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Abstract 

Physical mechanisms at the origin of the transport of solid particles in a fluid are still a matter of debate in the physics 
community. Y et, it is weil known that these processes play a fundarnental role in many natural configurations, such submarines 
landslides and avalanches, which may have a significant environmental and economie impact. The goal here is to reproduce 
the local dynamics of such systems from the grain scale to that of thousands of grains approxirnately. To this end a simple 
soft-sphere collision 1 immersed-boundary method has been developed in order to accurately reproduce the dynarnics of a 
dense granular media collapsing in a viscous fluid. The fluid solver is a finite-volume method solving the three-dimensional, 
time-dependent Navier-Stokes equations for a incompressible flow on a staggered. Here we use a simple immersed-boundary 
method consisting of a direct forcing without using any Lagrangian marking of the boundary, the immersed boundary being 
defmed by the variation of a solid volume fraction from zero to one. The granular media is modeled with a discrete element 
method (DEM) based on a multi-contact soft-sphere approach. In this method, an overlap is allowed between spheres which 
mimics the elasto-plastic deformation of real grain, and is used to calculate the contact forces based on a linear spring model 
and a Coulomb criterion. Binary wall-particle collisions in a fluid are simulated for a wide range of Stokes number ranging 
from 10·1 to 104

• lt is shown that good agreement is observed with available experimental results for the whole range of 
investigated parameters, provided that a local lubrication model is used when the distance of the gap between the particles is 
below a fraction of the particle radius. A new model predicting the coefficient of restitution as a function of the Stokes number 
and the relative surface roughness of the particles is proposed. This model, which makes use of no adjustable constant, is 
shown to be in good agreement with available experimental data. Finally, simulations of dense granular flows in a viscous 
fluid are performed. The present results are encouraging and open the way for a parametric study in the parameter space initial 
aspect ratio - initial packing. 

Introduction 

Particle-laden flows are encountered in a large number of 
industrial and natural applications, including chemical 
engineering, aeronautics, transportations, biomecanics, 
geophysics and oceanography. Modeling solid-fluid 
interaction is often difficult because of the complexity of the 
solid shape and motion in the fluid flow. 
Methods for modeling solid-fluid interaction may be 

divided within two main groups, depending on the way the 
solid-fluid interfaces are described. One group, usually 
referred to as "body-fitted grid methods" makes use of a 
structured curvilinear or unstructured grid to conform the 
grid to the boundary of the fluid domain (Moin and Mahesh 
1998; Hu et al. 2001). In situations involving complex 
moving boundaries, one needs to establish a new 
body-conformai grid at each time-step which leads to a 
substantial computational cost and subsequent slowdown of 
the solution procedure. In addition, issues associated with 
regridding arise such as grid-quality and grid-interpolation 
errors. 
The second group of methods is referred to as "fixed-grid 

methods". These techniques make use of a fixed grid, which 
eliminates the need of regridding, while the presence of the 

solid objects is taken into account via adequately formulated 
source terms added to fluid flow equations. Fixed-grid 
methods have emerged in recent years as a viable alternative 
to body-conformai grid methods. In this group, one can 
mention immersed-boundary method (IBM) (Peskin 2000; 
Fadlun et al. 2000; Kim et al. 2001; Uhlmann 2005), among 
others. 
In the present work, we attempt to simulate the local 

dynarnics of such systems from the grain scale to that of 
thousands of grains approximately. To this end a simple 
soft-sphere collision 1 immersed-boundary method is 
presented. The immersed-boundary method consists in a 
direct forcing method, using a continuous solid volume 
fraction to defme the boundary. The granular media is 
modeled with a discrete element method (DEM) based on a 
multi-contact soft-sphere approach. 
The paper is structured as follow. First we describe the 

numerical techniques used here, then preliminary test cases 
are presented to show the ability of both methods 
independently. In a third part, binary wall-particle collisions 
in a fluid are simulated for a wide range of Stokes number 
ranging from 10·1 to 104

, and a discussion about the use of a 
local lubrication model is done. In addition, a new model 
predicting the coefficient of restitution as a function of the 



Stokes number and the relative surface roughness of the 
particles is proposed. Finally, simulations of dense granular 
flows in a viscous fluid are presented. 

Nomenclature 

gravitational constant (ms.2) 

pressure (Nm.2) 

mean particle radius (rn) 
mean particle diameter (rn) 
local velocity in the fluid (ms-1

) 

particle velocity (ms-1
) 

local velocity in the particle (ms-1
) 

IBM volume force (ms-2
) 

particle volume (m3
) 

particle mass (kg) 
coefficient of normal restitution 
contact time (s) 

Greek letters 
a 
Jl 
v 
p 

solid volume fraction 
dynarnic viscosity (Pas) 
kinematic viscosity (m2s-1

) 

density (kg m-3
) 

Subsripts 
p particle 
f fluid 

Numerical Approaches 

Immersed-boundary method (IBM) 

Assuming a Newtonian fluid, the evolution of the flow is 
described using the Navier-Stokes equations, namely 

V·V =0 (1) 

p av+ pV.VV = -Vp + p g +V· (u(vv +'VV )]+ P.f 
~ ~ 

where V, p, p and Jl are the local velocity, pressure, density 
and dynamic viscosity in the flow, respectively, g denotes 
gravity and f is a volume force term used to take into 
account solid-fluid interaction. (1)-(2) are written in a 
Cartesian or polar system of coordinates. These equations 
are enforced throughout the entire domain, comprising the 
actual fluid domain and the space occupied by the particles. 
In the following, the termf will be formulated in such way 
as to represent the action of the immersed solid boundaries 
upon the fluid. 

Let us consider a non-deformable solid particle 
of density pP, volume t?P and mass mP, the centroid of which 
being located at xP, moving at linear and angular velocity up 
and tq,, respectively. The local velocity U in the object is 
then defmed by U = uP + rxtq,, r being the local position 
relative the solid centroid. The motion of the particle is 
described by Newton's equations for linear and angular 
momentum of a rigid body, viz (Uhlmann 2005), 
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(3) 

with 

Fh =- v)P:_ ) f fdt? 
p p "· 

(4) 

(5) 

where F h (resp. Ii.) is the acceleration (resp. torque) due to 
hydrodynarnic forces. 

The time integration of the momentum 
equations for the fluid (2) and the solid (3) is performed via 
a third-order Runge-Kutta method for ail terms except the 
viscous term for which a second-order semi-implicit 
Crank-Nicolson scheme is used. The incompressibility 
condition (1) is satisfied at the end of each time step through 
a projection method. Domain decomposition and Message 
Passing Interface (MPI) parallelization is performed to 
facilitate simulation of large number of computational cells. 

In general, the location of the particle surface is 
unlikely to coïncide with the grid nodes, so that 
interpolation techniques are usually employed to enforce the 
boundary condition by imposing constraints on the 
neighboring grid nodes. Here we adopt another strategy, by 
introducing a function a denoted as "solid volume fraction", 
which is equal to one in cells filled with the solid phase, 
zero in cells filled with the fluid phase, and 0 < a < 1 in the 
region of the boundary. In practice, the transition region is 
set-up to be of one-to-three grid cells approxirnately (Yuki 
et al. 2007). The forcing term reads 

U-V f=a--
11t 

(6) 

Recall that U is the local velocity imposed to the immersed 
solid object while V is the local velocity in the fluid; !::.t is 
the time step used for the time-advancement. The present 
choice, which may be viewed as a smoothing of the 
immersed boundary, is an alternative way to using a 
regularized delta function in conjunction with a Lagrangian 
marking of the boundary. The latter technique is largely 
used in immersed-boundary methods in order to allow for a 
smooth transfer of momentum from the boundary to the 
fluid (see e.g. Fadlun et al. 2000; Uhlmann 2005). The 
advantage of the present choice is that (1) it is simple to 
implement, (2) there is no need to introduce any Lagrangian 
mesh for tracking the immersed boundary, (3) no 
interpolation is performed so that the computational coast is 
reduced. 

In the following, spherical particles will be 
considered. The corresponding solid volume fraction a is 
defined by (Yuki et al. 2007), 

a(x) = _!_ _ _!_tanh(lx -xPI- RJ 
2 2 Â.ozi 

(7) 

À= lnxl +lnyl +ln,l (8) 



Œ = 0.065 (1- )} )+ 0.39 (9) 

where n = (nx, ny, n,) is a normal outward unit vector at a 
surface element, u is a parameter controlling the thickness 
of the transition region and L1 is a characteristic grid size (.<1 
=2112 .!U when the grid is uniform). Iso-contours of a as 
defined in (7) are shown in figure 2. With the present 
choices, the transition region is of three grid cells 
approximately. 

Soft-sphere approach (DEM) 

In this section, we describe the method used for dealing with 
solid contacts in a system of nP particles. Here, the modeling 
of the solid-solid interaction is done via a soft-sphere 
approach. Briefly, we assume the particles to be 
non-deformable but being able to overlap each other. This 
overlap is then used to compute the normal and tangential 
contact forces, using a locallinear mass-spring system and a 
Coulomb type mode!, respectively. When coupling is 
performed, an extra force Fe and torque r; is added in (3), 
namely 

re= Iri-j +Fwall 
f::ti 

(10) 

(11) 

where F;1 is the contact force between particles i andj, F wau 

the wall-particle interaction force, F;1 and Fwau are the 
corresponding torques. F;.i and F;1 are computed using a 
local system of coordinates (n,t) depicted in figure 1 as 
follows 

Fi-i = F.n + FJ 

ri-j = R;n x Fl 

{ 
0 if ô. > 0 

F = ( dô ) " max 0,-k"ô" - Yn dt" otherwise 

F, = -min~k,ô,l,l,ucFn l}sign(ôJ 

(12) 

(13) 

(14) 

(15) 

where R; is the i-th particle radius, 4. ( 4) is the normal 
(tangential) distance of overlap, f1c is the friction coefficient, 
kn (k,) is the normal (tangential) stiffness and rn is the 
damping coefficient of the mass-spring mode!, respectively. 
Note that F wall and Fwa11 are treated in a similar manner by 
taking an infinite radius and mass for the wall. The 
constants of the mass-spring model y,, kn and k, are 
calculated thanks to two additional parameters, namely the 
coefficient of normal restitution en and the contact time fe. 

These quantities are characteristic of the elastic properties of 
the particles. 
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Figure 1: Notations used in the soft-sphere approach. 

2m. ( ) Y, =--lne 
n tc n 

(16) 

k = m.1!2 + T, 
n 2 4 

t c m. 
(17) 

where m.=m;mj(m;+mj) is the effective mass involved in the 
contact. Finall y, the tangential stiffness coefficient k, is 
assumed to be proportional to the normal stiffness 
coefficient kn (Foerster et al. 1994). In the present work, we 
set k,=0.2k. . To summarize, in the present soft-sphere 
approach, one needs to specify e., tc and Jlc in addition to the 
size and density of the particles for the mode! to be closed. 

Lubrication force 

As shown later, the coupled ffiM-DEM method may not be 
accurate in capturing the detailed flow structure in the liquid 
film which is drained when the particles approach each 
other because of the somewhat limited spatial resolution of 
the flow in the narrow gap. An extra lubrication force may 
thus be used in (3) to compensate for this (Kempe et al. 
2012). Here we use the following mode! of lubrication force 
between two approaching particles i andj of velocity Up; and 
uPi and radius R; and Ri (Brenner 1961), 

where 17 is an effective roughness length accounting for the 
surface roughness of real grains. This parameter was added 
in the model in order to mimic real particles and avoid the 
divergence of the force when contact occurs (4,=0). 
Depending on the type of material used for the particles, the 
relative surface roughness 1]/R is roughly in the range [10.6; 

10"3] (Joseph et al. 2001). The present lubrication force is 
used when the distance between particles is in the range 
0~4,~/2. We checked that the specifie value of the upper 
bound of the force application (within the range [.!U; R]) did 
not affect the results significantly. Results with the 
lubrication force (18) are presented in figures 4-5 and 7-8. 



Preliminary tests without coupling 

Falling sphere in a viscous liquid initially at rest 

We set the physical properties of the particle and the fluid so 
the density ratio is P/P = 4 and the Archimedes number Ar= 
p(p -p)gD3!,l = 800. As shown later, this corresponds to a 
Re;uolds number, based on the terminal velocity of the 
sphere, of Re = pupl)lfl = 20 approximately. Here, we 
compare our results with those of a boundary-fitted 
approach which has been validated in previous papers 
(Mougin & Magnaudet 2001). This method fully resolves 
the flow around the falling sphere in the reference frame of 
the moving object, thanks to a spherical curvilinear grid 
which is refmed in the vicinity of the rigid boundary. The 
particle motion is solved via the Kirchhoff equations of 
motion. In this method a 88x34x66 spherical grid is used 
and the outer boundary are located at a distance of 20D from 
the sphere center. 

As for the present method, the simulation is 
performed in a cylindrical computational (r, z)-domain of 
20D x 40D size with a 128 x 800 grid points. The spatial 
resolution is constant along the z-direction parallel to 
gravity as weil as in the region 0 $; r/D $; l.S (D/Ax = 20). 
For 1.S $; r/D $; 20, the grid size is varied following an 
arithmetic progression up to the outer wall. Free-slip 
boundary conditions are imposed at ali boundaries. The 
time-step used for the simulation is At( g/D / 12 = 0.04. Figure 
2 shows the grid used and iso-contours of the solid volume 
fraction a defmed in (7). The sphere is initially located at a 
distance SR from the upper wall and the fluid is initially at 
rest. 

One can estimate the initial acceleration of the 
sphere at earl y times, assuming that only the buoyancy force 
and the added-mass force are at play. The initial vertical 
acceleration reads 

dup = (Pp-P )g 
dt Pp+CMP 

(19) 

where CM is the added-mass coefficient equal to 112 for a 
sphere. When the sphere has reached a terminal velocity,_ the 
drag force is balanced by the buoyancy force so the tenmnal 
velocity can be computed as follows 

lmp-mlg 
u.p= 

CvipnRz 
(20) 

where m and m are the mass of the spherical particle and p 

that of the fluid contained in an equivalent volume, 
respectively. Cv is the drag coefficient which can be 
classically estimated using Schiller and Naumann's 
correlation (Clift et al. 1978). Using this correlation together 
with the definition of the Reynolds number Re = pupl)lf1 and 
(20), one can compute the terminal velocity of the sphere. 
Figure 2 shows the temporal evolution of the sphere velocity 
with the boundary-fitted approach and the present immersed 
boundary method. For comparison, analytical solutions (19) 
and (20) are also plotted. Excellent agreement is observed 
with respect to both the numerical and analytical solutions. 
The present method is shown to satisfactorily reproduce the 
dynarnics of a free-moving object in a viscous fluid, from 
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the acceleration phase up to the steady-state regime. 

5 10 15 20 25 
t(g/D) 1/2 

Figure 2: Time evolution of the particle velocity: -, 
present IBM method, - - -, boundary-fitted approach, ······, 
analytical solutions (19)-(20). Inset: close-up view of the 
grid used for the IBM simulation, with iso-contours of a= 
0.01, 0.2S, O.S, 0.7S and 0.99. 

Granular pressure in silo 

In this section, only the soft-sphere approach is used, that is 
we solve (3) after having replaced Fh and .n, by F. and I;,, 
respective! y. This test case correspond to the filling of a silo 
of dimension 0.1x0.1xSm (figure 3) by S6000 particles of 
density p = 1317 kg.m·3 and mean radius R=Sxl0·3m under 
gravity !=9.81 m/s2

• The radius is varied from one particle 
to another in a range of ±10% to avoid crystallization 
phenomena. Here we set the collision parameters to f1.=0.2S, 
en=0.3 and t.=104 s. The walls of the silo were covered by 
fixed particles of equivalent size as those injected in the 
silo. 
When the granular column is at rest, a coarse-graining 

technique is applied (see e.g. Goldhirsch & Goldenberg 
2002) to measure the local granular stress tensor and the 
subsequent granular pressure (spherical part of the tensor). 
We plot on figure 3 the horizontally-averaged granular 
pressure in the silo. Going from the top of the column 
(z,.,Sm) down to the bottom (z=Om), the granular pressure 
fust follows a "hydrostatic" linear distribution on a depth 
corresponding to one silo diameter (4.9m $; z $; Sm), then 
the pressure quickly reaches a plateau and remains roughly 
constant on a distance of 4m down to z:=<0.7m. Below this 
height, the pressure monotonously increases as one gets to 
the bottom boundary. This behavior is attributed to the fact 
that in this region, particles have interacted with the bottom 
wall so the friction with the vertical wall was reduced and 
the pressure increased accordingly. 

The prediction of the granular pressure in the silo has been 
the subject of considerable work because of its obvious 
practical interest. One conventional model, namely the 
Janssen model, has proved to reproduce reasonably weil the 
pressure distribution in a silo. In this model one assumes 
that (i) the grain assembly is a continuous medium of 
equivalent density p8m=CpP, C being the global compactness 
in the granular column, (ii) the vertical stresses are 
redistributed toward the horizontal directions by a factor K 
and (iii) the wall friction is at the threshold of motion. 
Under these assomption, the vertical distribution of the 
granular pressure reads, 



5m 

.....____ _ 
10cm 

5.5.-----.---.-----, 

4.5 

4 

3.5 

- 3 .s 
~ 2.5 
" I 

2 

1.5 

0.5 

500 1 000 1500 

Granular pressure (Pa) 

Figure 3: Soft-sphere simulation. (Left) Silo filling with 
56000 particles colorized by their velocity (blue: low 
velocity, red: high velocity). (Right) Horizontally-averaged 
granular pressure distribution in the silo (when the granular 
medium is at rest): 0, present DEM method, -, analytical 
solution (21), ---,equivalent hydrostatic distribution. 

() pgmgS[l fw~(h-z)) pz=--- -e 
fwKP 

(21) 

where S (P) is the horizontal section (perimeter) of the silo, 
fw is the wall friction coefficient, K is the coefficient of 
stress redirection and h is the height of the granular column. 
Note that the coarse-graining technique allows us to directly 
measure fw and K while these quantities are difficult to 
determine a priori or in a real experiment. Therefore, we 
plotted in figure 3 the analytical solution (21) by estimating 
the parameter fwK using a best fit of the numerical results. 
This gives a value of fwK "" 0.30 ± 0.06. The direct 
calculation of fwK from the numerical data gives, including 
the dispersion error,JwK "" 0.38 ± 0.11, a value which is in 
reasonable agreement with the best-fit estimate. This shows 
the capability of the present soft-sphere method to 
accurately reproduce the behavior of a dense granular media 
in motion and at rest. 

Results and Discussion 

Bouncing of a solid sphere on a wall in a viscous jluid 

In this section, we present results of the simulation of one 
spherical particle bouncing on a wall in a viscous liquid 
initially at rest. To this end, the immersed boundary method 
(IBM) is coupled with the soft-sphere approach (DEM). The 
simulation is performed with the same grid as that used in 
figure 2. Here the resolution is D//'u = 20. Note that tests 
with D//'u = 10 and 40 have been done and showed that the 
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results were not affected by spatial resolution. Free-slip 
boundary conditions are imposed at ali boundaries except at 
the bottom wall where bouncing occurs. We set the physical 
properties of the particle and the fluid so that we cover a 
large range of density ratios 2~/p~102, Reynolds numbers 
0.1~ Re=pupl)lp ~0(103) and Stokes numbers 1~t:;;104 • 
Here Stokes number is defined as, 

(p +CMp)VT D 
St P (22) 

9f.l 
where CM=1/2 is the added-mass coefficient of the spherical 
particle. 

The evolution of the vorticity field around the 
particle during impact is presented in figure 4, for the case 
P/P;=-8, St=53 and Re,.,60. Here the collision parameters 
were set to en=0.97, tc=l0-4s, f..Lr?0.25, and the relative 
surface roughness used in the lubrication model (18) was set 
to 1]IR=4xl04

. At t=19.74, the flow field around the particle 
is not influenced by the wall and vice versa. However, when 
the sphere gets doser to the wall, the fluid is pushed away 
from the centerline and vorticity is created at the wall. This 
is visible in figure 4 at time t=19.89 as the particle is at a 
distance from the wall of R approximately. Note that at this 
time instance, the grid resolution is of 4-5 grid cells in the 
liquid film. When collision occurs at t=20.02 ( 4,~0), 
vorticity is maximum in the region close to the impact zone, 
indicating strong shear stress as fluid is pushed away 
parallel to the wall. Right after impact (20.07~t:;;20.25) a 
thin layer of vorticity of opposite sign develops at the 
particle surface and at the wall, while vorticity in the wake 
of the particle decreases, though still present. At t=20.48, 
the particle has reached its maximum height after the first 
bouncing and falls back again toward the wall. Afterwards 
(t~21.06), the vorticity around the particle quickly disappear 
because of significant viscous dissipation. 

The corresponding time evolution of the particle 
velocity is displayed in figure 5. Clearly, the particle reaches 
a steady-state velocity, denoted Vr, before bouncing on the 
wall. lt can be noticed that before the collision effectively 
occurs the particle velocity decreases from Vr to an impact 
velocity, denoted Vc, which is about 12% less than Vrin the 
present case. During the bouncing, the particle velocity 
changes sign but does not recover its initial velocity. This 
rebound velocity is denoted VR. Right after the impact, there 
is a strong decrease of the particle velocity followed by a 
milder trend. Finally, one can see on figure 5 a second 
rebound (1""21) which is hardly detectable from the flow 
visualization. 

The simulation presented in figures 4 and 5 were 
first repeated for two specifie density ratios P/P;=-8 and 16 
(Stand Re varying in the abovementioned range) and one 
specifie Reynolds number Re=1, without any lubrication 
model (18). We plot in figure 6 the restitution coefficient 
dG..ax=-VLIVr (see figure 5 for definitions) as a function of 
Stokes number (22). For comparison, we included available 
experiment data of the rebound of a spherical inclusion with 
a wall or another particle. While the numerical results are in 
good agreement with experimental data for St~200, the 
restitution coefficient is clearly overestimated at lower St. 
This can be attributed to the low resolution of the flow field 
when the gap between the particle and the wall is of the 
order of the grid size. As a consequence, the film pressure 



stemming from the drainage of the liquid in the gap is 
underestimated so the particle rebound is artificially 
enhanced. This issue is overcome when one adds a 
lubrication force (18) in (3). Figure 7 shows the results 
obtained with the coupled IBM-DEM method with the 
lubrication mode! (18) for the case P/PF8. The numerical 
results fall in the range of the experimental data. 

t= 19.74 t = 19.89 tc= 20.02 

t= 20.07 1=20.17 t = 20.25 

t= 20.48 t = 21.06 t = 21.27 

Figure 4: Vorticity field around a sphere impacting a wall 
<PIPF8, St=53, Re,60, D/Liz=20.). Contours levels are set 
from -17.8 to 17.8 in increments of 3.9. Here, time and 
vorticity are scaled by (D!g/12 and (g!D/12 , respectively. 

3,-----~----~----~------~----, 

+- Vr 

' ~ Vc 

ô 
9 
---a. 0 0 :::l 

-1 
-~9 20 21 +- VR 

-2 
0 5 10 15 20 25 

t(g/D) 1/2 

Figure 5: Temporal evolution of the particle vertical 
velocity (same case as figure 3). Inset: close-up view of the 
velocity during bouncing. Also defined are the particle 
terminal velocity Vr, the velocity at contact V c and the 
rebound velocity VR. 
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Overall, one may conclude from figure 7 that the present 
IBM-DEM method is able to reproduce the rebound of a 
particle in a viscous fluid provided a suitable lubrication 
mode! is added to compensate the inability of the flow 
sol ver to capture the small scale flow field in the gap during 
the film drainage. 

A new madel for the prediction of the effective coefficient of 
restitution 

In this section, we propose a new mode! predicting the 
restitution coefficient E = -V IIVr observed in experiments 
without any adjustable constants. As shown later, this mode! 
only depends on two parameters, namely the Stokes number 
(22) and the relative surface roughness 1]/R. Sorne recent 
effort were done in attempting to predict the restitution 
coefficient thanks to models either based on lubrication 
theory (elasto-hydrodynamic madel, Davis et al. 1986, 
Barnocky & Davis 1988; mixed contact madel, Yang & 
Hunt 2008), or on a mass-spring analogy (Legendre et al. 
2005, 2006). However, the first class of mode! fails to 
predict the restitution coefficient for the whole range of 
Stokes number, while the second class of model makes use 
of an adjusted constant. 

Here we revisit bath types of theory to derive a 
simple mode! which is able to capture reasonably well the 
observed restitution coefficients for the whole range of 
Stokes number (figure 7). The key idea is to decompose the 
sphere dynamics before and during impact into two stages. 
The first stage starts from a characteristic time at which the 
particle velocity begins to be influenced by the wall (i.e. for 
§,.""R, approximately, see figures 4-5 and corresponding 
discussions) up to the time at which collision occurs (8,=0). 
During this stage, the particle is assumed (i) not to be 
deformed and (ii) to be slowed down by viscous forces 
generated by the displacement of fluid due to the presence 
of the wall. During the first stage, the particle velocity 
decreases from V1 to Vc, (see figure 5 for definition). In the 
second stage, the particle get deformed and bounces. During 
this stage, we assume that the particle kinetic energy is 
converted into energy of deformation and is only partially 
restored into kinetic energy because sorne of the energy has 
been dissipated by bath inelastic deformation and viscous 
dissipation. During the second stage, the particle velocity 
goes from Veto VR. 

In order to estimate the ratio V dVr, we consider 
that the particle, at location xP and of velocity uP, is moving 
toward a flat wall in a fluid at rest and we assume that the 
particle is subject to the steady drag force which is balanced 
by the buoyancy force, the added-mass force and the 
lubrication force F1ub defined in (18) which, in the present 
case, becomes F1ub=-61Cf.lU~/(8,.+1]). The kinematic 
equations then become, 

(23a,b) 

where rn is the mass of the fluid contained in a sphere of 
radius R. Using the relation xP=R+§,., then dividing (23b) by 
(23a) in arder to eliminate time, and integrating between 
4=0 (up=Vc) and 4=R (up=Vr), we find that 



(24) 

where we assumed that R>>TJ. Regarding the second stage, 
we follow Legendre et al. (2005)'s analysis and use a 
mass-spring model to describe the deformation q of the 
particle where we tak:e into account energy loss due inelastic 
deformation and viscous dissipation. The deformation of the 
particle is then govemed by, 

(25) 

with initial conditions §=0 and d!Jdt=Vc when the particle 
impacts the wall. Recall that y,. and kn are the damping and 
stiffness coefficient of the soft-sphere mass-spring model, 
respectively. C is a coefficient which we estimate to be 
inversely proportional to the relative surface roughness of 
the particle, i.e. C=RITJ. lntegrating (25) with the 
corresponding initial conditions gives the classical solution 
~t) of a damped harmonie oscillator (not shown), with a 
half-period of oscillation 

(26) 

(26) indicates that the larger the viscosity and/or y,., the 
larger -r, so that the contact time is larger accordingly, as 
expected. However, recent experiments of the impact of a 
solid sphere on a wall showed that the effective contact time 
remains finite and of the order of the contact time predicted 
by Hertz theory (considering no interaction with the 
surrounding fluid), in a large range of Stokes number 
20:5:SK-103 (Legendre et al. 2006). Therefore, one can 
approximate (26) by ~((mp+CMm)lkn) 112 • 

Further assuming that the contribution of the 
lubrication force at impact 67!j.IR2V dTJ is of the same order 
as that of the elastic force knTJ in the dissipation of energy, 
one can estimate RITJ as a function of the fluid and particle 
properties as RITJ=(k,/67!pVc)ll2. Using this together with 
(26), the solution of (25) and the approximation 
~((mp+CMm)lkn)112 , we can get an expression of the 
rebound velocity VR=d~ -r)ldt, as a function of the contact 
velocity V c, 

VR [ 1!/2 ) 
Vc = -e. exp ~Stx fJ(St,TJI R) 

(27) 

fJ(St,q 1 R)= 1 + _!__ 1n(!l) 
St R 

(28) 

Combining (24), (27) and (28), we find a new model for the 
prediction of the coefficient of restitution êle,ax of a particle 
rebound in a fluid, 

e 
fJ(St,q!R)exp[ 1!/

2 
) (29) 

~ St x fJ(St,TJ 1 R) emax 

As mentioned above, this new model only depends on two 
parameters, namely Stand 1]/R. Note that here no adjustable 
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constant were needed. The model (29) is plotted in figure 7 
for a wide range of relative surface roughness 10-6:5:1]/R:5:10-3. 

Good agreement is observed for both small and large values 
of the Stokes number. Note that the sensitivity of (29) with 
respect to 1]/R is larger at moderate-to-small Stokes numbers. 
This is line with the dispersion of experimental results 
which is observed to be larger at low St. 

0.8 

0.6 
êlë,ax 

0.4 

0.2 
.. 

o~------~~~oj+~~------~----~ 
1~ 1~ 1~ 1 ~ 1~ 

St 
Figure 6: Restitution coefficient êlë,ax for spherical 
inclusions versus the Stokes number St. Present IBM-DEM 
simulations without lubrication force: T , p/p=16; <111111 , 

p/p=8; ~. Rep"'l. Experiments with solid spheres: +, 
Joseph et al. 2001; 0, Gondret et al. 2002; x, Foerster et al. 
1994. Experiments with drops: •, toluene drops in water 
(Legendre et al. 2005); +, liquid drop in air (Richard & 
Quéré 2000). Other experiments: •, spherical balloon filled 
with a mixture of water and glycerol (Richard & Quéré 
2000). 

0.8 

0.6 

êlë,ax0.4 

0.2 

o~----~~~j_~------~----~ 

1~ 1~ 1~ 1~ 1 ~ 
St 

Figure 7: Same as figure 6: +, present IBM-DEM 
simulations with lubrication force (18) for p/p=8. --, 
present model (29) with various relative surface roughness 
w-3:5:1JIR:5:10-6

• 

Immersed granular flow on an inclined plane 

The last case corresponds to the simulation of an immersed 
granular flow on an inclined plane, as those encountered in 
submarine avalanches. The simulation is performed in a 
three-dimensional (x,y,z)-computational domain of size 
3Dx3Dx10D in the streamwise, spanwise and vertical 
directions, respectively, discretized with 30X30x100 grid 



points. We set the physical properties of the particle and the 
fluid so the density ratio is p/p = 85 and the Archimedes 
number Ar= p(pp-p)gD3!1i = 1200 (Re= puPD/p"' 10-100). 
The collision parameters are the same as those used in 
figure 4. Periodic boundary conditions are imposed in the 
streamwise x-direction and no-slip boundary conditions are 
imposed elsewhere. The gravity vector makes an angle of 
45° with the z-direction in the (x,z)-plane. Twenty 
quasi-monodispersed particles are initially randomly placed 
in the computational domain within a fluid at rest. 
Figure 8 shows the temporal evolution of the granular 

flow. The particles first collapse thanks to gravity (0 ::; t::; 5) 
to form a dense layer of particles which move as a sheet 
flow. The motion is sustained by the gravity since the angle 
of the inclined wall is weil above the angle of avalanche 
("'30° for spherical particles). In that case, the fluid is put in 
motion by the displacement of the particle as observed in 
avalanches. The present results with a somewhat modest 
spatial resolution open the way for a parametric study in the 
parameter space initial aspect ratio - initial packing with a 
Iarger number of better-resolved particles. 

Conclusions 

We presented a simple soft-sphere immersed-bounday 
method capable of describing the flow of a dense granular 
media evolving in a viscous fluid. Simulations of 
wall-particle collisions in a fluid are shown to be in good 
agreement with available experimental results for the whole 
range of investigated parameters, provided that a local 
lubrication model is used. A new model predicting the 
coefficient of restitution as a function of the Stokes number 
and the relative surface roughness of the particles has been 
proposed and was shown to reproduce reasonably well 
experimental data. Finally, simulations of dense granular 
flows in a viscous fluid are presented. Current effort is made 
to perform a parametric study in the parameter space initial 
aspect ratio - initial packing, in order to investigate 
immersed granular avalanches encountered in real 
situations. 
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