũ · Ũ)Ŵ ·n dS−
∫

V

Ŵ · (ω̃ × Ũ) dV, (E 7)

so that the combination of (E 6) and (E 7) yields∫
SB

{
Dφ̂
Dt

W̃ ·n dS− 1
2
(Ũ · Ũ)Ŵ ·n

}
dS

=
∫

SB

{Φ̃(ĵ × UU) ·n− Φ̃Ŵ ·∇UU ·n} dS

+ 1
2

∫
SW

(Ũ · Ũ)Ŵ ·n dS−
∫

V

Û · (∇UU + T
∇UU) · Ũ dV

+
∫

V

(ω̃B × Ũ) · (Û − Ŵ ) dV −
∫

V

(ω̃ × Ũ) · Ŵ dV. (E 8)



Appendix F. Expansion of (3.13)

In (3.13),
∫

SB
φ̂W̃ · n dS is a function of both t and r0, not only because the

added-mass tensors may vary as the body moves perpendicularly to the wall as in
§ 2, but also because of the spatial variation of Ṽ . Therefore, within the ‘weakly
inhomogeneous’ approximation, the contributions to (dW/dt){∫SB

φ̂W̃ ·n dS}− (ĵ×U0) ·∫
SB
Φ̃n dS associated with the translational velocity Ṽ , relative rotation rate Ω̃ and

strain rate S0 may respectively be expanded in the form

dW

dt

∫
SB

φ̂Ṽ ·n dS+ (ĵ × U0) · (A · Ṽ)

=−Î ·
{

dΩA

dt
· Ṽ + A ·

(
∂Ṽ
∂t
− V ·∇U0 −Ω × Ṽ

)}

− ĵ ·

{
Ṽ × (A · Ṽ)+ dΩC

dt
· Ṽ + C ·

(
∂Ṽ
∂t
− V ·∇U0 −Ω × Ṽ

)}
+Ω × (A · Ṽ + C · Ṽ)

=−Î ·
{

A ·

(
dV
dt
− D0U0

Dt
−Ω × Ṽ

)
+Ω × (A · Ṽ)

+ (V ·∇A) · Ṽ − A · (Ṽ ·∇U0)

}
− ĵ ·

{
Ṽ × (A · Ṽ)+ C ·

(
dV
dt
− D0U0

Dt
−Ω × Ṽ

)
+Ω × (C · Ṽ)

+ (V ·∇C) · Ṽ − C · (Ṽ ·∇U0)

}
, (F 1)

dW

dt

∫
SB

φ̂Ω̃ · (r× n) dS+ (ĵ × U0) · (B · Ω̃)

=−Î ·
{

B ·

(
dΩ
dt
−Ω × Ω̃

)
+Ω × (B · Ω̃)+ (V ·∇B) · Ω̃

}
− ĵ ·

{
Ṽ × (B · Ω̃)+ D ·

(
dΩ
dt
−Ω × Ω̃

)
+Ω × (D · Ω̃)+ (V ·∇D) · Ω̃

}
, (F 2)

−1
2

dW

dt

∫
SB

φ̂S0 : (rn+ nr) dS+ (ĵ × U0) ·ET : S0

=−Î ·
{

ET :
dS0

dt
+ 2(ET ·S0) : (Ω · ε)+Ω × (ET : S0)+ (V ·∇ET) : S0

}
− ĵ ·

{
ER :

dS0

dt
+ 2(ER ·S0) : (Ω · ε)+Ω × (ER : S0)

+ Ṽ × (ET : S0)+ (V ·∇ER) : S0

}
, (F 3)



where ε denotes the usual third-order alternating tensor and the time rate-of-change
terms dV/dt etc. are expressed in non-rotating axes. Again, terms involving V · ∇A
etc. result from the spatial variation of the added-mass tensors when the body velocity
V has a non-zero component perpendicular to the wall and are zero otherwise. Note
that these terms do not seem to satisfy Galilean invariance at first glance. However,
this is simply because the wall has been assumed to be fixed in the laboratory frame,
so that the problem is not translationally invariant in the wall-normal direction in this
reference frame. To be more general, the wall could have been assumed to move with
a velocity VW and the aforementioned terms would then involve the relative velocity
V − VW .

The fifth contribution on the right-hand side of (3.13) combined with the terms
proportional to Ṽ ·∇U0 in (F 1) yields∫

SB

Φ̃0Ŵ ·∇U0 ·n dS−
∫

SB

Φ̃0{ĵ × (r ·∇U0)} ·n dS

+ Î ·A · (Ṽ ·∇U0)+ ĵ ·C · (Ṽ ·∇U0)

=
∫

SB

{ΨT · (Ṽ Î − Î Ṽ)+ΨR · (Ω Î − ĵṼ)} ·∇U0 ·n dS

+
∫

SB

{ΨT · Ṽ +ΨR ·Ω}{(ĵ × r) · (∇U0 ·n)− [ĵ × (r ·∇U0)] ·n} dS

= Î ·
{
[A ·S0 − S0 ·A] · Ṽ + 1

2
ω0 × (A · Ṽ)

− 1
2

A · (Ṽ × ω0)− S0 · (B ·Ω)− 1
2
(B ·Ω)× ω0

}
+ ĵ ·

{
C · (S0 · Ṽ)− 1

2
C · (Ṽ × ω0)+ 2ε : (Ṽ ·ET) ·S0 + 2ε : (Ω ·ER) ·S0

+OT : (ω0Ṽ)+ OR : (ω0Ω)

}
, (F 4)

where OT and OR are two third-order tensors, respectively defined as

OT = 1
2

∫
SB

(nr− rn)ΨT dS, OR = 1
2

∫
SB

(nr− rn)ΨR dS. (F 5)

In (3.13) the volume integral involving the undisturbed vorticity ω0 may also be
successively transformed as∫

V

(ω0 × Ũ0) · Û dV =−
∫

V

ω0 ·∇ × (φ̂Ũ0) dV +
∫

V

φ̂ω0 · ω̃0 dV

=
∫

V

∇ · (φ̂ω0 × Ũ0) dV +
∫

V

φ̂ω0 · ω̃0 dV

=
∫

V

φ̂ω0 · ω̃0 dV + ω0 ·

∫
SB∪SW

φ̂(n× Ũ0) dS

=
∫

V

φ̂ω0 · (ω̃ + ω̃B)0 dV

+ω0 ·

∫
SB

φ̂(n×∇Φ̃0) dS+ ω0 ·

∫
SW

φ̂(n× Ũ0) dS, (F 6)



where the index 0 in the last volume integral indicates that ω̃ and ω̃B have been
linearized and no longer depend on S0 and ω0.

Further simplifications are possible in (F 1)–(F 6) if attention is restricted to bodies
with three mutually perpendicular symmetry planes that move in an unbounded fluid
domain or translate without rotating near a plane wall with one of their symmetry
planes parallel to that wall. Indeed, for such body shapes and flow conditions,
B = C = 0. Also, on the surface SB, the translational potential ΨT is then directly
related to the added-mass tensor A through ΨT =−A·r/VB, which immediately implies
ET = OT = 0. Similarly, the rotational potential ΨR then obeys ΨR|SB = −K : (rr)
(Kochin, Kibel & Roze 1964), where the third-order tensor K is connected to the
rotational added-mass tensor D and to the inertia tensor J = ∫

VB
{(r · r)I − rr} dV

via the relation D = 2(K · J) : ε, ε denoting the usual third-order alternating tensor.
[Expanding this relation in index form reveals that any non-zero component of K , say
Kijk, involves the ratio of the diagonal component Dii of D to the difference Jjj − Jkk

between the moments of inertia in the two principal directions j and k orthogonal
to i (Miloh 2003).] Since Φ̃0 =ΨT · Ṽ + ΨR ·Ω , the tangential gradient n × ∇Φ̃0

involved in the contribution ω0 ·
∫

SB
φ̂(n × ∇Φ̃0) dS of (F 6) may then be expressed as

n × ∇Φ̃0 = −n × {(A · Ṽ)/VB + 2Ω ·K · r}, so that the corresponding integral can be
evaluated in closed form with respect to A and K , yielding

ω0 ·

∫
SB

φ̂(n×∇Φ̃0) dS =−Î · A

VB
· {ω0 × (A · Ṽ)}

− 4ĵ · {(K · J) · (TK ·Ω) : (ε ·ω0)}. (F 7)

Under the same conditions, the tensor K may also be used to re-express the
contribution to (F 4) involving the third-order tensor OR in the form

ĵ · {OR : (ω0Ω)} = ĵ · {J · (ω0 ·
TK ·Ω)− (Ω ·K ) · (J ·ω0)}. (F 8)

R E F E R E N C E S

AUTON, T. R. 1987 The lift force on a spherical body in rotational flow. J. Fluid Mech. 183,
199–218.

AUTON, T. R., HUNT, J. C. R. & PRUD’HOMME, M. 1988 The force exerted on a body moving in
an inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241–257.

BATCHELOR, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645–658.
BATCHELOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
BIESHEUVEL, A. & HAGMEIJER, R. 2006 On the force on a body moving in a fluid. Fluid Dyn.

Res. 38, 716–742.
BRENNER, H. 1963 The Stokes resistance of an arbitrary particle. Chem. Engng Sci. 18, 1–25.
BURGERS, J. M. 1920 On the resistance of fluids and vortex motion. Proc. K. Akad. Wet.

Amsterdam 23, 774–782.
CHAN, C.-H. & LEAL, L. G. 1979 The motion of a deformable drop in a second-order fluid.

J. Fluid Mech. 92, 131–170.
CHANG, C. C. 1992 Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond.

A 437, 517–525.
CHANG, C. C. & CHERN, R. L. 1991 Vortex shedding from an impulsively started rotating and

translating circular cylinder. J. Fluid Mech. 233, 265–298.
CHANG, C. C., YANG, S. H. & CHU, C. C. 2008 A many-body force decomposition with

applications to flow about bluff bodies. J. Fluid Mech. 600, 95–104.



COX, R. G. & BRENNER, H. 1968 Lateral migration of solid particles in Poiseuille flow. I. Theory.
Chem. Engng Sci. 23, 147–173.
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