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ABSTRACT

The mechanisms of phasing between the in-line and cross-flow vortex-induced vibrations of a cylindrical
tensioned beam in non-uniform flow are studied by direct numerical simulation. Three types of responses
are considered, mono-frequency, narrowband, and broadband multi-frequency vibrations; in all cases, in-
line and cross-flow vibration components occurring with a frequency ratio of 2 are phase-locked within
regions of wake-body synchronization. The in-line/cross-flow phase difference exhibits a persistent span-
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1. Introduction

The vortex formation downstream of a long flexible structure
with bluff cross-section immersed in a flowing fluid induces un-
steady forces on the body which can result in structural vibra-
tions, both in the cross-flow and in-line directions. The
increased fatigue damage and mean drag forces caused by the
vortex-induced vibrations (VIV) are major issues in civil and off-
shore engineering, where slender deformable bodies such as
cables or risers are exposed to wind and ocean currents; a de-
tailed physical understanding of this fluid-structure interaction
phenomenon is necessary for the prediction of the body re-
sponses and the development of VIV suppression techniques. This
study focuses on the coupling between the in-line and cross-flow
vibrations of a long tensioned beam immersed in a current pre-
senting a non-uniform velocity profile, as often observed in the
domain of applications.

The investigation of VIV through the simpler problem of a rigid
cylinder oscillating in the cross-flow direction within a uniform
oncoming flow has highlighted the importance of the synchroni-
zation between the vortex shedding and the body displacement
for the occurrence of self-excited, self-limited, large-amplitude
vibrations [1-4]. This condition of wake-body synchronization is
referred to as lock-in. When the cylinder is also allowed to oscil-

* Corresponding author. Tel.: +33 534322931.
E-mail addresses: bourguet@mit.edu, bourguet@imft.fr (R. Bourguet).

wise drift when vibration components present significant traveling-wave behavior; this drift depends lin-
early on the in-line/cross-flow wavenumber difference, controlled by the beam non-linear dispersion
relation and also impacted by the effective added mass variability.

late in the in-line direction, vibrations of smaller amplitudes gen-
erally occur in this direction with a frequency ratio of 2 compared
to the cross-flow response, leading to figure-eight trajectories
[5,6]. Previous works have shown that the phase difference be-
tween the in-line and cross-flow motions, which determines the
shape of the body trajectories, is related to the spectral content
of the fluid forces and to the regularity of the resulting orbits
[7,8].

The phasing of the in-line and cross-flow responses is also a sig-
nificant element for the VIV of long flexible cylinders in non-uni-
form current. In this context, the structural vibrations are excited
by the flow in spanwise regions where the lock-in condition is
established and damped in zones where the body oscillation and
vortex formation frequencies differ [9]. For structural responses
dominated by a single vibration frequency in each direction, the
lock-in regions are characterized by figure-eight trajectories with
a particular orientation [10-12]. Hence the phase difference be-
tween the in-line and cross-flow oscillations is closely connected
to the energy transfer between the fluid and the structure. Another
feature reported in these studies is the occurrence of a spanwise
drift of the in-line/cross-flow response phase difference which is
associated with a continuous change of the cylinder orbit along
its length. This drift may alter the spatial pattern of wake-body
synchronization and thus impact the distribution of the regions
of structure excitation and damping. Within a sheared current,
the possible occurrence of the lock-in condition at different span-
wise locations can lead to responses at several frequencies; both



narrowband and broadband multi-frequency vibrations, involving
simultaneously high and low structural wavenumbers, may devel-
op depending among others, on the shape of the oncoming flow
velocity profile [13-16].

Although previous studies have highlighted typical behaviors in
the coupling between the in-line and cross-flow VIV of slender
flexible bodies, the underlying mechanisms governing the re-
sponse phasing remain to be elucidated. In addition, previous
works have identified comparable trends in the in-line/cross-flow
phasing of the mono-frequency and narrowband multi-frequency
responses but further investigation is required to establish
whether the same coupling phenomena apply to the different
types of responses, including broadband VIV. These aspects are ad-
dressed in the present study which aims at analyzing and compar-
ing the mechanisms of synchronization between the in-line and
cross-flow responses of a long flexible cylinder subject to mono-
frequency as well as narrowband and broadband multi-frequency
VIV in sheared current. Direct numerical simulation is employed
to predict the flow past a tensioned beam of length to diameter as-
pect ratio 200, at a Reynolds number equal to 330; different shear
profiles and structural properties are considered to promote re-
sponses characterized by distinct frequency bandwidths. For each
type of structural responses, particular attention is paid to the
phasing of the body displacements in the regions of lock-in and
to the phenomenon of spanwise drift of the vibration phase
difference.

2. Fluid-structure model and numerical method

A tensioned beam of circular cross-section and aspect ratio L/
D =200, where L is the beam length and D its diameter, is im-
mersed in a current which is parallel to the global x axis and
sheared along the global z axis. A sketch of the physical configura-
tion is presented in Fig. 1(a). The beam is pinned at both ends and
free to move in the in-line (x) and cross-flow (y) directions.

The beam mass ratio is defined as m = p/pD? where p, is its
mass per unit length and py the fluid density. In the following, all
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Fig. 1. (a) Sketch of the physical configuration. (b) Linear and exponential inflow
velocity profiles.

the physical variables are non-dimensionalized by D and the max-
imum inflow velocity U. The constant tension, bending stiffness,
and damping of the structure are designated by T, EI and K, respec-
tively. The in-line and cross-flow displacements of the body are de-
noted by {, and ,. The sectional in-line and cross-flow force
coefficients are defined as C,=2 Fy/pD U? and C,=2F,/pD U?,
where F, and F, are the in-line and cross-flow dimensional sec-
tional fluid forces. The structural dynamics are governed by the fol-
lowing model [17]:

azg{xy} — 02 82({,(_},} +a? 04C{xy} +£ aﬁy{xy} _ C{X-y} (1)
ot? ¢ 9z b oA "Tm ot 2m

t denotes the non-dimensional time variable. w. and w;, denote the
cable and beam phase velocities, defined as w?=T/m and
w? = El/m, respectively. The structural damping is set equal to zero
(K =0) to allow maximum amplitude oscillations. The flow around
the tensioned beam is predicted using the direct numerical simula-
tion of the three-dimensional incompressible Navier-Stokes
equations.

Two specific sheared inflow velocity profiles are considered: a
profile with linearly varying velocity as function of z is employed
in reference to previous experimental and numerical studies; an
exponentially sheared profile, which represents a more realistic
profile in the context of offshore applications, i.e. vertical risers
or mooring lines immersed in ocean currents, is also considered.
The velocity profiles are plotted in Fig. 1(b). For both profiles, the
maximum inflow velocity U occurs at z= 0 and the ratio between
the maximum and minimum inflow velocities is set to 3.67. The
Reynolds number (Re) based on D and U is equal to 330. These in-
flow velocity profiles associated with different values of the struc-
tural properties result in three distinct types of body responses, as
described in Section 3.1. The selected parameters reported in Ta-
ble 1, lead to vibrations involving high structural wavenumbers
in all three cases; such vibrations are representative of configura-
tions encountered in the context of ocean engineering [18,19,10].
In the linear inflow velocity case when the mass ratio value
changes from 3 to 6, while w. and w, are kept constant, this in-
duces an alteration of the time-averaged in-line bending of the
structure and thus a change in the inflow velocity profile normal
to the beam. As reported in a previous work [15], this change re-
sults in a transition between mono-frequency and multi-frequency
vibrations. The exponential velocity profile is the same as the pro-
file employed in [14], where multi-frequency VIV, characterized by
a wider range of excited frequencies than in the linear shear case,
have been noted.

The coupled fluid-structure system is solved by the parallelized
code Nektar, which is based on the spectral/hp element method
[20]. The version of the code employs a hybrid scheme with Fourier
expansion in the spanwise (z) direction and Jacobi-Galerkin formu-
lation in the (x,y) planes. A boundary-fitted coordinate formulation
is used to take into account the cylinder deformation. Details con-
cerning time integration schemes and validation of the numerical
method have been reported in [21] and [17]. The computational
domain (50D downstream and 20D in front, above, and below
the cylinder) and discretization (2175 elements with polynomial
order 7 in the (x,y) planes and 512 complex Fourier modes in the
z direction) are the same as in [9]. A no-slip condition is applied
on the cylinder surface. Following a technique validated in the
above mentioned reference, a buffer region (not presented in the
following) is used to enforce the periodicity of the inflow velocity
profile implied by the Fourier expansion used in the z direction.
The analysis is based on time series of more than 300 time units,
collected after convergence of the time-averaged in-line displace-
ment of the beam, for each simulation.



Table 1
Fluid-structure model parameters and structural response characteristics.

Cross-flow frequency

Cross-flow wavenumber

In-line wavenumber

Case Velocity profile m (O wp
Mono-frequency Linear 3 4.55 9.09
Narrowband Linear 6 4.55 9.09
Broadband Exponential 6 5 10

0.154 0.0355 0.06
0.149 0.0325 0.0565
0.162 0.035 0.06
0.174 0.0375 0.065
0.048 0.01 0.019
0.083 0.0175 0.0325
0.095 0.02 0.0375
0.162 0.0325 0.056

3. Results and discussion

The body responses are described in Section 3.1. The link be-
tween the occurrence of the wake-body synchronization condition
and the phasing of the in-line and cross-flow vibrations is exam-
ined in Section 3.2. The drift of the in-line/cross-flow response
phase difference is analyzed in Section 3.3.

3.1. Three types of structural responses in shear flow

Three distinct types of vortex-induced responses of the ten-
sioned beam are identified and analyzed in this section. The typical
vibrational responses of the beam are illustrated in Fig. 2 through
selected time series of the cross-flow displacement along the span.
In all three cases the vibrations present mixed standing-traveling
wave patterns. The change in the nature of the response among
the three cases, which can be observed qualitatively in Fig. 2, is
quantified by means of spatio-temporal spectral analysis. The
power spectral density (PSD) of the body displacement is plotted
as a function of the temporal frequency and spatial wavenumber
in Fig. 3, separately for each case. Positive frequencies are consid-
ered in these plots, negative spatial wavenumbers are thus associ-
ated with structural waves traveling in the direction of increasing
z, from the high to the low-inflow velocity regions; positive wave-
numbers correspond to waves traveling in the other direction.

In linear shear flow (Fig. 3(a) and (b)), as previously mentioned,
the modification of the mean curvature of the structure, as m is
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changed from 3 to 6, induces a switch from a vibration at a single
frequency along the span to a response involving several frequen-
cies [15]. The three frequencies excited for m =6 are contained
within a narrow band and the corresponding spatial wavenumbers
can be associated with three adjacent sine Fourier modes,
n € {13,14,15} with the nth mode defined as sin (nn z D/L). Within
exponential shear flow, the beam exhibits a vibrational response
involving a broad range of frequencies, associated with both low
and high structural wavenumbers (Fig. 3(c)); the excited wave-
numbers can be related to sine Fourier modes in the range
n € {4,7,8,13}. As generally observed in this context, each compo-
nent of the response in the cross-flow direction is accompanied by
a component occurring with a frequency ratio of 2 in the in-line
direction. The change in the spectral content of the cross-flow re-
sponse, identified among the three cases, is also noted in the in-
line direction. In the following, these three types of responses are
referred to as mono-frequency, narrowband, and broadband, as also
shown in Table 1.

Each excited frequency is principally associated with a single
spatial wavelength, which is generally the same in the negative
and positive-wavenumber spectra. The relative weights of the po-
sitive and negative-wavenumber PSD peaks characterize the stand-
ing or traveling nature of the corresponding wave. The high-
wavenumber vibration components exhibit a pronounced travel-
ing-wave behavior oriented towards the low-velocity region, as
indicated by the larger magnitudes of the PSD peaks located on
the negative-wavenumber side of the spectra. A similar behavior

180

160

140

120

100

O Y
0 10 20 30 40 50 0
Time

LLDLLUULLLET
10 20 30 40 5

Time Time

0

Fig. 2. Selected time series of the cross-flow displacement along the span, (a,b) in the linear shear case for (a) m = 3 (mono-frequency response) and (b) m = 6 (narrowband

response), and (c) in the exponential shear case (m = 6, broadband response).
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Fig. 3. Spatio-temporal spectral analysis of the cross-flow displacement, (a, b) in the linear shear case for (a) m = 3 (mono-frequency response) and (b) m = 6 (narrowband
response), and (c) in the exponential shear case (m = 6, broadband response). The predominant vibration frequencies are identified by blue vertical dashed lines. Structural
wavenumbers associated with selected sine Fourier modes are indicated by orange horizontal dashed lines; (a) n =14, (b) n € {13,14,15}, (c) n € {4,7,8,13)}. Red crosses
denote the natural frequencies associated with these wavenumbers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

is observed in the in-line direction. This trend can be linked to the
spanwise distribution of the excitation and damping regions of the
beam by the flow, as discussed in Section 3.2. The predominant
cross-flow vibration frequencies and corresponding excited wave-
numbers are indicated in Table 1, as well as the wavenumbers ex-
cited in the in-line direction with a frequency ratio of 2; the
absolute values of the wavenumbers are reported in this table.
As previously noted [9], the actual response peaks may present sig-
nificant departures from the natural frequencies issued from the
tensioned beam dispersion relation modified by considering an
added mass coefficient equal to 1 (red crosses in Fig. 3). This phe-
nomenon can be related to the variability of the effective added
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Fig. 4. RMS values of the (a) in-line displacement fluctuation and (b) cross-flow
displacement, along the span.

mass that modulates the relation between excited frequencies
and wavenumbers [16].

The root mean square (RMS) values of the structural response
amplitudes along the beam span are plotted in Fig. 4. In these plots
and in the following the deviation of the in-line response from its
time-averaged value ¢, is considered. As reported in previous stud-
ies involving flexible cylinders (e.g. [22,19]), the amplitudes of
vibration are smaller in the in-line direction, as also observed for
elastically-mounted rigid cylinders. The reduction of the cross-flow
response amplitude in the case of broadband vibrations (exponen-
tial inflow profile) is in agreement with the observations of [14]
concerning a flexible cylinder constrained to oscillate in the
cross-flow direction within similar currents; the cross-flow re-
sponse amplitudes are comparable to those reported in this previ-
ous study.

The synchronization between the in-line and cross-flow re-
sponses of the beam is analyzed in the next section, in relation
with the occurrence of the wake-body synchronization condition
along the span.

3.2. Phase-locking of the in-line and cross-flow responses under wake-
body synchronization

For an elastically-mounted rigid cylinder placed in uniform cur-
rent, a clear link has been identified between the occurrence of
large-amplitude repeatable vibrations and the orientation of the
figure-eight trajectories of the body: counter-clockwise orbits, in
which the cylinder moves upstream at the extrema of its cross-
flow oscillation, induce larger vorticity generation and lead to a
particular phasing between the body motion and the vortex suc-
tion forces, resulting in stable vibrations [7,8]. For a long flexible
cylinder immersed in sheared current and presenting a single
vibration frequency in each direction, the condition of wake-body
synchronization is generally connected with this particular type
of trajectories [10-12]. The synchronization of the in-line and
cross-flow vibrations in the regions of lock-in is examined in this
section for the mono-frequency, narrowband and broadband re-
sponse cases identified in Section 3.1.
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For a slender deformable body, the lock-in condition is defined
at each spanwise location by the synchronization between the lo-
cal frequency of the vortex formation and the local frequency of
the cross-flow structural vibration; the absence of wake-body syn-
chronization is referred to as the non-lock-in condition. The occur-
rence of the lock-in condition along the beam length is monitored
by comparing the PSD of the cross-flow component of the flow
velocity in the wake to the predominant vibration frequencies pre-
viously identified, as shown in Fig. 5. In the three cases, the wake
exhibits a discontinuous pattern composed of cells of constant vor-
tex shedding frequency, as also noted for stationary cylinders with
varying spanwise conditions (e.g. [23-25]). In the mono-frequency
and narrowband multi-frequency response cases (Fig. 5(a) and (b)),
the lock-in condition occurs on the high-inflow velocity side, over
similar spanwise extents, while vortex shedding and body oscilla-
tion are not synchronized on the rest of the span. In contrast, the
broadband vibration case (Fig. 5(¢)) is characterized by a distribu-
tion of the lock-in condition which occurs both in the high and
low-velocity regions.

The high-wavenumber vibration components are excited by the
flow under the lock-in condition in the high-velocity region and are
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Fig. 6. Selected trajectories of the beam over 50 time units, in the (a) mono-
frequency (z=38), (b) narrowband (z=50) and (c) broadband (z=71) response
cases.

damped in the low-velocity zone; this explains the preferential ori-
entation of the corresponding structural waves which are moving
in the direction of increasing z, as noted in Section 3.1.
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Selected trajectories of the beam in the three cases under study
are presented in Fig. 6. The phase difference between the in-line
and cross-flow displacements can be defined by:

q)xy = p(/)x - q¢y: (2)

where ¢, and ¢, are the instantaneous phases of the in-line and
cross-flow responses; p and q are two integer numbers defining
the level of synchronization. The couple (p,q) = (1,2) is chosen here
since the synchronization is investigated for a frequency ratio of 2
between the responses in each direction. For mono-frequency
vibrations, ®,, € [0°,180°] corresponds to counter-clockwise orbits,
in contrast to the trajectories in the opposite direction, where the
body moves downstream at the extrema of its cross-flow displace-
ment, referred to as clockwise (®y, € [180°,360°]) [7]. The histo-
gram of ®,, based on the instantaneous phases determined by the
Hilbert transform of the displacement signals are plotted along
the span in the mono-frequency and narrowband response cases
in Figs. 7(a) and 8(a), respectively. In spite of the change in the nat-
ure of the structural response, both cases exhibit very similar
trends, with a phase difference generally lower than 180° in the
high-velocity region and a clear spanwise drift towards higher an-
gles as z increases. These two aspects are analyzed in the following.

For a better identification of the synchronization patterns of the
in-line and cross-flow vibrations, especially in the cases where sev-
eral frequencies are involved in the structural responses in each
direction, the displacements can be approximated as follows, using
N +1 temporal Fourier modes:

N/2
g{x,y} (Zv t) ~ Z a?x,y} (Z) EXP(ZTElfnt)
n=-N/2
N/2

= > Jaby|@exp (i(2nt + v, ) ), )

——N/2

where f*=n/T; and T, is the sampling period. The complex modal
coefficients aj and @ are written in terms of their moduli and their
spatial phases y; and . The phase difference between the in-line

and cross-flow responses occurring at frequencies 2f" and f" respec-
tively, is evaluated as follows:

@, = 03" — 205, 4

The spanwise evolutions of the phase differences associated
with the predominant cross-flow vibration frequencies for the
mono-frequency, narrowband and broadband response cases are
plotted in Figs. 7(b), 8(b-d) and 9, respectively. In these figures,
the lock-in regions including all the locations locally locked-in at
the studied frequency are indicated in blue.! In all cases and for
each excited frequency, it can be noted that the phase difference re-
mains principally lower than 180° within the lock-in region. As a
consequence, the in-line and cross-flow vibration components lo-
cally involved in the wake-body synchronization condition, are
locked within a specific range of phase difference angles, even if
the beam trajectories substantially differ from figure-eight orbits,
as illustrated in Fig. 6. This phase-locking mechanism, previously
associated with observations of a particular trajectory orientation
within the lock-in region in the mono-frequency case, thus extends
to the multi-frequency vibrations, including the case of broadband
responses.

A spanwise drift of the phase difference between the high-
wavenumber components of the in-line and cross-flow vibrations
can be noted in all studied cases, both within and outside the
lock-in regions and regardless of the spectral content of the re-
sponses; this drift is investigated in the next section.

3.3. Spanwise drift of the phase difference between the in-line and
cross-flow responses

The drift of the in-line/cross-flow response phase difference
identified in the previous section has also been observed in field

1 For interpretation of color in Figs. 9 and 10, the reader is referred to the web
version of this article.
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a black vertical line. The lock-in region associated with each vibration frequency is colored in blue. In (d), the phase difference in the case of pure traveling waves, based on the
effective excited wavenumbers, is indicated by a red dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

experiments where a continuous alteration of the body trajectory
shape along its length has been reported [10].

To clarify the mechanisms driving the phase difference drift, a
model composed of a mixed standing-traveling wave in each direc-
tion is defined as follows:

Ly (2,0) = a;fx ) €OS (an{x,y}t + 27rl<{+x_y}z + 11}'”})
()

fx and f, are the in-line and cross-flow vibration frequencies, with
fi=2f,>0. k; and k, denote the in-line and cross-flow excited
wavenumbers associated with waves traveling in the direction of

+ @y, €Os <2nf{x_y}t + 27k, 02 + n@y}) .

: +
decreasing z(k(x_y}

> O); k, and k, are associated with waves travel-
ing in the other direction (k{’m < O). Ny and 17, denote phase

lags. aj,,, > 0andag,,, > 0 are the wave amplitudes. The displace-

{xy}
ments (5) can also be expressed as follows:
C{xy) (27 t) =Ty} (Z) COS(Z?'Ef{Xy}t + ‘p{xy}(z))ﬁ (6)
where
Ty (2) = [zaﬁy}a?xy} cos (Zn(k?xw - k{;y})z H My — n(&ﬁ)
2 2 1/2
(@) + (0| )

and

V¥ xy (2) =atan2 [a{*x_y} sin (an{*&y}z 1 M)
+0p,, sin (an{’mz+ N y}) 10}y COS <2nk{*xvy}z 1M y})
+ay,,, cos <2nk{’x_y}z+ Nix y))]‘ (8)

The phase difference between the in-line and cross-flow dis-
placements (5) is thus independent of time:

(ny = lﬁx - 2‘//y- (9)

In the case of pure traveling waves oriented in the direction of
increasing z (af,,, =0 and a,, >0), the phase difference
becomes:

Dy (z,t) = Zn(k; - Zk;)z +1, —28,.

(10)

As a consequence, for pure traveling waves, the spanwise drift of
the phase difference depends linearly on the difference between
the in-line wavenumber and a value equal to twice the cross-flow
wavenumber.

In the case of pure standing waves (a},,, = aj,,, and I<Zj(y} =
—kiy,,) the displacements (5) can be expressed as:

Nixyr + My
2

{ap(z,0) = Zaz;_y} cos (an{x,y}t +

(11)

. _
x cos | 27k}, .z + Mixyy ~ Moy
{xy} g :

The nodes of the in-line and cross-flow standing-wave responses

(11) are located at:
<1 +2n—w>,nez}.

1
Z€Npy =¢——
{xy} {4k+
For pure standing waves, the spatial phases can be expressed as:

xy}
. o -
Wiy (2) =atan2 {sm (M) cos <2nk{§y}z+w> :

o4, b "o
cos (M) cos <2nk&y}”M>] "

and the phase difference becomes, for z ¢ N y):

(12)

+ _
X+ X -
_’7 27] _n;_”y—"_n(z)ﬂ

Dy (2,8) = (14)



where

nforze U]ﬁ(l+4n—@),ﬁ(3+4n—@)[,
M(z) = 0 f " 1 (344 ) 1 (54 4 Ny 1y
orzeg]m( + n—T),W( + n—T)[.

(15)

As a result, the phase difference exhibits a discontinuous evolution
corresponding to an alternating clockwise/counter-clockwise span-
wise pattern; the transitions between the two types of orbits occur
at the nodes of the in-line response.

In order to illustrate the typical behaviors of the phase differ-
ence, the spanwise evolutions of @, determined through (9) in
the cases of pure standing waves, pure traveling waves (oriented
in the direction of increasing z) and mixed responses are plotted
in Fig. 10. In Fig. 10(a), the cross-flow response wavenumber is that
identified in the mono-frequency response case (Table 1) and a ra-
tio of 2 is selected between the in-line and cross-flow wavenum-
bers, kI = Zky+ and k, = 2k, ; the phase lags are chosen arbitrarily.

For pure standing waves in each direction, the phase difference
is characterized by a discontinuous spanwise pattern (blue trian-
gles), as shown in the above analysis. In the case of pure traveling
waves, due to the ratio of 2 between the in-line and cross-flow ex-
cited wavenumbers, @y, is constant along the beam length (red
dashed line), as expected from (10). In the mixed response case
where the relative magnitudes of the positive and negative-wave-
number domain contributions match the values of the mono-fre-
quency response case (Fig. 3(a)), the phase difference presents a
zig-zagging behavior centered about the pure traveling wave evo-
lution (black dots).

If the in-line and cross-flow vibration wavenumbers identified
by spectral analysis in the mono-frequency response case are con-
sidered (Table 1), the phase difference exhibits the evolutions pre-
sented in Fig. 10(b). The spanwise drift of ®,, observed in the case
of mixed standing-traveling waves (black dots) follows rigorously
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Fig. 10. Phase difference between the in-line and cross-flow displacements along
the span, for the model (5), with an in-line to cross-flow wavenumber ratio (a)
equal to 2 and (b) different from 2. The phase differences in the cases of pure
standing waves, pure traveling waves and mixed responses are denoted by blue
triangles, red dashed lines and black dots, respectively. The limit between counter-
clockwise and clockwise orbits (180°) is indicated by a black vertical line. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

the trend of pure traveling wave responses (red dashed line), the
sawtooth behavior being induced by the underlying standing wave
patterns.

The spanwise evolutions of the phase differences for pure trav-
eling waves, based on the predominant excited wavenumbers in
the three cases under study, are indicated by red dashed lines for
each pair of in-line/cross-flow responses involving high structural
wavenumbers in Figs. 7(b), 8(b-d) and 9(d). As also noted with
the model (5), the actual phase differences follow the pure travel-
ing wave behaviors, except in zones dominated by standing waves
(for example near z = 0 in Fig. 7(b)), where the previously described
discontinuous pattern is observed. No phase difference drift is ob-
served for the vibration components involving lower spatial wave-
numbers which present a strong standing wave nature.

The drift of the phase difference between the in-line and cross-
flow vibration components presenting a frequency ratio of 2, oc-
curs in regions of traveling waves where the ratio of in-line to
cross-flow excited wavenumbers differs from 2. The high-wave-
number structural responses exhibit a well-defined traveling-wave
behavior as noted in Section 3.1. In addition, for a tensioned beam,
a ratio different from 2 between the in-line and cross-flow excited
wavenumbers is expected, due to the non-linear dispersion rela-
tion that links excited frequencies and wavenumbers in vacuum
[9]. When such body vibrates within a current, the variability of
the effective added mass may modify the frequency/wavenumber
relation [16] and thus alter the phase difference drift. It should
be mentioned that even for a body characterized by a linear disper-
sion relation in vacuum, such as a tension-dominated structure,
the possible differences of effective added mass in the in-line and
cross-flow directions may induce a deviation from the wavenum-
ber ratio of 2 and thus result in a spanwise drift of the phase
difference.

4. Conclusions

The synchronization between the in-line and cross-flow vortex-
induced vibrations of a long tensioned beam placed in sheared cur-
rent has been studied by means of direct numerical simulation.
Two inflow velocity profiles and different body properties have
been employed to trigger three distinct types of structural re-
sponses: mono-frequency vibrations characterized by a single fre-
quency excited in each direction, and multi-frequency vibrations,
involving either a narrowband, or a broadband set of oscillation fre-
quencies. The change in the response spectral content is accompa-
nied by a modification of the spanwise pattern of wake-body
synchronization. The lock-in condition appears on the high-inflow
velocity side in the cases of mono-frequency and narrowband re-
sponses, resulting in high-wavenumber vibrations. In contrast, in
the broadband case, responses that include a wide range of spatial
wavenumbers are excited through a distributed occurrence of the
lock-in condition along the beam span. In all cases, the body exhib-
its mixed standing-traveling wave responses, while a frequency ra-
tio of 2 can be established between corresponding in-line and
cross-flow vibration components.

Two salient features of the in-line/cross-flow response synchro-
nization have been analyzed.

Within a lock-in region, corresponding in-line and cross-flow
vibration components have a phase difference angle that remains
in a well-defined range. For mono-frequency responses, this range
corresponds to counter-clockwise figure-eight orbits where the
structure moves upstream at the extrema of its cross-flow dis-
placement. The mechanism of phase-locking of the vibration com-
ponents under wake-body synchronization is found to extend to
the case of multi-frequency vortex-induced vibrations, including
the case of broadband responses, where both high and low wave-
numbers are excited: a Fourier expansion of the in-line and



cross-flow responses and the association of in-line to cross-flow
components with frequencies in the ratio of 2 to 1, allows the iden-
tification of a relative phase difference for each such pair; the
phase difference angle is contained within the same range as for
mono-frequency responses.

Along the beam span, a persistent drift is noted in the phase dif-
ference between corresponding in-line and cross-flow vibration
components, which present a frequency ratio of 2 and contain a
strong traveling-wave chararacter, i.e. the high-frequency and
wavenumber responses. The spanwise evolution of the drifting
phase difference is linearly determined by the difference between
the in-line excited wavenumber and a value equal to twice the
cross-flow excited wavenumber; no drift would be observed if
the in-line to cross-flow wavenumber ratio were exactly equal to
2. The departure from a wavenumber ratio of 2 can be attributed
to the non-linear dispersion relation of the tensioned beam; the
relation between excited frequencies and wavenumbers can be
also modulated by the variability of the effective added mass,
which may thus impact the spanwise drift.

The present results may have significant implications in the do-
main of applications, especially for the design of long flexible mar-
ine structures exposed to ocean currents. The phase-locking
mechanism of the in-line and cross-flow responses in the regions
of flow-induced excitation and the connection between the span-
wise drift of the phase difference, the occurrence of traveling-wave
vibrations and the response frequency/wavenumber relation may
be useful insights for the elaboration of VIV reduction strategies,
based on flow manipulation but also on optimized structural prop-
erties. In addition, the applicability of the same coupling mecha-
nisms, independently of the spectral content of the structural
responses, is an important finding for the development of semi-
empirical modeling approaches based on short-span rigid cylinder
hydrodynamic results and dedicated to VIV prediction and quanti-
fication of the associated fatigue damage.
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