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High-transonic unsteady flows around an airfoil at zero angle of incidence and moderate Reynolds

numbers are characterized by an unsteadiness induced by the von Kármán instability and buffet

phenomenon interaction. These flows are investigated by means of low-dimensional modeling

approaches. Reduced-order dynamical systems based on proper orthogonal decomposition are

derived from a Galerkin projection of two-dimensional compressible Navier-Stokes equations. A

specific formulation concerning density and pressure is considered. Reduced-order modeling

accurately predicts unsteady transonic phenomena.
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A proper orthogonal decomposition sPODd Galerkin

method is proposed for reduced-order models sROMsd of

unsteady, high-transonic flows. The specific contribution of

this study concerns the development of ROMs issued from

the fully compressible time-dependent Navier-Stokes system

and their application for the prediction of transonic unsteady

flow features. The two-dimensional s2Dd transonic flow

around a NACA0012 airfoil at zero angle of incidence and

moderate chord-based Reynolds number sReP f0.5,1g
3104d represents a challenging configuration to investigate

due to the development of an unsteadiness triggered by com-

pressibility effects.
1
At incompressible regimes sMach num-

ber ,0.3d, this flow is steady. As Mach number sMad in-

creases, an instability mode and unsteady phenomena

emerge, leading to transition to turbulence. At Mach number

0.3, an undulation appears in the wake. The amplification of

this phenomenon as the Mach number increases is respon-

sible for the onset of the von Kármán instability. In the Mach

number interval f0.5,0.7g, this mode becomes more pro-

nounced and a periodic alternating vortex pattern is clearly

developed. This phenomenon is induced by boundary layer

separation downstream of supersonic regions. At Mach num-

ber 0.75, a lower frequency phenomenon that corresponds to

the oscillation of supersonic pockets on each side of the air-

foil is observed. This unsteadiness is the onset of the buffet

phenomenon. It is characterized by a strong oscillation of the

shock waves at higher Reynolds numbers.
2,3

Fundamental

frequencies of these two phenomena are clearly different at

moderate Reynolds numbers.
1

Buffet has disappeared at

Mach number 0.85, whereas von Kármán vortex shedding is

observed until Ma=0.95. In the present study, flow A sMa

=0.80, Re=104d is in the range of existence of both phenom-

ena, as the monitoring of Mach number field and pressure

coefficient on the airfoil illustrates sFig. 1d. Flow B sMa

=0.85, Re=0.53104d, which is strictly governed by the von

Kármán instability, is considered for comparison purpose.

The model reduction method consists of a Galerkin pro-

jection of the Navier-Stokes equations onto a low-

dimensional basis determined to reach optimal energy recon-

struction. This basis is issued from a POD,
4
also known as

Karhunen-Loève expansion
5
of flow variables. Various low-

order dynamical models have been derived from the Navier-

Stokes system under an incompressibility assumption, in 2D

sRefs. 6–8d and in three-dimensional s3Dd laminar cases
9,10

on the basis of direct numerical simulation datasets. For

compressible flows and especially in high-transonic regimes,

the coupling of kinematic and thermodynamic variables in-

duces specific difficulties concerning state formulation and

inner product involved in POD. In Ref. 11, a general frame-

work is provided to derive low-order models based on invis-

cid Euler equations, via the POD-Galerkin approach, among

others. Frequency-domain POD has been used to reach

model reduction of subsonic and transonic flows on the basis

of inviscid-viscous models, at high Reynolds numbers s106

and aboved. At first, these ROMs were based on a lineariza-

tion of the dynamic perturbation about a nonlinear steady

flow. This technique achieved efficient predictions of flows

around airfoils and turbomachinery cascades oscillating at

small amplitudes,
12–14

as well as in 3D aeroelasticity.
15

Re-

cently, a framework using automatic differentiation has been

put forward to extend the previous methodology to nonlinear

unsteady flow physics, applicable for large oscillations.
16

This approach is promising for flow control based on forced

pitching motion of an airfoil that can be envisaged in a fur-

ther issue of the present study. An isentropic inner product
17

leads to compressible ROMs that are valid for moderate

Mach numbers and cold flows. Investigations of stability

properties of POD ROMs have been reported in Ref. 18. In

the present study, a specific inner product ensuring POD di-

mensional consistency in the compressible case is defined.

This is utilized to extract the POD basis and to perform a

Galerkin projection of a modified state system
19

onto the

reduced-order subspace.

Assuming time/space separation, a classical truncatedad
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POD expansion yields an approximation of each time/space-

dependent quantity v as a finite linear combination of Npod

specific eigenfunctions:

vsx,td = o
i=1

`

aistdFisxd < o
i=1

Npod

aistdFisxd , s1d

where ai are time-dependent functions and Fi orthonormal-

ized stationary spatial modes determined as successive solu-

tions of the following constrained optimization problem:

Fi+1 = arg max
CPL2sVdd

ksv − Piv,Cd2l

subject tosC,Cd = 1,

s2d

where k·l represents time averaging operator, V,R
2 is the

spatial domain, s· , · d is an inner product that has to be de-

fined on L2sVdd, and Pi is the orthogonal projector onto

spanhF1 , . . . ,Fij for i$1, with P0;0p. Finding Fi in Eq.

s2d is equivalent to solve a Fredholm integral eigenvalue

problem involving a v two-point space correlation tensor. In

the discrete numerical context, the number of space discreti-

zation points sNxd being large in front of the number of

“high-order” temporal samples sNtd, “snapshot-POD”

technique
20

is used, leading to an eigenproblem on time cor-

relation matrix. In the case of multiple state variables and

especially in the compressible case shere, d=4d, the inner

product adopted to extract the POD basis has to be carefully

defined.
17

The following weighted spatial product is sug-

gested:

svI,vIId = o
i=1

d E
V

vi
I
vi
II

si
2 + «

dx , s3d

where vI and vII are two states involving d variables and

si
2sxd= s1/Tsdet0

t0+Tssvisx , td−visxdd2dt. Ts is the snapshot stor-

age period and visxd= kvisx , · dl. si
2 is the local temporal sta-

tistical variance of vi. « is a small positive constant. This

definition ensures POD dimensional consistency and leads to

a considerable reduction of the number of degrees of free-

dom; i.e., from 43Nx to Npod, with Npod≪Nx and Npod≪Nt.

Time evolution of the whole state vector is then described by

a single nondimensional dynamic for each POD mode. State

variable fluctuations are approximated by

visx,td − visxd < o
j=1

Npod

a jstdF j
visxd . s4d

The POD is performed on the fluctuations because spatial

POD modes can only respect homogeneous boundary condi-

tions. Two-dimensional Navier-Stokes simulations are issued

from ICARE/IMFT compressible finite volume solver, vali-

dated for the present test cases with a C-type grid sNx=369

389 nodesd.1

In flow A, the “high-order” dataset contains Nt=2200

snapshots collected regularly over one buffet period of the

established flow sDt=1.9310−5 sd, which corresponds ap-

proximately to 20 von Kármán periods. Nt=100 samples are

stored over one period of vortex shedding in flow B sDt

=2.6310−5 sd. After performing POD basis extraction, the

mode truncation is founded on the statistical content con-

veyed by the first Npod modes INpod
=oi=1

Npodzi /oi=1
Nt zi, where zi

are time/space two-point correlation matrix eigenvalues.

INpod
=99.9% is arbitrarily chosen, which induces Npod=16 in

flow A, whereas ten modes are sufficient in B sFig. 2d. Flow
A involves more complex flow dynamics, which implies a

significant increase of the informational content conveyed by

the second pair of modes s18.5% versus 2% in flow Bd.
Direct POD expansion of conservative variables in

Navier-Stokes governing equations leads to fractional ex-

pressions that do not allow trivial Galerkin projections. How-

ever, an alternative is suggested by Ref. 19 to derive qua-

dratic fluxes for compressible Navier-Stokes system by

considering a modified formulation of state vector U

= fr ,ru1 ,ru2 ,regt
→ Û= f1/r ,u1 ,u2 ,pgt. r is the density and

ui are velocity components. e represents total energy, defined

by e=C
v
T+ su1

2+u2
2d /2, where T is the temperature and C

v

the specific heat coefficient. p is the thermodynamic pres-

sure, which satisfies the ideal gas law p=rRT, and R is the

ideal gas constant. The corresponding modified state system

is projected onto the truncated POD basis, for i=1, . . . ,Npod:

FIG. 1. sColor onlined Instantaneous Mach number field and nondimen-

sional pressure coefficient as a function of time, near the leading edge

sx1 /c ,x2 /cd= s0.105, ±0.047d sblackd and near the trailing edge

sx1 /c ,x2 /cd= s0.92, ±0.011d sgrayd at Ma=0.80 and Re=104 sflow Ad.

FIG. 2. Normalized eigenvalues sleft axis—solid linesd and statistical con-

tent of the reduced-order basis sright axis—dashed linesd as a function of

mode number in flows A shd and B snd.



sÛ,t + AaÛ,a,Fid = sFa,a
v − Ga

v ,Fid . s5d

POD expansion is applied to state variables, leading to fol-

lowing approximations:

Ai < o
j=1

Npod+1

a j
!3

F j
!ui − F j

!s1/rdd1i − F j
!s1/rdd2i 0

0 F j
!ui 0 F j

!s1/rdd1i

0 0 F j
!ui F j

!s1/rdd2i

0 gF j
!pd1i gF j

!pd2i F j
!ui

4 ,
s6d

Fi
v < o

j,k=1

Npod+1

a j
!
ak

!3
0

F j
!s1/rdfmsFk,i

!u1 + Fk,1
!uid + lFk,a

!uad1ig

F j
!s1/rdfmsFk,i

!u2 + Fk,2
!uid + lFk,a

!uad2ig
gm
Pr fF j

!pFk,i
!s1/rd + F j,i

!pFk
!s1/rdg

4 , s7d

Gi
v

< o
j,k=1

Npod+1

a j
!
ak

!3
0

F j,i
!s1/rdfmsFk,i

!u1 + Fk,1
!uid + lFk,a

!uad1ig

F j,i
!s1/rdfmsFk,i

!u2 + Fk,2
!uid + lFk,a

!uad2ig

s1 − gdF j,i
!uafmsFk,i

!ua + Fk,a
!uid + lFk,b

!ubdaig
4 ,

s8d

where a!= f1,a1 , . . . ,apodg= f1,ag and F
!

= fÛ ,F1 , . . . ,Fpodg. m is the fluid viscosity, l is the Lamé

coefficient, g the polytropic coefficient, Pr the Prandtl num-

ber, and dij is the Kronecker symbol. ·,t and ·,i denote, respec-

tively, time and space derivatives. For more clarity, Greek

subscripts are used to specify implicit summations and POD

expansions are explicit. Only time-independent boundary

conditions are prescribed. In particular, no-slip condition and

constant temperature are imposed on the airfoil.

The modified state system being quadratic, the Galerkin

projection onto the truncated POD basis yields a quadratic

polynomial ordinary differential equation system, as in the

incompressible case, for i=1, . . . ,Npod:

ȧi = sCi + Ci
sd + o

j=1

Npod

sLij + Lij
s da j + o

j,k=1

Npod

Qijka jak

= f isC
s,Ls,ad ,

s9d

aist0d = fÛs· ,t0d − Û,Fig .

Ci, Lij, and Qijk are constant coefficients issued from the

Galerkin projection of the modified state system s5d. Linear
and constant terms are involved because of time-averaged

value subtraction. As reported in Ref. 21, POD Galerkin

ROM is structurally unstable, which leads to dynamic ampli-

tude growth/decrease and phase-lag occurring when perform-

ing long time integrations. Many calibration and stabilization

methods have been reported in the literature: addition of ar-

tificial dissipations,
22

“data-driven” optimizations,
23

addition

of “shift modes” in the empirical basis,
21

and more recently,

an “intrinsic stabilization” procedure,
24

among others. In the

present study, Ci
s and Lij

s coefficients are determined so as to

minimize the mean square of prediction error with respect to

reference dynamics: JsCs ,Lsd= 1

2
oi=1

Npodo j=1
Nt haist jd−aist0d

−et0

tj f ifCs ,Ls ,aromstdgdtj2, where arom are predicted dynamics

issued from Eq. s9d. In a similar way to Ref. 25 in the in-

compressible case, this optimization problem is turned into a

linear system resolution by considering reference dynamics

in the Cauchy problem integration. ROM integration is per-

formed with a fourth-order-accurate Runge-Kutta scheme

over a snapshot temporal horizon.

As presented in Fig. 3, POD methodology enables an

efficient identification of the main phenomena responsible

for flow unsteadiness sflow Ad. The buffet phenomenon is

efficiently described by the two first modes, whereas the fol-

lowing pair is related to the high-frequency von Kármán in-

stability. Moreover, POD modes provide information con-

cerning flow topology and spatial correlations: as can be

observed on F1
p, the oscillation of supersonic pockets on

each side of the airfoil is clearly correlated with slow pres-

sure fluctuations and flow meandering occurring in the near

wake, at buffet frequency. POD mode dynamics also exhibit

this physical decoupling. As shown in Fig. 4, a strong inter-

action between the two phenomena appears on seventh

mode. In contrast, each of the first six modes exhibits the

FIG. 3. sColor onlined First four odd spatial POD modes associated to

pressure in flow A sMa=0.80, Re=104d, where the von Kármán instability

interacts with the buffet phenomenon. Positive snegatived values are denoted

by solid sdashedd lines.



effect of only one frequency. The dynamics issued from

ROM integration present an excellent match with those is-

sued from the Navier-Stokes simulation, even for the last

modes sFig. 4d. The relative state variable prediction error

based on the consistent inner product fEq. s3dg is monitored

at each time step and remains lower than s1.5310−6d% for

both flows, which is in the same order of magnitude as POD

basis truncation error.

To summarize, a low-dimensional model for compress-

ible flows has been derived via POD-Galerkin methodology

on the basis of a modified formulation of Navier-Stokes gov-

erning equations. The flow physics are governed by two

main unsteady phenomena induced by compressibility ef-

fects, i.e., von Kármán instability and buffeting, which were

well identified by POD analysis. The stabilized ROM

achieved faithful unsteadiness predictions in the high-

transonic regime.
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