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Abstract

A methodology for addressing the DECOVALEX III Bench Mark Test 2 is presented. Hydro-mechanical (HM) modelling has

been conducted on fracture networks generated from fracture length and density statistics, which have been described by a power

law. For each rock formation in the test, effective hydraulic conductivity tensors have been derived for a range of mechanical

parameters and depths below ground level. The upscaled hydraulic conductivities have been used in a site scale continuum model of

groundwater flow and transport to assess performance indicators, including time of travel from repository to ground surface.

Preliminary results indicate that interpretation of the fracture length and density data can have a significant effect on upscaling

calculations, including the determination of a suitable hydraulic representative elementary volume. HM modelling shows that there

is a non-linear decrease in the change of fracture aperture with depth, and that although large aperture fractures remain at depth, the

majority of fractures tighten to almost the residual aperture at about 750m below ground level. Consequently, anisotropy of

the effective hydraulic conductivity also changes with depth. Flow and transport modelling at the field scale indicates that, of the

controls investigated, mechanical properties of the rock have the greatest influence on solute travel times.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Continuum models of sub-surface flow and transport
have been used to provide predictions for the perfor-
mance assessment of underground radioactive waste
disposal for many years. As awareness of relevant host
rock processes has increased, these models have become
increasingly sophisticated. Their structure and parame-
terisation typically reflects data collected at spatial scales
that are usually orders of magnitude smaller in volume
than those over which the prediction of radionuclide
migration is required. Upscaling is, therefore, required
e front matter r 2005 Elsevier Ltd. All rights reserved.
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by default for the successful application of the models.
Formal upscaling methods are increasingly used to
transform the small-scale data into large-scale values
required as input to numerical models [1]. Although
many upscaling strategies have been proposed (includ-
ing that of Jackson et al. [2]), the problem of translating
the information contained in field data into meaningful
continuum model parameters remains contentious. The
problem not only involves transformation of scale, but
also includes the interpolation/extrapolation of para-
meter values determined at specific locations in the rock,
for example near a borehole or at outcrop, to locations
throughout the rock including areas where ambient
conditions may be significantly different. One particular
issue of concern is the effect of the variation with depth
of the mechanical stress field on the hydraulic properties
of a formation and the consequent effect on the
groundwater flow-mediated time of travel from a waste

www.elsevier.com/locate/ijrmms
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Fig. 2. Overall modelling strategy (Da ¼ hydraulic aperture change).
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repository at depth to the surface. The international
collaborative programme, DECOVALEX III, was set
up in part to address this and related issues, with
particular emphasis on an evaluation of coupled
thermo-hydro-mechanical processes for performance
assessment of potential buried radioactive waste dis-
posal sites.

As part of the DECOVALEX III programme, several
research teams have independently tackled a two-
dimensional (2D) upscaling problem based upon a
hypothetical deep waste disposal scenario (Bench Mark
Test 2). In this paper, the approach taken by the authors
to solve this problem is described and the preliminary
results presented.

Fig. 1 shows the hypothetical repository situated
within a low permeability fractured rock mass (Forma-
tion 1), which is overlain by an upper fractured
formation (Formation 2) that extends to ground surface.
A vertical fractured/faulted zone cuts both rock units
(The Fault Zone). This zone lies just beyond the end of
the repository tunnel. The repository is backfilled with a
low permeability bentonite seal. The rock property data
for each formation and the fault zone are based on the
Sellafield (Cumbria, UK) site investigation programme
performed by United Kingdom Nirex Limited, but the
spatial distribution of the formations has been substan-
tially modified from that found at Sellafield. Thus, the
results presented in this paper, and under DECOVA-
LEX III Bench Mark test 2 as a whole, cannot be used
to infer any knowledge of the real conditions at
Sellafield. The 2D model domain corresponds to a
vertical section, 5 km long and 1 km deep, that intersects
the coastline. The land surface onshore is low-lying and
offshore the seabed is shallow. The orientation of the 2D
cross-section through the host rock is NNW/SSE (159/
3391). The repository is located at a depth of 520 and
10m NNW from the fault zone, which penetrates from
ground surface to the base of the section. Hydraulically,
the base and sides of the model domain are represented
as no flow boundaries, and the top boundary is
prescribed by a constant pressure set equal to atmo-
spheric pressure, fixing the water table at the ground
surface everywhere. Density variations in the ground-
water salinity composition are not considered in the
hypothetical scenario.
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Fig. 1. Modelling domain defined by the D
The methodology described in this paper (Fig. 2) has
been implemented to quantify the background varia-
tions of the host rock hydraulic properties as a function
of the in situ stresses and mechanical properties. A
similar methodology has been used by Martin et al. [3],
who applied it to assess a major shear zone in granite,
and Eidsvig [4] who used it to describe the stress-
dependent permeability in fractured chalk. An incentive
for the development of the methodology is that,
potentially, it makes it possible to examine fault zones
and to explain the depth distributions of flowing
features observed during the Sellafield site investigation
programme [5]. The methodology comprises four main
stages.

Stage 1 concerns the statistical analysis of the given
fracture distribution data and the generation of syn-
thetic discrete fracture networks (DFNs). The uncer-
tainties in the parameterisation of the fracture length
and density data are examined and their effect on the
simulated networks is highlighted.

Stage 2 comprises hydraulic and mechanical analysis
of permeability. The purpose of stage 2 is to establish
the minimum size of averaging volume (denoted here as
the approximate REV) required to model large-scale
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flow, the hydro-mechanical (HM) contributions to the
equivalent continuum permeability tensor at the ap-
proximate REV scale, and the statistical variability in
the upscaled parameter values. Several methods exist to
evaluate the 2D permeability tensor for fractured rock
e.g. [6,7]. In this paper the evaluation is based on the
work of Jackson et al. [2], which models flow through a
block of fractured rock in several directions using
boundary conditions that impose a uniform head
gradient on the block, and which are set beyond the
limits of the REV. The impact of HM interactions on
the permeability tensor is explored by numerically
modelling the changes in hydraulic aperture distribu-
tion, given data on the fluid and rock stress distribu-
tions, and establishing a modified permeability tensor.
Sensitivity studies using the distinct element code,
UDEC, incorporating the Barton Bandis model for
mechanical fracture closure (UDEC–BB) are used to
examine the impact of mechanical properties, stress
changes with depth, mechanical boundary conditions,
and fracture geometries, and to determine a suitable
REV for HM modelling.

Stage 3 uses the results of the calculations carried out
during Stage 2 to constrain upscaling calculations of
effective flow and advective transport parameters for
cells of a finite difference continuum model of the
hypothetical site.

Stage 4 involves the full continuum modelling of the
regional groundwater flow patterns within a Monte-
Carlo simulation framework. The distributions of
effective parameters derived in Stage 3 are sampled to
construct alternative realisations of the permeability and
porosity fields in the 2D domain. The finite difference
model is then used to simulate flow through the host
formations and to estimate performance measures such
as the advective travel time from the repository to the
surface for each realisation. This allows the effect of
fracture geometry, and mechanical properties on per-
formance assessment measures to be investigated
quantitatively.
2. Methodology and preliminary calculations

2.1. Fracture data and fracture generation

The most abundant data for DFN generation (Stage
1) are fracture density and length [7]. A power law
fracture length distribution has been fitted to the
available data as shown in Fig. 3. The number of
fractures per km2 (NF) longer than the length (L)
measured in metres is given by

NF ¼ CL�D, (1)

where C is a density constant and D is the fractal
dimension. The data include only fractures with a length
greater than a lower cut-off length of 0.5m. The
magnitude of the lower cut-off length governs the
fracture density for a given C and D. The data set in
Fig. 3 can be modelled plausibly using a range of values
of C and D, resulting in a range of possible fracture
network densities. Three density cases, which sensibly fit
the data, were chosen for comparison (low density:
C ¼ 1:25, D ¼ 2:0; medium density: C ¼ 3:23, D ¼ 2:08;
high density: C ¼ 4:0, D ¼ 2:2). The mean fracture
densities (P21) of 5.0, 13.2 and 16.9m/m2 for the low,
medium and high-density cases, respectively, are illu-
strated in Fig. 4. They show the sensitivity of the
simulated network to the choice of power law length
distribution. Realisations of fracture length were con-
structed by sampling the power law cumulative dis-
tribution function

F ðLÞ ¼ 1�
L

Lmin

� ��D

, (2)

where L is the fracture length and Lmin is the lower cut-
off length. The locations of the fracture centres were
modelled using a simple Poisson distribution model.
Although fracture separations are probably related to
fracture length, this attribute of the real fracture
networks has not been captured in the alternative
realisations. Additionally, the dispersion of fracture
orientations observed in the available data has not been
included in the model. Calculated values of the Fisher
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Fig. 4. 10m� 10m fracture networks with different fracture densities and a power law length distribution.
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distribution coefficient obtained from analysis of the
data lead to unrealistic images of the fracture networks.
This appears to be related to a correlation between
orientation and fracture length, whereby small fractures
show greater dispersion about their mean orientation
compared with the longer fractures. For each formation,
one horizontal fracture set and two sub-vertical sets
have been modelled. Data on the densities and fracture
length distributions were not available to characterise
each data set independently, and so data from all
fracture sets in a formation were pooled and the derived
parameter values used for the DFN generation.

2.2. Determination of effective flow and advective

transport parameters

The initial hydraulic analysis incorporating a baseline
REV determination was performed with the fracture
flow code FRAC2D using DFNs with constant hy-
draulic aperture (ah ¼ 130:7mm). To evaluate the
equivalent 2D permeability tensor for square domains
the boundary conditions were adjusted to give unit head
gradients with directions ranging between 01 and 1501 in
301 steps. The specific discharges (qx and qy) across the
domain boundaries were calculated for each gradient
direction assuming Darcian flow. The three hydraulic
conductivity tensor components, Kxx, Kyy and Kxy, were
estimated by minimising the expression:

P6
i¼1

½ðqxÞi þ ðKxx cos ji þ Kxy sin jiÞ�
2

þ½ðqyÞi þ ðKxy cos ji þ Kyy sin jiÞ�
2;

(3)

where ji is the direction of the hydraulic gradient.
Fracture network generation regions of 100m� 100m
were adopted from which DFNs of 5–100m square
were sampled. Numerous simulations were performed
for each domain size and the principal hydraulic
conductivity components, Kmax and Kmin, and major
principal direction, ymax, were calculated. Fig. 5
illustrates graphically the results for one domain size.
For the low-density case, 100 simulations were required
to achieve acceptable convergence of the sample mean
and standard deviation of the permeability components
and orientation, while only 50 simulations were neces-
sary for the medium and high-density cases. Fig. 5
illustrates the permeability anisotropy, which is caused
by the two sub-vertical fracture sets having the highest
fracture density.

The REV for the study is defined as the equivalent
block scale at which it may be assumed that continuum
approximations are applicable. This definition is im-
precise and therefore the criteria used to define the REV
scale for each formation are subjective and are based
upon minimisation of the variance of the upscaled
property values. For this study, the sample standard
deviation of the principal permeability components and
the principal directions must be less than 5% of their
sample averages, before the domain size used for their
calculation can be defined as above or at the size of the
REV. The smallest domain size complying with these
criteria is the minimum REV size. The application of
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these criteria showed that for the medium and high-
density cases all domain sizes greater than 10m� 10m
were above the minimum REV size. However, for the
low-density case no REV was achieved up to a domain
size of 100m� 100m (the largest size that could be
accurately modelled with FRAC2D). This is a conse-
quence of the decreased connectivity in the minor flow
direction for this case. The change of connectivity with
fracture density also causes a rotation of the principal
directions of conductivity with increasing domain size.

The effective porosity in fractured media has been
calculated using the following equation:

ne ¼
t̂

s
q, (4)

where q is specific discharge, s is travel distance and t̂ is
mean travel time. For this study, the effective porosity
has been assumed to be independent of the flow
direction [8], although anisotropy has been observed
during the calculations. The mean travel time is
calculated across the DFN considering all pathways
through the fracture network. The number of pathways
for sizeable networks is prohibitively large. Particle
tracking approaches are commonly used but these tend
to consider only the most likely paths since the number
of particles is usually orders of magnitude smaller than
the number of alternative pathways. To avoid the
approximation required by particle tracking, an algo-
rithm has been developed that minimises the size of the
travel time calculation whilst sampling all pathways, by
integrating travel times calculated over connected sub-
domains. This algorithm is able to return the mean
travel time accurately and is sufficient for the calculation
of an effective porosity, but does not provide data on
dispersion through the fracture network.
3

4

1

4

0

50

100

150

200

250

300

350

0 1 2 3 4

J

JC
S 

(M
P

a)

Fig. 6. Mechanical boundary conditions for the H
2.3. HM modelling

HM analysis has been considered only for the medium
fracture density case. The HM modelling was performed
with the empirical UDEC–BB (Barton-Bandis) model
[9,10]. The in situ stress field (MPa) is described by:

sV ¼ 0:0294 d þ 0:26622,

sH ¼ 0:03113 d þ 1:88747, ð5Þ

where sV is vertical stress, sH is horizontal stress and d is
depth in metres below ground level [11].

For HM modelling, data sets are required that
describe the rock block material and the joint material.
Isotropic elastic behaviour is assumed for the rock
blocks. The data set of joint roughness coefficient (JRC)
and joint compressive strength (JCS) [12] shows major
variations in measured values (Fig. 6) with no obvious
relationships observable between JRC, JCS and depth.
Four JRC/JCS parameter sets have been identified
(denoted by open symbols in Fig. 7) and have been used
to assess the sensitivity of the BB model to mechanical
properties. For Formation 1, these represent a mean
pair of values (set 1) and three cases including extreme
values. For Formation 2, only four points are available
and so all four have been used. A mean pair of values
has been used to represent the fault zone. Data
describing the uniaxial compressive strength of the rock
block (UCS) are available in summary form only [11].
For the majority of simulations, the mean value for each
formation was used. However, for the high JCS case in
Formation 1 the maximum UCS value was used to fulfil
the condition that the UCS must be greater than the
JCS. The parameter values used in the BB model are
summarised in Table 1. The shear data are not presented
2

3

1
2

1

5 6 7 8 9

RC

Formation 1 - F1

Formation 2 - F2
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M analysis with the block-in-block method.
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Table 1

UDEC–BB mechanical model parameters

Formation Parameter set JRC (�) JCS (MPa) UCS (MPa) Eblock (GPa) Density (kgm�3) Poisson ratio

F1 1 3.85 112.2 157.0 84.0 2750 0.24

2 7.10 43.1 157.0

3 1.51 298.4 308.8

4 0.90 66.4 157.0

F2 1 4.18 51.3 39.6 72.0 2650 0.24

2 5.98 31.9

3 4.18 90.9

4 2.29 43.1

FZ 1 4.22 105.9 128.4 60.0 2730 0.23

Fig. 7. JRC versus JCS (data from NGI [12]).
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here as these were observed to be unimportant for the
stress conditions applied for the simulations presented in
this paper. The model requires an initial mechanical
aperture, representing the fracture aperture under
conditions of zero normal stress. This value, in microns,
is calculated with the following empirical expression:

aini ¼ 200JRC0 0:2
UCS

JCS0
� 0:1

� �
, (6)

where JRC0 is the joint roughness coefficient at zero
normal stress and JCS0 is the joint compressive strength
at zero normal stress [9].

Fig. 7 illustrates the applied mechanical stress field
for the HM modelling. Fluid pressure is assumed to
be hydrostatic. The bottom boundary is fixed in the
y-direction, but all other mechanical boundaries are free
to move. Primarily to reduce the impact of the bottom
boundary constraint on the test block, the fracture
network was located in the centre of eight blocks with
uniform material properties characteristic of a jointed
rock mass. Hence, the surrounding blocks were assigned
a Young’s modulus, Emass, representative of the
behaviour of the bulk rock, whereas the value for the
intact rock, Eblock, was used in the BB calculations for
the central block. The name ‘block-in-block’ method has
been coined for this approach. The results of the block-
in-block configuration were tested against the case in
which the boundary conditions are applied directly to
the test block. The resulting median hydraulic apertures
are modified slightly by this approach: for a 5m� 5m
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block, the single block method yielded a median
aperture of 22.4 mm, while the block-in-block method
produced a value of 24.3 mm. Since it employs boundary
conditions more representative of the in situ state of the
rock, the block-in-block method has been used for all
subsequent calculations.

Fracture aperture is significantly controlled by frac-
ture orientation, Fig. 8, and leads to enhanced
anisotropy of the upscaled hydraulic conductivity. As
anticipated, the high JRC case produces the largest
hydraulic apertures while the smallest hydraulic aper-
tures are observed for a low JCS value and low JRC

value combination.
Initial simulations of Formation 1 with mechanical

parameter set 1, conducted to assess the effect on
hydraulic aperture of increasing stress with depth below
ground surface, indicate that changes to the distribution
of the hydraulic apertures progressively decrease with
depth (Fig. 9). There is almost no difference between the
calculated aperture distributions at 750m and at 1000m
depth: a residual hydraulic aperture distribution is
achieved at around 750m below ground level. The
anisotropy in the aperture distribution, apparent near
Fig. 8. Aperture anisotropy for a fracture network at 50m depth. Left:

backbone fractures with ah410mm, right: backbone fractures with

ah425mm.
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the surface, is removed between depths of 250 and
500m. At depths less than 250m, the anisotropy can
have a substantial impact on the magnitude of the
permeability and the principal direction.

Finally, the sensitivity of fracture aperture to block
size and fracture length was analysed. Fracture net-
works with domain sizes of 5m� 5m and 10m� 10m
revealed differences in median hydraulic apertures of
less than 0.5 mm. Even with a block size of 15m� 15m
and effectively infinitely long fractures, the change in
median hydraulic aperture remained less than 1 mm. It
can be concluded that the size of the REV determined
for flow only is also suitable for mechanical calculations,
and that, for the assumed spatial distribution and
orientation of fracturing, fracture length has only a
minor impact on the hydraulic aperture distribution.
3. Block scale results of HM modelling

In the work presented here, only one DFN has been
used for each formation. More wide-ranging Monte
Carlo simulations are currently underway, but it
appears, from preliminary simulations, that the overall
sensitivity of the medium fracture density case results to
network geometry are not strong in comparison to their
sensitivity to mechanical parameters and to depth.

For HM modelling, alternative stress conditions
corresponding to five depths were applied to the DFN.
Table 2 summarises the HM modelling results in terms
of the median hydraulic apertures. Values range between
0.05 and 180.7 mm. Considerable variability in fracture
aperture is apparent and large apertures are simulated
even at depths of 500–1000m as observed in actual
fractured rock at depth [13,14].

The permeability tensors resulting from the HM
modelled aperture distributions, using parameter set 1
25 30 35 40 45 50

perture ah  [µm]

50 m

250 m

500 m

750 m

fracture network as a function of depth below ground level.
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for each formation, are presented in Table 3 in terms of
the maximum hydraulic conductivity, anisotropy ratio
and major principal direction. The results are illustrated
for the fault Zone in Fig. 10. For comparison, Fig. 11
shows the effective hydraulic conductivity ellipses for
the three rock formations for the purely hydraulic case
with constant, arbitrary, fracture apertures of 50 mm. At
depths less than 100m, the major principal direction is
aligned with the sub-horizontal fractures. With increas-
ing depth, the major principal direction and the
anisotropy gradually approach the values of the con-
stant hydraulic case (Fig. 11) due to the convergence of
the aperture distributions of all fractures towards a
uniform value approximately equal to the residual
aperture. The principal directions and anisotropy ratios
for the other two formations display similar trends
(Table 3).

Table 4 summarises the calculated mean effective
porosities for the mean mechanical property case.
0.0E+00

5.0E-09

1.0E-08

1.5E-08

-2.0E-08 -1.5E-08 -1.0E-08 -5.0E-09 0.0E+00 5.0E-09 1.0E-08 1.5E-08 2.0E-08
4. Site scale transport modelling

4.1. Hydraulic base case

All upscaled continuum modelling was performed
with the flow and transport code FAT3D. For the
Table 3

HM-modified hydraulic conductivity tensors for mechanical parameter set 1

Depth: 25m 75m

Formation

F1 Kmax (ms�1) — —

Kmax/Kmin — —

ymax (1) — —

F2 Kmax (ms�1) 1.4� 10�12 1.8� 10

Kmax/Kmin 1.7 9.4

ymax (1) 38.2 87.1

FZ Kmax (ms�1) 1.8� 10�8 8.4� 10

Kmax/Kmin 1.9 1.3

ymax (1) 11.7 38.6

ymax is measured anticlockwise from x-axis in degrees.

Table 2

HM modelling results (median hydraulic apertures in mm)

Depth: 25m 75m 175m 375m 750m

Formation Parameter set

F1 1 27.3 22.1 18.0 15.0 13.2

2 — — — — 180.7

3 — — — — 1.7

4 — — — — 18.2

F2 1 0.56 0.27 0.12 0.05 —

FZ 1 18.2 14.9 12.6 10.9 9.8
hydraulic case (H), three particle trajectories are used to
illustrate the flow system. Two starting points are
located at the ground surface at the right-hand side of
the model domain to present the general flow regime in
the system. The third trajectory is initiated at the NNW
corner of the repository. All particle trajectories are
calculated assuming advection only.

For the hydraulic base case, various constant
hydraulic apertures and fracture densities were consid-
ered. Homogeneous hydraulic conductivity tensors and
porosities were applied to each formation. The case with
a constant hydraulic aperture of 10 mm and medium
fracture density for all formations is illustrated in
Fig. 12, where the streamlines and the particle travel
times are shown. The time of travel between each
marker is 1000 days. The streamline direction in the
175m 375m 750m
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— — 65.7
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Fig. 10. HM-modified hydraulic conductivity ellipses for the fault

zone.
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upper Formation 2 reflects the formation anisotropy.
Owing to the low effective porosity values and the
relatively high fracture density, particle travel times
through the host rock are short. The mean particle
travel time from the repository to the seabed is only 123
years when a constant hydraulic aperture of 10 mm is
used. This is a remarkably short time period and
represents an extreme case where the whole of the
-8.0E-06

-4.0E-06

0.0E+00

4.0E-06

8.0E-06

-8.0E-06 -4.0E-06 0.0E+00 4.0E-06 8.0E-06

Formation 1 Formation 2 Fault Zone

Fig. 11. Hydraulic conductivity ellipses for the three rock formations.

Calculation based upon a block size of 10m� 10m, medium fracture

density, and uniform hydraulic aperture of 50 mm.

Table 4

Summary of the average effective porosity for the mechanical

parameter set 1

Depth: 25m 75m 175m 375m 750m

Formation

F1 1.7� 10�4 1.5� 10�4 1.2� 10�4 1.0� 10�4 9.1� 10�5

F2 5.9� 10�6 4.8� 10�6 2.6� 10�6 1.5� 10�6 —

FZ 1.3� 10�4 1.3� 10�4 1.2� 10�4 1.2� 10�4 9.2� 10�5

Fig. 12. Hypothetical host rock with streamlines and particle travel times

hydraulic aperture of 10mm).
geological setting is comprised of strong and coherent
rock materials. This is unrealistic given the mechanical
variability of most fractured rocks observed over typical
transport scales. Nevertheless, it provides a useful
comparison with the mechanical base case and high-
lights the importance of fracture mechanical strength on
the flow and transport properties of the host and
overlying formations.

The results for the particle travel times for various
constant hydraulic apertures and fracture densities from
the repository to the seabed are presented graphically in
Fig. 13. For the low fracture density case, the hydraulic
conductivity estimated for a block size of 25m� 25m
has been used even though this size does not correspond
to the REV, which is estimated to be greater than
100m� 100m. This block size does allow a calculation
of the mechanical closure of the fracture apertures for
the HM case and therefore a comparison of the results
can be made between the two cases for low-density
conditions. The results of the continuum model, based
upon constant hydraulic apertures, display very short
mean particle travel times from the repository to the
seabed. For example, for the low and high fracture
density networks, adopting a constant hydraulic aper-
ture of 10 mm, particle travel times from the repository
to the seabed are 580 years and 106 years, respectively.
A doubling of the aperture increases the conductivity by
a factor of eight and increases the porosity by a factor of
two if the cubic law is adopted. This leads to an overall
increase in velocity of a factor of four. Errors in velocity
are therefore related to the square of the errors in the
estimation of the hydraulic aperture. This sensitivity is
clearly important in determining the accuracy of any
travel time modelling and appropriate ranges for
hydraulic aperture.

4.2. Mean HM base case

For the HM base case, only the mean mechanical
properties have been used to calculate the hydraulic
aperture distributions over the depth of the model for
each of the density cases. The continuum model and the
for the hydraulic base case (medium fracture density with constant
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Fig. 13. Summary of the particle travel times from the repository to the seabed for a range of uniform hydraulic apertures and fracture densities.

Fig. 14. Hypothetical host rock with streamlines and particle travel times for the HM base case.

P. Blum et al. / International Journal of Rock Mechanics & Mining Sciences 42 (2005) 781–792790
applied methodology for the HM coupling in fractured
rock does not allow the modelling of a fully HM
coupled system, hence the HM modified hydraulic
conductivity tensors were calculated at the mid point
values of several depth ranges (Table 1). The results
were assigned uniformly to the formation within each
depth range (0–50m, 50–100m, 100–250m, 250–500m
and 500–1000m). The variation in the calculated
aperture values decreases as depth increases, which
allows for the larger depth bands at the base of the
model.

The result for the mean HM base case is shown in
Fig. 14. An additional particle trajectory starting at the
top of the fault Zone is also presented. The streamlines
reveal a quite different geometry to the H base case. The
impact of the presence of the fault is clear and the
impact of the anisotropy of Formation 2 is apparent.
Locally the aperture anisotropy increases the particle
travel time. The increase to 370 000 years for the particle
travel time from the repository to the seabed from the H

base case is predominantly caused by the very tight
upper Formation 2 with an average hydraulic aperture
for the entire formation of around 0.14 mm. The low
conductivity upper formation significantly reduces the
total flow through the whole system, which consequently
lowers the fluid velocities through the host rock.

The mean particle travel time down the higher
conductivity fault zone from the ground surface to the
top of Formation 1 only takes around 9700 years,
showing that the fault zone can act as a conductive pipe
connecting the surface to the lower formation and
influencing the flow geometry when the upper formation
is tight. The very low flow contributions from the right-
hand side of the model to the flow regime are illustrated
by the closely spaced, near vertical trajectories adjacent
to the left-hand boundary of the particles starting from
the right-hand side. This further indicates the strong
influence of the tight Formation 2 coupled to the
conductive fault.
5. Discussion

The results of the HM modelling using the
UDEC–BB calculated hydraulic aperture distributions
under different stress conditions demonstrate the
importance of the mechanical properties and their
spatial variations in the rock mass on the hydraulic
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behaviour of the rock mass. The large-scale studies show
the strong dependency of the travel times within the
different formations on the effective porosities and
hydraulic conductivities. At this stage, only the mean
mechanical property values have been used in the
continuum model, thus the impact of the spatial
distribution of the entire range of observed mechanical
properties has still to be assessed. The lack of precise
knowledge about the distribution of the mechanical
properties in the host rock and the large variability
observed in the field data indicate that a stochastic
approach is essential. However, unless verifiable models
of the spatial patterns of the mechanical properties can
be developed and sufficient data collected to support
the use of these models, it is likely that very large
uncertainty in the modelling of travel times in fractured
formations will remain in the future.

The outcome of this study demonstrates the impact of
different fracture densities on the large-scale analysis.
The comparison between the medium and high fracture
density case with a constant aperture of 10 mm revealed a
change in the particle travel time from the repository to
the seabed of only 17 years (123–106 years), which
appears to be modest compared with the impact on
travel times of changing the mechanical properties, and
therefore the apertures. Variations in the mechanical
properties can change the aperture distribution of a
formation by up to two orders of magnitude and thus
can change the particle travel time by up to four orders
of magnitude. This change in particle travel times is not
possible by changing only the fracture density within the
range of uncertainty identified by the data. Hence, the
results suggest that, in the context of a performance
assessment of deep waste disposal, the impact caused by
the uncertainty in the spatial distribution of mechanical
properties is probably of much greater significance than
that caused by the spatial distribution of the fracture
densities. Although potentially reasonable for the mean
density cases, for the low-density case, where no REV
could be obtained, this conclusion may be invalid due to
the potential for the total loss of connectivity of the
fracture network at the large scale.
6. Conclusions

The methodology for upscaling HM processes from
the small scale (metre scale) to the large scale (kilometre
scale) has been used to assess the importance of HM
processes in performance assessment of deep waste
disposal. The results reveal a wide range of potential
hydraulic aperture distributions in the rock mass and a
strong sensitivity of the hydraulic apertures to the
mechanical properties of the rock mass and the
fractures. The median hydraulic apertures ranged
from 0.05 to 180.7 mm depending on the mechanical
properties and the applied stresses. The HM modelling
of all three formations showed a non-linear decrease in
the hydraulic aperture distribution with increasing
depth. Further, it demonstrated that at low- stress
values (corresponding to depths less than 250m) the
anisotropy of the hydraulic conductivity is dependent on
the fracture orientation. The aperture anisotropy can
influence the flow direction and the particle travel times
but that this effect has less significance than the
mechanical variations, which can most strongly influ-
ence the particle travel times.

The main conclusions drawn from the small- and
large-scale analyses are that in the context of HM
coupling, the different mechanical properties and their
spatial variations are the most important factors in
performance assessment of deep waste disposal followed
by the uncertainty of the fracture density and the spatial
distribution of the fracture density.
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