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Abstract—Most high resolution direction of arrival (DoA)
estimation algorithms exploit an eigen decomposition of the
sample covariance matrix (SCM). However, their performance
dramatically degrade in case of correlated sources or low number
of snapshots. In contrast, the maximum likelihood (ML) DoA
estimator is more robust to these drawbacks but suffers from a
too expensive computational cost which can prevent its use in
practice. In this paper, we propose an asymptotic simplification
of the ML criterion in the case of two closely spaced sources. This
approximated ML estimator can be implemented using only 1-D
Fourier transforms. We show that this solution is as accurate as
the exact ML one and outperforms all high-resolution techniques
in case of correlated sources. This solution can also be used in
the single snapshot case where very few algorithms are known
to be effective.

I. INTRODUCTION

The problem of identifying superimposed exponential sig-

nals in noise has been one of the most addressed signal

processing problem during the last forty years. Two cases of

interest have mainly been tackled. The first one consists in

frequency estimation from one or multiple time observations

(snapshots) while the second one consists in DoA estimation

of plane waves impinging on an array of sensors. Many high

resolution techniques have been developed to improve the stan-

dard Rayleigh resolution. Among the most popular algorithms,

one can cite Capon [1], MUSIC [2] [3] or root-MUSIC [4],

[5], ESPRIT [6] and Min-Norm [7] in the case of a uniform

linear array (ULA). Exploiting the centrohermitian property of

the asymptotic covariance matrix, improved versions of these

techniques have been proposed, such as unitary root-Music

[8] or unitary-ESPRIT [9]. These techniques can reach nearly

optimal performance, i.e., the corresponding mean square error

(MSE) of the frequency estimates come very close to the

Cramér Rao Bound (CRB) [10] in ideal cases. However, when

sources become correlated (whose limiting case is multipath

propagation) or when the number of snapshots becomes less

than the number of sources (non stationary environments),

the performance of these methods significantly degrade. To

overcome the problem of source correlation, one can use

spatial smoothing techniques [11] but the price to be paid is

This work has been partly funded by the European Network of excellence
NEWCOM#

a loss of resolution. Moreover this method is difficult to be

used in the case of arrays with few antennas.

Maximum Likelihood (ML) techniques can handle these cases.

Yet, a main drawback of ML algorithms lies in their com-

plexity due to the need to solve a multi-dimensional opti-

mization problem. To overcome this disadvantage, iterative

procedures have been proposed. For instance the Alternating

Projection algorithm [12], based on a relaxation procedure has

been introduced. Weiss [13] proposed to use the Expectation

Maximization principle [14] to convert the multi dimensional

search procedure into successive one dimensional simpler

optimizations. Moreover, in the case of a ULA, Bresler has

developed the so-called IQML algorithm [15] and Stoica the

so-called IMODE algorithm [16] that are both recursive sim-

plified algorithms. Nevertheless, all these recursive procedures

are not guaranteed to converge to the global maximum.

In this article, we propose a direct and low computational

cost procedure to maximize the ML criterion in the case of

two closely spaced sources. We focus on the two sources case

as it constitutes the basic scenario to address the resolution

issue. Moreover, in many real-life applications such as radar,

communications or navigation problems, DoA estimation oc-

curs after range or Doppler filtering and the effective number

of sources to be identified is usually less than two.

This paper is organized as follows. We first introduce in section

II the framework at hand and recall the formulation of both the

ML estimator and the CRB. Then, we perform a Taylor series

expansion for closely spaced sources in section III resulting in

a closed-form expression of the frequency difference estimate.

Using this expression, a one dimensional search only is needed

to estimate the two frequencies. In section IV, numerical

simulations illustrate that this solution is as precise as the

exact ML procedure and outperforms all classical subspace-

based techniques in the case of correlated sources or single

snapshot. Finally, section V concludes this paper.

II. DATA MODEL

We consider a narrow-band uniform linear array of M sen-

sors with inter-element spacing d. We assume that two closely

spaced plane waves impinge on the array with respective DoA

θ1 and θ2. Let fi =
d
λ
sin θi, i = 1, 2 denote the corresponding

spatial frequencies and let us re-parameterize the problem



in terms of f1 and ∆f = f2 − f1, where, by assumption,

∆f ≪ 1/M . The model at hand can then be written as follows:

xt = A(f1,∆f )st + nt t = 0, · · · , (N − 1) (1)

where

• A(f1,∆f ) = [a(f1) a(f1 +∆f )] ∈ C
M×2 with a(f) =

1√
M
[1 e2iπf ... e2iπf(M−1)]T denoting the normalized

steering vector.

• st ∈ C
2 stands for the vector of unknown deterministic

amplitudes of the sources.

• nt ∈ C
M denotes the noise vector and is assumed to

be zero-mean circularly Gaussian with covariance matrix

σ2I where σ2 is an unknown scalar. Moreover, nt is

supposed to be temporally white, so that E
{

ntn
H
s

}

=
σ2Iδt−s and E

{

ntn
T
s

}

= 0.

It can be noticed that in the single snapshot case (N = 1),
this model is also valid for spectral analysis in time series

analysis. The problem at hand consists in estimating f1 and

the frequency difference ∆f . The ML solution is obtained

by maximizing the log-likelihood function with respect to the

unknown parameters. Concentrating the likelihood function

with respect to σ2 and all st, it is well known that the ML

estimator of f1 and ∆f is given by [17]

f̂1, ∆̂f = arg max
f1,∆f

N−1
∑

t=0

||P (f1,∆f )xt||
2

(2)

where P (f1,∆f ) is the projection onto the subspace

spanned by the columns of A(f1,∆f ) (signal subspace) and

P
⊥(f1,∆f ) = I−P (f1,∆f ) is the projection onto the noise

subspace. Associated with this deterministic model, one can

also derive the associated CRB as [17]

Bc =
σ2

2N
Re

[

R̂s ⊙H
T
]−1

(3)

where R̂s = 1
N

∑N−1
t=0 sts

H
t is the sources amplitude covari-

ance matrix estimate of Rs = E
{

sts
H
t

}

, and H = ∆
H
P

⊥
∆

with ∆ = [∂a(f)
∂f

|f1
∂a(f)
∂f

|f1+∆f
].

This lower bound on the frequency parameters depends on st

and can thus vary from one set of observed data to another.

Hence, one may wish to compare the performance of any

estimator to the asymptotic (N → ∞) limit of (3), viz.,

B
as
c =

σ2

2N
Re

[

Rs ⊙H
T
]−1

. (4)

III. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION

FOR TWO CLOSELY SPACED SOURCES

As stated before, we focus on the case of two close-

frequency signals. We can then conduct a Taylor series ex-

pansion of the ML criterion with respect to the frequency

difference ∆f . Let us start with the signal subspace projection

matrix. From the definition of A(f1,∆f ) we have

(

A
H(f1,∆f )A(f1,∆f )

)−1

=

1

1− |c(∆f )|2

(

1 −c(∆f )
−c(∆f )

∗ 1

)

(5)

with c(∆f ) = a(f1)
Ha(f1 + ∆f ). In the case of a ULA

one simply has c(∆f ) =
1
M
eiπ(M−1)∆f

sinπM∆f

sinπ∆f
. Under the

stated hypothesis, we have that a(f1 + ∆f ) = D(∆f )a(f1)
where D(∆f ) = diag

(

[1 e2iπ∆f ... e2iπ∆f (M−1)]
)

in the case

of ULA. Hence

P =
1

1− |c|2
[aaH +Daa

H
D

H − caaH
D

H − c∗Daa
H ]

(6)

where, for the sake of notational simplicity, we have temporar-

ily dropped the dependence with respect to f1 or ∆f , i.e.,

a = a(f1), c = c(∆f ), D = D(∆f ) and P = P (f1,∆f ).
As we are interested in the case where ∆f ≪ 1, we can

conduct a Taylor expansion of both D and c as

D =
∑

Dk∆
k
f ; (7)

c =
∑

ck∆
k
f ; ck =

Tr {Dk}

M
(8)

where Tr {} stands for the trace of the matrix
between braces. In the case of a ULA, Dk =
(2iπ)k

k! diag
(

[0k 1k... (M − 1)k]
)

. Substituting these
expressions into equation (6) yields

P =
aa

H +
∑

k,l ∆
k+l
f

[Dkaa
H
D

H
l − ckaa

H
D

H
l − c

∗

k
Dlaa

H ]

1−

∑
k,l ∆

k+l
f

ckc
∗

l

.

(9)

Observing that D0 = I (since f1 = f2 if ∆f = 0) and that

c0 = 1, one obtains

P = −

∑

n=1 ∆
n
fMn

∑

n=1 ∆
n
fdn

(10)

with

Mn =

n
∑

k=0

Dkaa
H
D

H
n−k − ckaa

H
D

H
n−k − c∗kDn−kaa

H

dn =

n
∑

k=0

ckc
∗
n−k.

Since c∗1 = −c1 (due to pure complex phase terms in the

steering vector), it follows that M1 = 0 and d1 = 0.

Therefore,

P = −
M2 +M3∆f +M4∆

2
f +O(∆3

f )

d2 + d3∆f + d4∆2
f +O(∆3

f )

≃ −
1

d2
(M2 +M3∆f + (M4 −

d4
d2

M2)∆
2
f ) +O(∆3

f )

(11)

where we used the fact that d3 = 0. Substituting (11) in (2)

(retaining only the terms up to ∆2
f ) and differentiating with

respect to ∆f , the following closed-form expression of the

frequency difference is obtained:

∆AML
f (f1) =

Tr
{

M3R̂

}

2Tr
{

(d4

d2

M2 −M4)R̂
} (12)

where

R̂ =
1

N

N−1
∑

t=0

xtx
H
t (13)



is the sample covariance matrix. This expression provides an

accurate, closed-form expression of the ML estimate of the

difference between the two frequencies.

We can now substitute this expression into (2) and solve for

f1 using a 1D grid-based maximum search as

f̂AML
1 = argmax

f1

N−1
∑

t=0

∣

∣

∣

∣P (f1,∆
AML
f (f1))xt

∣

∣

∣

∣

2
. (14)

Once f̂AML
1 is obtained, the estimate of ∆f follows from

(12) where f1 is substituted for f̂AML
1 . We can also notice

that evaluation of both (2) and (12) can be easily done using

fast Fourier algorithms. Indeed, both equations are linear

combination of terms of the following type:

Tr
{

D
H
ℓ a(f)aH(f)DnR̂

}

(15)

which can be calculated as follows:

Tr
{

D
H
ℓ a(f)aH(f)DnR̂

}

=

N−1
∑

t=0

x
H
t D

H
ℓ a(f)aH(f)Dnxt

=

N−1
∑

t=0

Xℓ
t (f)

∗Xn
t (f) (16)

where Xn
t (f) = a(f)HDnxt is the Fourier Transform of

the weighted version of xt by the diagonal elements of

Dn. Therefore, ∆AML
f (f1) in (12) can be computed from

combinations of Xn
t (f) for n = 0, 1, 2, 3.

IV. NUMERICAL ILLUSTRATIONS

In this section, we compare the performance of the AML

estimator with that of the exact ML estimator based on a 2D

grid-search over f1 and f2, as well as to two conventional

methods namely ESPRIT and root-MUSIC. The MSE for

estimation of the vector [f1 f2]
T will serve as the figure

of merit and it will be compared to the asymptotic CRB of

equation (4).

For all the following simulations we consider a uniformly

spaced linear array of M = 8 isotropic sensors. The spatial

frequencies of the sources are f1 = 0.1 and f1 + ∆f with

∆f = 1
10M (∆f = 1

5M in the single snapshot case). The MSE

is computed from 1000 Monte-Carlo runs where the Gaussian

vectors nt and st vary in each trial. The signal to noise ratio

is defined as

SNR =
Tr

{

A
H
ARs

}

σ2M
. (17)

We will consider three scenarios.

A. Large sample scenario, uncorrelated sources

In this first scenario, all conditions are met to have an

optimal behavior for all DoA estimation procedures. In Fig. 1,

the performance comparison is displayed as a function of SNR

in order to identify the so-called threshold region where the

MSE departs from the CRB. We can first notice that all four

methods attain the asymptotic CRB in the asymptotic region

(high SNR). More interesting is the threshold region where we
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Fig. 2. Large sample scenario, correlated sources

can notice that both the exact MLE and AMLE have a similar

behavior and depart from the CRB about 2-3 dB after ESPRIT,

and the latter achieves a 2-3 dB gain compared to root-MUSIC.

Therefore, the proposed AML estimator has a performance

very close to that of the exact MLE in the case of very closely

spaced sources, and performs better than ESPRIT and root-

MUSIC in this simple scenario. Therefore, we can conclude

that the proposed procedure is nearly efficient (for a small

source separation) in this ideal scenario. We can even notice

a lightly better behavior of the AMLE in the threshold region

that suggests a kind of robustness of the proposed method.

B. Large sample scenario, correlated sources

We now examine the robustness of the AMLE towards

correlation among the two sources. Figure 2 displays the MSE

of the four previous algorithms for a correlation coefficient ρ
varying from 0 (previous case) to 1 (coherent sources). The

input SNR is 20dB, for which all algorithms achieve the CRB

in case of non-correlated sources. We can see that root-MUSIC
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departs from the CRB even for small correlation coefficient

values. ESPRIT is more robust to correlation as its divergence

is more progressive. Both MLE and AMLE are more robust

and remain very close to the CRB up to ρ = 0.5.

C. The single snapshot scenario

In the single snapshot scenario, neither ESPRIT nor root-

MUSIC can be used directly as a rank-two subspace cannot

be retrieved from one snapshot. In fact, very few direct high

resolution methods can be employed in this case. To still use

SCM based techniques, one has to split the actual array into

smaller subarrays to conduct the SCM estimation by averaging

(Spatial Smoothing technique). The price to be paid will be

a reduction of the array aperture and consequently a loss of

resolution. The effects of such a procedure will be all the

more damaging as the number of sensors is little and the

number of assumed sources is high. In our case of interest,

we have chosen to compare AMLE and MLE to ESPRIT,

Unitary ESPRIT and Unitary ESPRIT with improved aperture

[18] procedures based on a covariance matrix estimated from

3 6-sensors subarrays. Figure 3 compares the performances of

these estimators. We have added the mean value of the exact

CRB of (3). We can first see that in this single snapshot case,

all the considered methods do not reach the asymptotic CRB,

but that both MLE and AMLE are very close to the exact CRB

(nearly efficiency over all SNR values). ESPRIT and Unitary

ESPRIT produce almost the same performances that are far

from those given by the MLE procedures. Unitary ESPRIT

with improved aperture significantly improves the MSE but

remains worse than AMLE as the gain difference reaches 10dB

over large SNR intervals.

V. CONCLUSIONS

In this paper, we proposed an approximate ML procedure

to estimate the frequencies of two closely spaced sources. The

calculation complexity of the proposed procedure is reduced

from a global 2-D maximization, for the exact ML algorithm,

to 1-D optimizations than can be easily conducted using

Fourier Transforms. The performance of this algorithm is

the same as the exact ML for closely-spaced sources and

outperforms SCM-based techniques in the case of correlated

sources or in the single snapshot scenario.
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