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Taylor–Couette flows between two concentric cylinders have great potential applications in chemical engineering.

They  are particularly convenient for twophase small scale devices enabling solvent extraction operations. An exper

imental  device was designed with this idea in mind. It consists of two concentric cylinders with the  inner one rotating

and  the outer one fixed. Moreover, a  pressure driven axial flow can be superimposed. Taylor–Couette flow is known

to  evolve towards turbulence through a  sequence of successive hydrodynamic instabilities. Mixing characterized by

an  axial  dispersion coefficient is extremely sensitive to these flow bifurcations, which may lead to flawed modelling

of  the coupling between flow and mass transfer. This particular point has been studied using experimental and

numerical  approaches. Direct numerical simulations (DNS) of the flow have been carried out. The effective diffusion

coefficient  was estimated using particles tracking in the  different Taylor–Couette regimes. Simulation results have

been  compared with literature data and also with our own experimental results. The experimental study first con

sists  in visualizing the vortices with a small amount of particles (Kalliroscope) added to the fluid. Tracer residence

time  distribution (RTD) is used to  determine dispersion coefficients. Both numerical and experimental results show

a  significant effect of the flow structure on the  axial dispersion.
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1. Introduction

Annular centrifugal contactors based on Taylor–Couette

flow geometry have a  great potential in chemistry, met

allurgy  and, since the prior works of Davies and Weber

(1960), in  the nuclear industry where they are  particularly

suitable for smallscale studies of solvent extraction pro

cesses.

Since  the work of Taylor (1923), Taylor–Couette flow has

been  extensively studied due to its nonlinear dynamics. It is

a widely studied flow, known to evolve towards turbulence

through a  sequence of successive instabilities as the inner

cylinder  rotation rate increases.

Beyond a critical speed of the rotating cylinder, pure

azimuthal Couette flow results in the formation of toroidal

vortices, called Taylor vortex flow (TVF). This critical condi

tion  is expressed by the Taylor number (Ta) or equivalently
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by the Reynolds number (Re) based on the gap width

e,  the inner cylinder linear velocity ˝Ri and the fluid

viscosity �. At higher Reynolds numbers a  secondary insta

bility  causes the flow to  become timedependent due

to  the appearance of an azimuthal wave (deformation

of the vortices). This flow state, known as wavy  vortex

flow  (WVF), is characterized by: an axial wave  number

n  (or alternatively a mean axial wavelength �) and an

azimuthal wave  number noted m.  As Re further increases,

the  wavy  flow becomes increasingly modulated by addi

tional  frequencies (MWVF) and eventually becomes turbu

lent.

These  flow instabilities have been the topic of many

studies (Coles, 1965; Fenstermacher et al., 1979). Such flow

patterns  provide high values of heat and mass transfer

coefficients, which explains why some important industrial

operations (emulsion polymerization, heterogeneous catalytic
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Nomenclature

Notation

Dx dispersion coefficient (cm2 s−1)

D∗x effective dispersion coefficient

e  gap width

f  temporal dominant frequency of the travelling

wave  (s−1)

f′ frequency of modulation (s−1)

G  normalized torque

H  annulus height

m  azimuthal wave  number

n  axial wave  number

Re outer cylinder radius

Re  =  (˝Rie)/� Reynolds number

Reax = (uxe)/� axial Reynolds number

Rec critical Reynolds number

Ri inner cylinder radius

Sc  =  �/Dx dispersion based Schmidt number

Tc duration of a  rotor complete rotation (s)

Ta =  Re
√

e/Ri Taylor number

Vϕ angular speed of travelling wave  (rad s−1)

 ̋ rotational rate for the rotor

�  radius ratio (Ri/Re)

  aspect ratio (H/e)

�  axial wavelength

�f density (kg m−3)

�  dynamic viscosity (Pa s−1)

�  kinematic viscosity (m2 s−1)

DNS direct numerical simulation

MWVF  modulated wavy  vortex flow

PIV particle image  velocimetry

RTD residence  time distribution

TVF  Taylor vortex flow

WVF  wavy  vortex flow

reactions, and  liquid–liquid extraction) can take advantage of

Taylor–Vortex  equipment.

When  a weak axial flow is superimposed upon

Taylor–Couette flow (PTC, Poiseuille Taylor Couette),

axial motion of the Taylor vortices transports the cellu

lar  vortices wherein toroidal motion of fluid elements

yields efficient mixing. Such a flow system can be  con

sidered as a nearideal plugflow reactor (PFR). Many

researchers have investigated the axial dispersion in

Taylor–Couette flows (Tam and Swinney, 1987; Moore and

Cooney,  1995; Desmet et  al., 1996; Campero and Vigil, 1997;

Ohmura et al., 1997; Rudman, 1998). Experimental obser

vations  referenced in the literature (Tam and Swinney,

1987; Ohmura et al.,  1997) indicate that axial dispersion

decreases to  a minimum near the onset of Taylor vor

tices  and increases further as  the Taylor number (Ta)

increases.

The  present study was  carried out in the general

context of the application of Taylor–Couette flow for

liquid–liquid extraction and particularly for the extrac

tion of  nuclear waste (uranium, plutonium) from spent

nuclear fuels. We focus on the mixing properties of

the  single phase flow. The flow bifurcations as well

as  the axial dispersion in the Taylor–Couette appara

tus were  studied using both experimental and numerical

approaches.

Table 1 – Apparatus geometry and operating conditions.

Parameters First prototype Second prototype

Rotor radius (Ri) 8.5 mm 24 mm

Shaft radius (Re) 10  mm 35 mm

Gap  width 1.5 mm 11 mm

Radius ratio (�) 0.85 0.68

Length (H)  720 mm 640 mm

Aspect  ratio (  ) 480 58

Rotation speed 80–1600 rpm 4–1000 rpm

Re  range (water) 107–2136 111–27,646

2.  Methodology

2.1.  Experimental  methods

2.1.1.  Description  of the  apparatus

The device consists of two concentric cylinders with the inner

cylinder  rotating (the outer cylinder is fixed) and with the

possibility of superimposing a  pressure drivenflow in the

axial  direction. Two geometrical configurations are used in  this

study (Table 1).

•  The first one was  designed to study the  mixing perform

ances with a minimum volume of fluid. This first device is

therefore  characterized by a  small gap width e = 1.5 mm.

•  The second prototype, with a larger gap width, e = 11 mm,

was  designed for specific optical investigations (PIV, PLIF).

The  main features of the experimental device are shown in

Fig.  1.

As  the flow state is strongly dependent on the flow history,

a  speed control system was  used. A  ramp generator controls

the  rotor acceleration during transient evolution to the desired

Fig. 1  – Schematic presentation of the apparatus (� = 0.85).



              

Table 2 – Fluids properties for “visualization” and RTD
experiments.

Fluid Density (kg m−3)  Viscosity (Pa s)

Kalliroscope solution 1000  1.4 × 10−3

Nitric acid 0.5  N 1018  9.7 × 10−4

Solvent (TBP 30% in TPH)  826 1.5 × 10−3

Reynolds number. Indeed, for the same Reynolds number, Re,

and  using different acceleration ramps provides various flow

states.  Therefore, a  given wave  state is established by following

a  prescribed startup protocol, as  determined by the flow visu

alization  technique (see Section 2.2.1). This procedure ensures

reproducibility of the measurements.

2.1.2.  Measurement  techniques

The flow pattern was  visualized using an aqueous solution

seeded with Kalliroscope AQ1000 flakes. These particles con

sist of small, light reflecting slabs which align themselves

along streamlines. Using a highspeed camera, the different

transitions can be visualized. In order to fully characterize the

different  wavy  regimes, a spectral analysis of the data was

performed  to determine the wave  state (axial and azimuthal

wave  numbers).

Axial dispersion in  single phase flow was  investigated with

two  different liquids: an  organic phase (TBP 30% in TPH) and

an  aqueous phase (0.5 N, HNO3). The fluids properties are sum

marized  in Table 2.  Tracer experiments were performed by

placing  optical sensors at the top and bottom of the column.

The  annular cavity was  then filled with the appropriate fluid

and  the tracer (methylene blue or Sudan red) was  injected

through a specific orifice. The coloured tracer dispersion was

monitored  online with a  spectrometer mounted onto a CCD

sensor.  All experimental conditions were  set to be within the

linear  range of the Beer–Lambert law (tracer concentration is

proportional to its absorbance). Once normalized, the curve of

absorbance  gives direct access to the residence time distribu

tion  (RTD).

Most  models of axial mixing in  singlephase

Taylor–Couette flow are  based on a diffusion equation. Alter

natively,  stirred tanks in  series can model tracer response

curves. Both modelling approaches can be used to determine

the  effective axial dispersion coefficients by matching model

prediction  to  experimental results (Tam and Swinney, 1987).

However,  even for singlephase systems, simple models are

not always suitable, especially at Taylor numbers below the

onset  of turbulent Taylor vortex flow (Desmet et al.,  1996;

Campero and Vigil, 1997). In this paper, mathematical models

based  on species mass balances applied to  a nearideal plug

flow  reactor are used. Numerical fitting between experimental

tracer response curves (RTD) and mathematical models lead

to  a  dispersion coefficient estimate (see Fig. 2).

2.2. Numerical  methods

2.2.1.  Direct  numerical  simulations  of  the  carrying  flow

In the present study, direct numerical simulations (DNS) was

carried  out with the JADIM finite volume code developed at

IMFT.

The  fluid is considered incompressible and Newtonian with

constant  physical properties. The governing Navier–Stokes

equations are then written:

∇ · u = 0 (1)
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Fig. 2  – Dye tracer experiments: input (green) and output

(black)  signals and output signals model by either plug flow

with  axial dispersion model (red) or tanks in series  model

(blue).  (For interpretation of the references to colour in this

figure  legend, the reader is referred to the web version of

the  article.)

�f

(

∂u

∂t
+  u ·  ∇u

)

=  −∇P + ∇.
[

�
(

∇u + ∇
T
u
)]

(2)

where �f is  the fluid density and �  the dynamic viscosity.

The Navier–Stokes equations were solved using a

velocity–pressure formulation (2) and were discretized

on a  staggered nonuniform grid, using a  centred second

order scheme. The time integration was achieved through a

thirdorder Runge–Kutta scheme and a  secondorder implicit

Crank–Nicolson scheme for the viscous terms.

The geometry is  described in Fig. 3. The radius ratio is

�  = Ri/Re, the height of the numerical domain is  L  = 3� (where

the  axial wavelength is correlated with the gap width from

�  = 2e to  � = 2.29e depending on the Re  value) so three axial

wavelengths were  simulated. Periodic boundary conditions

were  used in the axial direction. Finally, the  domain length

Fig. 3 – Computational domain.



Fig. 4 – Mesh grid  (plane xy).

L was varied in order to study the influence of the axial wave

length  �.

All  simulations were carried out using dimensionless units.

All  flowrelated quantities were scaled using the outer cylinder

radius  Re and the reference velocity ˝Ri where  ̋ is the rotation

rate  of the inner cylinder. This yields Ri = �, Re = 1 and ˝Ri = 1. A

uniform  mesh was  used in  the axial and azimuthal directions.

The  grid was  stretched in the  radial direction to better describe

the  boundary layers near the walls (Fig. 4).

To quantify axial dispersion, the method proposed by

Rudman  (1998) was  applied. An “effective particle diffusion

coefficient”, based on the chaotic advection of a large num

ber  of fluid particles, was  derived from Lagrangian transient

simulations. An axial dispersion coefficient was  defined by

Eq.  (3). Those particles were  advected by the carrying fluid

flow.  Transport within vortices supplemented by intervortex

mixing  resulted in  enhanced axial dispersion.

D∗x = lim
t→∞

D∗x(t) = lim
t→∞

{

1

N

∑

i

〈

(xi(t) − xi(0))2
〉

2t

}

(3)

In  Eq. (3) xi(t) is  the axial position of the ith particle at time

step  t, xi(0) its initial position (both x  and t  are dimensionless)

and N the total number of particles seeded in  the flow.

A  large number of particles (1000–10,000) are randomly

seeded throughout the computational domain, and their tra

jectories  are tracked over time. The instantaneous value of D∗x
increases with time until it reaches a plateau value indicative

of  longtime diffusive axial mixing (Fig. 5). The dimen

sional (or “effective”) dispersion coefficient, Dx is obtained by:

Dx = (�ReD∗x)/(1 − �). Mixing property can be compared with

momentum diffusion through the dispersion based Schmidt

number defined as  Sc = �/Dx.

Particles trajectories illustrate the different transport

mechanisms: within vortex or between neighbouring vor

tices  (see Fig. 6). Intravortex mixing is due to the chaotic

Fig. 5 –  Effective dispersion coefficient evolution with time.

Fig. 6  – Particles positions in the computational domain

(top).  Example of a particle path (bottom).

particle paths induced by the threedimensional velocity

fields. Intervortex transport occurs when the waves  induces

fluid  exchange through neighbouring vortices. The combi

nation  of these two mechanisms results in enhanced axial

dispersion.

2.2.2.  Note on  axial  flowrate  effect

RTD measurements are carried out with a  weak axial Poiseuille

flow.  In Fig. 7, it is clear that the axial dispersion coefficient

is  only weakly influenced in this range of  axial mean flow

rate.  Moreover, we have carried out several simulations with

and  without axial flow of the same magnitude as in experi

ments. Since no significant deviation of the flow patterns was

observed  for a  flow rate Qax lower than 300 ml  h−1, the effect

of  axial flow was assumed to be negligible. The axial flow is

not  taken into account for the numerical simulations coupled

to  Lagrangian particle tracking.

3.  Results  and  discussion

3.1.  Flow  characteristics  from  experiments

The different flow regimes have been identified by an experi

mental  visualization technique described in Section 2.1.2. For

the two configurations studied (e = 1.5 mm and e = 11 mm) all

flow  transitions were identified. Fig. 8 shows the visualization

Fig. 7  – Evolution of the dispersion coefficient as a function

of  Re for different axial flow rate Qax (� = 0.85).



Fig. 8 – Illustration of different flow regimes (�  = 0.85). (a) Visualization of experiments and (b) numerical simulations.

Table 3 – Summary of the flow characteristics for device geometry #1 (� = 0.85).

Flow regimes Re of transition Flow characteristics

Taylor vortex flow (TVF) Rec = 125 �  = 2.01e

Wavy vortex flow (WVF)  1.32Rec < Re  < 5.44Rec �  = 2.19e to 2.61e, m = 2 to 8

Modulated wavy vortex flow (WVF) 5.44Rec < Re  < 9.2Rec �  = 2.63e to 3.1e, m = 4 to 7

Turbulent flow Re  >  9.2Rec �  > 3.1e

of the flow structure at five different Re  numbers. The first

flow  bifurcation (TVF) occurred near Rec = 125 for the geome

try  � =  0.85. This value is  in  agreement with transition point

predicted  by Rudman (1998) and Coles (1965) of Rec = 119. For

the  second geometry � = 0.68, the transition Reynolds number

Rec was  estimated at 79  which is also in agreement with the

literature  (Takeda et al., 1990). The WVF regime was  observed

for  Re larger than 1.32Rec and 4.9Rec respectively for the first

and  second configuration. All the characteristic of further flow

transitions  are summarized in Tables 3 and 4. In order to fully

characterize the  different wavy  regimes, a spectral analysis

of  the image  sequences is achieved. Space–time plots were

generated by extracting single lines of pixel intensity at a par

ticular  spatial location. Then 2D fast Fourier transforms (FFT)

of  the resulting space time plots were performed. Character

istic  frequency of the travelling wave  (denoted f) is extracted

from  the temporal power spectrum. In fact, the formation of

wavy  vortex flow yields a  wellidentified temporal frequency

and its harmonics. Fig. 9(b) shows the power spectrum cor

responding to travelling wave  at Re = 1192. The most energetic

frequency  peak corresponds to f.  For wavy  regimes space–time

diagrams give access to the angular velocity (phase speed) of

the  travelling wave noted Vϕ.  It corresponds to the slope of

the  curves seen on space–time diagrams (see Fig. 9(e)). Know

ing  the temporal frequency f and the angular speed of the

travelling  wave Vϕ the azimuthal wave number m based on

m  = 2�f/Vϕ was  determined.

As Re is increased further, a  modulation of  the wave  shape,

initially  perfectly periodic, appears and the flow becomes

more  complex. The amplitude of the  rotating wave varies

periodically while a modulation of the wave  amplitude can

be  observed (Takeda et  al., 1992). This corresponds to the

modulated wavy  vortex flow (MWVF). The dominant tempo

ral  frequency is modulated with a  lower additional frequency

f′.

The turbulent flow regime begins with the  onset of chaotic

structures that have multiple distinct frequencies around the

modulation  frequency f′.  This initial phase is sometimes des

ignated  as “weakly turbulent regime”. The regime “highly

turbulent” is characterized by a broad band spectrum related

to  the presence of turbulent structures, without emergence of

a  dominant frequency.

Table 4 – Summary of the flow characteristics for device geometry #2 (� = 0.68).

Flow regimes Re of transition Flow characteristics

Taylor vortex flow (TVF) Rec = 79 �  = 2.01e

Wavy vortex flow (WVF)  4.9Rec < Re < 22.7Rec �  = 2.21e to 2.33e, m = 2 to 7

Modulated wavy vortex flow (WVF) 22.7Rec < Re  < 27Rec �  = 2.33e to 3.3e, m = 3 to 9

Turbulent flow Re > 27Rec �  > 3.01e



Fig. 9 –  Time–space diagrams/spectrum. (a) Time history of the travelling wave  at  Re = 200 (WVF). (b) Spectrum of the

travelling  wave  at Re  = 200  (WVF). (c) Time history of the travelling wave  at Re = 800 (MWVF). (d)  Spectrum of the travelling

wave  at  Re = 800 (MWVF). (e) Time–space diagrams Re = 200.

3.2.  Validation  of  numerical  simulations

The different regimes identified experimentally were repro

duced  numerically. Based on the  velocity profiles obtained in

DNS, the normalized viscous torque was  calculated (Eq. (4)).

G =
2�Ri�ω
��2

(4)

�ω is  the viscous shear stress on the inner cylinder. Fig. 10

reports  the evolution of G with the  Reynolds number Re. The

computed  values are in good agreement with the empirical

correlation proposed by Wendt (1933).

Fig. 11 shows typical snapshots of instantaneous velocity

fields in the vertical plane, from top to bottom at Reynolds

numbers of  140, 200 and 800. The occurrence of intervortex

fluid transfer is  strongly related to the transition to the wavy

vortex  flow, whereas in TVF regime vortices are essentially cel

lular. The vortex shape changes gradually as it fills up with

fluid  from neighbouring vortices and it  shrinks as it loses

fluid  to its adjacent vortices. As Re is increased further, the

vortex  shape changes more  rapidly and often displays dislo

cations  when vortex pairs merge.  This is clearly related to the

modulation  of the wave amplitude. As the Re increases even

more,  Taylor vortices become severely distorted and the large

Fig. 10 – Normalized torque experienced by the inner

cylinder as a function of Re (� = 0.85).



Fig. 11 – Instantaneous velocity fields on a meridian plane (xy) at  Reynolds numbers (from top to bottom) Re = 140, 200 and

800 (� =  0.85).

scale vortices are contaminated with small scale structures in

the wall boundary layers. This generates fluctuating energetic

fluid  motions.

The  property of nonuniqueness has been demonstrated by

the  existence of hysteresis phenomena (Coles, 1965). Depend

ing  on the flow history, multiple flow states are stable for a

given  Reynolds number. The flow structures can be distin

guished  by the axial wavelength �, ranging from 2e to 2.36e

and  the azimuthal wave  number m, which range from 2 to  8.

The wave number characterizes the number of wave  periods

over  the azimuthal direction. Different wave  states (�,  m) were

observed  when approaching the targeted Reynolds number Re

with different acceleration rates of the inner cylinder rotation.

Numerically, similar flow regimes are achieved by seeding the

base  TVF flow with weak perturbations according to the wave

number  m observed experimentally. The axial length of the

domain  can also be adapted to  �. The numerical results did

match  the experimental data very precisely. The different flow

regimes are illustrated in  Fig. 8.

3.3. Axial  dispersion

In the literature, many  studies suggest power laws for the  evo

lution  of the dispersion coefficient with the Re  or Ta numbers

(Tam  and Swinney, 1987; Moore and Cooney, 1995; Ohmura

et  al., 1997). In these studies, the authors did not account

for  important flow parameters, such as the axial and the

azimuthal wavelengths. Indeed, as  illustrated by Fig. 12, a

great  variation of axial dispersion can be observed (either

experimentally or  numerically) for the same Re  number. This

difference  is due to the nonuniqueness of the  flow especially

for  wavy  regimes. The flow state dependency is significant

over  the WVF  and MWVF  regimes while it is  less obvious for

turbulent  flows.

While  Rudman (1998) studied precisely this point only

under the WVF  regime, in  the present work the influence of

different  hydrodynamic parameters (m, �)  on the axial dis

persion  coefficient has been studied over a  wide range of

Re.  Using welldefined ramping protocols, along with visual

ization  techniques guarantee the reproducibility of the flow

regime,  and consequently of the resulting mixing behaviour.

Fig. 12  – Dispersion coefficient Dx as a function of Re

(� = 0.85).

Direct numerical simulations of the flow and Lagrangian track

ing  were  carried out over similar flow characteristics. Good

agreement  between the numerical results and the experimen

tal  data was obtained, as illustrated by Figs. 12 and 13. The

dispersion  based Schmidt number (Sc) shows a general Re−1

trend as  proposed by Moore and Cooney (1995). The transition

to  wavy  regimes increases the dispersion coefficient dramat

ically:  44 enhancement factor from TVF to WVF.  Actually, the

wavy  perturbation has two significant effects on the  particle

Fig. 13 – Evolution of the dispersion based Schmidt number

as  a function of Re (� = 0.85).



Fig. 14 –  (Top) Evolution of the dispersion coefficient as a function of Re and azimuthal wave  number m for �  = 2.29e. (Bottom)

Evolution of the dispersion coefficient as a function of Re and axial wavelength � for m = 4. Simulated flow patterns are

shown on the right side for the sake of illustration.

motion leading to enhanced axial dispersion. First, the loss of

rotational  symmetry makes the velocity field dependent on

all  three spatial coordinates and time. This leads to chaotic

particle  motion and hence intravortex mixing. Second, the

wavy  perturbation breaks the boundary separating adjacent

vortices.  This provides flow streams for fluid elements to pass

from  one vortex to another, resulting in intervortex mixing.

Rudman  (1998) found that the  Sc value reached an asymp

totic value of 0.155 as Re increases, indicating that in  wavy

vortex  flow beyond a certain limit of the rotation speed the

axial  dispersion varies very weakly. However, our results show

that  the modulation of the wavy  flow with additional frequen

cies  (MWVF) can influence the dispersion significantly. The

dispersion  based Schmidt number can go below the asymp

totic  value given by Rudman. This could be  explained by the

characteristics of this flow discussed earlier in  Section 3.1. The

modulation increases the interactions between vortices which

enhances  axial dispersion and reduces Sc.

The effect of the wave  state on axial dispersion has also

been  studied. Different wave  states were  examined experi

mentally and numerically for many  Reynolds numbers. The

influence  of  both the axial and the azimuthal wave  numbers

is  shown in Fig. 14.  At first, �  was  fixed and m was  varied,

then  m  was  fixed and � was  varied. The dispersion coefficient

Dx appears to be a  decreasing function of m. This result is in

agreement  with Rudman (1998). In contrast, Dx is an increas

ing  function of � (Fig. 14b). This observation was  confirmed by

Rudman for wavy regimes and by Tam and Swinney (1987) for

turbulent  regimes. Tam and Swinney have proposed a  correla

tion  between Dx and �.  As a result of this significant variability,

finding a  relationship between Dx and the Reynolds number

Re  cannot be achieved without taking into account the wave

state.

4.  Conclusion

In this work, the relationship between the hydrodynamics of

Taylor–Couette  flow and axial dispersion of passive tracer was

investigated.  The influence of the successive flow bifurcations

on  the axial dispersion coefficient was investigated numeri

cally  as well as experimentally.

The  sequence of flow instabilities has been determined

using a visualization technique. Spectral analysis was  used

to  identify transition Reynolds numbers and structural char

acteristics  of the flow states. Direct numerical simulations of

the  flow were  carried out as  well, and all the  flowregimes

were accurately reproduced. The results show how mixing

is  enhanced with increasing the Re. The structure of wavy



regimes increases the mixing within the vortices and between

adjacent  vortices.

The  axial dispersion coefficient was  numerically derived

from  Lagrangian tracking simulation and measured by

RTD  experiments. Both numerical and experimental results

revealed  a  significant effect of the flow state on the mix

ing  properties. Indeed, in the wavy  flow regimes (WVF

and MWVF) a multiplicity of stable wavy  states can be

achieved  and Dx may vary by a factor of two for the

same Reynolds number (King and Rudman, 2001). The

influence of azimuthal and axial wavelengths has  been

investigated and a  good agreement between the numerical

results and experiments has also been achieved for these

aspects.
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