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Franck Auguste · David Fabre · Jacques Magnaudet

Bifurcations in the wake of a thick circular disk

Abstract Using DNS, we investigate the dynamics in the wake of a circular disk of aspect ratio χ = d/w = 3
(where d is the diameter and w the thickness) embedded in a uniform flow of magnitude U0 perpendicular
to its symmetry axis. As the Reynolds number Re = U0d/ν is increased, the flow is shown to experience
an original series of bifurcations leading to chaos. The range Re ∈ [150, 218] is analysed in detail. In this
range, five different non-axisymmetric regimes are successively encountered, including states similar to those
previously identified in the flow past a sphere or an infinitely thin disk, as well as a new regime characterised
by the presence of two distinct frequencies. A theoretical model based on the theory of mode interaction with
symmetries, previously introduced to explain the bifurcations in the flow past a sphere or an infinitely thin disk
(Fabre et al. in Phys Fluids 20:051702, 2008), is shown to explain correctly all these results. Higher values of
the Reynolds number, up to 270, are also considered. Results indicate that the flow encounters at least four
additional bifurcations before reaching a chaotic state.

Keywords Wake instabilities · Bifurcation theory

PACS 47.15. Fe Stability of laminar flows, 47.15. Tr Laminar wakes, 47.10. Fg Dynamical systems methods

1 Introduction

Bodies moving within a viscous fluid may display a large variety of dynamical behaviours. A famous example,
described five centuries ago by Leonardo da Vinci is the rise of small bubbles which may follow zigzagging
or spiraling motions [13]. Another example, which puzzled Maxwell since 1857, is the falling of a paper card,
which may display various motions such as fluttering, tumbling, chaotic oscillations, etc. [15,17]. It is now
recognized [10] that such path instabilities are directly linked to an instability of the recirculating region in the
near wake of the body. Therefore, to understand these movements it is useful to consider first the related and
simpler problem of bodies held fixed within a uniform incoming flow.

In a recent paper [5], we used DNS to investigate the bifurcation scenarios in the wake of two reference
bodies, namely a sphere and an infinitely thin disk held normal to the stream. For both bodies the Reynolds

number is defined as Re = U0d
ν

, where U0 is the incoming velocity, d is the diameter of the body, and ν is
the kinematic viscosity of the fluid. The case of the sphere is well known from the literature [3,9,12,14,16].
A first bifurcation occurs for Re ≈ 210 resulting in a wake characterized by the presence of a steady pair of
streamwise vortices and the occurrence of a constant lift force on the body. This wake configuration, hereinafter

F. Auguste · D. Fabre (B) · J. Magnaudet
Institut de Mécanique des Fluides de Toulouse, University of Toulouse, Toulouse, France
E-mail: auguste@imft.fr
E-mail: david.fabre@imft.fr; fabred@imft.fr
E-mail: magnau@imft.fr



referred to as the “Steady-State” (SS) mode, breaks the axisymmetry but retains a reflectional symmetry with
respect to an azimuthal plane. A second bifurcation is observed for Re ≈ 272, leading to a periodic state which
retains the symmetry plane and is associated with a lift force oscillating around a non-zero mean value. In
experiments, this mode leads to the shedding of hairpin vortices all oriented in the same direction [14] ; hence
we will refer to it as the “Zig-Zig” mode (Zz, to be distinguished with the “Zig-Zag” mode (Z Z ) which will
be introduced below).

In the case of a flat disk, a different bifurcation sequence is observed. A first bifurcation is observed
for Re = 115.5, leading to a SS mode with a reflectional symmetry. Then a Hopf bifurcation is found for
Re = 121.5. Unlike the case of the sphere, the mode observed after this bifurcation does not preserve the
reflectional symmetry. The resulting mode is characterized by a lift force oscillating in a direction around a
mean orientation; it can be described as a “Yin-Yang” (Y Y ) mode, owing to the characteristic pattern observed
just behind the body (see Fig. 4 of the present paper). A third bifurcation is observed for Re = 139.4, leading
to a recovery of the planar symmetry. The resulting flow is characterized by a lift force oscillating along a
given direction with a zero mean. This mode is referred to as a “Standing-Wave” (SW ) mode by analogy
with other related problems. It can also be called the “Zig-Zag” (Z Z ) mode, as in experiments it would be
associated with the shedding of hairpin vortices in alternating directions. To explain these results, Fabre et al.
[5] introduced a system of nonlinear amplitude equations describing the interaction between the two dominant
unstable modes. This model allowed us to explain the differences observed in the wake of the two bodies and
accurately reproduces the evolution of the lift forces. For the case of an infinitely thin disk, these conclusions
were recently confirmed by Meliga et al. [11], who obtained the same system of equations using a weakly
nonlinear global stability approach.

In the present paper, we continue the numerical exploration of the wake dynamics of axisymmetric bodies
by considering a geometry which is somehow intermediate between that of a sphere and that of a thin disk,
namely a thick disk with an aspect ratio χ = d/w = 3, where d is the diameter and w the thickness.
This geometry was chosen because an extensive experimental study was carried out in our team with freely
moving bodies of this type rising in salted water [6,7]. In Sect. 2 we describe the numerical method we use
to investigate the flow past this body. In Sect. 3 we describe the various flow regimes we observe as the
Reynolds number is increased in the range Re ∈ [150, 218]. In Sect. 4 we show that the theoretical model
introduced by Fabre et al. [5] can be adapted to explain these computational results. In Sect. 3, we briefly
address the transition to chaos occurring in the range Re ∈ [218, 270]. We finally provide some conclusions
in Sect. 6.

2 Numerical method and strategy of investigation

The numerical code used in the present study is similar to that used in [5] and was described in [1,10]. The
code solves the three-dimensional Navier–Stokes equations for an incompressible and homogeneous fluid.
Temporal evolution is discretized by a third-order Runge–Kutta scheme. The divergence-free condition is
satisfied using a projection method. The flow is described using a cylindrical grid with 118(x)×70(r)×32(θ)

nodes (the x-axis corresponds to the symmetry axis). A nonuniform grid distribution is used near the body to
properly capture the boundary layer and near wake. The characteristic grid size is 0.015d near the body, and
is about 0.1d in the near wake (down to x = 2d). The grid extends to a distance of roughly 10 diameters in
all directions. The boundary conditions are (i) a no-slip condition on the body itself, (ii) a kinematic condition
ux = U0 in the inlet plane and on the lateral boundaries, and (iii) a non-reflecting outlet condition in the outlet
plane. The grid used here provides results in good agreement with those found during the convergence study
performed for a thin disk by Auguste et al. [1].

The range of Reynolds numbers Re ∈ [150, 220] was scrutinized with steps of 1Re = 1 in most of
the interval, and not larger than 1Re = 2. Computations were run on the Altix server computer of CICT
in Toulouse (parallelized on two processors). Typical runs consisted of 50000 time steps (corresponding to a
dimensionless time tU0/d about 800); however, much longer computational times were required to achieve
convergence close to some of the bifurcations. Typically, computations were started with an initial velocity field
originating from a former computation performed with a neighbouring value of Re; close to the bifurcations,
the Reynolds number was varied both upwards and downwards to detect an eventual subcritical behaviour.
Most of the bifurcations described here were localized within an interval 1Re = 1; however, in some cases,
observing the transient behavior and fitting using theoretical results, as done for instance in [3], allowed a more
accurate estimate of the threshold values.



To describe the efforts experienced by the body, we introduce the drag coefficient Cx , the side force
coefficients Cy and Cz , and the torque coefficients Cmx , Cmy and Cmz defined as follows:

(

Fx , Fy, Fz

)

=
(

Cx , Cy, Cz

)

ρU 2
0 π(d/2)2/2.

(

Mx , My, Mz

)

=
(

Cmx , Cmy, Cmz

)

ρU 2
0 π(d/2)3

To describe the various flow regimes, we draw two types of “phase diagrams”, based respectively on side forces

(Cy − Cz diagram) and drag/lift forces (Cx − CL diagram, where CL =
√

C2
y + C2

z is the lift coefficient).

Finally, note that the exact or average reflectional symmetry planes existing in some of the regimes described
in the next section are arbitrary and are selected by the initial conditions of the simulation. To make the dis-
cussion simpler, a convenient rotation was applied to the numerical results to make the symmetry directions
coincide with the y- or z-axis.

3 The sequence of bifurcations in the range Re∈ [150,217]

As for the reference cases of a sphere and a flat disk, the flow remains steady and axisymmetric at low enough
values of the Reynolds number. In this range, the flow is characterised by a toroidal recirculation region (except
at very low values of Re where the latter vanishes). Such a flow, hereinafter referred to as the “trivial” state
(T S) is illustrated in Fig. 1a, which displays the vorticity and streamlines in a transverse plane for Re = 150.
In this regime the hydrodynamic force on the body reduces to a drag force.

As the Reynolds number increases, a steady bifurcation occurs. In agreement with the reference cases of a
sphere and a disk, it leads to a “Steady-State” mode (SS) characterised by a reflectional symmetry plane and
an associated lift force. The threshold value associated with this bifurcation was estimated to Rec1 ≈ 159.4,
in agreement with the previous experimental estimate Rec1 = 116.5(1 + χ−1) proposed by Fernandes et al.
[6]. The flow in this regime is illustrated in Fig. 1b which displays iso-surfaces of the streamwise vorticity
component (through two orthogonal views). In this case, the symmetry plane is the x − z plane and the lift
force is along the positive z direction.

The next bifurcation is of Hopf type and occurs for a threshold Reynolds number estimated to Rec2 ≈ 179.8.
This value also reasonably matches the previous estimate Rec2 = 125.6(1 + χ−1) [6]. Above this threshold,
the flow within the wake and the forces experienced by the body become unsteady and periodic. A Strouhal

number characterising this flow can be defined as St = d
U0T0

, where T0 is the shedding period. Right at the

threshold, this Strouhal number is St = 0.109, a value comparable to but slightly smaller than those found
for the two reference bodies (Stsphere ≈ 0.133 , Stdisk ≈ 0.119). The regime resulting from this bifurcation
is illustrated in Fig. 2. It can be observed that the wake retains the symmetry plane selected by the previous
bifurcation. This allows us to identify this mode as the “Zig-zig” one already observed in the wake of a sphere.
Figure 2a shows the structure of the flow at two instants of the shedding cycle. The Cy − Cz diagram (Fig. 2b)
indicates that the lift force is oscillating about a non-zero mean value along a line located within the symmetry
plane of the flow. The Cx − CL diagram (Fig. 2c) reveals a single loop. This loop travels in the anti-clockwise
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Fig. 1 Steady flow regimes: a axisymmetric flow for Re = 150 depicted by azimuthal vorticity (colors online) and streamlines,
b non-axisymmetric steady state (SS) for Re = 165 depicted by iso-surfaces of the streamwise vorticity (two orthogonal views)
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Fig. 2 Periodic, reflectional-symmetry-preserving mode (or “Zig-Zig” mode) for Re = 182. a Iso-surfaces of streamwise vortic-
ity (at two time instants of the cycle corresponding to the maximum and the minimum of the lift force, respectively), b Cy − Cz

diagram, c Cx − CL diagram
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Fig. 3 Quasi-periodic pulsating mode (or “Knit-Knot” mode) for Re = 187. a Iso-surfaces of the streamwise vorticity at two
instants of time, b Cy − Cz diagram (the end of the time series is represented with a thick line), c Cx − CL diagram

direction, indicating that extrema in the drag force are encountered slightly before those of the lift force.
Note that the Strouhal number characterising this flow regime (and actually also the three next regimes) is
remarkably constant, and only varies by a few percents around the value St = 0.109 selected at Re = Rec2.

A third bifurcation is found to take place for a threshold value Rec3 ∈ [184, 185]. The flow observed
beyond this bifurcation is illustrated in Fig. 3 (for Re = 187). This flow is of a totally new type, and is
characterised by the breaking of the reflectional symmetry (as can be seen in Fig. 3a which shows the structure
of the streamwise vorticity at two sample instants) and the occurrence of a secondary frequency. The Cy − Cz

diagram (Fig. 3b) reveals an attractor with a complicated structure evoking the shape of a wool ball. This
is why we term this regime the “Knit-Knot mode” (K K ). The motion along the attractor can be understood
as the superposition of two movements, namely a rapid motion along an elliptic path, with a period T0 very
close to that found in the previous regime, and a slow pulsation of this ellipse around a mean direction (which
corresponds to the z direction in the figure). To help understand this motion, the last two elliptic oscillations
are displayed with thick lines in the figure. The Cx − CL diagram shows another projection of the attractor
which also reveals a two-period motion. In this diagram the pulsation is seen as a slight jitter of the main cycle.
Note that the oscillation period Tp greatly varies in the range of existence of this mode, from Tp ≈ 96T0 at
Re = 185, down to Tp ≈ 48T0 at Re = 187, and then up to Tp ≈ 54T0 at Re = 190. On the other hand the
main period remains remarkably constant.

The “Knit-knot” mode described above is observed up to a threshold value of Rec4 ∈ [190, 191] where a
fourth bifurcation is detected. This bifurcation is characterised by the disappearance of the above slow pulsa-
tion, and the flow then comes back to a purely periodic state. The resulting flow regime is illustrated in Fig. 4
(for Re = 195). The structure of the streamwise vorticity (Fig. 4a) allows us to identify this mode with the
mode existing in the wake of a thin disk in the range Re ∈ [121, 139] [5]. The Cy − Cz diagram (Fig. 4b)
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Fig. 4 Periodic, reflectional-symmetry-breaking mode (or “Yin-Yang” mode) for Re = 195. a Iso-surfaces of the streamwise
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Fig. 5 Periodic mode with reflectional symmetry and zero mean lift (or “Zig-Zag” mode) for Re = 216. a Iso-levels of the
streamwise vorticity in the plane located at x = 0.5, b Cy − Cz diagram, c Cx − CL diagram

shows that the lift force is oscillating back and forth along a closed path about a mean direction (here chosen
to be the z direction), while the Cx − CL diagram (not shown) reveals a single loop. This mode was called the
“reflectional-symmetry-breaking” (RSB) mode in [5]. It can also be termed as the “Yin-Yang mode” owing
to the characteristic shape of the streamwise vorticity contours in a cross-section of the wake (see Fig. 4c).

The next (i.e. fifth) bifurcation is found for Rec5 ≈ 215. This bifurcation is in all respects similar to that
occurring in the wake of a thin disk for Re ≈ 139, as it is associated with a recovery of a symmetry plane in
the wake, the orientation of which (here y) is orthogonal to that selected by the initial bifurcation (here z). The
resulting flow is illustrated in Fig. 5. The Cy − Cz diagram (Fig. 5b) indicates that the lift force is contained
within the symmetry plane of the flow and is oscillating around a zero mean value. The Cx − Cy drag-lift
diagram (Fig. 5c) shows a butterfly-like attractor, revealing that the drag passes twice through a maximum
(and then a minimum) during one period of oscillation of the lift force. The structure of the flow is illustrated
in Fig. 5a at two instants of time corresponding, respectively, to a positive extremum (upper plot) and a neg-
ative extremum (lower plot) of Cy . The plots show that in this case the body sheds symmetrical hairpin-like
structures during each half-period of oscillation, thus justifying the denomination of this regime as a “Zig-Zag
mode” (Z Z ).

A synthetic view of all the regimes described so far is given in Fig. 6 which presents the maximum and
minimum values of force coefficients (Fig. 6a) and torque coefficients (Fig. 6b) as a function of the Reynolds
number in the range Re ∈ [150, 220]. As can be noticed, all quantities are continuous across the bifurcations
(but generally have discontinuous slopes), indicating that all bifurcations are regular and supercritical. The
first bifurcation at Rec1 is associated with the onset of a lift force and a lateral torque and also with an increase
of the drag force compared to that associated with the axisymmetric solution (displayed with a dotted line in
Fig. 6a). Such a discontinuity in the slope of the Cx curve has also been reported in the case of a sphere [3].
At the second bifurcation (i.e. for Re = Rec2), the lift and drag forces and the side torque become unsteady
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Fig. 6 Variations of force coefficients (a) and torque coefficients (b) in the range Re ∈ [150, 220]

and oscillate between the maximum and minimum values plotted in the figure. The third bifurcation at Rec3

is characterised by the occurrence of an axial torque which oscillates about zero with a maximum amplitude
represented by the Cm,x curve. The presence of such an axial torque is characteristic of regimes in which the
reflectional symmetry is broken. Consequently, this torque is non-zero within the range of existence of the
“Knit-knot” and “Ying-yang” modes and dies out at the fifth bifurcation corresponding to Re = Rec5.

4 Theoretical modelling

In a previous study [5], we introduced a theoretical model which successfully reproduces the first steps of the
bifurcation sequence observed in the cases of a sphere and a thin disk. In this section we review this model
and show how it can be adapted to the present case.

The model is based on a velocity field with the following expansion:

u = U0(r, x) + Re
[

a0(t)e
−iθ ûs(r, x)

]

+ Re
[

a1(t)e
−iθ ûh,−1(r, x) + a2(t)e

iθ ûh,+1(r, x)
]

+ · · · , (1)

where U0(r, x) denotes the axisymmetric solution of the Navier–Stokes equations for a given value of Re,
ûs(r, x) is the most amplified mode (associated with an azimuthal wavenumber m = 1 and a real eigenvalue
λs), and ûh,m(r, x) is the next most amplified mode (associated with an azimuthal wavenumber m = 1 and a
complex eigenvalue λh + iωh), whereas a0, a1, a2 are three complex amplitudes.

Starting from expansion Eq. (1), the central manifold theorem states that if the leading modes are simulta-
neously nearly neutral, the whole problem can be reduced to a system of ordinary differential equations (ODE)
governing their amplitudes [4,8]. This ODE system has the generic form, known as the normal form of the
problem:

ȧ0 = λsa0 + l0|a0|
2a0 + l1

(

|a1|
2 + |a2|

2
)

a0 + il2
(

|a2|
2 − |a1|

2
)

a0 + l3ā0ā2a1, (2)

ȧ1 = (λh + iωh)a1 +
(

B|a1|
2 + (A + B)|a2|

2
)

a1 + C |a0|
2a1 + Da2

0a2, (3)

ȧ2 = (λh + iωh)a2 +
(

B|a2|
2 + (A + B)|a1|

2
)

a2 + C |a0|
2a2 + Dā0

2a1, (4)

where l0 to l3 are real coefficients, while A, B, C, D are complex. Interestingly, this system is also relevant
to the Taylor–Couette flow problem where it describes the interaction between “Taylor vortices” and “spiral
vortices”. A classification of the solutions up to secondary bifurcations is available in [8]. A refined investi-
gation of the possible solutions up to ternary bifurcations, and of their relevance to the present problem, is in
progress (Fabre and Knobloch, in preparation).

In Ref. [5] the coefficients involved in (4) were fitted using the computational results obtained for the
sphere and the thin disk, leading to a good agreement between the predictions of the model and the DNS
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results. We have repeated this approach in the present case. The corresponding fitting led to the following set
of coefficients:

λs = 0.05(Re − 159.8), λh = 0.04(Re − 190), ωh = 0.685, l0 = −100, l1 = −1386, l2 = 0,

l3 = −1800, A = 100, B = −225, C = 22, D = 16.8 + 50i. (5)

This set of parameters leads to a sequence of bifurcations in close agreement with our numerical results. In
particular, the predicted threshold Reynolds number values are as follows:

Rec1 = 159.8, Rec2 = 179.9, Rec3 = 184.7, Rec4 = 190.4, Rec5 = 215.2. (6)

The theoretical bifurcation diagram obtained with this set of parameters is plotted in Fig. 7. The figure displays

an arbitrary measure of the amplitude of the different states (roughly proportional to
√

|a0|
2 + |a1|

2 + |a2|
2)

as function of the Reynolds number; following the usual convention, full (resp. dashed) lines correspond to
stable (resp. unstable) branches and circles to quasi-periodic solutions. This diagram correctly reproduces the
sequence of bifurcations revealed by the numerical simulations up to Re = 217, and accurately predicts the
threshold values of the successive bifurcations, thus confirming the relevance of the model. Note that it also
predicts the existence of two additional branches, namely a “spiral” mode and a quasi-periodic mode of a
different nature (termed H − H in the figure), which are both unstable and thus not numerically observed.

A more quantitative fitting of the lift forces, as performed in Ref. [5] for the thin disk, was not tried.
Therefore, the set of coefficients given above is only indicative. A direct and rigorous determination of the
coefficients of the normal form using a weakly nonlinear expansion of the Navier–Stokes equations, as done
by Meliga et al. [11] in the case of a thin disk, would certainly be preferable.

We finally point out that the present model is unable to account for the subsequent bifurcations to be
described in the next section, which are most likely associated with the emergence of new leading modes, in
addition to the two modes already included in the expansion (1).

5 The route to chaos in the range Re ∈ [217, 270]

We now turn to the next features that occur at higher Reynolds number. To this end, we investigated the range of
Reynolds numbers [217, 270] in a less exhaustive way than reported in the previous section. Figure 8 displays
sample phase diagrams of the regimes we detected.

The “Zig-Zag” mode, which was the last of the sequence of bifurcations documented in Sect. 3, has a
limited range of existence, as a new bifurcation occurs for Rec6 ∈ [217, 218]. The mode observed beyond this
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Fig. 8 Force diagrams for selected values of Re on the route to chaos: Cx − Cy diagram for Re = 220 (a) and Re = 230 (b);
Cy − Cz diagram for Re = 245 (c) and Re = 270 (d)

threshold is characterised by the persistence of a reflectional symmetry plane and the occurrence of a second
frequency. The corresponding attractor, depicted in Fig. 8a through its Cx − Cy projection (for Re = 220), is
typical of a quasi-periodic system. The leading frequency f0 is very close to the one existing in the previous
regimes, while the secondary frequency f1 is close to one-third of the leading frequency.1

For Re = 230, the Cx − Cy diagram (Fig. 8b) shows that the attractor becomes again a closed loop,
indicating that the flow has come back to a periodic state. This can be explained as the result of a phase locking
of the two main frequencies which, in this case, get into an exact 1:3 resonance.2 This exact resonance is lost
when the Reynolds number is further increased and, for Re = 235, the attractor (not shown) becomes again
quasi-periodic and similar to the one plotted in Fig. 8a.

The planar symmetry is eventually lost for Re ≈ 240. The last two plots (Fig. 8c, d) illustrate the shape
of the attractor through its Cy − Cz projection for Re = 245 and Re = 270, respectively. In the first case
the trajectory seems to retain some symmetries as it does not explore the whole domain. This suggests that
this regime is not yet completely chaotic but rather multi-periodic. On the other hand, in the second case a
true chaotic state seems to be reached, as the trajectory makes larger excursions in the whole domain. We
did not attempt to localise more precisely the threshold value of Re associated with the onset of chaos, since
computations are very time-consuming in this range of parameters. Moreover, a simple glance at the force
diagrams is not sufficient to discriminate true chaos from multi-periodic solutions and more powerful means
of investigation are required, such as the computation of Lyapunov exponents. Future work will be devoted to
this issue.

6 Summary

In this paper, we used DNS to investigate the wake dynamics of a thick disk with an aspect ratio χ = 3, held
fixed in an imposed upstream flow parallel to its symmetry axis. In the range Re ∈ [150, 216], an original
sequence of bifurcations was evidenced, which is somehow intermediate between the reference cases of a
sphere and a thin disk, respectively. In the first two steps of the sequence, the flow successively encounters a
steady, non-axisymmetric state (SS) associated with a constant lift force, and a periodic, reflectional-symmetry
preserving mode associated with a lift force oscillating about a non-zero mean value (“Zig-zig” mode). This
sequence is identical to what happens in the wake of a sphere. However, a third bifurcation occurs, leading to an
original type of flow which breaks the reflectional symmetry and oscillates in a quasi-periodic manner (“Knit-
knot” mode). Two additional bifurcations lead successively to a periodic, reflectional-symmetry-breaking mode
(“Yin-Yang” mode) and to a periodic mode with reflectional symmetry and a lift force oscillating about zero
(“Zig-Zag” mode). This part of the sequence is identical to what happens in the wake of a thin disk, except that
in the latter case the “Yin-Yang” mode takes place after the second bifurcation of the sequence, immediately
after the steady, non-axisymmetric state (SS). In line with previous results obtained for the reference cases of a
sphere and a thin disk, this whole sequence is fully explained by a theoretical model describing the interaction
between the two leading modes. However, this model is unable to explain the dynamics encountered in the

1 This nearly harmonic relation between the frequencies led us to call this regime a “Honky-Tonky” mode (as if it were a music
instrument that would sound slightly out of tune).

2 We thus propose to call this retuned mode a “Boogie-Woogie” mode.



range Re ∈ [217, 270]. In this range, at least three additional bifurcations exist, leading eventually to a fully
chaotic state. Additional work is still required to completely describe this route to chaos.

This work is currently continued in the case where the objects are freely moving within the fluid under the
effect of buoyancy and hydrodynamic forces. Preliminary results [2] have demonstrated an excellent agreement
with the experiments conducted in our team [6,7]. They have also revealed the existence of several new kinds
of trajectories, including steady oblique paths, periodic and quasi-periodic trajectories and weakly chaotic
regimes. The cartography of these regimes is in progress. The application of normal form theory to this case
is also a promising issue.
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