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The prediction of solid bodies transport (such as algae, debris, sediment grains, or
corrosion deposits) is a necessary requirement in many industrial or environmental
processes. The physical processes involved cover a wide range of processes, from
tidal flow to turbulent eddies and particle drag. A stochastic model was therefore
developed to link the different scales of the physical processes where it was assumed
that the particles are dilute enough that they do not affect the flow or the motion of
other particles while being large enough that each particle does not follow exactly
the fluid motions (i.e., macro-particles). The stochastic model is built in such a way
that it uses Reynolds-averaged fluid properties to predict trajectories of individual
particles. This model was then tested using experimental measurements obtained for
isotropic particles released in semi-homogeneous turbulence. The turbulent flow was
generated using a pair of oscillating grids and was characterized using particle image
velocimetry measurements. The trajectories of the particles were measured using a
pair of high resolution cameras. The comparison between the experimental data and
different numerical models gives satisfactory results.

I. INTRODUCTION

The presence of bodies in a flow and the transport patterns of these bodies is a classic problem
in fluid mechanics. Whether it is the transport of sediments along a coastline, the apparition of air
bubbles in pipe flow or aerosols released by fossil fuels it is important to develop tools predicting
the motion of these particles, as they can hinder the operation of many industrial structures.

The model developed in this paper focuses on rigid particles. Furthermore, it is assumed that
the particles within the fluid are dilute enough that they do not affect the flow or the motion of
other particles. A non-dimensional number €2y, representing the volume fraction of particles, can be
defined by

N,
Vol

where N, is the total number of particles in the flow, 2 is the volume occupied by a single particle,
and V,; is the total volume occupied by the particles and the fluid. Following Elghobashi,' we can
assume that the particle-laden flow can be modeled using one-way coupling (fluid-particle), if the
volume fraction of particles € is lower than 107°. A one way fluid-particle coupling means that
the information from the fluid is given to the particle motion, but there is no transfer of information
from the particles to the fluid flow.

Q= ; (1)
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This model was also developed for a class of particles that are large enough (or macro) that they
do not follow exactly the motion of the fluid, yet they are small enough that the particles respond to
some flow motions. Eaton and Fessler’ have used the non-dimensional particle Stokes number St,
given by the following equation:

St= 7. (2a)
Ts
_ (2p+py) D?
Ty = T, (2b)
v\
n=(5)". 20)

where p, is the particle density, pyis the fluid density, D is the particle characteristic length, p is the
dynamic viscosity, v is the kinematic viscosity (defined by v = u/py), and ¢ is the dissipation rate
of the turbulent kinetic energy.

The Stokes number of Eq. (2a) is a ratio of two characteristic times; T, which is the relaxation
time for a particle experiencing only Stokes drag, and t; which is the characteristic time for the small
turbulent eddies. Eaton and Fessler” show that particle with a Stokes number between 0.01 and 25
can be considered to be partially affected by the motion of the fluid. A more complete overview of
particle-laden flow parameters can be found in Poelma, Westerweel, and Ooms.’

In addition, the particle-laden flow model presented in this paper will try to focus on envi-
ronmental flows. Unlike most particle flows in industrial problems, for example, flows found in
Uhlmann* or Minier and Peirano,’ these flows require a large physical area modeled to predict the
flow rate. For example, a model covering an area of a few kilometers squared solved for several
hours is needed to predict the tidal evolution for a flow around a coastal industrial structure, see Sa-
lomonsen et al.® or Donaghay and Osborn.” However, the particles of interest in these environmental
problems, such as algae, debris, or sediments, tend to respond to flow characteristics of a much
smaller scale, such as turbulence induced diffusion or particle drag. It is too costly to run computer
simulations that can model all the small scale effects in large environmental models, which is why a
Lagrangian approach has been developed, for which a large scale numerical simulation can be run
to predict the Reynolds-averaged flow properties, which are then used to consider small scale flow
characteristics at the location of a particle. Furthermore, the particles present in such flows are very
dilute, which tends to create large inhomogeneity in the solid mater field, which is better modeled
using a Lagrangian method than an Eulerian method.

The model presented in this paper differentiates itself from other particle models specifically
through the size of the particles and the nature of the coupling. In several models, the particles are
considered very small, see Csanady,® Minier and Peirano,’ or Sawford and Guest’ for atmospheric or
large gas-solid particle interactions models or Yeo et al.'” for bubble or liquid-gas (with extensions
to liquid-solid) interactions. Because of their relative size the physical properties can be greatly
simplified, and therefore a focus is placed on modeling accurately the turbulence. However, in this
case the particles are larger than the small scales of turbulence (but still small enough to be affected
by the turbulent fluctuations), which will mean that the inertial properties of a body will have a
dominant impact on the motion of the body, and therefore a relatively simple turbulence model will
suffice.

The problem that inspired the development of the model presented in this paper is the short
term transport (during one tide cycle) of algae in coastal waters, around industrial structures and
harbours. To give an idea of their typical size, the particles can be considered to be smaller than one
tenth of the large turbulent eddies in the flow and approximately ten times larger than small turbulent
eddies. For more details on the type of particles considered refer to Joly.'!

Although the model presented in this paper is specifically designed for environmental flows,
it has properties which should be verified in a simplified flow regime, such as the diffusion of
spheres in homogeneous isotropic turbulence. An experimental setup has been developed which
allows semi-isotropic turbulence to be generated using a pair of oscillating grids. Particle image
velocimetry then makes it possible to quantify the turbulent properties of the flow, and therefore the



flow conditions around released particles. The experimental results will be compared to numerical
simulations using the model presented in this paper as well as other Lagrangian particle transport
model.

The objective of the first part of this paper is, therefore, to present a Lagrangian model for the
transport of solid bodies within a turbulent flow, whereas the second part aims to provide validations
through the semi-isotropic turbulent flow of the experimental setup.

Il. PARTICLE TRANSPORT MODEL

It was stated earlier that a particle trajectory will be influenced by the fluid motions. The turbulent
structures in the flow will have diffusive effect on the particles, and therefore it is important to model
the turbulent fluctuations of the flow around the body of interest. Because of the scale of the area
of environmental flow problems,’:!> compared to the size of relevant bodies, the approach chosen
in this paper is that of a Lagrangian stochastic model to predict the fluid velocities at location of
the body. This method allows to use a large scale model, such as Reynolds-averaged Navier-Stokes
with k-¢ closure, to predict the mean flow characteristics over the whole area of interest, which can
then be imputed into a Lagrangian model to consider finer flow properties, such as turbulent velocity
fluctuations, at the location of a particle.

The fluid in this paper will be considered incompressible, which is the case in most environmental
hydraulic flows. As was stated in the Introduction, the model was developed for the case where the
bodies are assumed to be sufficiently small that their presence does not affect the flow regime and
diluted enough that the motion of one particle does not affect the flow or the motion of another
particle in the absence of collisions. These hypotheses will therefore allow a one-way Lagrangian
approach to be undertaken where the motion of the body depends on the fluid properties, but it does
not affect the flow.

A. Stochastic turbulence model

Stochastic turbulence models rely on the idea that a turbulent flow velocity field can be sepa-
rated into two parts, the mean flow velocities (U), and the fluctuations due to the turbulent eddies
(U’ = U — U). These turbulent fluctuations are then assumed to be a random process, which implies
that an Eulerian probability density function (pdf) can be defined by the following equation:

Jx, 1) = p{UX (@), 1) = u}. 3)

This function represents the probability p that at an instant in time, #, the fluid velocity U at
location X(¢) will be equal to the velocity u. The transport equation of this pdf, as given by Pope,'?

is
u>i| . “4)

In Eq. (4), and subsequently, the subscript i denotes a projection of the property along the
Cartesian axis i. Furthermore, the symbol | denotes a conditional probability (in this instance with
respect to u), and the symbol (...) represents the probabilistic expectation. If the Navier-Stokes
equations are used to solve %, the transport equation (4) becomes

uﬂ . )
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In this equation, P and P’ represent the mean pressure and its fluctuation due to turbulence, at
location X(7). A model is then used to estimate the conditional expectation for the viscous effects
(vV2U;) and the pressure fluctuations ( i %—5). The most commonly used model is the generalized
Langevin model, which corresponds to the minimal modifications that need to be applied to the

Langevin equation to be consistent with the mean momentum and kinetic energy equations. Using
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this approach, Pope'® has then written the following closed form for pdf transport equation (5):

af af 1 dP df 9 — 1 92 f
or axi of dx; du; " du; [fG”(uJ B U])] + ZCOE Qu;du;
The value ¢ is the dissipation rate of the turbulent kinetic energy, and the coefficients G;;(x, t)
and Cy(x, t) model together the viscous effects and the pressure fluctuations. These terms depend
on the local values of U/U ]’., g, and 87,-/ dx;. The simplest form of these terms (for which the model
can be called simplified Langevin model) is applicable to a non-homogeneous isotropic turbulence
and considers the smallest turbulent eddies as white noise. Pope'* has then defined these values as

(6)

Gy = —CR%SU, 7)

Co=2.1. ®)

The quantity & is the turbulent kinetic energy (k = %W), and the coefficient Cy is equal to
1+ 3G

Equation (6) is written in its Eulerian form; however, we are looking for a Lagrangian model.
The relationship between the Eulerian function (f) and its Lagrangian counterpart (f7) is given by
the following equation in incompressible fluids:'?

fx, 0= [ fox1Y)dY. ©))
Using this relationship Pope'* has rewritten Eq. (6) into
1 9P —
dU; = ————dt — Cg= (U; — T;) dt + v/Coed W, (10)
Pf ax; k
where dW; is a Wiener process for which it is known using Tto stochastic integrals'* that
(dW;) =0, an
(dW,de) =dl8,j (12)

It should be specified once more that for numerical applications the mean fluid properties P, U,
k, and ¢ need to be solved using another model; such as a Reynolds averaged Navier-Stokes model
with k-¢ closure.

Pope!” gives a detailed analysis of this model, and a description of more complete stochastic
turbulence models can be found in Pope.'® This turbulence model, however, was chosen for its
simple implementation, as in hydraulic environmental flows it is usually difficult to obtain finer
mean fluid properties required by more advanced turbulence models.

Furthermore, the explicit resolution of Eq. (10) is subjected to strong constraints on the numerical
time step,” which needs to be large compared to the characteristic time of the small turbulent eddies
(1, = \/‘g_’), but remain smaller than the characteristic time of the large turbulent eddies (tr; = f).
Because of these constraints, the solid body transport equations are solved using a semi-analytical
method, described in Sec. II D.

B. Dynamic properties of a solid isotropic body in a fluid

There are several forces which drive the motion of a solid body inside a fluid,'®!” but the most
important forces, considering the scales of the flow and the bodies of interest (defined through the
values of €2 and St presented in the Introduction), will be the momentum of the fluid, the added
mass of the body, the drag force, the basset history force, and the gravity force. The volume fraction
of the particle () is assumed smaller than 10~°. Therefore, a one-way fluid-particle coupling is
sufficient to model the particle transport,' or in other words the particles do not affect the fluid motion
or each other. As it is assumed that particles do not affect the flow, the size of each particle will
entail that when it experiences acceleration from the flow, the flow variations are negligible along
a length scale of the same order as its characteristic size. This assumption implies that the model



will ignore the local fluid vorticity and velocity gradients of the turbulent structures, and therefore
the modeled particles will not rotate, and keep the same orientation through time. This then leads to
the assumption that the lift forces, which are dependent on the surrounding velocity gradients and
rotational rates of the fluid or particle, are negligible. More information on the effect of shear flows
and freely rotating spheres can be found in Bagchi and Balachandar.'® Furthermore, the finite size
of the particles will result in a filtering of the turbulence. Yeo et al.'” have given evidence to the fact
that turbulent eddies of size smaller than that of the particle will not affect the motion of the body.

Hence, the momentum of a solid body of volume €2 and mass m transported at a velocity V
(where V; represents the ith component of the particle velocity) inside a flow of velocity U and
constant density py, is given in the following equation:

dv; o dU; d

— = — = M;;— (Vi = U;
o TP Jdt( )

1
+5078Co R)U—=VI(U: = Vi)

+(m — psQ)gi
o1 d
6D%pr\/ /—— U; — Vi)ds, 13
+6D"ps/mV T_sdt( )ds (13)
—00

where Mj; is the added mass tensor of the body, S is its cross-sectional area, D is its characteristic
size, g; is the vectorial notation of the acceleration due to gravity, and Cp is the drag coefficient,
which is a function of the particle Reynolds number Re,
_|U=VID
- v

Re (14)
with v being the fluid molecular kinematic viscosity, and the mass of the body is given by m = p;<2,
with p; being its density.

The Basset history force Fpuger, given by the last line of Eq. (13) is written in its small
particle formulation. This formulation was chosen, as a more complete formulation would require
more information about the flow surrounding the particle than would be typically available in
environmental flow. Even in this current formulation, it is difficult to solve and is often neglected.
The method used in this paper to solve for this force is the method developed by van Hinsberg, ten
Thije Boonkkamp, and Clercx.'® In this method part of the integral is assumed to be linear, and it is
solved for inside a numerical window. Outside this window, the tail of the Basset force is assumed
to be exponentially decreasing. It is given by the following equation:

4 2 ‘ ‘
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N-1

+§CBJE; Y[ =1 =20t + @4 D]

1 —At
F,(t —
+ Y aF0+ ape (3=

ptwin

) F,(t — At), s)

p=1

_ . —At
= senfimon(52) fon [1—e (2]
At At
£ L 1 16
+‘¢/‘N+1 eXp <2tptwin> |:¢ <2tpt1:)in) ] } ’ ( )

et —1

P(z) = , a7
Z




where Cp = 6D%p /v, ¥ = d/dt (U; — V;), for which the notation ¥, stands for ¥ (r — xA7),
twin 1S the time for which the integral in the Basset force is solved and which is subdivided into N
sections, which defines At = t,,;,/N. It is recommended to ensure that At = dt. The integer g, a,,
and 7, are defined in van Hinsberg, ten Thije Boonkkamp, and Clercx."” Here, we choose #,;, 0
that N is equal to 100. Larger values of N were also tested but did not improve accuracy.

Numerically, all of the components from this Basset formulation, which do not depend on the
current time step will be assumed to be constant. Therefore, this formulation of the Basset force can
be rewritten as

4 du; dV;
Frasser = §CB vV At (W - E) + CBas’ (18)

2 3 3
Chas = 3 Cadn VAl (3W+ 2N = 1) — 2Ni>
N—1

+§CBJA_12 U [(n — 1) =20 4+ (n+ 1)%]

n=1

+Fiait, (19)
! —At

Fiait = Y _ apFy(t) + a, exp <~—> Fy(t — A1) (20)
ot thtwin

Furthermore, the bodies are assumed to be isotropic (e.g., a sphere of diameter D), which
simplifies the added mass tensor to M;; = M§;. In the case of a sphere, considered later, the drag
coefficient has been well documented in the literature (Almedeij’® provides a review of different
experimental results) and the added mass is given by M = % pre.

In the case where the bodies of interest are not isotropic (for certain kinds of algae, for example),
it should be noted that the isotropic body simplification can model similar statistics (for example, by
averaging all the orientations possible and the folding of these bodies), however the drag coefficient
or the added mass might need to be modified.

C. Two phase modeling

As Csanady® pointed out the motion of a solid particle, presented in Eq. (13), cannot be
associated with the motion of a single fluid particle, modeled, for example, through Eq. (10), as
these two particles will not travel at the same velocity. This effect is known as crossing trajectories.
Therefore, the coupling of the fluid and the solid body velocities should be done through the
fluid velocities as seen by the body U. A formulation for this velocity is given in Minier and
Peirano,’ where it is assumed that the external forces (gravity for example) play the major role in the
decorrelation between the fluid velocity seen by the body and that of a fluid particle and it is assumed
that the inertial properties of the particles play a minimal effect. This focus was done as it creates
a mean drift between the fluid and particle velocities, and not an instantaneous one.’ Equation (21)
gives the general formulation for taking into account crossing trajectories effects and can be used in
place of Eq. (10),

. 1 9P —  —, IU; e R—
dUf(t) = o7 9%, dt + (V= U;) ox, dt CR%b, (U =Uy)dt

k2 k
=+ = (b= —1 w;. 21
+\/5|:C0bk+3<bk )]d 21

In a similar fashion that U; is the turbulence averaged fluid velocity, V; is the turbulence averaged
solid particle velocity. In addition, this equation is written for the assumption that the first coordinate




axis is aligned with the mean drift, therefore when modeling a change of variable might be required.
The coefficient b; represents the ratio between the Lagrangian integral timescale 77, and the integral
timescale seen by the particle 77" ;. The timescales are given by the following equations:

1 k
T, =—-, (22)
CR &€
1
). = —. 23
L,i b,‘ ( )
And b; is given by
V-1
by = 1+3T§/ET, (24a)
V-1
b, =b; = 1.|.6TL2/ET (24b)

with the subscript 1 representing the direction longitudinal to the particle drift, and subscripts 2 and
3 directions transverse. These equations are dependent on the ratio between the Lagrangian integral
timescale, and the Eulerian integral time scale. These are assumed to be approximately equal,
T = 1, which implies that the decorrelation between the particle velocity and the fluid velocity is
mainly due to external forcing on the particles, i.e., the “crossing trajectory effect.” Furthermore, in
Eq. (21) there is the introduction of a new kinetic energy given by

3 Zz’szl biU_ilz
2 Zi3=1 bi

with the symbol U, representing the fluid velocity fluctuations, U/ = U; — U;. This therefore gives
a three step model for the transport of solid isotropic particles in turbulence:

k= (25)

1

dUx(t) = —FUi*dt + Cidt + BFdW;(1), (26a)
t

dVi(t) = F,dU} + F,(U" — V;)dt + F.dt, (26b)

dX;(t) = Vidt, (26¢)

where the variable X(¢) introduced here denotes the position of one solid particle of interest. In the
system of Eq. (26), Eq. (10) has been rewritten into Egs. (26a), and Eq. (13) has been rewritten into
Eq. (26b), in order to make certain properties of these equations more visible. The new coefficients
are given in Egs. (27),

T = Lk (27a)
L CRbl' 8’
2(m+ M+ 4CpV/AT)
Tpart = (27b)
prSCp (Re) [U* — V|,
1P — — U, 1 _—
Clr=—-—F—+(Vi-U;)) — + —U;,, 27
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This model still uses mean flow characteristics from a larger Eulerian model, in the same fashion
as Eq. (10). T;* is a relative characteristic time for turbulence. C; represents the ith component of
the mean flow terms. The coefficient B} models the variance of the stochastic term. In addition, F,
can be linked through Eq. (27f) to the particle relaxation time 7, which is a measure of the time
necessary for a particle to adapt to changes in fluid velocity. F, is linked to the mass characteristics
of the body and F. is linked to the buoyancy and gravity effects.

It should also be noted that for small particle Reynolds number, the drag force can be reduced
to Stokes’ drag, for which Cp = 24/Re. Using this formulation of the drag force and neglecting
the momentum and the Basset history force components (M = 0 and Cz = 0), then the particle
relaxation time 7, will be equal to the characteristic time 7, of Eq. (2b).

Furthermore, considering the crossing trajectories increases the accuracy of the model, but it
requires a level of information of the flow (through Eq. (25)) which is not usually available when
modeling the environmental flow along a coastline (for example, if using the shallow water equation
with a k-¢ closure). Therefore, when we choose to neglect the crossing trajectories effect it should
assumed that the fluid velocity seen by the particle is equal to the fluid velocity of a fluid particle
(U* = U). In this case, the constants become

1 k
T =T, = ——, 28
; L= Cre (28a)
. 1P 1 —
Ci=C=—————U, (28b)
prox;  Tp
B = B = /Cqe. (28¢)

Numerically, this would imply that there is no mean relative velocity difference between particle
and fluid velocities, which would indicate that the external forces have a negligible effect on the
motion of a particle (during on time step), and therefore the diffusion of the solid particles might be
overestimated.

D. The exact integrator method

Furthermore, it should be restated that this system of equation is subject to strong constraints
on the numerical time step df, as was mentioned earlier and in Minier and Peirano.’ This is further
emphasized through the two characteristic time 7;* and 7., which require dr to be of the same
order of magnitude to solve for the fluid and body velocities, respectively. Peirano et al.>! presented
a method for non-inertial solid particles which can circumvent these difficulties, and the same idea
will be followed through here.

This method uses the idea that all the coefficients in the set of Eqs. (26) can be considered
constant over the time interval dt = t — ty. Therefore, if 7%, C}, B}, F,, Fp, and F, are constant an

analytical equation can be obtained for the fluid velocity of the form?! Uj(r) = H;(t) exp (—#),

where H;(f) is a function of time, and the derivative of the fluid velocity with respect to time is given
by the following equation:

1 1
dU; (1) = 5 Ul di + dHy(1) exp <_F> . (29)

i



Thus for the present problem H;(¢) is a stochastic process defined by

dH (1) = exp (= ) [CFdi + BraWi(0)]. (30)
T*

1

The solution for H; over the interval dt is

Hi(t) — H(to) = C}T}* [exp (TL) — exp (%)] + / B exp (Ti) dWi(s). 31

13 1

This then gives the following equation for the fluid velocity at the location of the particle:

Ui (t) = ol U (1) + (1 — «))CIT + yi(2) (32)
with
dt
x —=). 33
o = exp < T) (33)

where y; is a stochastic integral equal to

yi(t) = B} exp (-Ti> / exp (%) AW.(s). (34)

The same method can be applied to find the particle velocity

Vi(t) = BVi(tp) + (1 — ) (C?Ti* + E) + (o = B) Ci [Uf (1) = G/ T ]+ Tu(t) - (39)

F,
with
B = exp(—Fydr), (36)
. T*F, — F,
C=—"At—"a 37
T*F,—1

where I'; is a stochastic integral equal to

Ti(t) = Ciyi(t) + Bf (F, — Ci) exp (—tFy) f exp (Fps) dW;(s). (38)

Finally to obtain the position of the solid particle at time 7, a simple integration of the fluid
velocity over the interval dt is performed

Xi(0) = Xt + L Vi) + [dt L ’3} <C,~*T,~* + 5)
Fb Fb

+C,[U(ty) — CF T [(1 — ) T} - 1;—’3} + @, (1). (39)
b

In this final equation, the stochastic integral ®; is given by the following equation:

v 1 v
Oi(1) = =CiTy; (1) — 7 [Ti(t) = Ciyi(0)]

B? “ . !
+F’ (T#CiFy + F, — ci)/ dW;(s). (40)
b fo

The three stochastic integrals, y;, I';, and ®;, developed here are dependent. However, since
they are stochastic integrals of deterministic functions, they can each be modeled by a centered
Gaussian random variable®!' (i.e., with zero mean). Furthermore, it can be shown that a centered
Gaussian vector can be expressed as the product of two matrices, the covariance matrix and a vector
of independent standard random variables (zero mean and unitary standard deviation). Using the



Cholesky decomposition and an appropriate random number generator, these stochastic integrals
can be modeled using the following equations:

vi = L11§,, (41a)
Iy = Ly§, + Laér,, (41b)
®; = L31&), + Laér, + L3zéoe,, (41c)

where the &’s are standard random variables and the coefficients Ly are defined by

Ly =/(v?), (42a)
Uiy

Loy = L) (42b)
Ly

Ly =/(I7) - L3, (42¢)
i D;

Ly = 120 “2a)
Ly
T,®;) — Lo, L

Lip— ( ) 2ula (42e)

Ly
Lss = \J(®F) - L3, — L3, (42f)

The covariances, (yl?), (T;y4), etc., are solved using the properties for stochastic integrals in Ito
calculus
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With the following coefficients:

K,i=——-1, (44a)
i
G =T"+ —, (44b)
Fy,
L (44c)
== C
T*Fy+ 1

It should be noted that this model reduces to the model presented by Peirano et al.’! if the
inertial terms and the Basset history force are ignored (i.e., Cg =0, Cpos = 0, F, =0, and M = 0).

Furthermore, this method for solving the solid particle transport (Egs. (26)) has defined solutions
for the cases where the numerical time step is large or small compared to a characteristic time (77, or
Tpart)> Which was not the case for the explicit system of Egs. (26). For example, when considering the
transport of a fluid particle, if the time step dr is much larger than the turbulence characteristic time

Ty, then the fluid velocity tends to C; Ty + / @"g‘% , which is the equation for Brownian motion.
This is in agreement with the fact that all the turbulent eddies would appear as random independent
events in this asymptotic limit.

lll. EXPERIMENTAL TESTS

The model presented here is subject to strong hypotheses, especially on the solid body dynamics.
Therefore, to test the accuracy of the model in predicting the behavior of isotropic solid particles
in turbulence a set of experiments was conducted, where the effects of particle size and the density
ratios will be tested.

A. Experimental setup

The aim of the experimental setup presented in Figure 1 was to generate near isotropic and
homogeneous turbulence with no mean flow. In order to achieve this a pair of 1 x 1 m grids was
built with 2 cm thick square bars into a mesh of size H = 10 cm. The two grids were placed at a
distance D;;, = 60 cm apart in a water tank and were oscillated in phase at a frequency f= 1.67 Hz
and a stroke A = 10 cm.
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FIG. 1. Scheme of the double-grid setup (the origin of the axis is located on the bottom right corner in the center of the lower
grid). PIV measurement are recorded with camera 1, and particle trajectories using both cameras 1 and 2.



B. Turbulent field properties

The turbulence generated by those grids was then quantified using particle image velocimetry
(PIV) and two-dimensional laser doppler velocimetry (2D-LDV) measurements. These two tech-
niques were chosen for the information on the turbulence they can provide. The PIV measurements
were done for two 20 x 20 cm windows of measurement. One window was placed in the center of
the tank, with its center at (50, 50, —30) cm, which is where the particles will be recorded and the
other window with its center placed at (68, 50, —30) cm, which is closer to the edge of the tank.
The second window allowed a comparison with the 2D-LDV results and to test the influence of the
edge of the tank on the flow. A thousand pair of images were recorded with an interburst of 10 ms
(i.e., the PIV measurements were recorded at frequency of 100 Hz). Each pair of recordings were
done 1 s apart. Therefore the total time of the recordings is 1000 s, which is equivalent to almost
600 cycles of the oscillating grid. Furthermore, each recorded image had a spatial resolution of
approximately 105 pixels/cm. The grid used by the PIV had a resolution of 8 pixels, which means
the resolution used for the PTV measurement is equal 0.762 mm. Al-Homoud and Hondzo?? suggest
that ratio between the grid resolution of PIV (§p;v) measurements and the Kolmogorv length-scale
(%5) should be smaller than 8. In this experiment, the Kolmogorv length-scale is approximately
0.4 mm, which means 8p;y /A; = 2. The 2D-LDV measurements were recorded at (65, 50, —30) cm
with a frequency of 200 Hz for 1 h with a laser beam diameter of 2.2 mm.

The PIV measurements give instantaneous velocity fields, such as the one presented in
Figure 2. From these velocity fields, the mean flow and the turbulent fluctuations can be calcu-
lated (U; and U)). Yan et al.>* and Al-Homoud and Hondzo** give methods to calculate the kinetic
turbulent energy, k, and its dissipation rate, ¢, which are needed to use the particle transport model
presented in Sec. II D,

L U2+UPZ+U2

> ) 45)
—0.4 ;
A vy Y eaw - =0 '
L , - ¥ .
. . I . .
oo N Y
~ - o i ' N )
035« - - - - - ST v ]
B - - - - - - - - = =~ [ T S S RN
-G e O N ! ’ Y ~ ~ N )
——————— N - l Y ~ ~ ’ ‘
,,,,,,,, o . N o G
— N~ —_ D AP S Y . R YR
g - AP L S T
~ =03 - - P S -, N
® vy - . . e - oy,
\ i - - S -a IR < .
. . oo N N et LW TS No oo o
Y e Vs d@A Lo
sy P L, - 1 - . ., WV
=025, . . ., .. . . AR TN . . Y vem ]
. _ . . r:\\\r AR >, N
g ' - N~ — N —
A _SUE = .,
Y o e ,\__ o =N N ). O,
RN = T N G O
e . > /d\ N = A2 IV
! I ! el VRN I

—0.2
0.6 0.58 0.56 054 0.52 0.5 048 046 044 042 04

z (m)
Legend: |U| (m/s)
P L F SIS EES
& ¢ & 3 F & & 9
0 o o o o o o <

FIG. 2. An instantaneous velocity field recorded using PIV in two grids generated turbulence oscillating in phase at
f=167THzand A =10 cm.
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Using the assumption that the flow is horizontally isotropic the value for Uy, used in Eq. (45), is
taken to be equal to U.. The 2D-LDV measurements combined with the PIV measurements validated
this assumption.

Using Eqs. (45) and (46), the turbulent properties required for particle transport can be plotted
over the window of measurement, see Figure 4. The oscillating grid can cause the mean vertical fluid
velocity to oscillate in phase with the grid oscillation frequency. This can create strong fluctuations,
which become apparent when observing the energy spectrum calculated from the vertical fluid
velocities LDV measurements, see Figure 3. As a reminder, the kinetic energy components of the
flow can be calculated by applying the Fourier transform to the autocovariance of a fluid velocity
component

Eyy,i () = %/ Ryy.i(t)exp (—iwt)dT, (47a)
Ryp,i(t) = (Ui (O Ui (t + 1)), (47b)

where Eyy,; is the kinetic energy as a function of the eddy angular frequency and Ryy; is the
autocovariance of a fluid velocity component U;.

There are debates in the scientific community on whether these strong vertical fluctuations
should be considered turbulent. The authors have chosen to consider these effects as turbulent, and
therefore when applying the model described in Sec. II, U, is set to zero to remain consistent with
this hypothesis. Furthermore, it was discovered that in this particular case that filtering out the grid
oscillation frequency from the velocity measurements does not affect the results presented below.

The fields in Figure 4 are coarse, and for modeling purpose smooth empirical formulas have
been developed as they can be extended outside of the window of measurement, to the point of
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FIG. 3. The vertical energy spectrum obtained from 2D-LDV measurements of two oscillating grid generated turbulence
with grid oscillating frequency f = 1.67 Hz and stroke A = 10 cm. The energy (Eyy, -) is given as a function of the eddy
angular frequency (w).
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FIG. 4. The mean kinetic energy and its mean dissipation rate for two oscillating grid generated turbulence with f = 1.67 Hz
and A =10 cm.

release of the particles. In literature most studies of oscillating grids generated turbulence have
been done for a single grid. These papers give empirical formulas for the spatial distribution of the
root mean square of turbulent velocity fluctuations, as well as the kinetic turbulent energy and its
dissipation rate.’>?*2% Using the crude assumption that the turbulent kinetic energy of the two grids
can be added, an empirical formula can be developed for two grid generated turbulence, where a
free parameter will be adjusted to fit to the problem at hand

g 1 3 1
Umsx = U2 = Uppsy = O0HIAY f [272 + (Disy — 20727, (48a)
1
Urms,z = GZH% A%f [Z_Z + (Dist - Z)_z] : 5 (48b)
1
k = 5 (2312 + 922) HAf? [1_2 + (Djss — Z)_z] , (48¢)
93 Ur3ms,x (48d)
£ Dist '

These equations have been developed by assuming that the turbulent eddies are dependent on
the mesh size of the grid, the frequency and the amplitude of the oscillations and that they decrease
away from the grid.

From the measurements of the case where the grids are oscillating in phase at a frequency
f=1.67 Hz and stroke A = 10 cm the constants have been estimated to be 6, = 0.202, 6, = 0.261,
and 03 = 5.60. This therefore gives the profiles in Figure 5 for k& and €. One should note that the
measured values of ¢ presented in this figure are probably underestimated along the edge of the
window of measurement as its calculation requires the spatial derivatives of fluid velocity.

Two characteristic parameters of the turbulence are also given in Figure 5 as they can be used
to provide relationships between the turbulent flow and the particles released. These parameters are
the turbulent characteristic time 77, from Eq. (28a) and the characteristic size of the large turbulent
eddies given by

A= C)H e, (49)
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FIG. 5. Non-dimensional vertical profiles for the kinetic turbulent energy «, its dissipation rate ¢, the turbulence characteristic
time 77, and the characteristic length of the large turbulent eddies A;. The circles represent horizontally averaged experimental
results and the solid line represents the empirical profile found using Eqgs. (48).

Equations (48), with the appropriate constants, allow therefore the mean turbulent flow prop-
erties to be reasonably estimated, which can then be inputted into the equations described in
Sec. II D to predict particle transport. Furthermore, using the empirical values for k£ and ¢ from
Eq. (48) the ratio A;/Dj, is equal to a constant and interestingly for highly turbulent flows D/A;
~ Tpart/ TL-

From the results of k and ¢, the mean Reynolds number of the turbulence inside the window
of measurement can be calculated. As reminder it is in proportion to the ratio of the size of the
large turbulent eddies over the size of the small turbulent eddies, and it can be calculated using the
following equation:

k2

R = (50)

ev
which for the current experiment is equal to about 6000.

The effect of the edges of the tank was also tested, to verify the presence of a mean flow.
Table T summarizes the flow properties likely to be affected by the tank. From this table, we see
that some boundary effects can be observed. The mean velocities would suggest that there are some
recirculation close to the edge of the tank; however, as the particles are released in the center of
the volume of measurement the mean flow velocity can be assumed to be equal to zero as they are
an order under the velocity fluctuations. Furthermore, this table also shows that the turbulence is
slightly more isotropic in the center of the tank than at the edge.

Further measurements were done using 2D-LDV, although for a different grid oscillation fre-
quency. The oscillation used had a stroke of 6 cm and a frequency of 2.63 Hz. The results obtained



TABLE I. Summary of flow characteristics for a grid oscillation amplitude of 10 cm and a frequency of 1.67 Hz.

Position (cm) 7)c (m/s) 7: (m/s) Upns, x (m/s) Upms, - (m/s) Upis, ! Upis, =
(65, 50, —30) —0.00220 —0.0125 0.0220 0.0302 0.729
(50, 50, —30) —0.00158 —0.00423 0.0156 0.0196 0.795

TABLE II. Comparison between particle image velocimetry and two-dimensional laser doppler velocimetry measurements
for a grid oscillation amplitude of 6 cm and a frequency of 2.63 Hz.

Urms.,\‘ (m/g) Urms,z (m/s) k (m2/s2)
PIV 0.0113 0.0148 2.38 x 107
2D-LDV 0.0103 0.0145 2.1 x 107*
_Urmsipv 1.10 1.02 1.13
Upms,i 2p-LDV
Urms,i,PIV . 22
—————— in Al-Homoud and Hondzo 1.20 1.40 1.58

Uyns,i 2D-LDV

from this setup can be compared to those with a stroke of 10 cm and a frequency of 1.67 Hz as
the measured values are of the same order. This can be seen as the constants used in Eqgs. (48) are
01 = 0.202, 6, = 0.261, and 03 = 5.60 for f = 1.67 Hz and A = 10 cm and 0; = 0.118, 6,
=0.153,and 63 = 11.7 for f= 2.63 Hz and A = 6 cm. The comparison with a punctual PIV value in
Table II validates the values of the spatial PIV results. The same process was done in Al-Homoud
and Hondzo,”” and the difference ratios ( Urms.i ptv/ Urms.i 2p-Lpv) are also shown in Table I1. Further-
more, Al-Homoud and Hondzo?? calculated the anisotropy ratio (U, 1/ Urms.y) to be 1.05, whereas
in this experiment it is 0.75.

C. Particle tracking

Different spheres of Nylon Polyamide PA 6,6 (see Table IIT) were released 20 cm above the
oscillating grids (see Figure 1(a)). Two different fluids, of densities py= 1000 and 1084 kg/m?, were
used. For each run 25 particles will be released in the experimental setup.

An updated Stokes number will also be introduced. Unlike the number presented in Eq. (2a),
which only compared the relaxation time of particles experiencing Stokes drag to the small turbulent
eddies, this number will show the impact of the turbulent eddies for settling particles using the
characteristic times introduced in Egs. (27a) and (27b),

Tpart(V = _Vsetez)
1y '
This Stokes number introduces the concept of the settling velocity Vi, for which the relaxation
time of a particle is calculated. This velocity is the maximum velocity a body falling unhindered

through the fluid can reach. It can be calculated using Eq. (13) by considering that a particle
has reached its settling velocity when it has stopped accelerating, and therefore it is given by the

Styer = (51)

TABLE III. The diameters and densities of the Nylon Polyamide PA 6,6 particles.

Diameter Standard deviation Mean density Standard deviation Stokes Volume fraction
D (mm) of D (%) oy (kg/m?) of ps(%) number St of particles 2y
20 0.254 1129 0.0740 2.37 1.05 x 1074
10 0.508 1128 0.301 0.868 131 x 1073
5 1.02 1115 0.125 0.677 1.63 x 1076

2 2.54 1062 2.42 0.616 1.05 x 1077
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FIG. 6. Dimensionless settling velocities for the particles described in Table Il and for fluid densities pr = 1000 and
1084 kg/m3. The plus symbols show the analytical solution (Eq. (52)) and the circles show the experimental measurements.
The horizontal gray bars are the 95% confidence interval error bars for the experimental density ratios and the vertical gray
bars are the 95% confidence interval error bars for the analytical velocities using these ratios.

following implicit formula:

lm—psQ| [ 2|m—p,Q|
Vve = ’ 2
st (m — pr) pfSCD(Resez)gz (5 )
where Reg,; = | V| D/v.

In Table III, the Stokes number is calculated using the settling velocities for each particle in
a water of density 1000 kg/m? and the mean turbulence characteristic time of Figure 5. Since all
these values are of the same order as 1 the turbulence effects and the particle properties need to be
considered for all particle size. In addition, since the Stokes number is greater for the larger particles,
the properties of the bodies will have a greater effect. The settling velocities for all these particles,
released in waters of densities py = 1000 and 1085 kg/m?, are plotted in Figure 6. Furthermore, the
values for the volume fraction number presented in this table indicate that the larger particles might
affect the turbulence slightly, and that the one way fluid-particle coupling might not be accurate
anymore.

The trajectories for the particles released into the flow described in Sec. III A were measured
using two cameras placed perpendicularly to each other. The volume of measurement, located in the
center of the two grids, had a shape close to a cube 20 x 20 x 20 cm?, but of a shape similar to the
one presented in Figure 7.

The shape of the volume of measurement described in Figure 7 shows that a linear relationship
needs to be assumed to convert particle position from pixel to millimeter,”’ see Eqgs. (53):

Xx XZI
Camera 1: Xalmm) = o, Xy (mm) + By ; Kalwm)

=a,X, . (53
X (pixels) oy Xy (mm) + B, (53a)

X, (pixels)

X, (mm)
X, (pixels)

X, (mm)

Camera 2: e 7
X, (pixels)

= o, X (mm)+ By ; = o, X (mm)+ By. (53b)



carmer® *

camer® 2

FIG. 7. Volume of measurements for the two perpendicular cameras recording falling bodies. The densely dotted gray lines
show the volume recorded by camera 1, the loosely dashed gray lines show the volume recorded by camera 2 and the thick
solid black lines show the volume of measurement common in the two cameras.

Obviously in Egs. (53), the particle position X should be equal in cameras 1 and 2 (X;, = X_,).
The coefficients «; and $; need to be calibrated by recording known positions of an object inside the
volume of measurement.

Furthermore, the shape and size of the volume recorded by a camera implies that particles seen
by one camera might not be seen by the other, see Figure 8 which shows an example of associated
particles.

IV. MODEL VALIDATION

From these records of particle trajectories, it is possible to obtain an estimate of the particle
velocities looking at the displacement in between two recorded images. These particle veloci-
ties can be compared to the results obtained using the stochastic numerical model developed in
Sec. II D, in combination with the empirical model of Sec. III B used as the mean flow properties,

= e B R
@

49 | 5@.
) )
B Sl

Camera 1 Camera 2

FIG. 8. Example of particles recorded for the two cameras. The number in black is a recognized particle in an image and the
number in white, next to a white star, is a particle present in both cameras.



TABLE IV. Summary of the different models compared and different forcing considered.

Model T Model 1T Model TIT Model TV Brownian motion
Crossing trajectories Yes No No No No
Basset Yes Yes No No No
Momentum Yes Yes Yes No No
Drag Yes Yes Yes Yes No
Source Eq. (26) Eq. (13) see Ref. 11 see Ref. 5 Eq. (54)

and comparing the velocity statistics of numerical particles present in a volume of measurement
similar to the experiment.
The results will be compared using the complete model presented in Sec. II D, for which

the crossing trajectories effect can be found using the empirical values of U,,s; = U{z and the

settling velocity as the mean velocity difference between the fluid and the particle V;,, = [V — U],
and therefore the main drift is in the z direction. It will then be tested against several models where
the fluid velocity observed by the particle is assumed to be equal to the fluid velocity U* = U. In
these models, different levels of description of the solid body dynamics will be assessed. There will
be the full description of the solid body dynamics presented in Sec. II B, a model similar to the one
presented in this paper, but where the Basset history force is not accounted for Ref. 11, another model
designed for small particles where the inertial properties of the body are reduced to the drag force’
and a model where all the physical properties of the body are ignored and turbulence is modeled in
a coarser fashion (Brownian motion'?). As a reminder, in Brownian motion the transport equation
is given by the following equation:

_ C, 0 (K | Cu k2
dX; = [U,-+—”—<—>]dr+ 2L aw,, (54)
o, 0x; \ & o, &

where C,, = 0.09 and o = 0.72, as was defined in Issa et al.'?

A summary of the different models analysed is given in Table I'V.

Figure 9 shows representative pdf of the horizontal and vertical velocities. Each plot of this
figure is associated with five characteristic numbers: D/A; which shows the ratio of the particle
diameter D to the characteristic length of the large turbulent eddies X; given by Eq. (49), p/py
which gives the density ratios, the Stokes number St;,, given by Eq. (51), N, which is the number
of experimental velocity records and Rey,; which is the particle Reynolds number for particles at
settling velocity. The pdf of the velocities are calculated using the velocity at every time step that
a particle is present in the volume of measurement. N, is then found using every recorded velocity
along every trajectories of the particles. Only half of the horizontal velocity statistics are shown, as
they are symmetrical around the mean velocity (0 m/s as there is no flow).

From Figure 9, it is possible to conclude that the vertical displacement is driven by the buoyancy
effects, as it is of the same order as the settling velocity, whereas the horizontal velocities are smaller
than the settling velocities, and therefore are driven by the turbulence. Second, this figure shows
that the simplification of the transport of isotropic particles in turbulence to Brownian motion,' as
is done commonly for contaminant transport,”*" cannot model accurately the turbulent diffusion
of these particles, and it overestimates greatly the diffusion (the dotted lines in Figure 9 are very
flat curves). Furthermore, the two particle transport models which ignore the Basset History force
(the models III and IV in Table IV), give very similar results, which would indicate that momentum
and added mass of the body can be neglected, especially for small bodies. For both of these models
the horizontal displacement statistics are fairly well modeled, but the vertical (settling) statistics
are not modeled as accurately. However, when the Basset History force (model II in Table IV)



6 4
=% o
o 3 ° N
» 4 o B w
|5} N 15}
» N N
X \N X 2
= AN S
e 9 . - =3
0 1
N
o
Ny :g
0t - S e 0
0 0.2 0.4 0.6
|Vhor|
Vset
(a) — =0.106, ? = 1.12, Stger = 1.52, N, = 354, Reger = 620
l f
8
::‘», 4
\\
6 B
\
N -~
o S 2
=l o
) o
0.6
IVho'rI —Viert
Vset Vset
D Ps
(b) r =0.212, ; = 1.13, Stger = 2.06, N, = 178, Regetr = 2020
l f
6
N [¢]
3 3 40 )
N S
X X
bS] ]
o a9
.0 o
0.6
[Vior|
Vset

D
(c) SV 0.424, Z—s = 1.047, Stset = 4.58, Ny = 105, Reser = 3450
l f

FIG. 9. Probability density functions for particle velocities present inside the volume of measurement. The circles show the
pdf of the experimental results, the dashed-dotted-dotted lines show the pdf for model I, the dashed-dotted lines show the pdf
for model II, the solid lines show the pdf for model II1, the dashed lines show the pdf for model IV, and the dotted lines show
the pdf for Brownian motion. See Table IV for details on the models.

is included the model shows very good correlation to the experimental results for small particles,
but as particles become bigger the model loses accuracy. This is expected as the formulation of
the Basset History force chosen is designed for small particles, and the bigger particles were
modeled to test the limitations of the model. Nonetheless considering the Basset History force



gives better probability density functions in the vertical direction, which is the main direction of
motion.

In addition, the “crossing trajectories effects” mentioned by Csanady® and accounted for in
model I using Eq. (21) (see Table I'V) reduces the spread of velocity probability density functions
shown in Figure 9. This is expected because the crossing trajectories effects increases the decorre-
lation between the fluid and the solid particle, and this way a solid body does not follow completely
the turbulent eddies. Nonetheless, the effect of these crossing trajectories has only a little effect
on the standard deviation of the horizontal velocity pdf shown in Figure 9. From this result, in
two-dimensional horizontal simulations, the decorrelation between a solid body and a fluid particle
due to gravity effects can be ignored. However, it has been proven that the “crossing trajectories
effects” might not always be negligible and more research will need to be conducted to consider the
decorrelation occurring from inertial effects. Still, focusing on an accurate modelisation of the solid
body dynamics gives a reasonable estimates of the motion of solid particles as there are no great
differences between the pdf of models I and II (only the height of the peak in the vertical velocity
pdf, but not the location).
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FIG. 10. Probability density functions for numerical particle velocities present inside the volume of measurement transported
using the model described in Eq. (52). The solid lines show the pdf for particles with Vo = 0, the loosely dashed lines show
the pdf for particles with V. = %Vse, and the densely dotted lines show the pdf for particles with (Vy) = 0 and <V02> = Sf.



All of the numerical vertical statistics have a bigger spread and mean than the experimental
results, and this effect becomes more apparent for the larger particles (plotted in Figure 9(c)). One of
the reasons for these differences is probably because as particles are bigger than the initial hypotheses
developed in Sec. II B, specifically that the bodies do not affect the flow, become inappropriate and
the experimental results do not correspond as well to the experimental data.

An other source of differences between experimental and numerical values could also originate
from the relaxation time of the bodies. The relaxation time represents the time a particle will
forget the boundary conditions. A quick calculation of the relaxation time once settling velocity is
reached (Eq. (52)) and the time a particle would take to settle (without any turbulence) from rest
to the top of the volume of measurement #.;, would give for the parameters of Figure 9(a) T pu/tses
= 4.12, for those in Figure 9(b), T pn/tse; = 5.56 and for those in Figure 9(c), T punf/tser = 7.70. These
values are likely to be smaller in the case of the experiment as the particles enter the fluid with an
initial velocity, and their fall is slowed down by the turbulence. Nonetheless, from these ratios, it is
possible to conclude that the biggest particles (D/A; = 0.424) are likely to have kept in memory the
effect of the oscillating grids as they pass through. This could mean that the experimental result in
Figure 9(c) might just show a transport of the initial boundary conditions. This is reinforced by
the fact that the mean vertical velocities for the experimental results shown in Figures 9(b) and
9(c) are lower than the settling velocity described in Eq. (52); therefore, particles have not finished
accelerating and have kept in memory the initial boundary conditions (i.e., passing through the top
oscillating grid or accelerating from rest).

To verify this hypothesis numerical tests were done with the inertial model developed in this
paper. Particles were released at a known height, 10 cm below the center of the top oscillating grid.
Different initial particle velocities, Vo were tested: particles starting at rest, particles with an imposed
initial vertical velocity equal to half the settling velocity and particles where the initial velocities
are generated through a random distribution with mean equal to zero and a standard deviation equal
to half the stroke times the frequency of grid oscillations, to simulate impact of the grids on the
particles. Statistics are plotted in Figure 10.
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FIG. 11. A complex bathymetry used to model the flow around an industrial structure pumping sea water.



Figure 10 shows that imposing an initial velocity distribution or an initial vertical settling
velocity will modify the distribution of the velocities for both size of particles. This is more visible
for the large particles, but it is still visible for small particles. This is probably because in the
numerical simulations presented in this figure particles were released very close to the volume of
measurement, as the empirical model for the mean flow characteristics (Egs. (48)) cannot be applied
much further above the volume of measurement.

Finally, the finite size of the body has a filtering effect on the turbulence, as the turbulent
eddies of size smaller than the particle will not affect the dispersion. This filtering effect is further
emphasized by the inertial properties of the body as the particle relaxation time will limit the impact
of the turbulent eddies, which is in accordance to what Yeo ez al.'” have observed.

V. APPLICATION TO ENVIRONMENTAL STUDIES

The difference between each model presented in Figure 9 needs to be understood in order to
provide accurate models in environmental flow. The case presented in Figure 11 of a schematic
harbor with a realistic bathymetry pumping sea water will be used as an example.

A large scale model is necessary to provide a flow regime for environmental problems, such
as the one illustrated in Figure 11 where the effects of the pumps, tides, or waves are significant.
However, the solid bodies of interest in these flows usually tend to be much smaller than the mesh
size of the model for this kind of flow. This is why often in this kind of model, a Lagrangian
stochastic model is usually applied; however, most existent environmental models tend to neglect
some body properties. For example, Issa et al.'> and Monti and Leuzzi*® model particle transport
using Brownian motion and Salomonsen et al.® assumes that particles follow exactly the fluid. Other
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better models exist, such as the inertia free model in Peirano et al.?' or van Aartrijk,>' but these
focus on small particles and are not applied to large environmental simulations.

Figure 12 illustrates the differences in particle transport models for the bathymetry of
Figure 11 where the flow regime is solved using a finite element shallow water equation solver,
with depth-integrated k-¢ closure. It shows that including the properties of the bodies (drag, inertia)
will increase greatly the diffusion of these bodies, and therefore the possibility for these bodies to
enter the harbor channel.

It should be restated that the results shown in Figure 12 are completely qualitative and, therefore,
are not validated. However, if the inertial properties of the particles of interest could be neglected
the Lagrangian transport model presented in this paper should fall back onto Brownian motion. The
fact that there exists a difference gives voice to the fact that research into consideration of inertial
properties for bodies in environmental flows is necessary.

VI. CONCLUSION AND FUTURE WORK

A solid particle transport model has been developed here to be used in cases of low concentrations
of solid bodies transported in a fluid over a large area. This model has the advantages of considering
key physical properties of the bodies for this kind of problem as well as having a more developed
approach to model turbulence than simple Brownian motion. This model can easily be attached to
an industrial flow modeler as it is independent of the numerical time step.'!

A simple test case was performed to test the accuracy of the model for isotropic solid particles
in semi-isotropic turbulence. The experimental results show that for particles corresponding to the
hypotheses set by the model, the numerical results seem to be in accordance to the experimental
values. Furthermore, it seems that the two key physical properties of the particles are the Basset
History and the drag forces. The “crossing trajectories effects” resulting from the effect of gravity
were also taken into account. These expectedly reduced the diffusive effects of the turbulence, but
did not have a significant impact horizontal spread. Furthermore, they did not modify radically the
probability density functions, and it can be assumed that they have a minor effect on the motion of a
solid particle. Therefore, until further research has been done into the crossing trajectories effect from
inertial properties of the bodies, it is assumed that these effects can be ignored for two-dimensional
horizontal simulations. Moreover, ignoring the crossing trajectory effects allows a simpler model to
be used to predict the mean flow properties, which is more in accordance to the tools available to
model large environmental coastal flows.

In addition, the experimental results indicate that the transport model for this class of particle
is more dependent on the physical properties of the particle than on the turbulent diffusion model
differentiating from other work on solid particle transport, such as the work done by Csanady,®
Minier and Peirano,’ Sawford and Guest,” or Yeo er al.'?

These result then lead to several tests that need to be done in the future. First, a flow regime in
better accordance to real problematics need to be tested. This will allow to test a hybrid stochastic
transport model, where the flow regime is modeled using an industrial code and the particle transport
is tested using the model developed in this paper, and further validated this model in a more
complex problem than semi-isotropic quasi-homogeneous turbulence. This model was developed to
be applicable to problems close to algae transport in coastal waters, which are non-isotropic and
strongly inhomogeneous.
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