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The motion of an axisymmetric body falling in a 
tube at moderate Reynolds numbers 
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Université de Toulouse; INPT, UPS; Institut de Mécanique des Fluides de Toulouse; Allée Camille Soula, 

F-31400 Toulouse, France 

CNRS; Institut de Mécanique des Fluides de Toulouse; F-31400 Toulouse, France 

This study concems the rectilinear and periodic paths of an axisymmetric solid body 
(short-length cylinder and disk of diameter d and thickness h) falling in a vertical tube 
of diameter D. We investigated experimentally the influence of the confinement ratio 
(S = djD < 0.8) on the motion of the body, for different aspect ratios (X = djh = 3, 
6 and 1 0), Reynolds numbers (80 < Re < 320) and a density ratio between the fluid 
and the body close to unity. For a given body, the Reynolds number based on its 
mean vertical velocity is observed to decrease when S increases. The critical Reynolds 
number for the onset of the periodic motion decreases with S in the case of thin bodies 
(X = 10), whereas it appears unaffected by S for thicker bodies (X = 3 and 6). The 
characteristics of the periodic motion are also strongly modified by the confinement 
ratio. A thick body (x = 3) tends to go back to a rectilinear path when S increases, 
while a thin body (x = 1 0) displays oscillations of growing amplitude with S un til it 
touches the tube (at about S = 0.5). For a given aspect ratio, however, the amplitudes 
of the oscillations follow a unique curve for all S, which depends only on the relative 
distance of the Reynolds number to the threshold of path instability. In parallel, 
numerical simulations of the wake of a body held fixed in a uniform confined flow 
were carried out. The simulations allowed us to determine in this configuration the 
effect of the confinement ratio on the thresholds for wake instability (loss of axial 
symmetry at Rec1 and loss of stationarity at Rec2) and on the maximal velocity Vw in 
the recirculating region of the stationary axisymmetric wake. The evolution with x and 
S of Vw at Rec1 was used to define a Reynolds number Re*. Remarkably, for a freely 
moving body, Re* remains almost constant when S varies, regardless of the nature of 
the path. 

Key words: multiphase and particle-laden flows, vortex shedding, wakes/jets 

1. Introduction 
In the last decade, significant advance has been achieved conceming the 

understanding of the coupling between the motion of an isolated body freely 
rising/falling at moderate Reynolds numbers in an unbounded initially quiescent liquid 
and the perturbation the body induces in the liquid: see Em et al. (2012) for a review. 
In particular, the relationship between the path of the body and the temporal and 
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spatial characteristics of its wake, and their relationship to the instability of the wake 
of the body when fixed in an incoming flow, have been progressively clarified. This 
study is devoted to the effect of confinement on the body behaviour. The presence 
of the wall imposes an impermeability and no-slip constraint on the liquid motion 
induced by the moving body, which leads to the existence of a boundary layer at the 
wall. While both the intensity of the vorticity produced at the body surface and that of 
the wall boundary layer induced by the body motion depend on the Reynolds number 
Re, their relative strength and interaction depend on the distance of the body to the 
wall and on the level of confinement. The latter is characterized by the confinement 
ratio S = djD, comparing a characteristic length d of the body to the width D of the 
tube or channel. As soon as the symmetry of the confinement is broken, e.g. a body 
falling off-centre in a tube, the wake structure is modified, resulting in asymmetric 
loads on the body, which induce its rotation and/or horizontal displacement. This is 
also observed in the semi-unbounded configuration of a body freely rising/falling along 
a plane wall. In this case potential flow approximation predicts wall attraction, since 
velocity (pressure) is higher (lower) in between the body and the wall. In contrast, 
the asymmetry imposed by the wall on the velocity field related to the production of 
vorticity at the body surface results in repulsion from the wall. The subtle balance 
between these two effects is discussed by Takemura & Magnaudet (2003) in the 
case of contaminated and uncontaminated bubbles rising along a vertical wall, which 
experience attraction or repulsion from the wall depending on the Reynolds number 
and the distance to the wall. In the related situation of two fixed bodies placed side 
by side in an incoming flow investigated by Kim, Elghobashi & Sirignano (1993) for 
solid spheres and by Legendre, Magnaudet & Mougin (2003) for spherical bubbles, 
the balance of attractive irrotational effects and repulsive vortical effects leads to the 
existence of a stable separation distance of the bodies which depends on the Reynolds 
number. Here we focus our attention on the wake-induced oscillatory motions of non
spherical solid axisymmetric bodies freely falling in a tube. The production of vorticity 
at the body surface is strongly related to the shape of the body, characterized by its 
aspect ratio x. In the unbounded liquid case, the aspect ratio influences significantly 
the relative weight of the loads acting along the axial and transversal directions of the 
body, resulting in different types of path (Em et al. 2007). In the confined situation, 
it can thus be expected that the aspect ratio will also play an important role in the 
hydrodynamical interaction with the wall. 

The few studies concemed with the effect of confinement on the wake-induced 
oscillatory motion of a body mainly focused on the identification of the type of path 
and the corresponding mean horizontal position of the body in the tube. Feng, Hu & 
Joseph (1994) investigated numerically the sedimentation of particles of spherical and 
elliptical cross-section in two dimensions. For Reynolds numbers Rec lower than 60 
for S = 0.25, they observed that the spherical particle displays a rectilinear or weakly 
oscillatory motion with a mean position corresponding to the channel centreline. 
Above this value of Ren the body oscillates, first harmonically and then irregularly as 
Re increases (Re> 300). The mean horizontal position of the spherical particle is then 
off-centre and related to a uniform mean rotation, whereas bodies of ellipsoïdal shape 
assume a centred mean position for all Re, provided they do not tumble. The same 
scenario was observed for other values of S, the value of Rec decreasing when the 
confinement ratio increases. Yu, Phan-Thien & Tanner (2004) simulated the rectilinear 
and periodic paths of a sphere falling in a tube with a confinement ratio of S = 0.2 
and a density ratio of 1.5. They reported three different regimes when the Reynolds 
number varies: the sphere migrates toward the tube centreline (Re= 20 and 100); it 



oscillates nearly in a plane about this same axis (Re= 200); the helicity of the path 
increases and the sphere spirals down closer to the tube wall than to the tube axis 
(Re= 300 and 400). The simulations by Deloze (2011) on a longer time period also 
reported, in the same range of parameters, the migration towards the tube axis and 
the helical character of the periodic path. Moreover, they observed that, for Re ~ 350, 
vortex shedding occurs at a frequency higher than that of the oscillatory path, leading 
to a more irregular motion of the sphere. On the experimental side, Figueroa-Espinoza, 
Zenit & Legendre (2008) investigated the free rise of an uncontaminated bubble 
between two parallel plates. They observed that the threshold for path instability 
decreases with the confinement ratio and related the destabilizing effect of the walls 
on the bubble path to the attractive potential effect that draws the bubble aside from 
the centre plane, initiating its periodic oscillation. A quantitative investigation of the 
impact of confinement on the characteristics of the motion of freely moving solid 
bodies is thus lacking at present. The aim of this paper is to provide a contribution in 
this direction. 

Since wake dynamics plays a leading role in the kinematics of a freely moving body, 
it is meaningful to also consider the related situation of the impact of confinement 
on the wake instability about a fixed solid body. In this case, the presence of 
confinement was shown to have a stabilizing effect. Below the threshold of wake 
instability, Tavener (1994) and Maheshwari, Chhabra & Biswas (2006) have shown 
that the length of the recirculating wake of a fixed sphere decreases when the 
confinement ratio is increased. Numerical investigations for fixed two-dimensional 
cylinders (Chen, Pritchard & Tavener 1995; Sahin & Owens 2004) and fixed spheres 
(Tavener 1994; Cliffe, Spence & Tavener 2000) placed in an incoming confined 
flow indicate that for S < 0.5, wake instability is delayed. For 0.5 < S < 0.7, the 
threshold for wake instability decreases but remains larger than its value in the 
unconfined case. The restabilizing effect of the walls is related to the vorticity of 
the boundary layer generated at the wall, which strains the vorticity produced on the 
body surface. An increase of the Strouhal number characterizing the wake unsteadiness 
is observed when the confinement is increased. Wake instability is also modified 
when the fixed body is off-centre in the channel or tube. Zovatto & Pedrizzetti 
(2001) and Bhattacharyya & Maiti (2006) investigated numerically the efforts and the 
onset of wake instability for cylinders of circular and square cross-sections placed 
at different transverse positions in a channel with a confinement ratio of S = 0.2. 
They observed that wake instability is delayed the more the body approximates the 
wall. The interaction of the vorticity of the incoming Poiseuille flow and the vorticity 
generated at the body surface may also result in the inversion of the von Karman 
vortex street in the far wake of the body, the vortex generated on one side of the 
body shifting to the other side (Camarri & Giannetti 2007, 2010). The structure and 
the stability of the wake past a fixed body centred in an incoming uniform confined 
flow will thus also be considered in this paper to shed light on the behaviour of freely 
moving bodies. 

The focus of this paper is on the effect of confinement on the kinematics of freely
moving bodies. The paper is organized as follows. Section 2 describes the experimental 
and numerical tools used for the investigation. Section 3 traces out the different paths 
observed experimentally (rectilinear, periodic, erratic) as a function of the Reynolds 
number and the confinement ratio, for three aspect ratios; the transition from the 
rectilinear to the periodic motion is also compared to the bifurcations in the wake 
past fixed bodies placed in an incoming uniform confined flow, which are determined 
numerically. The effect of the confinement ratio on the mean vertical velocity and on 



the characteristics of the oscillatory motion of the body are analysed in §§ 4 and 5, 
respectively. The papers ends with a summary and discussion of the results in § 6. 

2. The experimental and numerical tools 

The bodies are released in cylindrical Plexiglas tubes immersed in a glass tank 
(1.70 rn high with a square cross-section of 0.4 rn width) containing salted water of 
density p1 :::::: 1010 kg m-3 and kinematic viscosity v:::::: 1.020 mm2 s-1• The tubes have 
a circular cross-section of diameter D which varies between 9 and 114 ± 0.1 mm for 
a length exceeding 1.1 rn in ali cases. They are held vertically (the inclination angle 
of the tube relative to the vertical is determined with a maximal error of 2/1000). 
The bodies are short-length cylinders of density Ps:::::: 1020 kg m-3• Their diameters 
d (respectively heights h) range from 5 to 20 mm (respectively 1-5 mm) and are 
measured with an accuracy ±0.01 mm. The body is released with no initial velocity 
and with its symmetry axis making a small angle to the vertical (less than 10°). We 
verified the release angle had no impact on the characteristics of the paths. 

The problem is governed by four dimensionless parameters: the density ratio 
between the bodies and the fluid, which is here chosen close to one; the aspect 
ratio x = djh, taken to the values 3, 6 and 10, the confinement ratio S = djD (ratio 
between the body diameter d and the tube diameter D), determined with an accuracy 
of ±1 %; and the Archimedes number Ar defined by Ar= ((llpj p1) g req) 112 req/v, 
where req is the radius of the sphere having a volume equal to that of the body, 
llp = 1 p1 - Ps 1 and g is the gravitational acceleration. Note that Ar corresponds 
to a Reynolds number based on a gravitational velocity. Once the mean vertical 
velocity of the bodies, Um, is determined, it can be used to build the Reynolds 
number, Re = U m d /v. Wh en the bodies are released in the glass tank corresponding 
to S :::::: 1140 ( considered as the unconfined case S = 0), their mean fall velocity 
corresponds to a Reynolds number Re(S = 0) = Re0 ranging between 100 and 300 
(Archimedes numbers Ar between 40 and 140), for which bath rectilinear and periodic 
motions are observed (Fernandes et al. 2007). Moreover, it turns out that there is a 
linear relation between Ar and Re0 (Fernandes et al. 2007). Since comparison to the 
case of fixed bodies can only be made via a Reynolds number, we will use in the 
following preferentially Re0 instead of Ar. 

The motion of the bodies was followed by means of two perpendicular travelling 
cameras. For each tube, a specifie calibration was performed to ensure that no optical 
distortion of the body image due to the curvature of the tube occurred outside a region 
of 1.5 mm close to the walls. The image- and signal-processing techniques used to 
determine the time evolution of the coordinates of the body centre and the angles 
defining the inclination of its axis are described in detail in Fernandes et al. (2007). 
The use in this case of two cameras of spatial resolution 2048 x 2048 pixels provides 
an accuracy of ±0.06 mm for the position and of ±0.75° for the inclination. 

Quantitative information concerning the liquid flow about a body moving along a 
rectilinear path was obtained by numerical simulations. For various confinement ratios, 
we performed direct numerical simulations of the flow about a body falling at constant 
velocity in rectilinear motion. For the sake of simplicity, the body is centred in the 
tube and a frame of reference fixed with the body is selected. Consequently, the 
boundary conditions of the problem are a uniform incoming flow and walls moving at 
the same speed as the incoming flow. Two values of the aspect ratio are considered, 
x = 3 and 10, and the following values of the confinement ratio are investigated: 
S = 0.0494, 0.197, 0.240, 0.331, 0.399, 0.505 and 0.666. We used the finite-volume 



code JADIM; see Legendre & Magnaudet (1998) for details and validation. For both 
aspect ratios, the size of the computational domain along the axes of symmetry of the 
body and the tube was 1 Od upstream and 15d downstream of the body. The three
dimensional grid was obtained by rotating a two-dimensional Cartesian grid about the 
body and tube axes. The grid consists of 32 elementary volumes in the azimuthal 
direction, 140 (for x = 10) and 162 (for x = 3) in the axial direction and a number 
varying between 50 and 130 depending on S in the radial direction. The grid is refined 
close to the body and the walls to allow a satisfactory description of the boundary 
layers for the range of Reynolds numbers investigated (100 ~Re~ 250). The spacing 
of the grid nodes adjacent to the disk surface is equal to d/100 in both axial and radial 
directions. The computations are initialized with a uniform axial velocity imposed at 
the top of the domain, which is also kept constant on the walls. The stability of 
the flow was investigated by applying a sinusoïdal transverse force in a grid cell 
located in the near wake. This disturbance was imposed for 80 time steps after the 
initial transient stage and its amplitude was less than 1 % of the final drag force. 
The results obtained for S = 1/20 and x = 3 for the thresholds of wake instability 
(see next section) are 158 <Reel < 160 and 177.5 < Rec2 < 180 in agreement with 
the values of 159.4 and 179.8 from Auguste, Fabre & Magnaudet (2010). To ensure 
that numerical results were grid-independent, two-dimensional numerical simulations 
were performed on a refined grid consisting of 180 (for x = 10) and 220 (for x = 3) 
elementary volumes in the axial direction and by multiplying by 1.75 the number of 
volumes in the radial direction, for S = 0.0494, 0.505 and 0.666 and for Re= 100 
(stationary axisymmetric wake). The differences in drag coefficient obtained with the 
two grids were in all cases less than 0.8 %. Moreover, in the extreme case of a thin 
body in strong confinement (x = 10, S = 0.666), the values of Reel (see next section) 
calculated with the two grids presented a maximum difference of 4%. 

3. Nature of the path of a body falling in a tube 

The type of path observed experimentally is mapped in the plane of parameters 
Re and S in figure 1(a-c) for the aspect ratios x = 3, 6 and 10, respectively. 
Rectilinear (periodic) motions are marked out with squares (circles). For each aspect 
ratio, provided the Reynolds number is lower than a critical value Rec(X, S), the body 
follows a rectilinear path with its symmetry axis aligned with the vertical direction. 
For Re> Rec(X, S), the body displays an oscillatory motion. For x = 3 and x = 6, 
the threshold for path instability is only weakly modified by the confinement. The 
transition from the rectilinear to the periodic motion occurs for all S for nearly the 
same critical Reynolds numbers as for the unconfined case, Rec(X = 3, S = 0) ~ 150 
and Rec(X = 6, S = 0) ~ 130. In contrast, for thin bodies (x = 10) Rec is unaffected 
by S until S = 0.2 (D = 5d), but as the confinement ratio is further increased, Rec 
decreases from Rec(X = 10, S < 0.2) = 200 ± 10 to Rec(X = 10, S = 0.5) = 100 ± 10. 

For all x, when the confinement ratio exceeds a critical value S > SmaxCX, Re), the 
amplitude of the oscillatory motion of the body becomes comparable to the radius of 
the tube and the body starts to impinge on the wall. These cases are denoted by the 
crosses in figure 1. A quantitative investigation of these paths is beyond the scope 
of this work but it is worth pointing out that they appear irregular to the eye, the 
contact with the wall occurring irregularly. The figures indicate that Smax decreases 
with the aspect ratio, a trend consistent with the decrease of Rec with S for thin bodies. 
For a given Archimedes number Ar, a body displaying an oscillatory motion in an 
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FIGURE 1. Nature of the path displayed by bodies with aspect ratio x as a function of Re 
and S. D, rectilinear paths; a, periodic paths; x, cases where the body touches the tube from 
time to time. The black and grey curves correspond to the evolutions of the critical Reynolds 
numbers Reel and Rec2 for the wake instability of the fixed body when the confinement ratio 
varies, obtained by numerical simulations: (a) x = 3; (b) x = 6 (no numerical result in this 
case); (c) x = 10. 

unconfined medium still displays a periodic motion in the presence of confinement for 
x = 10, while a body with x = 3 regains a rectilinear motion for sufficiently large S. 

The onset of path instability for a body falling rectilinearly in a tube can be 
compared with the thresholds of wake instability past the same body held fixed in 
a uniform flow imposed by the moving walls of the tube. As mentioned in § 2, this 
situation was investigated by numerical simulations for various confinement ratios. We 
will restrict our attention to the aspect ratios x = 3 and x = 10. In an unconfined 
medium, the wake instability of bodies with such aspect ratios was investigated in 
detail by Auguste (2010) and Auguste et al. (2010). They identified two different 
sequences of bifurcations in a short range of Reynolds numbers depending on the body 
aspect ratio. We focus here on the first bifurcation at Reel, corresponding to the loss of 
axial symmetry of the wake, and on the second bifurcation at Rec2, beyond which the 
wake becomes unsteady. The results are shown with solid lines in figures 1(a,c) and 
2. For x = 3, the thresholds Rec1 and Rec2 are delayed when the confinement ratio is 
increased until 0.4 :::;;: S :::;;: 0.5, beyond which they start to decrease; Reel (respectively 
Rec2) decreases from 167.5 (respectively 192.5) ±2.5 to 132.5 (respectively 157.5) 
±2.5 at S = 0.666. For x = 10, the changes of Reel and Rec2 with S follow the 
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FIGURE 2. Critical Reynolds numbers as a function of the confinement ratioS for x = 3 and 
x = 1 O. Solid lines, Ree1 corresponding to the loss of axial symmetry and Ree2 to the loss 
of stationarity of the wake about a body moving at constant velocity in a tube (numerical 
simulations); dashed lines, Ree corresponding to the onset of a periodic motion for the freely 
moving body (experiments). 

same trend but are weaker, increasing until Reel ~ 134 (Rec2 ~ 148) at S = 0.5 and 
then decreasing to rv126 (146) at S = 0.666. Tavener (1994) and Cliffe et al. (2000) 
observed the same trend in the case of a sphere embedded in a Poiseuille flow: Reel 
first increases and then decreases when the confinement ratio increases. Zovatto & 
Pedrizzetti (2001) related this effect to the interaction of the vorticity produced at the 
surface of the body with the vorticity produced at the wall, which have opposite signs. 
Figure 2 also shows the evolution with S of Ree for the path instability of bodies 
with aspect ratios x = 3 and 10. For thick bodies, path instability slightly anticipates 
the critical Reynolds number for the break-up of axial symmetry in the wake of the 
body held fixed, Ree(X = 3, S) ~ 150 for S ~ 0.57, which is rv10% lower than Reel. 
In contrast, for a body with x = 10, the appearance of significant oscillations of the 
body is notably delayed provided the confinement is sufficiently weak: for S ~ 0.2, 
Ree(X = 10, S) is rv60% larger than Reel but then decreases with S until Ree ~Reel 
for S ~ 0.45. In the unconfined case (S = 0), the numerical simulations of Auguste 
(2010) revealed that various non-rectilinear paths presenting irregular oscillations of 
low amplitude exist in the range [Reel> Ree] for x = 10. It is reasonable to expect that 
this regime of law-amplitude oscillations, which are difficult to detect experimentally 
(for a discussion about this regime of oscillations, see Em et al. 2012), exists in the 
presence of weak confinement, but in any case its extension clearly decreases when 
the confinement ratio increases. When the confinement is strong enough, S ~ 0.45 for 
x = 10, path instability occurs at a Reynolds number lower than that of the wake 
instability of the fixed body. However, for these confinement ratios, the body starts to 
impinge on the walls at slightly higher Re. Note also that for a body with Re0 in the 
range [Reel (x = 10, S = 0), Ree(X = 10, S = 0)], increasing the confinement leads to a 
destabilization of its rectilinear motion, since a regular periodic motion of significant 
amplitude sets in above a critical value of S. 

Figure 3(a) shows a three-dimensional view of the motion of a disk falling in 
a tube. The projections of the path in two perpendicular vertical planes are also 
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FIGURE 3. Dlustration of roughly one period of the motion of a disk falling in a tube. (a) 
Three-dimensional view: the grid represents the wall of the tube. (b,c) 'IWo perpendicular 
views: -, path of the disk; --,wall of the tube. (d) Thp view of the path (x= 3, S = 0.318, 
Re(S = 0.318) = 243, Re0 = 256, d = 10.5 mm, D = 33 mm). 

presented (figure 3b,c}: in (c}, in the plane hereafter called the principal plane of 
osciDati.on, the position of the body, as well as its inclination relative to the vertical, 
displays periodic oscillations; in (b), the trajectocy is almost rectilinear. No preferential 
orientation of the plane of principal oscillations was observed in the laboratory frame. 
In an unconfined liquid, the periodic paths measured experimentally by Fernandes 
et al. (2007) in the range of parameters investigated here are nearly two-dimensional: 
in the horizontal plane, the patb presents an ellipsoïdal trace of low eccentricity in 
most of the cases (as also observed in figure 3d). Letting x be the amplitude of 
the motion along the principal direction of the oscillations and y its amplitude along 
a perpendicular direction, the eccentricity of the path is defined by e = yt'i. In an 
equivalent m.anner, the eccentricity could have been defined using the projections of 
the inclination angle of the body in the two planes. Identical values are obtained with 
both definitions. 'Ihe numerical simulations of Auguste (2010} provided instead purely 
two-dimensional paths of amplitudes very close to those measured experimentally 
along the principal direction of oscillation. The eccentricities of the patbs measured in 
the presence of confinement are presented in figure 4 when Re and S are varied. The 
results are in line with those of Fernandes et al. (2007} in the absence of confinement 
(shown with a dashed tine for each aspect ratio). A majority of ttajectories present 
low eccentricity (e ~ 0.25) and can be assimilated to a plane zigzag motion. This is 
in particular the case for all the periodic paths of tbin bodies (X = 10). For x = 3 
and x = 6, larger eccentticity is observed for lower Reynolds numbers, for which the 
amplitude of the oscillations is weaker. A sharp decrease in eccemricity occurs when 
the Reynolds number is increased. For Re ~ 250 and sttong confinement (S ~ 0, 5), we 
observed that some patbs for x = 3 and x = 6 display a helical shape (0.3 ~ e ~ 1 ). In 
the following, we will restrict our attention to the analysis of the eflect of Re and S on 
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the characteristics of the planar zigzag motions (i.e. for the periodic paths presenting a 
low eccentricity, e ~ 0.25). 

4. Mean radial position and mean vertical velocity of the body 

4.1. Mean radial position of a body falling in a tube 
The bodies were released at various radial positions in the tube in order to investigate 
the radial migration of the bodies during their fall and the possibility of observing 
off-centre motions. For a given body released in a given tube, different initial radial 
positions were chosen randomly between 0 and D 14 from one experiment to the other. 
After a short transient following the release of the body from rest, the body kept 
a mean radial position in the tube. A slight horizontal drift about this mean radial 
position could be observed, but in ail cases it had no preferential direction and was 
lower than 3 %, which is comparable to the drift occurring in the unconfined case 
(Fernandes et al. 2007). We define L1w to be the horizontal distance between the centre 
of gravity of the body and the wall, averaged out over the path, transient excluded. 
Figure 5 presents the values of Llwfd for all the paths recorded when the confinement 
ratio S was varied. The body is centred when Llw / d = (2 S) -l. When L1w = d j2, the 
body touches the tube. For low confinement ratios, the bodies do not select any 
preferential position in the tube, but they keep a position sufficiently far from the wall: 
for S < 0.4, Llwfd > 1, indicating that there is in ail cases at least half a diameter 
between the border of the body and the wall. Provided the body is suf:ficiently far 
from the wall, the body may keep its radial position and no significant radial drift 
is observed. For confinement ratios larger than S = 0.4, figure 5 shows that the mean 
positions of the bodies are nearly centred in the tube (differences lower than 3 % ), for 
both rectilinear and periodic motions and for any body aspect ratio. 

4.2. Modification of the mean fall velocity due to the confinement 
The effect of the confinement ratio S on the body motion can be investigated at 
fixed Ar, x and Psi Pt by releasing the same body in tubes of decreasing diameters. 
We observe that the mean vertical velocity of the body, Um(S), decreases with S, as 
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illustrated in figure 6(a,b) for x = 3 and x = 10, where the mean fall velocity is 
normalized with its value in the unconfined case, Um(S = 0). For all aspect ratios, we 
observe that the decrease is weaker for the periodic paths than for the rectilinear paths. 
For confinement ratios lower than 0.2 (i.e. the diameter of the tube being at least 5 
times larger than the body diameter), the influence of the confinement is weak, the 
difference in mean fall velocity being of the order of magnitude of the variability from 
one experiment to the other. At larger confinement ratios, the decrease in mean fall 
velocity becomes stronger. 

A characteristic feature of the confinement effect is the corresponding increase of 
the drag coefficient: see for instance Clift, Grace & Weber ( 1978), Wham et al. 
(1996) and Chhabra, Agarwal & Chaudhary (2003). The drag coefficient is defined 
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by Cd(S) =.A g/(1/2 p1 d li;), where .A is the mass of the disk, .A= Psdh and 
d = nd2 /4. Figure 7 presents the evolution with S of the drag coefficient Cd, based 
on Um(S) and normalized with the drag coefficient of the body in the absence of 
confinement Cd(S = 0). For larger confinement ratios a sharp increase in Cd occurs, 
corresponding to the rectilinear paths of thick bodies with x = 3 and to the jump down 
of their mean fall velocity visible in figure 6(a) (for these values of S, thin bodies 
oscillate, touching the walls from time to time ). For thick bodies, this regime may 
be related to an increase of viscous friction on their lateral surface (parallel to the 
stream and the walls). This trend is in agreement with the numerical simulations for 
a sphere by Wham et al. (1996), as shown in figure 7 (we normalized their results 
with the value they obtained for S = 0.15). It is also in agreement with the evolution 
of the drag coefficient with S ( dark circles in figure 7) obtained from our numerical 
simulations for a fixed body with x= 3 and Re= 100 (stable wake). 

An insight into the decrease of the mean fall velocity of a body when the 
confinement ratio increases can be gained by investigating the modification of the 
structure of the body wake with S. This was performed by means of numerical 
simulations for bodies held fixed in an incoming confined uniform flow. The intensity 
of the flow in the attached region of the axisymmetric stationary wake can be 
characterized by the length Lw of the recirculating region (normalized with the body 
diameter) and by the maximal velocity Vw (normalized with the velocity Um(S)) taken 
on the axis of symmetry of the body (see figure 14 of Fernandes et al. 2007). For 
bodies in rectilinear motion in an unconfined medium, Fernandes et al. (2007) showed 
that these quantities increase with the aspect ratio of the body, and that for Re = Rec1 
and S = 0, 

(4.1) 
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Moreover, they introduced the Reynolds number 

o.62x 
Re* (S = 0) = Re , 

(1 +x) 
(4.2) 

which for Re= Reel can be interpreted as Re*= Vw djv and which has the remarkable 
property that the thresholds of wake instability for a fixed body in an unbounded 
uniform flow are Re;1 (S = 0) ~ 72 and Re;2 (S = 0) ~ 78, for any x. This result 
shows that the intensity of the attached wake (characterized by Vw), which increases 
as the body becomes thinner (x increases) at given Re, is a reliable marker of the 
wake state, anticipating in particular the decrease of the thresholds of wake instability 
with the aspect ratio. Figure 8 now shows for two Reynolds numbers, Re= 100 and 
Re= Reel (x, S), and two aspect ratios, x = 3 and x = 10, the evolutions of Lw and Vw 
with the confinement ratio S. In ail cases, Vw increases with S, whereas Lw decreases. 
The modification of the attached wake with increasing S is illustrated in figure 9 for 
a body with x = 10 at Re= 100. The evolution of Vw with S can be fitted by an 
empirical function g(S), in order to generalize the relation ( 4.1) for Re = Reel and 
s ~ 0.6, 

(~:) =f(x)g(SJ 
. 0.62x 

withf(x) = and g(S) = 1 + 3.7 S3
• 

(1 +x) 
(4.3) 

We now use the function g(S) to ex tend the definition ( 4.2) of the Reynolds number 
Re* for S ~ 0.6, 

Re*(S) = Re*(S = 0) g(S) =Re 
0

·
62 

X (1 + 3.7 S3
), 

(1 +x) 
(4.4) 

which again in the particular case of Re= Rec1 can be written as Re* = Vw dfv. 
For each experiment, the value of the Reynolds number Re* can be calculated. 
The evolution of the Reynolds number with S is plotted in figure 10(a) for x = 3 



(a) 3.0 (c) 3.0 (d) 3.0 

2.5 25 25 

2.0 2.0 20 

1.5 I.S 1.5 

z/d 1.0 1.0 1.0 

o.s o.s 0.5 

0 0 0 

-O.S -0.5 -O.S 

-1.0 
l.S o.s -0.5 -l.S l.S o.s -O.S -l.S 

-1.0 
1.0 0 -1.0 - l.O O.S 0 - O.S 

xfd xjd xfd xfd 

FIGUR.B 9. Wake of a body with x = 10 at Re= 100. Streamlines and norm of the axial 
velocity obtaincd by numerical simulations for various confinement ratios: (a) S = 1/20; (b) 
1/3; (c) 1/2; (d) 2/3. Note that (a) displays the results in the vicinity of the body and does not 
show the whole computational domain. 

0 0.2 0.4 0.6 

(b) 200 

0 0.2 0.4 

s 
0.6 

0.8 

0.8 

FIOUR.B 10. Evolution of the Reynolds numbers Re and R~ with the confinement ratioS for 
bodies with x= 3 and x= 10: (a) Re; (b) R~. Bach dashed line corresponds to a body and 
so to an Archimedell number, whose value can be retrieved from the value of Re(S ~ 0) using 
Fernandes et aL (2007). Filled (open) symbols correspond to rectilinear (pcriodic) paths. 



(a) 0.4 

~~~ 
(b) 2.0 • • x =3 num. 

T x= 10 num. T 
1.8 

0.3 o X= 3 exp. 

8 1.6 
a X= 6 exp. 0 0 

v x= 10 exp. 0 

Il • oe 

~ 0.2 

-~~.--~ 
~ 1.4 

T 
v ,.,.a 

~ • ~ v~ 
a 

~ 1.2 
0.1 

0 

~ 
1.0 -0 

0 0.80 100 200 300 400 0.1 0.2 0.3 0.4 0.5 0.6 

Re s 

FIGURE 11. Strouhal number St as a function of (a) the Reynolds number Re and (b) the 
confinement ratio S. (a) Solid lines, (5.1), exhibiting for a givenAr the increase of St when S 
increases; dashed lines, the mean values of St measured forS= O. (b) St is normalized with 
St(S = 0). Also shown for comparison the Strouhal numbers of the wake instability of fixed 
bodies (numerical simulations). 

and x = 10. The decrease of Re with S for a given body (and thus a given Archimedes 
number Ar) is outlined with a dashed line. Figure 10(b) shows the corresponding 
evolution of Re* with S. The dashed lines again bring together the values for a 
given Archimedes number, pointing out that for the rectilinear and periodic paths, 
Re* remains almost constant with S provided the oscillations are not too large. This 
remarkable result indicates that the change induced by the presence of confinement 
on the wake structure at the threshold of wake instability for a fixed body, which 
is accounted for by ( 4.3), tums out to be a reliable marker of the effect of the 
confinement on the mean faU velocity of a freely moving body. This result suggests 
that the mean vertical velocity of the body adjusts to maintain for ali the confinement 
ratios an almost constant intensity in the recirculating wake, characterized as a first 
approximation by the parameter Re*. Note also that, for any confinement ratio, the 
corresponding value of Re can be obtained from relation ( 4.4) once Re is known in a 
single configuration (case S = 0 included). We now tum our attention to the effect of 
the confinement ratio on the characteristics of the periodic motion. 

5. Characteristics of the oscillatory motion 

5 .1. Frequency of the periodic path 

We first focus our attention on the frequency f of the oscillations in position and 
inclination of the body. Figure ll (a) presents the values of the Strouhal number 
St = f dfUm as a function of the Reynolds number Re, for bodies with aspect ratios 
x = 3 and 10 and various confinement ratios. Only a few cases are presented to a void 
overloading the figure. For each aspect ratio, the quasi-horizontal dashed line shows 
the behaviour of St in the absence of confinement (S = 0). For a given body (given 
Re0 = Re(S = 0) and x), we observe that increasing the confinement ratio S induces a 
decrease of Re and an increase of St. This trend is exhibited by the solid lines spiking 
upwards from the dashed lines corresponding to S = 0, forming a fishbone pattern for 
each x . These solid lines correspond to the empirical relation 

St = Sto + a(x) (Reo- Re), (5.1) 
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FIGURE 12. Amplitude of the oscillations (normalized with the amplitude in the absence of 
confinement) as a function of S: (a) horizontal position; (b) inclination (x = 3, 6 and 10). The 
crosses correspond to the cases where the body briefly touches the tube. 

where St0 = St(Re0) is the Strouhal number observed in the absence of confinement 
and a = 0.0012 for x = 3 and 0.00185 for x = 10. An interesting feature of this 
relation is that the confinement ratio does not appear explicitly but its effect on St 
is accounted for by the Reynolds number Re. Note that for Re> 300 the prediction 
obtained with (5.1) is improved by considering the value a= 0.0009 for both aspect 
ratios. For ali the bodies, figure ll (b) presents the evolution of St(S), normalized 
with the value St(S = 0) measured in the absence of confinement, as a function 
of the confinement ratio. This evolution may be compared to the evolution of 
Stfixe(S)/Stfixe(S = 0), corresponding to the instability of the wake past a fixed body 
in the presence and absence of confinement, obtained from the numerical simulations 
at Rec2(x, S) and Rec2(X, S = 0) (figure llb). The confinement leads to a stronger 
increase of the Strouhal number St in the case of fixed bodies. For a fixed two
dimensional cylinder embedded in a Poiseuille flow, St was observed to increase even 
more strongly with S, becoming three times larger forS~ 0.5 than in the unconfined 
case (Chen et al. 1995; Sahin & Owens 2004). 

5.2. Amplitude of path oscillations 

The evolution with the confinement ratio S of the amplitude of oscillation of the 
horizontal position of the centre of gravity of the body (normalized with the amplitude 
in the absence of confinement) is displayed in figure 12(a). For thick bodies with 
x = 3, the amplitude decreases with S until the bodies restabilize and follow a 
rectilinear path. Concerning the oscillations of the body inclination, figure 12( b) shows 
that for x = 3 the inclination amplitude is only weakly modified by the confinement. 
In contrast, for thin bodies with x = 10, the amplitudes of the horizontal displacement 
and the inclination increase strongly with S until the body touches the tube; the crosses 
in figure 12(a) indicate when this situation occurs. The aspect ratio x = 6 combines 
the two behaviours. The type of behaviour depends on the Archimedes number of 
the body or, equivalently, on the Reynolds number Re0 corresponding to its fall in an 
unbounded liquid. For bodies with Rec(X = 6) < Re0 < 230 ± 10, the confinement 
induces a stabilization of the periodic motion (the amplitudes of the oscillations 
in displacement and inclination decrease until S ~ 0.4), until the body regains a 
rectilinear motion, as occurs for thick bodies (x = 3). For larger Re0 , however, the 
amplitude of the oscillations is amplified by the confinement, as observed for thin 



(a) 0.4 (b) 40 
0 x =3 ~ 

, , 
~ ~ v~ '-a X =6 

• ~ ,7. 0.3 vx=10 30 v va 
v v e :v!o 

v a :1,. 
0 

xjd 0.2 () 20 v "' 
0 o v 

0.1 10 

v a' v 

0 100 200 300 400 0 100 200 300 400 
Re Re 

FIGURE 13. Amplitude of the oscillations as a function of the Reynolds number, for various 
confinement ratios: (a) horizontal position normalized with the body diameter; (b) inclination 
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bodies (x = 10). The evolution of the amplitude of oscillations with the Reynolds 
number Re is displayed in figure 13 for all the confinement ratios investigated and 
the three aspect ratios. For x = 3 and 6, the amplitude data points gather on a single 
curve for all S, which is the amplitude curve also obtained when S = 0 and Re varies. 
The confinement induces a decrease of Re and, for x = 3 and 6, the amplitudes of 
the oscillations of displacement and inclination are identical to those observed at the 
same Re in an unbounded liquid. In particular, when the Reynolds number decreases 
beyond the threshold of path instability in the unbounded case Rec(X, S = 0), path 
oscillations disappear. Thin bodies (X = 10) exhibit a markedly different behaviour. 
The dispersed data points indicate that the amplitude is not dependent on Re alone. As 
mentioned previously, the increase of the confinement leads in this case to a decrease 
of the Reynolds number and an increase of the amplitude of oscillations, so that for 
the same Re, larger oscillations might be observed in a confined geometry than in the 
unbounded case. This behaviour might be related to the strong decrease for x = 10 
of the threshold of path instability Rec with the confinement ratio (figure 2). If we 
now plot the evolution of the amplitude of the oscillations as a function of the relative 
distance to the threshold of path instability, satisfactory clustering of the amplitudes for 
ailS on a unique curve is achieved (figure 14). Note that this has almost no impact on 
the curves for x = 3 and 6 since for these aspect ratios Rec depends only weakly on S. 
These results indicate that, in both the confined and unconfined cases, the amplitude of 
the oscillatory motion is govemed at leading order by the strength of the mean vertical 
motion and its distance relative to the threshold of path oscillations. 

5.3. Phase difference between the oscillations of velocity and inclination 

Figure 15 shows the phase difference between the oscillations of horizontal velocity 
and tho se of the inclination of a body as a function of the confinement ratio S, for 
three bodies with aspect ratios x = 3, 6 and 1 O. The behaviour for other Archimedes 
numbers is similar. For thinner bodies (x = 6 and 1 0), the phase difference depends 
only weakly on S and is larger than 90°, so that the bodies tend to slide along their 
path (Fernandes et al. 2005). For thick bodies (X = 3), the phase difference depends 
only weakly on the confinement ratio for S ~ 0.4 but increases sharply with S for 
stronger confinement ratios. This is at variance with the behaviour in the unconfined 
case, where the phase difference decreases slowly when the Reynolds number is 
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decreased. The evolution of the phase difference for x = 3 indicates that the body 
changes the way it evolves along its path: for weak confinements, the body tends to 
align its axis of symmetry with its velocity, while the body axis is increasingly delayed 
as the confinement increases. 

6. Discussion and conclusion 
This work was devoted to the free fall of disks in tubes having different diameters. 

Three-dimensional trajectography was used to record the body motion. We investigated 
the horizontal migration of the body, the nature of the path and its characteristics, in 
particular the mean velocity of fall and the oscillations in position and inclination of 
the body for the periodic paths. To obtain complementary quantitative information on 
the liquid motion, numerical simulations were performed in the comparable situation 
of a body held fixed in a confined uniform incoming flow. 



In the range of parameters investigated (Psi Pt~ 1, 40 <Ar< 140, 80 < Re0 < 320 
and S < 0.8), we identified two types of motion, rectilinear and oscillatory. The latter 
takes the form of slightly helical paths, whose eccentricity e depends only on the 
Reynolds number and is maximum just above the onset, Rec, of the path oscillations 
and then decreases as Re increases. In the majority of the confined cases, the values 
of the eccentricity correspond to those observed experimentally in an unbounded 
medium (Fernandes et al. 2007), while the numerical simulations of Auguste (2010) 
provided in the latter case purely two-dimensional paths of nearly the same amplitudes 
and frequencies. It can therefore be expected that in an ideal situation (perfectly 
homogeneous body and liquid, no disturbances in the liquid, no geometrical defect of 
the body) purely two-dimensional zigzag motions would also be observed in this range 
of parameters. However, for x = 3 and 6, sorne helical motions of large amplitude 
were also observed for large Re and large S. The onset of the periodic motion occurs 
above a critical Reynolds number Rec, for all the confinement ratios. For bodies with 
aspect ratios x = 3 and 6, Rec depends only weakly on S, whereas for x = 10 it 
decreases when S is increased beyond S ~ 0.2 (by a factor of 2 forS~ 0.55 relative 
to the unconfined situation). We compared the threshold of path instability to the 
thresholds of wake instability past the same bodies held fixed in a uniform confined 
flow. For thick bodies (x = 3), path instability occurs experimentally at slightly lower 
Reynolds number ("" 10 %) than the first bifurcation, Reel, corresponding to the loss 
of axial symmetry in the wake of the fixed body, as also occurs in the unbounded 
case. For thin bodies (x = 1 0), however, path instability leading to large-amplitude 
oscillations of the body is observed for weak confinement (S ~ 0.2) only for Reynolds 
numbers much larger than Reel and even Rec2, which corresponds to the appearance 
of unsteadiness in the wake of the fixed body. For thin bodies, Rec then decreases 
sharply with S while Reel and Rec2 evolve only weakly with S, so that the difference 
between these thresholds decreases until it vanishes around S ~ 0.4, after which Rec 
is smaller than Reel. However, it might be expected that, in an ideal configuration for 
Re in the range [Reel,Rec], the thin body would not follow a vertical straight path but 
might oscillate irregularly with very low amplitudes, since this is known to occur in 
the absence of confinement (Auguste 2010). 

We observed that no significant migration of the bodies in the horizontal plane 
occurred forS~ 0.4, while for stronger confinement ratios the bodies migrate towards 
the centre of the tube during their fall, for any type of path. For given Archimedes 
number Ar and aspect ratio of the body x, the mean vertical velocity of the body 
and the Reynolds number Re decrease when the confinement ratio S increases. To 
gain insight into this behaviour, we investigated how the attached wake about a 
fixed body in a uniform bounded flow is modified when S is varied. Numerical 
simulations performed just before the wake destabilization at Re = Rec1 revealed that 
the length of the stable attached wake decreases with S, while the maximum velocity 
Vw (measured on the axes of symmetry of the body and the tube) increases with S. 
We then introduced a Reynolds number Re*, which is proportional to Re and whose 
dependence on x and Sis given by empirical relations fitting the evolution of Vw with 
the parameters x and S. Re* may therefore be considered as a measure of how the 
intensity of the attached vortex in the wake of the body is modified relative to the 
incoming flow velocity or mean fall velocity when x and S vary. One of the most 
interesting results of this work is that for a freely moving body with given Ar and x, 
Re* remains constant when the confinement ratio S changes, regardless of the nature of 
the path. This suggests that the mean vertical velo city (i.e. Re) adjusts accordingly and 



can therefore be predicted for any value of S, once a single case is known, by means 
of the empirical relation proposed. 

The effect of the confinement ratio on the characteristics of the periodic motion 
was investigated in detail for the three aspect ratios. We have shown that, for a 
given Archimedes number, thick bodies (x = 3) tend to stabilize and to go back to 
a rectilinear path when the confinement ratio increases, while thin bodies (x = 10) 
display oscillations of growing amplitude with S until they touch the tube (at about 
S = 0.5). Remarkably, for a given aspect ratio, the amplitudes of the oscillations of 
displacement and inclination gather on a single curve for all the confinement ratios S 
(including S = 0), which depends only on the relative distance of the Reynolds number 
to the threshold of path instability. 
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