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Distributed forcing of the flow past a blunt-based

axisymmetric bluff body

Thierry Jardin · Yannick Bury

Abstract In this paper we address the influence of a blowing/suction-type
distributed forcing on the flow past a blunt-based axisymmetric bluff body by
means of direct numerical simulations. The forcing is applied via consecutive
blowing and suction slots azimuthally distributed along the trailing edge of the
bluff body. We examine the impact of the forcing wavelength, amplitude and
waveform on the drag experienced by the bluff body and on the occurrence of
the reflectional symmetry preserving (RSP) and reflectional symmetry break-
ing (RSB) wake modes, for Reynolds numbers 800 and 1000. We show that
forcing the flow at wavelengths inherent to the unforced flow drastically damps
drag oscillations associated with the vortex shedding and vorticity bursts, up
to their complete suppression. The overall parameter analysis suggests that
this damping results from the surplus of streamwise vorticity provided by the
forcing, that tends to stabilize the ternary vorticity lobes observed at the aft
part of the bluff body. In addition, conversely to a blowing-type or suction-
type forcing, the blowing/suction-type forcing involves strong nonlinear inter-
actions between locally decelerated and accelerated regions, severely affecting
both the mean drag and the frequencies representative of the vortex shedding
and vorticity bursts.

1 Introduction

Recent studies have demonstrated that massively separated flows past bluff
bodies can be highly receptive to the excitation of specific flow instabilities.
As such, instability-based flow control strategies can lead to drastic modifi-
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cations of the flow topology [6,7], subsequently reducing aerodynamic loads,
mitigating airframe noise or enhancing gas mixing.

In their contribution to the Annual Review of Fluid Mechanics [4], Choi and
coworkers provide a comprehensive overview of flow control strategies on bluff
bodies and highlight how effective 3D forcing can be for the reduction of drag
of a 2D bluff body, when the forcing wavelength coincides with the wavelength
of the most receptive flow instability. The forcing wavelength can be imposed
through the geometrical modification of the bluff body along its spanwise
direction (passive control) or through the spatial distribution of steady or
pulsed jets (active control). The latter is referred to as distributed forcing.

[9] and [10] have emphasized the sensitivity of the flow past a circular cylin-
der to a continuously distributed steady forcing at wavelength close to mode A
wake instability. They observed a drastic reduction of the drag experienced by
the cylinder associated with the suppression of the von Kármán vortex shed-
ding. Similarly [8] have obtained conclusive outcomes for the drag reduction
of a 2D model vehicle.

According to these authors, the main reason for the distributed forcing
efficiency observed on 2D bluff bodies relies on the dislocation of nominally 2D
vortices into 3D structures. Since such efficiency appears to be closely linked
to the resulting tri-dimensionalization of the bluff body wake, an important
question arises: can distributed forcing still act as an efficient flow control
strategy for 3D bluff bodies?

In an attempt to answer this question, we numerically investigate the influ-
ence of distributed forcing on the flow past a blunt-based axisymmetric bluff
body. Indeed blunt-based axisymmetric bluff bodies exhibit complex three-
dimensional wake topology, driven by various instabilities that can be con-
sidered as relevant targets for the definition of instability-based flow control
strategies. These instabilities are associated with the occurrence of successive
wake modes as the Reynolds number is increased, namely the SS, RSP and
RSB wake states [1–3]. The SS state is known to be characterized by a ‘double
threaded’ wake composed of two counter-rotating streamwise vortical struc-
tures. The wake is steady and exhibits a streamwise planar symmetry whose
azimuthal position fixes randomly. As the Reynolds number is increased, the
‘double threaded’ wake evolves into unsteady hairpin structures, giving rise
to the RSP state. The latter may be characterized by periodic and aperiodic
vortex shedding that still preserve the wake planar symmetry. At even higher
Reynolds numbers, the planar symmetry is broken, leading to the RSB state,
and the wake exhibits a helical pattern due to the twisting of the hairpin
structures. The present study focuses on a length-to-diameter ratio L/D = 7
axisymmetric bluff body for Reynolds numbers 800 and 1000, spanning the
unsteady wake regimes RSP and RSB. A blowing/suction-type forcing is ap-
plied at the bluff body trailing edge and the influence of the forcing amplitude,
wavelength and waveform is analysed.



2 Numerical methods

The three-dimensional time-dependent incompressible Navier-Stokes equations
around a blunt-based axisymmetric bluff body are directly solved using a fi-
nite volume method. The bluff body is similar to that used in [3,11,12]. It
consists in a 1:4 semi-elliptic nose and a cylindrical aft section of diameter D.
The Reynolds number, based on D and on the free stream velocity U∞ ranges
from 800 to 1000. In the cartesian reference frame (O, x, y, z) the equations
read:

∇.v = 0 (1)

∂v

∂t
+ (v.∇)v = −

1

ρ
∇p+ ν∇2v (2)

Here v is the velocity, p the pressure, ρ and ν the fluid density and kine-
matic viscosity respectively.

The bluff body is enclosed in a cylindrical computational domain of diam-
eter 20D and length 55D aligned with the free stream direction x (figure 1).
The coordinates’ origin O is located at the nose tip of the body, corresponding
to the stagnation point. The inlet boundary is located at x/D = −8 and is
subjected to a velocity Dirichlet condition. A similar condition is imposed on
the tubular surface of the computational domain. A zero diffusion flux condi-
tion is prescribed at the outlet boundary located at x/D = 47. The surface of
the blunt-based axisymmetric bluff body is modelled as non-slip surface. The
blowing and suction forcing is applied at the bluff body trailing edge, normally
to the body surface, through a 0.085D wide circumferential belt (figure 2). The
latter is subjected to the following velocity Dirichlet condition:

Ur = αU∞ × ξ(2πθ/λθ) (3)

where α and λθ are the forcing amplitude and azimuthal wavelength respec-
tively. θ refers to the azimuthal position in cylindrical coordinates (O, r, θ, x).
ξ() is a mathematical function that either stands for sin() or sgn(sin()), gener-
ating sine or square-type waveforms. In addition, the blowing or suction phases
of the sine waveform can be turned off (an illustration of the waveforms is given
in §3.2, figure 9). For each forcing case, forcing is applied once the unforced
flow is fully established, at time unit t+ = tU∞/D = 175.

The domain is composed of 2 × 106 hexahedral cells. The spatial and
temporal discretizations are achieved using second-order upwind schemes and
second-order implicit time-stepping method respectively. A semi-implicit iter-
ative algorithm is employed for the pressure-velocity coupling. The time step is
fixed in order to satisfy the CFL condition (maximum Courant Number below
unity). A 175 time unit simulation results in a typical computation time in the
order of 188 hours on a HP xw4600 workstation equipped with two Intel Core
2 Duo processors running at 2.93GHz. Note that halving the computation time
step increases the computation time by 70%.
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Fig. 1 Computational domain.
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Fig. 2 Location of the distributed forcing (dark) on the trailing edge of the bluff body and
illustration in the (y, z) plane of the azimuthal sine-type waveform at wavelength λθ = 2π/1,
2π/2, 2π/3, 2π/4 and 2π/5, from left to right (blue circle depicts the trailing edge section.
+ and − symbols indicate regions of blowing and suction respectively).

Further simulations were carried out to ensure that the results are inde-
pendent of the number of cells, the time step and the relative position of the
boundary conditions. In particular, tests on the position of the tubular and out-
let surfaces of the computational domain ensured that any reflecting-boundary
issues disrupt instability occurrence. Besides, simulations using comparable
settings have already shown the ability to accurately predict wake transitions
past axisymmetric bluff bodies [1,3,13].

3 Results

In this section we investigate the influence of the forcing wavelength λθ, ampli-
tude α and waveform ξ on the drag coefficient CD experienced by the axisym-
metric bluff body. To this avail we take advantage of the mechanistic analysis
of the unforced case proposed in [3].

At Re = 800, the wake of the axisymmetric bluff body exhibits stream-
wise vortical structures, referred to as the primary lobes, periodically shed at
a normalized frequency Sta = faD/U∞ ≈ 0.12 (figure 3(a)). The latter are
distributed on both sides of a randomly fixed plane of symmetry (also visible
on figure 6), typical of the RSP state. The vortex shedding is modulated by
the occurrence of a secondary instability at Stb = fbD/U∞ ≈ 0.02 responsible
for the periodic discharge of the ternary lobes and the concomitant vorticity
bursts observed on figure 3(b). While the impact of the vortex shedding on
the bluff body drag fluctuations is barely visible on the time history of the
drag coefficient whose mean value C̄D ≈ 0.675, vorticity bursts induce signif-
icant CD amplitude oscillations, of the order of ∆CD ≈ 0.02, at normalized
frequency Stb (plain line on figure 5). In addition, [3] brought to the fore the
inception of chaos, characterized by intermittent restabilizations of the wake
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Fig. 3 Iso-surfaces of normalized streamwise vorticity ω+ = ωD/U∞ = ±0.04 (dark: pos-
itive, light: negative; upper line: side view, lower line: upper view) illustrating (a) vortex
shedding and (b) vorticity bursts at Re = 800.
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Fig. 4 Iso-surfaces of normalized streamwise vorticity ω+ = ωD/U∞ = ±0.03 (dark: pos-
itive, light: negative; upper line: side view, lower line: upper view) illustrating (a) wake
twisting and (b) ‘apparent’ reflectional symmetry at Re = 1000.

and concomitant drag damping. Nonetheless the latter observations require
very long-term computations and will thus not be addressed here.

At Re = 1000, the planar symmetry is broken. The onset of the helical
mode intermittently promotes the wake twisting representative of the RSB
state. The wake topology then consists in a succession of phases of ‘apparent’
reflectional symmetry, wake twisting and dramatic reorientation of the ‘appar-
ent’ reflectional symmetry (figure 4). In addition, vortex shedding, vorticity
bursts and intermittent restabilizations still persist beyond the bifurcation to
the RSB state. The aperiodic reorganizations of the wake occur in conjunction
with the intensification of the erratic fluctuations of the drag experienced by
the bluff body, that superimpose with the periodic oscillations resulting from
the vortex shedding and vorticity bursts, around the mean value C̄D ≈ 0.604.

3.1 Influence of the forcing wavelength

3.1.1 Re = 800

Figure 5(a) displays the time history of the drag coefficient CD for five distinct
wavelengths λθ ranging from 2π/1 to 2π/5 at Re = 800. Here the forcing
amplitude α is fixed to 0.1 and the forcing waveform ξ is a sine function.
For the most representative forcing cases, normalized streamwise vorticity ω+

contours at cross-sections located at the base and 1D downstream of the bluff
body are illustrated on figure 6.
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Fig. 5 Time history of the drag coefficient CD as a function of the forcing wavelength λθ at
Re = 800 (a) and Re = 1000 (b). — unforced; – – λθ = 2π/1; · · · λθ = 2π/2; × λθ = 2π/3;
· · · λθ = 2π/4; + λθ = 2π/5.

At λθ = 2π/1 the forcing is characterized by a plane of symmetry, directed
along (x, y), on which the wake plane of symmetry ends up coinciding. Figure
6 shows that the vorticity lobes are symmetrically distributed on both sides
of the (x, y) plane. Their associated vorticity levels are significantly enhanced
in comparison with those observed for the unforced case, due to the sine-type
waveform of the forcing that locally adds streamwise vorticity in the aft portion
of the bluff body (illustrated on figure 9). Interestingly, this tends to fix the
ternary lobes and mitigate their discharge in the wake. A striking consequence
is the annihilation of the large amplitude/low frequency (Stb ≈ 0.02) oscilla-
tions of the drag coefficient experienced by the bluff body (figure 5(a)). The
latter, whose mean value noticeably increases compared to the unforced case,
up to C̄D ≈ 0.698, is now driven by the primary instability associated with the
vortex shedding. Yet the shedding frequency Sta is shifted to Sta ≈ 0.16 and
modulated at a normalized frequency Sta/2. This subharmonics reveals the
periodic variation of intensity between two successive counter-rotating primary
lobes, present in the unforced case [1,3] but further amplified by the assymetry
of the λθ = 2π/1 sine-type forcing relatively to the (x, z) plane.

The λθ = 2π/2 sine-type forcing has an even more dramatic effect on the
drag experienced by the bluff body, as revealed by the complete inhibition of
drag oscillations observed on figure 5. The mean drag coefficient slightly de-
creases compared to the previous case and fixes to C̄D ≈ 0.694. Concomitantly
one can observe the destructuration of the wake primary lobes, in the sense
of the loss of planar symmetry, clearly visible on ω+ cross-section located 1D
downstream of the bluff body base (lower line of figure 6).

While a similar trend is noticed on the damping of the drag oscillations
at λθ = 2π/3, the wake recovers a planar symmetry whose orientation fixes
on one of the forcing planes of symmetry. Therefore, and conversely to what
has been observed for the distributed forcing of nominally 2D wakes [9], one
might not expect a direct causal connection between the wake destructuration
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Fig. 6 Iso-contours and iso-lines of normalized streamwise vorticity (plain line: ω+ = 0.02,
dashed line: ω+ = −0.02) at the base (upper line) and 1D downstream (lower line) of the
bluff body, at Re = 800.
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Fig. 7 Iso-contours and iso-lines of normalized streamwise vorticity (plain line: ω+ = 0.01,
dashed line: ω+ = −0.01) at the base (upper line) and 1D downstream (lower line) of the
bluff body, at Re = 1000.

and the annihilation of the drag oscillations in the case of an axisymmetric 3D
bluff body.

At this stage, the further decrease of the forcing wavelength tends to re-
store the main characteristics of the unforced wake. As such, the mean drag
coefficient C̄D is reduced from 0.684 for λθ = 2π/3 to 0.682 for λθ = 2π/4
and 0.679 for λθ = 2π/5. In parallel, drag oscillations associated with vortex
shedding and vorticity bursts manifest anew at λθ = 2π/4 with Sta ≈ 0.14



and λθ = 2π/5 with Stb ≈ 0.03 respectively, while still preserving the wake
planar symmetry (not shown here for sake of conciseness). Those Strouhal
numbers differ from those reported for the unforced flow, due to the successive
blowing and suction regions that locally affect the separation of the flow. The
upstream flow tends to accelerate when approaching a suction region while
it decelerates and experiences earlier separation when approaching a blowing
region. As a consequence the global shedding process is affected by nonlinear
interactions between locally accelerated or decelerated flow regions.

3.1.2 Re = 1000

Figure 5(b) depicts the influence of the forcing wavelength on the drag coef-
ficient CD at Re = 1000. Although the modal signature of the unforced wake
differs from that at Re = 800, through the onset of the helical mode and the
amplification of the chaotic state, the impact of the forcing on the temporal
evolution of CD at Re = 1000 exhibits strong similarities with that obtained
at Re = 800. As such 1) the forcing at λθ = 2π/1 still annihilates the large
amplitude/low frequency oscillations of the drag coefficient, associated with
the vorticity bursts; 2) the forcing at λθ = 2π/2 and λθ = 2π/3 damps the
remaining drag coefficient oscillations associated with the vortex shedding; 3)
the further decrease of the forcing wavelength down to λθ = 2π/5 tends to
restore the drag oscillations resulting from the vortex shedding and vorticity
bursts. Here again the Strouhal number associated with the vorticity bursts
is shifted (e.g. Stb ≈ 0.05 for λθ = 2π/5 while Stb ≈ 0.02 for the unforced
flow), still denoting the impact of interacting blowing and suction regions on
the global shedding process.

Besides the progressive mitigation of the periodic oscillations of the drag
coefficient experienced by the bluff body, when decreasing the wavelength from
λθ = 2π/1 to λθ = 2π/4, spotlights the erratic drag fluctuations intrinsic to
the chaotic unforced flow at Re = 1000. Note that the forcing at Re = 800
fully suppresses these erratic fluctuations, underlying the weakness of nascent
chaos at this flow regime, i.e. slightly above Re = 790 [3]. At this point it is
worth touching on the λθ = 2π/3 forcing case. Indeed the overall comparison
reveals the particular sensitivity of the drag to this wavelength as it suppresses
most of the drag fluctuations, including the erratic ones, for both Re = 800 and
Re = 1000. For the latter a further highlight is the recovery of the wake planar
symmetry (figure 7) associated with the suppression of the helical mode.

3.1.3 Discussion

The above analysis clearly demonstrates the special receptivity of the flow,
and of the resulting drag experienced by the bluff body, to the forcing at
wavelength λθ = 2π/2, and to a larger extent at wavelength λθ = 2π/3. The
receptivity of the flow to the forcing at λθ = 2π/2 has to be set against the
periodic observation of an azimuthal organization of the ternary lobes following
a wavelength of 2π/2. This pattern appears subsequently to the discharge of
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Fig. 8 Iso-contours and iso-lines of normalized streamwise vorticity (plain line: ω+ = 0.01,
dashed line: ω+ = −0.01) at the base of the bluff body, for (a) Re = 800 and (b) Re = 1000.

the ternary lobes, associated with the vorticity bursts. It is illustrated in figure
8 in terms of contours of streamwise vorticity at the base of the bluff body for
both Re = 800 and Re = 1000, as two pairs of counter-rotating ternary lobes
(and two pairs of secondary lobes) distributed along the circumference of the
trailing edge.

It is noticeable that a similar relationship between the receptivity of the
flow to the forcing at wavelength λθ = 2π/1 and the presence of an intrin-
sic instability of characteristic wavelength 2π/1, that manifests through the
transition of the unforced flow to the SS state [1,3,5], can be brought to the
fore.

Conversely, despite the striking receptivity of the flow to the forcing at
wavelength λθ = 2π/3, the investigation of the unforced flow at both Re = 800
and Re = 1000 did not reveal the presence of a characteristic wake pattern
associated with a wavelength of 2π/3. However, if one considers that the effi-
ciency of the distributed forcing at a given wavelength λθ is associated with the
presence of an intrinsic instability characterized by the same wavelength λθ,
then one can expect the λθ = 2π/3 instability to be inherent to the flow, still
latent, and prompt to emerge at higher Reynolds numbers. This hypothesis
can be related to the conclusion of [9] on the distributed forcing of the flow past
a 2D circular cylinder. In this work the authors have demonstrated that the
flow response to a distributed forcing is optimal when the forcing wavelength
matches the mode A characteristic wavelength, even for low Reynolds numbers
where the flow has not yet undergone the transition to this three-dimensional
mode.

3.2 Influence of the forcing amplitude and waveform

In this last section we briefly address the influence of the forcing amplitude
and waveform on the drag coefficient. To this avail we focus on the distributed
forcing at wavelength λθ = 2π/3 for which the flow has shown to be the most
receptive. The analysis relies on time histories of the drag coefficient. For sake
of conciseness the contours of streamwise vorticity downstream of the bluff
body are not shown as they do not highlight new flow features and are similar
to that previously observed on figure 6 at λθ = 2π/3.

In a first step the forcing amplitude α is varied from 0 (unforced flow)
to 15% of the free stream velocity. Figure 10(a) shows that the large ampli-
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Fig. 9 Illustration of the sine, positive sine, negative sine and square waveforms at wave-
length λθ = 2π/3, from left to right. Circular arrows, given as an example for the sine
waveform, indicate maxima of forcing-induced streamwise vorticity (direction of the arrows
indicates its sign), at the inflection points of the forcing signal.

tude/low frequency drag oscillations associated with the vorticity bursts are
progressively damped as the forcing amplitude is increased, up to their sup-
pression at α = 7.5%. At this stage the drag oscillations associated with the
vortex shedding are still visible, though strongly mitigated. The latter are
eventually annihilated as α exceeds 10%. In parallel the mean drag coefficient
increases with α. This might be attributed to a streamwise vorticity surplus
promoted by larger azimuthal gradients of radial velocities in the forcing region
(shown for illustrative purposes on figure 9).

Figure 10(b) shows the impact of the forcing waveform ξ on the drag history
of the bluff body. Here ξ successively stands for a sine, positive sine (blowing
is active, suction is turned off), negative sine (blowing is turned off, suction is
active) and square function (see figure 9 for an illustration of the waveforms).
For ξ defined as a positive sine, the forcing does not fundamentally alter the
drag coefficient history. The drag oscillations, primarily induced by the vor-
ticity bursts, display similar amplitudes to that of the unforced case, despite
a slight increase of the normalized frequency Stb. Furthermore the mean drag
coefficient C̄D remains roughly unchanged. In contrast, for ξ defined as a nega-
tive sine, the impact of the forcing significantly alters the signature of vorticity
bursts as large amplitude oscillations vanish, highlighting the residual small
amplitude oscillations associated with the vortex shedding. In addition the
mean drag coefficient is slightly reduced, down to C̄D ≈ 0.672.

Finally, while 1) blowing alone has no significant effect on the drag history
experienced by the bluff body and 2) suction alone both alters drag oscillations
and mean value, intriguingly, combining both blowing and suction into a pure
sine-type forcing completely suppresses the drag oscillations and increases the
mean drag up to C̄D ≈ 0.684. These observations once again suggest the
nonlinear coupling effects between locally decelerated and accelerated regions
associated with blowing and suction respectively. They also emphasize the
role of forcing-induced streamwise vorticity, enhanced for the sine and square-
type waveforms in comparison with the sole use of blowing or suction, on the
stabilization of the ternary lobes.

4 Conclusion

In this work we have investigated the influence of a distributed forcing on
the flow past a blunt-based axisymmetric bluff body of length-to-diameter
ratio L/D = 7 at Re = 800 and Re = 1000. The forcing has been applied
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Fig. 10 Time history of the drag coefficient CD as a function of (a) the forcing amplitude
α and (b) the forcing waveform ξ, for λθ = 2π/3 at Re = 800. ξ is a sine function in (a)
and α is fixed to 10% in (b). In (a): — unforced; ·– α = 2.5%; – – α = 5%; · · · α = 7.5%;
× α = 10%; + α = 15%. In (b): — unforced; · · · positive sine; – – negative sine; × sine; +

square.

via consecutive blowing and suction regions azimuthally distributed along the
trailing edge of the bluff body. We have examined the impact of the forcing
wavelength, amplitude and waveform on the drag experienced by the bluff
body and on the occurrence of the reflectional symmetry preserving (RSP)
and reflectional symmetry breaking (RSB) wake modes.

In a first step we bring to the fore the efficiency of the blowing/suction-
type forcing at wavelength λθ = 2π/1 in annihilating the large amplitude/low
frequency drag oscillations induced by the periodic vorticity bursts, and at
wavelength λθ = 2π/2 in drastically damping both the large amplitude/low
frequency drag oscillations and the low amplitude/high frequency oscillations
induced by the vortex shedding. Furthermore the λθ = 2π/2 forcing is shown
to locally break down the reflectional symmetry typical of the unforced flow at
Re = 800. In light of the fact that such wavelengths are identified as inherent
to the unforced flow, the λθ = 2π/1 and λθ = 2π/2 forcing efficiency suggests
the special receptivity of the flow to a forcing wavelength that matches intrinsic
wavelength. Interestingly enough, it is revealed that forcing the flow at λθ =
2π/3 has an even more dramatic effect on the drag history experienced by
the bluff body since it also alleviates the erratic fluctuations typical of the
chaotic regime above Re = 790. At Re = 1000 this effect is concomitant to
the recovery of the planar symmetry of the wake, i.e. to the suppression of the
helical mode. Following the previous argumentation, one can thus presuppose
the λθ = 2π/3 instability to be inherent to the flow, still latent, and prompt
to emerge at higher Reynolds numbers. Finally the decrease of the forcing
wavelength down to λθ = 2π/5 tends to restore the main properties of the
unforced flow.

In a second step the overall parameter analysis demonstrates that the
blowing/suction-type forcing acts in lieu of fluidic vortex generators through
the production of a streamwise vorticity surplus that tends to stabilize the
ternary vorticity lobes observed at the aft part of the bluff body. Such forcing



further involves strong nonlinear interactions between locally decelerated and
accelerated regions, severely affecting both the mean drag and the frequencies
representative of the vortex shedding and vorticity bursts.
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