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The onset of unsteadiness of two-dimensional

bodies falling or rising freely in a viscous fluid: a

linear study

Pauline Assemat1, David Fabre1 and Jacques Magnaudet1,2†

1 INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Université de Toulouse,

Allée Camille Soula, 31400 Toulouse, France
2 CNRS, IMFT, 31400 Toulouse, France

We consider the transition between the steady vertical path and the oscillatory path
of two-dimensional bodies moving under the effect of buoyancy in a viscous fluid.
Linearization of the Navier–Stokes equations governing the flow past the body and
of Newton’s equations governing the body dynamics leads to an eigenvalue problem,
which is solved numerically. Three different body geometries are then examined in
detail, namely a quasi-infinitely thin plate, a plate of rectangular cross-section with an
aspect ratio of 8, and a rod with a square cross-section. Two kinds of eigenmodes are
observed in the limit of large body-to-fluid mass ratios, namely ‘fluid’ modes identical
to those found in the wake of a fixed body, which are responsible for the onset
of vortex shedding, and four additional ‘aerodynamic’ modes associated with much
longer time scales, which are also predicted using a quasi-static model introduced
in a companion paper. The stability thresholds are computed and the nature of the
corresponding eigenmodes is investigated throughout the whole possible range of mass
ratios. For thin bodies such as a flat plate, the Reynolds number characterizing the
threshold of the first instability and the associated Strouhal number are observed to
be comparable with those of the corresponding fixed body. Other modes are found
to become unstable at larger Reynolds numbers, and complicated branch crossings
leading to mode switching are observed. On the other hand, for bluff bodies such
as a square rod, two unstable modes are detected in the range of Reynolds number
corresponding to wake destabilization. For large enough mass ratios, the leading mode
is similar to the vortex shedding mode past a fixed body, while for smaller mass
ratios it is of a different nature, with a Strouhal number about half that of the vortex
shedding mode and a stronger coupling with the body dynamics.
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1. Introduction

Understanding and predicting the path of bodies in free fall or rise within a
viscous fluid is a problem that is relevant in a broad range of applications (e.g.
meteorology, aerospace and chemical engineering, biology, etc.). This issue is a
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long-standing problem in fluid mechanics and is currently the subject of active
research – see Ern et al. (2012) and references therein for an up-to-date review.
Experimental and computational studies considering either two-dimensional bodies
(falling cards, long cylinders) or three-dimensional axisymmetric bodies (spheres, discs,
flat cylinders, bubbles, etc.) have revealed a rich variety of dynamical behaviours
and complicated bifurcation sequences – see e.g. Jenny, Dusek & Bouchet (2004) for
spheres; Pesavento & Wang (2004) and Andersen, Pesavento & Wang (2005a,b) for
thin plates; and Auguste (2010) for thick discs. However, the very first transition,
which generically leads to a switch from a steady, vertical trajectory to an oscillating
path, has received little attention – see, however, Alben (2008) for the case of a rising
or flapping ellipse. Our present research effort aims to fill this gap by performing a
linear stability analysis of the fully coupled fluid–body system.

In a companion paper (Fabre, Assemat & Magnaudet 2011, hereafter referred to
as FAM), we investigated the particular case of nominally two-dimensional bodies
(plates, cylinders, rods) much heavier than the surrounding fluid. In this case, the
weak accelerations of the body resulting from its large inertia make it possible to
derive rigorously a ‘quasi-static’ model in which the force and torque are assumed
to depend linearly upon the kinematic parameters of the motion (specifically the
velocity variation, incidence angle and rotation rate). This model predicts the existence
of four modes with slow time scales, which will be referred to as ‘aerodynamic’
modes. Two of them, called ‘back to terminal velocity’ (BTV) and ‘back to vertical’
(BV), are non-oscillating and are always damped (i.e. they are associated with a
real, negative eigenvalue). The last two modes are associated with a pair of complex
conjugate eigenvalues. They describe a slow, oscillating motion (this is why they are
referred to as ‘low-frequency’ (LF) modes) that, at leading order, can be explained
by the existence of a torque proportional to the incidence angle. This torque acts as
a restoring force as soon as the body short axis is no longer aligned with its path.
In the case of thin plates, this oscillating mode was found to be stable whatever the
Reynolds number. In contrast, for bluff bodies like a square rod, this mode was found
to become unstable for a critical Reynolds number close to that corresponding to the
onset of vortex shedding past the same body held fixed. This finding suggests that
a competition between two kinds of oscillating modes with a different nature could
occur for such bluff bodies.

The ‘quasi-static’ approach developed in FAM assumes that the forces acting on the
body depend only on its instantaneous position and velocity, and obviously does not
allow one to account for corrections due to unsteadiness of the body motion (through
the so-called added-mass and history terms), nor for the intrinsic dynamics of the
wake (through vortex shedding effects). Therefore, in order to address the general case
of bodies whose inertia is comparable to or lower than that of the fluid, we have to
call upon a more general approach. The purpose of the present paper is to develop
such an approach by applying a global linear stability analysis to the fully coupled
fluid–body problem (restricting ourselves, as in FAM, to two-dimensional geometries).
As expected from physical intuition, the results will reveal that, the smaller the body-
to-fluid relative density, the larger the differences between the predictions provided by
the two approaches (see for instance figure 6).

Besides the fundamental interest of providing a mapping of the primary bifurcation
threshold as a function of the geometrical characteristics of the body and of its inertia
relative to the fluid, the present approach is expected to improve the understanding
of the general problem in at least two ways. First, we expect to gain some insight
regarding the physical mechanism responsible for the primary instability, and in



particular to disentangle the respective effect of the intrinsic wake dynamics (vortex
shedding) and of the aerodynamic efforts experienced by the body. Second, the
present approach allows us to identify the dominant modes of the problem. Hence it
constitutes the first step towards a rational modelling of the nonlinear dynamics of the
body plus fluid system using bifurcation theory, an approach that has proved successful
for the related, although simpler, problem of the wake of fixed axisymmetric bodies
(Fabre, Auguste & Magnaudet 2008; Auguste, Fabre & Magnaudet 2009; Meliga,
Chomaz & Sipp 2009).

The paper is organized as follows. In § 2 we set up the description and
parameterization of the physical problem, establish the system of governing equations
and introduce the linear stability approach and the coupled linear system to be solved.
The numerical method employed to solve the eigenvalue problem and some validations
are presented in § 3. Results for a quasi-infinitely thin plate (§ 4), and for two other
geometries of interest, namely a rectangular rod with an aspect ratio of 8 (§ 5) and a
square rod (§ 6), are then discussed. Section 7 summarizes the main findings of the
present investigation and opens up some perspectives.

2. Statement of the problem

2.1. Geometry and dimensionless parameters

We consider bodies with a uniform cross-section in the (x, y) plane that are sufficiently
elongated in the z direction to allow a two-dimensional treatment. In what follows, ℓ

is the characteristic width of the body, d its thickness, A its cross-section (with A = ℓd

for a rectangular plate) and m its mass per unit length; g denotes gravity while ρ

and ν are the uniform density and viscosity of the fluid, respectively. These quantities
allow the problem to be entirely characterized by three dimensionless parameters,
namely

m∗ = m/(ρℓ2), χ = ℓ/d, Ar = 1

ν
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The parameter m∗ characterizes the body-to-fluid mass ratio, while χ is the body
geometrical aspect ratio. The parameter Ar is the so-called Archimedes number, which
compares gravitational and viscous effects. This parameter can thus be thought of as
a Reynolds number based on the body length scale ℓ and the gravitational velocity
scale defined as Ug =

√
|m − ρA|g/(ρℓ), which differs from the actual falling/rising

speed (indeed, as shown by (2.13) below, Ug coincides with the falling/rising speed
U0 only if the drag coefficient equals 2). The Archimedes number is frequently called
‘Reynolds number’ in available studies dealing with freely moving bodies. To avoid
any confusion, we prefer to keep the terminology ‘Reynolds number’ for the parameter
built on the actual falling velocity of the body. Note that, since this velocity is not
imposed externally, the Reynolds number is not a primary control parameter from an
experimental or computational point of view.

Alternative choices for normalizing the body mass could have been selected. The
most obvious one would be the density ratio ρs/ρ between the solid and fluid.
However, this ratio becomes infinite in the case of infinitely thin plates, making it
inappropriate for the present study (one has ρs/ρ = χm∗ for rectangles of finite width).
Another possibility frequently used in studies of falling cards involves the moment
of inertia I and defines the dimensionless quantity I ∗ = 32I /πρℓ4 (Smith 1971;
Andersen et al. 2005b), which is related to m∗ through I ∗ = 32/π[I /mℓ2]m∗, where
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FIGURE 1. Sketch of the problem defining the three reference frames and the angles used
throughout the paper.

the ratio [I /mℓ2] is a constant for a given geometry (one has I ∗ = 8(1+1/χ 2)m∗/3π
for a rectangular plate).

Figure 1 illustrates the generic geometry of the problem and specifies the notation
used throughout the paper. The body is bounded by a contour S whose outgoing
unit normal is n. For future purposes, we define three distinct reference frames. The
frame (O, x0, y0, z) is fixed with respect to the laboratory and assumed to be inertial,
the unit vector x0 and the gravity vector g being parallel or antiparallel, depending
on whether the body rises or falls through the fluid. Hence the natural direction of
motion is −x0 in both cases. We then define the reference frame (G, xb, yb, z) attached
to the body (G is the body centre of mass), and assume that the unit vector yb

is always parallel to the long axis of the body cross-section. Finally, we introduce
the aerodynamic (or Frenet) reference frame (G, xa, ya, z), in which the unit vector
xa is collinear to the body velocity U , i.e. U = Uxa. The angles θ and γ defined
in figure 1 correspond to the inclination of the body and of the path with respect
to the vertical, respectively. The difference α = θ − γ thus characterizes the drift
between the body and its path, i.e. α may be thought of as the incidence angle.
Note, however, that, in the base state, buoyancy-driven bodies have their broad side
horizontal, so that α = 0 corresponds to a π/2 angle between the body velocity and
its largest dimension, which contrasts with the ‘aerodynamic’ definition according to
which the incidence angle is zero when the body velocity is parallel to the chord.
In the body reference frame, the velocity can be written as U = Uxxb + Uyyb,
with Ux = U cos α and Uy = U sin α. Finally, the body rotation rate is Ω = Ωz

with Ω = dθ/dt.



2.2. Equations of motion

In the body reference frame, the Navier–Stokes equations governing the
incompressible flow past the body and Newton’s laws governing the body motion
can be written as

∇ ·V = 0, (2.2)

∂tV + V ·∇V = − 1

ρ
∇P + ν∇2V

−
(

dU

dt
+ Ω ∧ U + dΩ

dt
∧ r + Ω ∧ (Ω ∧ r) + 2Ω ∧ V

)

, (2.3)

m
dU

dt
+ mΩ ∧ U = (m − ρA)g +

∫

S

T ·n dl, (2.4)

I
dΩ

dt
=

∫

S

r ∧ (T ·n) dl, (2.5)

where V is the relative fluid velocity, P the pressure, ν the kinematic viscosity, r the
distance with respect to G and T = −PI + ρν(∇V+t

∇V) the stress tensor, I denoting
the Kronecker tensor.

Since the no-slip boundary condition is assumed to hold at the body surface and the
fluid is at rest at infinity, one has

V = 0 on S and V = −(U + Ω ∧ r) for ‖r‖ → ∞. (2.6)

Since the problem considered here is two-dimensional, the whole solution can be
represented by the state vector X such that

X = [V(x, y, t), P(x, y, t),U(t), Ω(t), θ(t)], (2.7)

with Ω(t) = Ω(t) · z. The first two components of X are a two-dimensional vector
field (the fluid velocity) and a scalar field (the pressure) describing the flow around the
body, respectively, while the latter three components are a two-dimensional vector (the
body velocity) and two scalars (the rotation rate and inclination angle) describing the
body kinematics, respectively.

2.3. Perturbation method

To perform a linear stability analysis, the state vector is expanded in the form

X = X0 + X1 eλt. (2.8)

Here X0 = [V 0(x, y), P0(x, y), −U0xb, 0, 0] corresponds to the base state in which the

wake is steady and symmetric and X1 = [v̂(x, y), p̂(x, y), û, ω̂, θ̂ ] is the perturbation
(the ˆ symbol is used to indicate that the components of the state vector are complex).
The perturbation is sought in the form of an eigenmode with an associated eigenvalue
λ = λr + iλi, where λr is the growth rate and λi the oscillation frequency. In what
follows the latter will frequently be normalized so as to define the so-called Strouhal
number St = λiℓ/2πU0. Following the usual convention, only the real part of complex
quantities is to be retained in (2.8) and in subsequent equations.

2.3.1. Order 0: base flow
The leading-order state vector [V 0(x, y), P0(x, y), −U0xb, 0, 0] corresponds to the

steady vertical fall/rise of the body, the body short axis being aligned with its path
(hence xb = x0). The associated continuity and momentum equations read

∇ ·V 0 = 0, (2.9)



0 = −V 0 ·∇V 0 − 1

ρ
∇P0 + ν∇2V 0, (2.10)

while the corresponding boundary conditions are

V = 0 on S and V 0 = −U0xb for ‖r‖ → ∞, (2.11)

U0 being the rise/fall velocity directed along xb. Equations (2.9)–(2.11) are formally
similar to those governing the flow about the same body forced to move at a constant
speed U0xb, or equivalently about the same body held fixed within a uniform incident
stream −U0xb. The vertical projection of Newton’s equation reads

(m − ρA)g = −
∫

S

T0 ·n dl ≡ −D0x0, (2.12)

where D0 is the drag and T0 denotes the base-state stress tensor. Since the buoyancy-
corrected weight changes sign for m = ρA, rectangular bodies fall if m∗ > 1/χ and
rise if 0 < m∗ < 1/χ (this implies that, for a given m∗ > 0, infinitely thin plates
with χ → ∞ always fall). Following usual aerodynamic conventions, the drag may be
written as D0 = ρℓU2

0Cd(Re)/2, where Re = U0ℓ/ν is the nominal Reynolds number.
With these definitions, (2.12) takes the form

Ar2 = Re2Cd(Re)

2
. (2.13)

In what follows the results will be presented using the above Reynolds number.
Indeed, when solving the base-flow (2.9)–(2.11) it is natural to normalize velocities
and lengths with U0 and ℓ, respectively. This choice also simplifies comparisons
with the corresponding fixed-body problem. In experiments, a mean Reynolds number
based on the average velocity of the body is often used. Whenever the rectilinear
path is stable, the drag experienced by the body equals D0 and the mean Reynolds
number equals the nominal Reynolds number Re. However, when the rectilinear path is
unstable, the unsteady dynamics in the wake generally provide an additional drag, so
that the mean Reynolds number is somewhat lower than Re. In such circumstances,
comparisons with the present theory should rather be based on the Archimedes
number.

2.3.2. Order 1: unsteady modes

Injecting the expansion (2.8) into the governing equations and retaining terms
proportional to X1 yields

∇ · v̂ = 0, (2.14)

λ(v̂ + û + ω̂z ∧ r) = −v̂ ·∇V 0 − V 0 ·∇v̂ − 1

ρ
∇p̂ + ν∇2v̂

− 2ω̂z ∧ V 0 − ω̂z ∧ U0, (2.15)

mλû = −mω̂z ∧ U0 + (m − ρA)gθ̂yb +
∫

S

T̂ ·n dl, (2.16)

I λω̂ =
∫

S

r ∧ (T̂ ·n) dl, (2.17)

λθ̂ = ω̂, (2.18)



where T̂ denotes the first-order disturbance to the stress tensor. The associated
boundary conditions are

v̂ = 0 on S and v̂ = −(û + ω̂z ∧ r) for ‖r‖ → ∞. (2.19)

Together, these equations lead to a generalized eigenvalue problem of the form
A X1 = λBX1, where A and B are linear non-symmetric operators. As is
well known, this problem has non-trivial solutions only for values λ whose set
constitutes the eigenvalue spectrum of the problem. The variables involved in the
eigenvalue problem have different physical dimensions. To make them dimensionless,
all computations are carried out using d = 1, U0 = 1, ρ = 1.

As the base flow is symmetric, the eigenmodes can be split into two distinct
sets of symmetric and antisymmetric modes, respectively. The numerical solution
procedure described in the next section takes advantage of this property. Symmetric
modes are only coupled to the axial motion, i.e. they are such that û = ûxxb, ω̂ = 0,

θ̂ = 0. Consequently these modes can only result in a drag on the body. In contrast,
antisymmetric modes can exert a lift and a torque but no drag, and are thus coupled
to the inclination, rotation and lateral body velocity, i.e. they are such that û = ûyyb.
When discussing the structure of these modes, it will be found useful to introduce
their incidence angle component α̂, defined as the angle between the actual body
velocity −U0xb + û and the vector xb attached to the body (see figure 1). Comparing
expressions of the body velocity in the relative and aerodynamic reference frames
(i.e. Uxa ≈ −U0xb + ûyyb) indicates that the incidence angle of a given eigenmode is
directly related to the corresponding lateral velocity component through α̂ = ûy/U0.

As usual, the eigenvectors resulting from the eigenvalue computation are defined
up to an arbitrary amplitude and a normalization condition has to be imposed to
compare the effects of the various modes. For reasons that will be made clear later,
antisymmetric modes are normalized in such a way that the inclination of the body is

unity, i.e. θ̂ = 1, while the normalization of symmetric modes is chosen such that the
corresponding velocity increment is unity, i.e. ûx = 1.

3. Numerical method and validation

3.1. Finite element method

The computations performed in the present study were carried out using the
finite element software FreeFEM++ (see http://www.freefem.org). This computational
approach was originally introduced in the context of hydrodynamic instabilities by
Sipp & Lebedev (2007). It may be summarized as follows. First, the base flow is
calculated via a Newton method, whose advantage is to be capable of capturing
both stable and unstable steady-state solutions. The associated Jacobian matrix is
inverted using the UMFPACK library. Then the eigenvalue problem is solved via
a Krylov–Shur technique implemented in the SLEPc library (see http://www.grycap.
upv.es/slepc/). Thanks to the capabilities offered by this library, the non-symmetric
generalized eigenvalue problem may be solved on a parallel computer.

Figure 2 shows the computational domain and the associated numerical parameters.
The domain size is characterized by lengths (l1, l2, h1) indicated on the figure. An
unstructured grid based on triangular cells is generated using the built-in grid generator
of the software FreeFEM++. The grid includes local refinement along the body surface,
with extra refinement at the corners. Additional fictitious inner boundaries (displayed
with dashed lines in the figure) are used to constrain the grid density in the wake.
Taking advantage of the aforementioned symmetries, computations of the base flow
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FIGURE 2. Sketch of the computational domain. Thick solid lines correspond to the body
surface, thin solid lines to the outer boundary of the domain and dashed lines to fictitious
inner boundaries used to refine the grid in the wake region.

are performed within a half-domain by imposing suitable symmetry conditions along
the symmetry plane. The stability equations are also solved within a half-domain by
taking advantage of the splitting into symmetric and antisymmetric eigenmodes, each
family having its own set of symmetry conditions. The fields [V , P] are approximated
by quadratic and linear elements using a weak formulation, respectively.

For both the base flow and the eigenvalue computations, the condition at infinity is
imposed at the inlet (x = −l1) and on the lateral boundary (y = h1), while a weaker
condition corresponding to the vanishing of the tangential stress is imposed at the
outlet (x = l2).

3.2. Grid convergence

In this section we show sample results obtained with five grids labelled 0–4. The
configuration chosen in these tests corresponds to a thin plate at zero incidence with
an aspect ratio χ = 104, Re = 30 and m∗ = 5. The value χ = 104 is actually chosen
as an approximation of the ideal case of an infinitely thin plate (χ → ∞), as our
numerical approach requires the plate to have a finite thickness. However, we checked
that the results are insensitive to the actual value of χ provided it is sufficiently large,
as well as to the discretization along the plate edge: there is only one grid point along
the edge in the computations whose results are discussed below but a better resolution
along the edge leaves all results unchanged. Table 1 provides the dimensions (l1, l2, h1)

of the computational domain (see figure 2), the grid density measured by the number
of degrees of freedom (d.o.f.) in the variational formulation, and the computed values
of three eigenvalues. Eigenvalues λB1

and λB2
correspond to the two least damped

antisymmetric modes, while λBTV is associated with the least damped symmetric mode.
Figure 3 displays the full spectra in the complex λ plane computed using those
grids. These spectra consist of a small number (five in the present case) of physical
eigenvalues located in the right half of the plane plus a large number of damped
modes of spurious nature that depend on the detail of the discretization. It is important
to notice that, although most damped modes found for a given value of m∗ and Re are
unphysical, it would be incorrect to consider only the least damped of them. Indeed,
several unstable branches may cross when m∗ or Re is varied, as will be seen later (e.g.
figures 9 and 10).

Grids 0–2 (figure 3a) illustrate the influence of node density. The difference between
the computed eigenvalues is at most 1.1 % for the physically relevant eigenvalues
reported in table 1. As can be seen in figure 3(a), a number of spurious eigenmodes
among the least damped ones are also insensitive to the node density, while the most
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FIGURE 3. Spectra in the complex λ plane for a flat plate at zero incidence with m∗ = 5 and
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Grid
number

l1 l2 h1 d.o.f . λB1

r λB1

i λB2

r λB2

i λBTV

0 20 40 20 33 469 0.03075 0.6758 −0.06783 0.5790 −0.06373
1 20 40 20 80 854 0.03081 0.6774 −0.06724 0.5821 −0.06376
2 20 40 20 192 418 0.03078 0.6778 −0.06706 0.5827 −0.06376
3 10 35 10 56 009 0.03803 0.7013 −0.06775 0.5982 −0.08675
4 30 90 30 172 524 0.02890 0.6716 −0.06550 0.5770 −0.05516

TABLE 1. Details of the grid convergence study for a flat plate at zero incidence with
m∗ = 5, Re = 30. Dimensions of the computational domain (lengths l1, l2, h1 are defined in
figure 2), number of degrees of freedom (d.o.f.) and computed values of three eigenvalues
λB1

, λB2
and λBTV for five grids numbered 0–4 (superscripts r and i correspond to the

real and imaginary parts of the complex eigenvalues, respectively). Grid 1 is the one with
which results discussed in § 4 were obtained. Grids 0–2 show the influence of the density
of nodes, whereas grids 3 and 4 reveal the influence of the size of the domain.

damped modes located in the left part of the figure are clearly grid-dependent. Grids
1, 3 and 4 (figure 3b) illustrate the influence of the dimensions of the computational
domain. As can be seen in the figure, grid 3, which has the smallest size, leads
to significant deviations in the eigenvalues compared to the other grids, revealing a
clear confinement effect. This is an indication that, provided grid density is sufficient,
the size of the domain is the most influential parameter. Results obtained with the
other two grids (1 and 4) show better agreement. However, the spurious eigenvalues
obtained with grid 4 (which has the largest size) are less damped and tend to
approach the real axis, with the possible effect of masking the physically meaningful
eigenvalues if they come too close to one another. Hence, although the values of the
physically meaningful eigenvalues indeed converge when the size of the computational
domain is increased, it becomes hard to disentangle them from purely numerical
eigenvalues when the domain becomes very large. This issue could be fixed by using
a continuation technique to track precisely the variations of the eigenvalues with the
domain size, but, given the weak variations of the physically meaningful eigenvalues
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FIGURE 4. Amplification rates λr as a function of the Reynolds number for a heavy flat
plate (m∗ = 104): (a) ‘fluid’ modes VK1 and VK2; (b) zoom for small negative values of λr

revealing the ‘aerodynamic’ modes BTV, BV and LF.

m∗ Re λVK1
r λVK1

i λVK2
r λVK2

i λBTV λBV λLF
r λLF

i

10 000 30 −0.00375 0.6505 — — −0.00016 −0.000095 −0.000076 0.0141
73 0.11894 0.5036 0.00098 0.5568 −0.00013 −0.000073 −0.000054 0.0115

TABLE 2. Selection of computed eigenvalues for a flat plate with m∗ = 104. Note that the
VK2 eigenvalue could not be obtained for Re = 30, owing to its proximity to spurious
eigenmodes.

between grids 1 to 2, we found this unnecessary. Therefore, in the present study the
optimal choice of the domain size results from a compromise between a large enough
size required to get rid of confinement effects and a small enough size to avoid
contamination of the physical meaningful modes by the spurious modes. The results
reported below with a flat plate were obtained with grid 1, which provides a good
compromise between accuracy, spectrum spreading and computational time.

4. The thin plate at zero incidence

In this section we focus on the case of a thin plate with a rectangular cross-section
of nearly infinite aspect ratio (actually χ = 104). We first present results obtained in
the limit of large mass ratios (m∗ ≫ 1), a regime where a rational classification of the
eigenmodes is possible. This also allows us to introduce a number of criteria that can
be used to analyse the structure of the eigenmodes. Then we discuss the results of the
parametric study performed within the (m∗,Re) plane and describe the structure of the
eigenmodes responsible for the destabilization of the physical system.

4.1. Very heavy plates (m∗ ≫ 1)

We first consider the case of a very heavy plate with m∗ = 104. Figure 4(a) shows the
real part of the computed eigenvalues in the range Re ∈ [0, 100]. The figure clearly
reveals two sets of eigenvalues with highly contrasted magnitudes.



4.1.1. The ‘fluid’ modes VK1 and VK2
The eigenmodes associated with the first two unstable branches are both

antisymmetric. We call them ‘fluid’ modes, as the corresponding eigenvalues are
very close to those found in the case where the plate is held fixed. Indeed, our
calculations concerning the stability of a fixed plate (not shown) also reveal two
eigenmodes, which become successively unstable as the Reynolds number is increased.
The corresponding thresholds and Strouhal numbers are Rec1 = 30.57, Stc1 = 0.103
and Rec2 = 72.55, Stc2 = 0.089. According to figure 4, results obtained for m∗ = 104

reveal very close characteristics, namely ReVK1 = 30.56, StVK1 = 0.103 and ReVK2 =
72.54, StVK2 = 0.089, making the one-to-one connection with the fixed-plate modes
obvious. We call the first mode ‘VK1’ as it is associated with the onset of
vortex shedding leading to the celebrated Von Kármán street. The corresponding
threshold ReVK1 lies in the range of the results obtained by Saha (2007), who
found 30 < Rec1 < 35 for a fixed plate. Jackson (1987) reported a significantly lower
threshold, namely Rec1 = 27.77, and a higher Strouhal number, Stc1 = 0.123, but the
size of the computational domain he used corresponds to l1 = 5, l2 = 15 and h1 = 5
in the terminology of § 3. Hence the corresponding flow is expected to be strongly
constrained by the outer boundary and the difference with present predictions is
consistent with those observed between grids 0 and 3 in the previous section.

The second ‘fluid’ mode, denoted as ‘VK2’, is associated with a lower Strouhal
number and a much higher threshold. To the best of our knowledge, the existence of
such a secondary mode has not been reported in the literature. This mode is not seen
in direct numerical simulations (the second transition occurring in the flow past a fixed
plate leads to a three-dimensional wake structure for 105 < Re < 110; see Thompson
et al. 2006). However, this VK2 mode is a solution of the eigenvalue problem and may
play a role in the nonlinear interaction process between modes.

Figure 5 illustrates the structure of the base flow and of the two ‘fluid’ modes VK1
and VK2 for m∗ = 104. The vorticity is depicted together with some streamlines of the
base flow, which allow the visualization of the recirculation zone. When representing
unsteady modes such as those of figure 5(b,c), we adopt the convention that the left
half of the figure displays the real part of the mode whereas the right half displays
its imaginary part. These representations will be used throughout the paper and the
corresponding zooms will always focus on the subdomain [−1, 21] × [−5, 5] in the
(xb, yb) axes. As revealed by the figure, the VK1 mode is characterized by alternating
vortical structures of opposite sign, which are convected downstream in the wake, in
agreement with known results (see e.g. Natarajan & Acrivos 1993). The VK2 mode
has a similar structure but its amplitude increases downstream with the distance to the
body.

To interpret the very large vorticity maxima seen in figure 5(b,c), one has to keep

in mind that each eigenmode has been normalized by setting the inclination angle θ̂ to
unity. Thus what these large maxima mean is that the vortical component of the flow
must be extremely strong in order for the inclination of the plate to reach an O(1)

value. In other words, the lateral motion and angular deviation of the plate associated
with these modes are much weaker than the vortical fluid motion. This is in line with
the intuitive idea that, for heavy bodies, the occurrence of vortex shedding has almost
no effect on the path.

4.1.2. The ‘aerodynamic’ BTV, BV and LF modes
In addition to the two ‘fluid’ modes, figure 4(b) reveals the existence of four

additional eigenvalues (two are real and the other two are complex conjugates) with
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FIGURE 5. Structure of the base flow and of the ‘fluid’ eigenmodes of a flat plate with
m∗ = 104: (a) base state for Re = 30; (b) VK1 mode for Re = 30; and (c) VK2 mode for
Re = 73. The greyscale follows the iso-levels of the vorticity, dark (respectively, light) zones
corresponding to negative (respectively, positive) values. The left (respectively, right) side of
the last two panels corresponds to the real (respectively, imaginary) part of the eigenmode.
In all cases the solid lines correspond to streamlines of the base flow at the same Reynolds
number (note the closed streamlines at the back of the plate).

a much smaller magnitude. These particular modes were investigated in a companion
paper (FAM) using a quasi-static approach. This approach relies on the assumption
that the forces and torque on the body depend linearly upon the incremental
streamwise velocity u = u · xb, the incidence angle α and the rotation rate ω in
the form

D = D0 + D,uu, L = L,αα + L,ωω, M = M,αα + M,ωω. (4.1)

In FAM, the coefficients D,u, L,α, L,ω, M,α and M,ω entering the model were
determined by solving three elementary problems in which the base flow is
respectively perturbed by a constant incremental velocity, a constant incidence and
a constant rotation rate. Introducing these coefficients in the equations governing the
body motion in the aerodynamic reference frame yields a coupled system of the form

mu̇ = −D,uu, (4.2)

mU0γ̇ = −D0γ − L,αα − L,ωω, (4.3)

Iω̇ = M,αα + M,ωω, (4.4)

ω = α̇ + γ̇ (= θ̇ ). (4.5)

In the limit of large mass ratios, the eigenvalues can be approached using a regular
asymptotic expansion, which yields in dimensional form

λBTV ≈ − 1

m
D,u, (4.6)

λBV ≈ − D0

mU0

, λLF ≈ ±i

√

|M,α|
I

+
(

L,α

2mU0

+ M,ω

2I

)

. (4.7)
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FIGURE 6. Variations of the eigenvalues in the flat plate problem with the mass ratio m∗ for
Re = 30 (lin–log scale). Comparison between results of the present numerical approach (solid
lines) and predictions of the quasi-static model (dashed lines).

For most geometries of interest (with the noticeable exception of a rod with a square
cross-section considered in § 6), these four modes were found to be damped whatever
the Reynolds number.

The eigenvalues computed through this quasi-static approach are compared with
those obtained using the full numerical approach described in the previous section in
figure 6. For m∗ = O(102) or higher, the two curves coincide for all four eigenvalues.
The imaginary part λLF

i of λLF is even well predicted by the quasi-static model
throughout the range m∗ > 8.

The physical meaning of the aerodynamic modes was discussed in FAM. The
first of them is symmetric and associated with a real, negative eigenvalue λBTV .
This eigenvalue can be retrieved directly from (4.2); its interpretation is that, if the
body velocity is higher (respectively, lower) than the equilibrium value U0, the body
experiences a larger (respectively, smaller) drag, which drives it back to the velocity
U0. This is why we call this mode ‘back to terminal velocity’ (BTV). The other
three eigenvalues are associated with antisymmetric modes. One of them (λBV ) is
real, negative and corresponds to a motion in which the body path comes back to
the vertical while the body short axis (corresponding to the xb direction) remains
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FIGURE 7. Structure of the two real ‘aerodynamic’ eigenmodes for a flat plate with m∗ = 104,
Re = 30: (a) ‘back to terminal velocity’ (BTV) mode; and (b) ‘back to vertical’ (BV) mode.
The conventions used in the greyscale are similar to those of figure 5.

aligned with its path. We call this mode ‘back to vertical’ (BV). The leading-order
approximation of the corresponding eigenvalue can be obtained directly from (4.3) by
neglecting the two contributions provided by the lift force. The last two eigenvalues
form a pair of complex conjugates, indicating an oscillating mode, the frequency of
which is significantly smaller than that of the VK1 mode. For this reason, this mode,
which can be interpreted as an oscillation of the body inclination along a nearly
vertical path, is called ‘low-frequency’ (LF). The leading-order approximation of the
corresponding eigenvalue can be retrieved directly from (4.4) by assuming α ≈ θ

(hence γ ≈ 0) and retaining only the component of the torque proportional to the
incidence angle α. Note, however, that, if the plate is initially vertical rather than
horizontal, the coefficient M,α is positive whatever Re and (4.7) has to be replaced

by λLF ≈ ±
√

M,α/I + L,α/2mU0 + M,ω/2I . Hence in this case the eigenvalues λLF

are real and no longer describe an oscillating mode. One of them is always positive
(we checked that point using the quasi-static approach), indicating that this situation is
always linearly unstable.

The structure of these ‘aerodynamic’ modes is illustrated in figures 7 and 8. The
real modes BTV and BV are displayed in the whole domain (figure 7a,b). Owing to
obvious symmetry properties, the symmetric BTV mode has an antisymmetric vorticity
distribution (just as the base flow), while the reverse is true for the antisymmetric BV
mode. The complex LF mode is displayed in figure 8(a–c). Note that the maximum of
the vorticity in figures 7 and 8 is much lower than that reached in the ‘fluid’ modes
VK1 and VK2 displayed in figure 5(b,c). Since all three ‘aerodynamic’ modes have

been normalized in such a way that θ̂ is unity, this feature indicates that the body
motion and the vortical motions in the wake play an equal role in the dynamics of
these modes. This is in stark contrast with what we observed for the ‘fluid’ modes.
The BV mode (figure 7b) exhibits tiny values of vorticity, indicating that modifications
in the wake play a negligible role in its dynamics. This is in line with the fact that the
leading-order expression of λBV can be obtained by simply considering that the body is
subjected to the mean drag −D0xa and to the buoyancy-corrected weight (ρA − m)gx0,
which have the same magnitude but slightly different orientations.
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FIGURE 8. Structure of the complex ‘aerodynamic’ eigenmode LF (normalized by θ̂ ) for a
flat plate with m∗ = 104, Re = 30: (a) vorticity component ω̂ · z of the LF mode; (b) total
vorticity ω · z = (ω0 + ǫω̂) · z with ǫ = 0.1; and (c) real part of the absolute vorticity ω̂abs · z
defined by (4.8). The left (respectively, right) side of the first two panels corresponds to the
real (respectively, imaginary) contribution of the mode. The conventions used in the greyscale
are similar to those of figure 5.

The structure of the LF mode deserves further explanation. Observations of the
vorticity associated with this mode in the body frame of reference (figure 8a) indicate
that the real and imaginary parts strongly differ both in structure and in amplitude;
indeed, the imaginary part had to be magnified by a factor of 100 to reach the same
range of iso-levels as the real part. This real part extends far downstream in the
wake and consists of a central band of negative vorticity surrounded by two bands
of positive vorticity. To better understand the significance of this structure, figure 8(b)
displays the total vorticity ω · z = (ω0 + ǫω̂) · z (where ω0 = ∇ ∧ V 0 and ω̂ = ∇ ∧ v̂)
by superposing the base-flow vorticity displayed in figure 5(a) onto the perturbation
depicted in the left part of figure 8(a) (with an arbitrary amplitude ǫ = 0.1). The
resulting flow has the same structure as the base flow, except that the wake is now
tilted in the clockwise direction. This suggests that the banded structure observed in
figure 8(a) is an indication that the wake develops in a direction that differs from
that of the base flow, or, in other words, that the incidence angle associated with this
LF mode is significant. To reinforce the validity of this interpretation, it is useful to
re-express the vorticity associated with the eigenmode in the absolute reference frame,
say ω̂abs. The change of frame leads to the relation

ω̂abs · z = ω̂ · z + θ̂{−x∂y(ω0 · z) + y∂x(ω0 · z)} + 2ω̂. (4.8)

The real part of ω̂abs · z is displayed in figure 8(c). As can be seen, the banded
structure initially visible in figure 8(a) has completely disappeared, indicating that the
body motion induced by this mode has virtually no effect on the wake when the latter
is considered in the actual direction along which it develops.

In figure 8(a), it may be noticed that the background level of the imaginary part
of ω̂ is non-zero. Again, this is associated with the fact that the reference frame used
to define ω̂ is not inertial. Since the absolute vorticity ω̂abs has to tend to zero far

from the body, (4.8) implies that ω̂ · z → −2ω̂ = −2λθ̂ for large ‖r‖. Hence, at large



m∗ Re Mode
name

St |ω̂ · z|
(1.5, 0)

κ |γ̂ | φγ̂ |α̂| φα̂

10 000 30 VK1 0.104 34 232.1 159 891 0.174 −π/3.1 0.92 −π/20
BV — 0.000 19 0.008 0.999 0 6 × 10−5 0
LF 0.002 3.420 44 0.0024 0.005 −π/2 0.999 −π/563

10 000 73 VK1 0.080 35 698.7 1 733 700 0.109 −π/3 0.949 −π/31.8
VK2 0.089 30 569 950 138 0.119 −π/2.7 0.96 −π/27.5
BV — 0.000 08 0.0055 0.999 0 7 × 10−5 0
LF 0.002 1.758 43 0.0036 0.005 −π/2 0.999 −π/570

TABLE 3. Numerical values reached by various classification criteria for the antisymmetric
eigenmodes of a heavy flat plate with m∗ = 104. The selected criteria are the Strouhal
number, the modulus of the vorticity ω̂ at the location (x = 1.5, y = 0), the kinetic energy
ratio κ , the modulus and phase of the components of the eigenmode associated with the
slope of the path γ̂ , and the incidence angle α̂, respectively.

distance from the body, ω̂ · z is mostly an imaginary quantity since λLF ≈ λi
LF (see

figure 6) and θ̂ = 1.
To summarize, both the ‘banded’ structure of the real part of the vorticity associated

with the LF mode and the non-zero background level of its imaginary part are artifacts
arising as a result of the use of a system of axes that is not aligned with the
actual direction of the flow. These artifacts disappear when considering the absolute
vorticity in the aerodynamic axes. However, they do provide a useful visual criterion
for detecting that the body significantly drifts laterally and rotates. We found this
property useful for describing the structure of the modes observed in other ranges of
the (m∗, χ,Re) parameters. This is why in what follows we keep on representing the
structure of the modes using the vorticity ω̂ expressed in the body reference frame.

4.1.3. Classification criteria
Up to now we have distinguished the ‘fluid’ component of the eigenmodes from

their ‘solid’ counterpart thanks to the visual criterion based on the maximum of the
vorticity, and used the structure of the vorticity in the relative reference frame to
identify modes containing a significant incidence and rotation. We also looked for
more quantitative criteria to investigate the nature of the eigenmodes. Table 3 presents
the values reached by a number of such criteria when applied to the antisymmetric
modes encountered so far for m∗ = 104.

A natural idea is to select as such a criterion the maximum level of some
characteristics of the flow component associated with the eigenmode, either the
velocity v̂, the pressure p̂, or the vorticity ω̂. However, all of them reach very large
levels far downstream in the wake, a feature associated with the convective nature
of the instability in the far wake. In addition, the pressure and vorticity are singular
at the corners of the plate, making such intuitive criteria useless. As a consequence,
we chose to retain the norm of the vorticity component at a given point arbitrarily
selected within the wake, namely |ω̂ · z|(1.5, 0). As can be seen in the fifth column
of table 3, this criterion reaches large values for the ‘fluid’ modes VK1 and VK2,
indicating that these modes are associated with a weak displacement of the body
compared to the intensity of the vortical activity in the wake (keep in mind that all

antisymmetric eigenmodes are normalized by assuming θ̂ = 1). On the other hand,



this criterion reaches O(1) or lower values for the ‘aerodynamic’ modes BV and LF,
suggesting a stronger coupling between the fluid and the body. This criterion also
allows us to distinguish the LF mode, for which |ω̂ · z|(1.5, 0) is of O(1), from the
BV mode, for which this quantity is much smaller. Another intuitive criterion is the
ratio of the kinetic energies respectively associated with the fluid and body motion.
However, the first of these energies is infinite owing to the unbounded nature of the
flow. Nevertheless, the kinetic energy can be computed within a fixed bounded domain
surrounding the body, say Γ , whose outer boundary is fixed arbitrarily. We defined Γ

as the dashed rectangle that surrounds the body in figure 2, i.e. Γ = [−1; 4] × [0; 1.5]
in the (xb, yb) axes. Hence we define the kinetic energy ratio as

κ =
∫

Γ
ρ|v̂ |2 dΓ

m|ûy |2 +I |ω̂ |2
. (4.9)

The sixth column in table 3 shows the values of κ corresponding to the various
modes. In contrast with the previous criterion, κ does not allow us to distinguish
between the BV and LF modes. However, it discriminates better between the ‘fluid’
and ‘aerodynamic’ modes, which are associated with highly contrasted values of the
kinetic energy ratio, a useful feature in what follows. The last four columns in table 3
correspond to the modulus and phase of the components of the eigenmodes associated
with the slope of the path, γ̂ , and the incidence angle, α̂, respectively (still with

the normalization θ̂ = 1). The reported values indicate that γ̂ ≈ θ̂ for the BV mode,

whereas α̂ ≈ θ̂ for the LF mode, as predicted by the quasi-static approach of FAM.

On the other hand, the values of γ̂ show that the incidence α̂ = θ̂ − γ̂ is close to the

inclination θ̂ for ‘fluid’ modes. Nevertheless, these two angles are not asymptotically
close since the slope γ̂ is small but not negligible.

4.2. Parametric study for O(1) mass ratios

We are now in position to discuss the results provided by the parametric study that we
carried out throughout the whole range of mass ratios m∗. No unstable modes were
found among the symmetric eigenmodes, so we only document the evolution of the
antisymmetric modes. We first show how the branches of the unstable modes evolve
with the Reynolds number for several values of m∗ and then synthesize the results
by presenting a stability diagram in the (m∗,Re) plane. Then we describe the spatial
structure of the computed unstable modes.

4.2.1. Study of the branches of unstable eigenvalues as function of Re
As we saw in figure 4, in the large-m∗ limit the problem exhibits two pairs of

complex eigenmodes of ‘fluid’ nature, which are successively destabilized as the
Reynolds number increases, plus four other modes, which are always damped. We now
explore how this situation evolves as the mass ratio m∗ decreases.

Figure 9 shows the real part of the computed eigenvalues in the range of Reynolds
number Re ∈ [19, 100], for several values of m∗. The case m∗ = 10 (figure 9a) remains
qualitatively similar to the large-m∗ situation, with two branches crossing the real
axis (for Re ≈ 30 and Re ≈ 70, respectively). A third, always damped, branch is also
observed (this branch roughly follows the asymptotic prediction for the ‘aerodynamic’
LF mode). Down to m∗ = 4.75, the configuration of the branches remains qualitatively
similar. Note that the first branch becomes unstable earlier. On the other hand, the
second branch becomes almost tangent to the real axis for Re ≈ 60 but the actual
threshold is delayed up to Re ≈ 80. In the interval m∗ ∈ [4.5, 4.75] (figure 9a), the
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FIGURE 9. Real part λr of the eigenvalues of the antisymmetric modes as a function of Re
for a flat plate with several different values of m∗: (a) 10>m∗>4.5; (b) 4 > m∗ > 3; and
(c) 1.6 > m∗ > 0.01.

second and third branches cross and exchange their identity. The thresholds are not
affected by this switch, but the second threshold now occurs on the continuation of
the branch that was formerly the most damped one, while the second branch goes
down towards negative values after approaching the real axis from below. Decreasing
the mass ratio down to m∗ = 4 (figure 9b), it can be observed that the second
branch now becomes unstable within a bounded range of Reynolds number, with
a destabilization point at Re ≈ 40 and a restabilization point at Re ≈ 65. Further
decreasing m∗ down to m∗ = 3.5, the next event to occur is a crossing between the
first and second branches, which exchange their identity. After this transition, the
restabilization point at Re ≈ 60 occurs on the first branch, while values located on
the second branch increase monotonically with Re. Still decreasing m∗ (figure 9c), the
destabilization point of the first branch is delayed towards higher Reynolds numbers,
until a crossing occurs with the second branch for m∗ ≈ 1.6. Hence, for lower m∗,
the first destabilization point occurs along the second branch. At the same time, the
restabilization point is also delayed and occurs after the third destabilization point for
m∗ 6 1.6. For small values of m∗, e.g. m∗ = 0.01, we are left with a simpler situation
where two unstable branches of modes successively become unstable (for Re ≈ 31.5
and Re ≈ 70.9, respectively), while the third branch is associated with eigenvalues with
a negative real part, so that the third threshold is rejected to much higher Reynolds
numbers and does not appear in the figure any more.

4.2.2. Neutral curves in the (m∗, Re) plane and corresponding Strouhal numbers
Figure 10(a) shows the neutral curves (defined as the locations where an eigenvalue

crosses the real axis) in the (m∗,Re) plane. As a consequence of the complex branch
reorganization that we have just described, three neutral curves are encountered.
The first two (denoted as B1 and B2) are associated with the destabilization of
an eigenmode and exist whatever m∗. The third curve (denoted as B3) only exists
for m∗ < 4.75 and displays both a destabilization branch (dashed-dotted line) and a
restabilization branch (dotted line). For large mass ratios, curves B1 and B2 can be
identified with the onset of the VK1 and VK2 ‘fluid’ modes. However, as the notion
of ‘fluid’ versus ‘aerodynamic’ mode only makes sense for large m∗, we prefer to
abandon this terminology when commenting the behaviours found along the neutral
curves and simply refer to these curves as B1, B2 and B3. As was seen in the previous
subsection, the latter exchange their identity and respective position several times,
making it impossible to classify them rationally.
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FIGURE 10. (a) Neutral curves in the (m∗,Re) plane for a flat plate. The points denoted as
Mi identify modes that will be described later. (b) Strouhal number associated with the neutral
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∗) associated with the first destabilization are indicated with a thicker
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From a practical point of view, the most important result displayed in figure 10
is the lowest marginal curve, which defines the critical Reynolds number Rec(m

∗) at
which the body path is first destabilized (this curve is marked with a thicker line
in figure 10a). For large m∗, this marginal curve follows the B1 branch, and in the
limit m∗ ≫ 1 the threshold is in agreement with that found for a fixed plate, namely
Rec(∞) = 30.5. When the mass ratio decreases, it can be observed that the critical
Reynolds number first decreases and reaches a minimum for m∗ = 4, where Rec = 21.2.
The critical Reynolds number then increases again to reach Rec = 34.3 for m∗ = 1.6.
At this point, a crossing occurs with the branch B3. The marginal stability curve then
continues along the latter branch, and the critical Reynolds number decreases to reach
Rec ≈ 30.6 in the limit of very light bodies (m∗ ≈ 0).

Figure 10(b) shows the Strouhal numbers found along the three neutral curves. The
critical Strouhal number associated with the first destabilization, denoted as Stc(m

∗), is
indicated with a thicker line. When the mass ratio decreases from m∗ = ∞ to m∗ = 1.6,
Stc(m

∗) increases monotonically from Stc = 0.103 (in agreement with the value found
for a fixed plate) to Stc = 0.132. Then, as the marginal curve switches from branch
B1 to branch B3, the corresponding Strouhal number abruptly jumps to Stc = 0.099.
Further decreasing m∗, the marginal Strouhal number weakly increases to reach the
value Stc = 0.102 in the limit m∗ = 0.

It is noteworthy that the threshold and frequency exhibit the same values in the
limit of both small and large mass ratios. For instance, Rec ≈ 31 and λi = 0.643 for
m∗ = 10−4, while Rec ≈ 30.6 and λi = 0.649 for m∗ = 104. We do not have a rational
explanation for this coincidence, which is most likely to be fortuitous.

4.2.3. Structure of the unstable modes

We now turn to the structure of the eigenmodes found along the various neutral
curves. For this, a selection of eigenmodes corresponding to the points labelled Mi in
figure 10(a) is displayed in figures 11 and 12. The corresponding values of Re and
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FIGURE 11. Structure of some eigenmodes taken along the marginal stability curve for a flat
plate: (a) mode M1 with m∗ = 10,Re = 29; (b) mode M2 with m∗ = 6,Re = 25; (c) mode M3

with m∗ = 3,Re = 23; (d) mode M4 (on branch B1 in figure 10a) with m∗ = 1.665,Re = 35;
(e) mode M′

4 (on branch B3 in figure 10a) with m∗ = 1.665,Re = 35; and (f ) mode M5 with
m∗ = 0.1,Re = 31. The modes are displayed with iso-levels of the vorticity component using
the same conventions as in figure 5.

m∗ are given in table 4, together with the value of the various quantitative criteria
introduced in § 4.1.3.

Figure 11 gathers eigenmodes encountered along the marginal curve, which
successively corresponds to the B1 (respectively, B3) branch for m∗ larger (respectively,
smaller) than 1.665. For m∗ = 10 (mode M1, figure 11a) the structure is very similar
to that of the VK1 ‘fluid’ mode obtained in the limit of large m∗ (compare with
figure 5b). However, it may be noticed that the iso-vorticity levels now reach a much
lower value, indicating that the displacement of the body has become significant.
When m∗ decreases down to m∗ = 6 (respectively, m∗ = 3), the spatial structure
displayed in figure 11(b) (respectively, 11c) changes with the occurrence of a banded
structure akin to the one observed for the ‘aerodynamic’ LF mode (see figure 8);
the background level of the imaginary part of the vorticity also increases (see the
increase of the average grey level in the right half of figure 11a–c). As previously
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FIGURE 12. Structure of some eigenmodes taken along the higher neutral curves for a
flat plate: (a) mode M6 with m∗ = 4.75,Re = 79; (b) mode M7 with m∗ = 4.65,Re = 65;
(c) mode M8 with m∗ = 1.2,Re = 80; and (d) mode M9 with m∗ = 0.2,Re = 71. The modes
are displayed with iso-levels of the vorticity component using the same conventions as in
figure 5.

m∗ Re Mode
label

St |ω̂ · z|
(1.5, 0)

κ |γ̂ | φγ̂ |α̂| φα̂

10 29 M1 0.104 18.2564 26.5346 0.198 −π/2.7 0.937 −π/16.1
6 25 M2 0.106 4.532 21 13.1324 0.21 −π/2.5 0.954 −π/14.9
3 23 M3 0.121 2.927 01 16.594 0.248 −π/2.3 0.985 −π/12.5
1.665 35 M4 0.131 4.219 29 30.2515 0.345 −π/2.2 1.016 −π/9.1

35 M′
4 0.100 14.5511 179.513 0.322 −π/1.8 1.114 −π/11

0.1 31 M5 0.102 24.0528 5177.12 0.287 −π 1.287 0
0.001 31 0.102 24.0277 531 161 0.267 −π/0.96 1.266 π/128
4.75 79 M6 0.088 4.148 34 97.3161 0.234 −π/2.2 0.988 −π/13
4.65 65 M7 0.097 4.026 27 47.8136 0.241 −π/2.3 0.98 −π/12.9
1.2 80 M8 0.133 2.719 51 1810.05 0.474 −π/2.1 1.062 −π/6.8
0.2 71 M9 0.203 2.9554 147.007 0.948 −π/1.8 1.503 −π/4.7

TABLE 4. Values of various classification criteria for a selection of eigenmodes located
close to the marginal stability curves in the case of a flat plate. The nomenclature
employed for the criteria is similar to that defined in table 3 and § 4.1.3. The labelled
modes are displayed in figures 10–12.

discussed, both features are indicative of a significant misalignment of the body
with respect to its path. As can be seen visually through the iso-vorticity levels
and more quantitatively through the values of |ω̂ · z|(1.5, 0) displayed in table 4, this
is accompanied by a decrease of the ratio of the ‘fluid’ and ‘solid’ parts of the
eigenmode, which highlights the strong fluid–solid coupling that starts to take place
for such values of m∗.

As we already noticed, a crossing between two neutral curves occurs for
m∗ = 1.665. Accordingly, two modes are simultaneously neutral; they are displayed in
figure 11(d,e). As can be observed, these two modes have a rather different structure.
The one belonging to branch B1 in figure 10(a) is qualitatively similar to those found



on the same branch at slightly higher values of m∗. In contrast, the mode belonging to
branch B3 is much more akin to the VK1 ‘fluid’ mode existing at much larger values
of m∗. As m∗ further decreases, the structure of the eigenmode does not evolve much
along the marginal curve (which now corresponds to the B3 branch), as revealed by
figure 11(f ) for m∗ = 0.1. However, changes in the phases φγ̂ and φα̂ may be noticed

(see table 4), and α̂ and γ̂ become almost in phase with θ̂ for m∗ = 0.1.
Finally, figure 12 displays a few samples of the eigenmodes encountered along the

higher neutral curves. The mode M6 shown in figure 12(a) belongs to the branch
B2 and its structure is similar to that of the VK2 ‘fluid’ mode found on the same
branch in the limit of large m∗ (compare with figure 5c). The mode M7 displayed
in figure 12(b) is the one found at the turning point on branch B3; its structure is
almost the same as that of the mode M6. The last two modes M8 and M9 displayed
in figure 12 are found on the restabilization branch of the neutral curve B3 and on
the low-m∗ part of the neutral curve B1 after its crossing with branch B3, respectively.
Both have higher oscillation frequencies λi compared to the previous modes (see the
Strouhal numbers in table 4). Accordingly, their spatial structure is characterized by
a shorter wavelength. Their real part also displays a banded structure indicative of a
significant coupling between the fluid and the body.

5. The rectangular plate with χ = 8

Falling plates with an aspect ratio χ = 8 and either a rectangular or an elliptical
cross-section have been investigated in several recent studies (Andersen et al. 2005a,b;
Jin & Xu 2008; Kolomenskiy & Schneider 2010). In this section we consider this
geometry in the case of a rectangular cross-section at zero incidence and describe the
corresponding marginal stability curves as we did in the previous section. We then
provide a few comparisons with available work.

5.1. Results

The situation revealed by the computations that we carried out in the case χ = 8 is
actually quite similar to that we just described for a flat plate. In particular, in the
limit of large mass ratios, ‘fluid’ modes of the VK1 and VK2 type and ‘aerodynamic’
modes of the BTV, BV and LF type are encountered, those of the latter series always
being weakly damped. For smaller mass ratios, several branches of unstable modes
exist and exchange their respective position and identity in a complicated way, which
shares some similarities with, but also reveals some differences from, the thin plate
case. We do not detail the whole process here but restrict ourselves to the mapping of
the neutral curves and the description of the structure of a few modes found along the
marginal stability curve.

Figure 13(a) displays the neutral curves in the (m∗,Re) plane, while figure 13(b)
shows how the Strouhal number corresponding to the various branches evolves. As in
the thin plate case, three neutral curves coexist. The first two of them (labelled B1
and B2) correspond to the destabilization of an eigenmode, while the third (labelled
B3) exhibits both a destabilization and a restabilization branch. Several noticeable
differences with the thin plate case can be pointed out. The most salient of these is
that no crossing exists in the lower part of the diagram, so that the instability threshold
occurs along the same B1 branch whatever m∗. Another difference is that the branch
B3 displays a small loop bounding a region of the (m∗,Re) plane within which only
one unstable mode exists. Figure 13(b) complements this description by displaying the
corresponding Strouhal numbers. It may be noticed that St does not vary much along
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FIGURE 13. Stability of a rectangular plate with χ = 8 at zero incidence: (a) neutral curves
in the (m∗,Re) plane; and (b) associated Strouhal number. The same conventions are used as
in figure 10.

the B1 branch, staying in the range 0.108 < St < 0.12 throughout the whole range of
m∗ reported in the figure.

Despite the structural differences observed between the neutral curves of
figures 13(a) and 10(a), there are also noticeable similarities. In particular, the limit
cases m∗ ≫ 1 and m∗ ≪ 1 behave similarly. That is, two unstable modes, which
may again be identified with the VK1 and VK2 modes of the corresponding fixed
body, are found in the m∗ ≫ 1 limit. In the low-m∗ limit, two unstable modes also
exist, with critical Reynolds numbers falling in the same range as for the thin plate.
The thresholds are slightly higher than in the thin plate case in both limits, since
Rec ≈ 30.3 for m∗ ≫ 1 and Rec ≈ 29 for m∗ ≪ 1. A last noticeable similarity is the
evolution of the instability threshold curve (thick line in figures 13a and 10a) with m∗:
as the mass ratio decreases, the threshold Reynolds number first decreases (down to
Re = 25.8 for m∗ = 5 and χ = 8), then increases back (up to Re = 33 for m∗ = 2.5
and χ = 8), before decreasing again. The fact that the second neutral curve bends
downwards strongly for m∗ ≈ 3 indicates the proximity of a second mode, which could
interact with the leading mode in this range of mass ratio.

The structure of the eigenmodes found along the marginal stability curve is
displayed in figure 14; the corresponding values of the classification criteria are given
in table 5. As m∗ decreases, the marginal modes successively display a VK1-like
structure, then a modulated tail structure, before recovering a VK1-like structure for
small m∗. This evolution is also qualitatively similar to that encountered in the thin
plate case.

5.2. Comparison with previous work

Most available studies devoted to the free rise or fall of a rectangular plate have
focused on the range Re = O(103), which corresponds to the transition between
fluttering and tumbling motions. Hence direct comparison with our work is limited.
Kolomenskiy & Schneider (2010) computed the free fall of plates with an elliptic
cross-section of aspect ratio χ = 8 and a density ratio ∼2.7 (which, using our notation,
corresponds to a mass ratio m∗ ≈ 0.26) for three widely separated values of the
Archimedes number, namely Ar ≈ 7.1, 71 and 710. Their results indicate that, after an
initial transient, the path is steady and vertical in the former two cases, while the plate



m∗ Re Mode
label

St |ω̂ · z|
(1.5, 0)

κ |γ̂ | φγ̂ |α̂| φα̂

8.0 30 M1 0.105 1.3233 31.80 0.214 −π/3 0.909 −π/15.4
4.0 28 M2 0.112 1.4063 24.78 0.16 −π/3.4 0.914 −π/22.3
0.7 30 M3 0.110 1.3887 592.3 0.299 −π/18 0.707 −π/42
0.01 28.89 0.114 1.436 36 450 0.396 −π/40 0.609 −π/60

TABLE 5. Values of various classification criteria for a selection of eigenmodes located
close to the marginal stability curves in the case of a rectangular plate with χ = 8. The
nomenclature employed for the criteria is similar to that defined in table 3 and § 4.1.3. The
labelled modes are displayed in figure 14.
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FIGURE 14. Structure of some eigenmodes of a rectangular plate with χ = 8 taken along
the marginal stability curve: (a) mode M1 with m∗ = 8,Re = 30; (b) mode M2 with
m∗ = 4,Re = 28; and (c) mode M3 with m∗ = 0.7,Re = 30. The modes are displayed with
iso-levels of the vorticity component using the same conventions as in figure 5.

first flutters and then tumbles for Ar = 710, which suggests that the onset of fluttering

takes place in the range 71 < Ar < 710 (assuming that Cd ≈ 1 in (2.13), this suggests

a critical Reynolds number in the range 100 < Rec < 1000). These findings seem at

odds with the present results since the latter predict a critical Reynolds number ∼29

for the same value of m∗. However, the conclusion of Kolomenskiy & Schneider

(2010) regarding their results at Ar ≈ 71 relies on a visual examination of the path

and they do not show any evidence that the wake is still stable. Full Navier–Stokes

computations performed in our team in the same range of parameters (Auguste 2010)

lead to a different conclusion, as they show that the converged state is characterized by

a Von Kármán-like wake with almost no signature on the path. This conclusion agrees

qualitatively with the present results, which reveal that in this range of m∗ the unstable

eigenmode mostly manifests itself in the wake but not in the path.
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FIGURE 15. Stability of a square rod at zero incidence: (a) neutral curves in the (m∗,Re)
plane; and (b) associated Strouhal number. The same conventions are used as in figure 10.

6. The square rod

We finally consider the case of a rod with a square cross-section at zero incidence
with respect to the incoming stream. In contrast to thinner plates, for which the
quasi-steady model introduced in FAM predicts that the various ‘aerodynamic’ modes
are damped whatever Re in the large-m∗ limit, a low-frequency (LF) mode becoming
unstable beyond Re ≈ 48 is predicted in the case of a square rod. Interestingly, this
threshold is very close to that corresponding to the onset of vortex shedding for a fixed
rod, the latter occurring at Re ≈ 46 (Sohankar, Norberg & Davidson 1998; Lankadasu
& Vengadesan 2008). We refer to the associated ‘fluid’ mode as the VK1 mode in line
with the terminology used in previous sections. It is worth noting that we explored
the stability of a fixed square rod up to Re ≈ 150 and did not find the existence of a
secondary vortex shedding mode such as the VK2 mode identified for fixed plates with
aspect ratios χ = 104 and χ = 8.

The mapping of the neutral curves in the (m∗,Re) plane was achieved in the same
way as with previous geometries. The results are shown in figure 15 along with the
corresponding Strouhal numbers. Only two neutral curves are found to exist for this
specific geometry. The first branch, denoted as B1, coincides with the VK1 ‘fluid’
mode in the large-m∗ limit and remains almost horizontal with Re ≈ 44.5 over most of
the m∗ range reported in the figure. The corresponding Strouhal number is also almost
constant, with St ≈ 0.104, in agreement with the fixed-body value (Sohankar et al.

1998). The second branch, denoted as B2, coincides with the LF ‘aerodynamic’ mode
in the large-m∗ limit. The corresponding Strouhal number is always lower by at least
a factor of 2 compared with that of the VK1 mode. This Strouhal number increases as
m∗ decreases, in agreement with the asymptotic quasi-steady prediction of (4.7).

While the mode corresponding to the branch B1 is the most unstable for large m∗,
the situation changes dramatically for small mass ratios. Indeed, the two branches
cross at m∗ = 1.22,Re = 44.35. For smaller m∗, the instability occurs along the branch
B2. The corresponding threshold drops sharply as m∗ decreases, reaching Re ≈ 34.77
in the limit m∗ ≈ 0. This switch from the B1 branch to the B2 one is associated with a
jump in the Strouhal number, which is suddenly divided by a factor close to 2.

The structure of a few eigenmodes is illustrated in figure 16; the corresponding
values of the classification criteria are given in table 6. The first two (figure 16a,b)
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FIGURE 16. Structure of some eigenmodes of a square rod: (a) mode M1 with m∗ = 10,Re =
45; (b) mode M2 with m∗ = 1.22,Re = 44.35; (c) mode M′

2 with m∗ = 1.22,Re = 44.35; and
(d) mode M3 with m∗ = 0.2,Re = 37. The modes are displayed with iso-levels of the vorticity
component, using the same conventions as in figure 5.

m∗ Re Mode
label

St |ω̂ · z|
(1.5, 0)

κ |γ̂ | φγ̂ |α̂| φα̂

10 45 M1 0.105 1.3179 562 1.960 −π/2.5 1.901 −π/2.3
1.22 44.35 M2 0.104 1.302 261 1.16 −π/1.8 1.22 −π/4.2
1.22 44.35 M′

2 0.049 0.621 18.2 0.588 −π/16 0.438 −π/12
0.2 37 M3 0.052 0.6450 67.5 0.646 −π/8.2 0.467 −π/5.8
0.01 34.77 0.052 0.655 11 760 0.652 −π/7.2 0.492 −π/5.3
10 52 0.04 0.5002 3.01 0.178 −π/14.3 0.827 −π/67
0.2 47 0.105 1.3087 1062 0.803 −π/2 1.286 −π/4.7

TABLE 6. Values of various classification criteria for a selection of eigenmodes located
close to the marginal stability curves in the case of a square rod. The nomenclature
employed for the criteria is similar to that defined in table 3 and § 4.1.3. The labelled
modes are displayed in figure 16.

are found along the branch B1 and correspond to m∗ = 10 and to the crossing point
m∗ = 1.222, respectively. Both of them have the visual appearance of ‘fluid’ modes of
the VK1 type. Note that the maximum vorticity levels in the two panels of the figure
suggest a weak coupling with the body motion. The last two modes (figure 16c,d)
are found along the branch B2 and correspond to the crossing point m∗ = 1.222 and
to m∗ = 0.2, respectively. They display a rather different structure. The real part (left
half of the two panels in the figure) exhibits a marked banded structure, which is the
signature of a significant inclination of the body. The imaginary part (right half of
panels) shows oscillations with a much larger wavelength than that of the previous two
modes, a trend that is consistent with the much lower value of the Strouhal number.

Although we are unaware of any previous study with which the present findings
for a square rod could be directly compared, it is worth mentioning that they exhibit
strong qualitative similarities with the computational results reported by Alben (2008),
who solved the coupled system of Navier–Stokes and Newton’s equations for an



elliptical rod of aspect ratio 3.4 and mass ratio m∗ = 1.23 (with present notation).
Indeed, he found that, when the body is constrained to move vertically broadside
on, the wake first becomes unstable at a critical Reynolds number ∼40, while the
lateral oscillations of the freely moving rod set in at a lower critical Reynolds
number Rec ≈ 23. The periodic lateral motion then develops and the corresponding
Strouhal number is ∼0.04 for Re = 30. This is in full qualitative agreement with
what is observed here in the limit of small m∗, where the critical Reynolds number
is significantly lower than that associated with the ‘fluid’ mode and the corresponding
Strouhal number is ∼0.05. These similarities suggest that elliptical and rectangular
shapes (and presumably other specific shapes) share a common scenario, namely, for
small enough m∗ and χ , the critical Reynolds number and the corresponding Strouhal
number are associated with an ‘aerodynamic’ mode and are significantly smaller than
those associated with the classical Von Kármán mode.

7. Summary and concluding remarks

The primary purpose of this work was to study the transition from a rectilinear
path to an oscillating path for freely falling/rising bodies with a two-dimensional
geometry. After deriving the linear equations governing the coupled fluid–body system,
we investigated in detail two thin-body geometries, namely a quasi-infinitely thin plate
and a rectangular plate with an aspect ratio χ = 8, both with a zero incidence angle
in the base state, and a specific bluff-body geometry, namely a rod with a square
cross-section.

Before considering arbitrary mass ratios, we paid particular attention to the limit
case of very heavy bodies (m∗ ≫ 1). For the three geometries under consideration
(although results were only presented for the thin plate case), it turns out that in this
limit the instability mechanism is similar to that of the wake of fixed bodies with the
same geometry. In particular, the critical Reynolds number and the corresponding
Strouhal number are identical to those found with a fixed body. Moreover, the
components of the eigenmode corresponding to the body motion (i.e. its translational
and angular velocities and its inclination) are asymptotically small in this limit. This
means that for such heavy bodies the instability only manifests itself within the wake
and has almost no signature on the path, which remains nearly vertical. This feature
can be explained by noting that the unsteady loads (lift and torque) associated with the
wake mode oscillate over a ‘short’ hydrodynamic time scale and can hardly excite any
motion of the body, which, owing to its large inertia, evolves over a much longer time
scale.

Although they have no effect on the leading instability mechanism, the additional
degrees of freedom associated with the body displacements are responsible for the
existence of four additional eigenmodes, which we refer to as ‘aerodynamic’ modes.
These modes, which are characterized by much weaker eigenvalues, describe motions
of the fluid–body system over a ‘slow’ time scale that is much longer than the
hydrodynamic time scale over which the wake evolves. This slow evolution makes it
possible to consider that, at leading order, the wake structure (and hence the loads) is
entirely defined by the body kinematics. This view forms the basis of the ‘quasi-static’
model we developed in a recent paper, whose predictions agree well with the results
of the present, global stability approach in the large-m∗ limit. In the range of Reynolds
number for which the wake is known to be unstable, these additional modes are
always damped in the case of thin bodies. In contrast, for a rod with a square section,
two of these modes (which form a complex conjugate pair) become unstable for values



of Re not much higher than the threshold of the wake instability. For this reason,
a ‘rapid’ vortex shedding mode and a ‘slow’ path oscillation are expected to exist
simultaneously in a certain range of Reynolds number when such bluff bodies fall
freely.

We then investigated the whole range of mass ratios and paid specific attention
to O(1) or smaller values of m∗. For the two thin bodies with χ = 104 and χ = 8,
the limit m∗ ≪ 1 turned out to be qualitatively similar to that of large mass ratios.
In particular, the critical Reynolds number and the corresponding Strouhal number
are very close to the corresponding values in the opposite limit m∗ ≫ 1. Inspection
of the eigenmode corresponding to destabilization in this low-m∗ range revealed that
the ‘fluid’ component of the mode retains the same structure as in the fixed-body
case, while the ‘solid’ component is small (although not asymptotically small). This
trend indicates that, although the mass ratio is low, the instability still manifests
itself through vortex shedding, with little effect of the body path. The case of
intermediate mass ratios was found to be more complex. As m∗ decreases, we
observed that the critical Reynolds number first decreases (down to m∗ ≈ 4), then
increases (down to m∗ ≈ 2), before decreasing again. In this range of m∗, the ‘solid’
component of the eigenmodes is quite strong and comparable in magnitude to the
‘fluid’ component, making the instability associated with a significant displacement
of the body. Nevertheless, the values of the Strouhal number remain comparable to
those observed in the large-m∗ limit. Despite these general similarities, there is an
important point of contrast between the two cases χ = 104 and χ = 8. Indeed, for the
thinnest plate, a crossing between two branches of the marginal stability curve occurs
for m∗ = 1.66. As m∗ crosses this threshold towards lower values, the Strouhal number
abruptly decreases by ∼25 % and the structure of the unstable mode that emerges
changes from one with a significant body motion to one with almost no displacement
of the body. Such a crossing does not exist in the case χ = 8. Nevertheless, the neutral
curves indicate that there is a secondary mode that is only weakly damped for m∗ ≈ 3
and is likely to interact with the primary mode in this range of m∗.

The specific bluff-body geometry we considered, namely a rod with a square cross-
section, revealed a different scenario. In this case two unstable modes with a different
structure coexist whatever m∗ within the same range of Re. These two modes are
the continuation of the ‘fluid’ and ‘aerodynamic’ modes identified in the large-m∗

limit. As the mass ratio decreases, these two modes were found to preserve their
identity. Down to m∗ = 1.22, the ‘fluid’ mode remains the most amplified one while
the ‘aerodynamic’ mode becomes the most amplified one for smaller m∗. This crossing
between the two branches of the marginal stability curve is associated with an abrupt
reduction of the Strouhal number by ∼50 %.

The present results provide new findings for contributing to the debate regarding
the physical mechanisms responsible for path oscillations of buoyancy-driven bodies.
In a forthcoming review (Ern et al. 2012), the available models and explanations
for this class of phenomena are shown to belong to two general families. The
first stream of explanations states that the dominant mechanism lies in the wake
instability (vortex shedding), and that the body motion only plays a secondary role.
The second series of approaches assumes that the whole picture is dominated by the
role of the aerodynamic loads experienced by the body, regardless of any kind of
intrinsic wake dynamics. Our results indicate that, for thin two-dimensional bodies,
the mechanism responsible for the primary destabilization belongs to the first of
these families. In particular, the transition occurs in the same range of Reynolds
number (Re ≈ 30) as in the wake of the corresponding fixed body; the two Strouhal



numbers are also comparable. Interestingly, for the same class of thin bodies (falling

cards), the fluttering/tumbling dynamics observed at much higher Reynolds number,

say Re = O(103), are more often explained using scenarios belonging to the second

family. Indeed, ‘aerodynamic’ models in which the loads are modelled as a function

of the body velocity, incidence angle, etc. are found to reproduce reasonably well

the observed paths and transitions, provided the various empirical coefficients that

they involve are suitably tuned (Pesavento & Wang 2004; Andersen et al. 2005a).

However, in the range of Re explored here, the ‘quasi-static’ model of FAM, which

is a rigorous derivation of such an ‘aerodynamic’ model in the large-m∗ limit, fails to

predict any instability of thin bodies. We thus have to conclude that the mechanisms

responsible for unsteadiness and path instability are quite different in the range

Re ≈ 30 corresponding to the primary destabilization and in the range Re = O(103)

corresponding to large-amplitude fluttering and transition to tumbling. For this reason,

it is highly desirable that future studies investigate the gap between these two well-

separated regimes and clarify the origin of this apparent paradox.
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