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Abstract 
In this work, a flexible model, built from elementary modules, is developed for an 
industrial waste gasification process, in an industrial moving bed reactor located in 
Morcenx (France). This gasifier is able to treat more than 46,875 ton/year of RDF 
(Refused Derived Fuel) waste for producing 12 MW. Drying, pyrolysis, combustion / 
gasification and plasma polishing are used to convert waste directly into a synthesis gas 
composed of carbon monoxide and hydrogen. This synthesis gas is then used for 
producing electricity via gas engine. 
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1. Introduction 
The objective is to turn waste power potential into electricity with an environment 
friendly process. The gasifier is designed to treat 6.25 t/h of Refused Derived Fuel 
(RDF) waste for producing 12 MW. The three main steps of conversion of waste to gas 
and electricity are shown in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Main steps of the conversion of RDF waste to gas and electricity 
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We are interested in the second step of this scheme. Firstly the material system is briefly 
described. Then, the modeling approach of the three chambers of the gasifier is studied. 
Finally, some results on a case study, sensitivity analysis and conclusions are given. 

2. Material system 
The material system under consideration contains solids and gases. The main 
assumptions for modeling this material system are the following. 

2.1. Solids 
Three solids are considered in the model: the fuel part of the waste (FPW), the char and 
the ashes. The FPW constitutes the dry part of the waste, without ashes. It is defined 
from its atomic composition as an equivalent molecule:                       . The fundamental 
property of RPW is its Lower Heating Value (LHV). Although some correlations have 
been proposed for its estimation (Niessen, 2002, Higman and Van der Burgt, 2003, 
Riazzi, 2005, Pröll and Hofbauer, 2008, Antonini, 2003,) it is better to determine its 
value from experimental data. The char is the solid residue coming out pyrolysis. Its 
properties are assimilated to pure carbon. The percentage of carbon grows with the 
pyrolysis temperature and it is approximately 90% at 700°C (Nozahic, 2008). The soots 
are not taken into account. Finally, ashes that are the mineral part of the waste are taken 
into account only for mass and energy balances and are considered as chemically inert. 
The properties of ashes are assimilated to those of SiO2. 
 

2.2. Gases 
The gases under consideration are the following: 

• O2, N2 for the air feedstreams (drying, combustion and decarbonation 
sections); 

• Water for the waste and air moisture. Water is also a pyrolysis product; 
• H2, CO, CO2 that are combustion/pyrolysis/gasification products; 
• CH4 is also a pyrolysis product; 
• Tar is assimilated to a toluene/naphtalene mixture. 

Some gaseous pollutants are also considered in this study: NO, NO2, SO2 and H2S 
resulting from nitrogen and sulfur present in the waste. 

3. Gasifier Modeling  

The technology used by Europlasma for the waste gasification is confidential. It is a 
moving bed with three chambers. For modeling purposes, the gasifier is divided in five 
main sections, in agreement with the gasifier structure and the elementary physico-
chemical phenomena. The schematic representation of the gasifier model with all 
elementary components is presented on figure 2. The sections are the following:  

• Drying section (chamber 1) in which waste moisture is decreasing. 

• Flash pyrolysis section (chamber 2.1). This first step of the waste 
thermochemical transformation produces a gaseous phase, containing carbon 
monoxide, carbon dioxide, methane, hydrogen and water but also pollutants 
and tar and a solid phase, the char.   
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• Combustion/gasification section (chamber 2.2) of the char. Combustion is 
exothermic and is the energy source for balancing the endothermicity of 
gasification and pyrolysis. The plug-dispersion flow of the waste inside the 
gasifier chamber 2 is represented by a series of perfect mixing reactors 2.2.i. 

• Decarbonation section (chamber 3). In this last step, the residual char is almost 
totally gasified by supplementary air in order to respect environmental 
constraint of carbon content in waste ashes: mass fraction of C less than 3 %. 

• All gases produced in the three previous sections (pyrolysis, combustion / 
gasification and decarbonation) are then collected in the main chamber of the 
gasifier (chamber 2.3) where gas phase reactions, such as water gas shift, are 
occurring.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 2: Schematic representation of the gasifier model 
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The two main assumptions of the model are the adiabaticity of the whole gasifier and 
the absence of cracking reactions. This last one is justified by the fact that, by using 
plasma technology, all organics are then transformed into CO/H2 (see figure 1). 

Each section model is built from elementary standard modules of the ProSimPlus® 
simulator. As illustration, figure 3 shows the simulation diagram of the chamber 2 
where occur pyrolysis, combustion and gasification. The gasifier simulation diagram is 
obtained by aggregation of the sub-diagrams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 3: ProSimPlus® simulation diagram of the gasifier chamber 2 

 

The model fundamental parameters concerns pyrolysis and are the ratio of pyrolysed 
carbon, τ, and the composition of the pyrolysis gas. These parameters are estimated 
from thermogravimetric experimental data. 
 

4. Case study results 
For the case study, the mass composition of the fuel part of the waste (FPW) is the 
following: C: 0.657929, H: 0.091236, O: 0.248008, N: 0.00257, S: 0,000257. Taking 
into account the moisture and ashes, the waste formula is: 

CH1.6525O0.2830N0.0033S0.0001, 0.09636H2O, 0.05625SiO2 
The FPW lower heating value is estimated to 27330 kJ/kg. The waste total flowrate is 
6.25t/h. The characteristics of the air feeds for drying, combustion and decarbonation 
are respectively: 

- total flowrates: 4435, 9790 and 1000 Nm3/h 
- temperatures, after preheating: 360, 600 and 600°C 
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With these data, the temperature in the gasifier chamber 2, where take place pyrolysis, 
combustion and gasification, is 750 °C. The repartition of the head space incoming 
molar flowrates are shown in figure 4. Most of gas, 64 mol%, is produced by 
combustion / gasification. The contribution of pyrolysis gas is 29 mol% and 7 mol% is 
coming from decarbonation. 
 

 
 

Figure 4: Head space incoming molar flowrates 
 
Table 1 shows the results obtained by simulation. The IHP of the syngas is 
5157 kJ/Nm3. 
 
From sensitivity analysis, two model parameters appear essential in order to have a 
good representation of the gasifier operation: the waste LHV and the waste carbon 
conversion rate into pyrolysis gas. The first fixed the thermal power available while the 
second specifies the repartition between the exothermicity and endothermicity potential. 
Their balancing, to ensure the gasifier adiabaticity, determines the operating 
temperature of the gasifier. 
 

5. Conclusion 
In this paper, we have proposed an original approach for the modeling of an industrial 
gasifier. The gasifier model is built up in three steps: decomposition in elementary 
components associated to gasifier structure and physicochemical phenomena and 
definition of subsystems; build up of the ProSimPlus® simulation diagrams of the 
subsystems from standard modules; aggregation of the sub diagrams to obtain the whole 
gasifier model. The first results obtained are physically correct, allowing the use of the 
model as decision-making tool for process design and operation. Notably a sensitivity 
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analysis of the gasifier with respect to its operating parameters is currently underway. 
The final goal is to improve the efficiency of the waste conversion into electricity. 
Additional experimental tests related to waste characterization and their pyrolysis are 
scheduled for definitively validating the proposed model. 
 
 

 

Wet air out of 
drying section Syngas Ashes 

Total Flowrate   

Mass (kg/h) 6173 18743 932 

Mol (Nm3/h) 5013 18467 389 

Mass fractions   

Char (C) 0 0 0.03 

O2 0.2154 0 0 

N2 0.7094 0.5684 0 

H2O 0.0752 0.0123 0 

H2 0 0.0182  

CO 0 0.3288 0 

CO2 0 0.0512 0 

CH4 0 0.0158 0 

C7H8 0 0.0014 0 

C10H8 0 0.0019 0 

H2S 0 3.55 10-5 0 

SO2 0 6.67 10-5 0 

NO 0 7.17 10-4 0 

NO2 0 1.10 10-3 0 

Ashes 0 0 0.97 
 

Table 1: Simulation results 
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