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ABSTRACT: Solubility of drugs is a key piece of information for the pharmaceutical industry. Despite its importance, par-
ticularly at the beginning of a new drug process development, this thermodynamic property of the solid—liquid equilibria (SLE)
can hardly be predicted for a given molecule in a given solvent. In our recent works, some thermodynamic models (UNIFAC and
its modifications, COSMO-SAC and its refinements, NRTL-SAC) were investigated and compared for solubility prediction. The
main drawbacks of these methods concern the strongest molecular interactions (dipole—dipole, hydrogen bonding), which are
not properly taken into account. In the present study, we propose a new optimization of the last two COSMO-SAC refinements
(2007 and 2010) for solubility prediction. To do that, a parameters optimization upon 352 solubility data of complex organic
molecules was performed. Also, to improve hydrogen bonding influence, new o-profiles are generated by applying another
probability function for the solute. The results of this work are encouraging, especially for the calculation of crystallization yields given
that the solubility temperature dependence is well represented. Solubility predictions in polar solvents are improved. However, this
improvement is not as good as expected since it seems that the parameters balance between hydrogen bonding and electrostatic
interactions is not the best. To confirm this, a short computation of anthracene solubility in toluene and heptane was performed.

INTRODUCTION

In the pharmaceutical industry, solubility of solid compounds is
one of the most important thermodynamic properties. But,
despite this importance, there is no predictive method, to date,
that can predict solubility for all systems with accuracy.

In the past, some attempts were made to predict solubility
of solid substances in liquids using existing thermodynamic
models initially design for liquid—liquid equilibria (LLE) or
vapor—liquid equilibria (VLE).'~* The strengths and the weak-
nesses of the classic models are shown in these studies. Among
the most important weaknesses, the difficulty to represent
molecular interactions in a mixture involving “simple”
molecules (solvents) and “complex” molecules (solute) stands
out from the others. Indeed, various interactions of different
nature can occur (weak nonpolar van der Waals interactions,
polar interactions, hydrogen bonding...). More specifically, the
importance of hydrogen bonding is generally under- or over-
estimated and thus, classic thermodynamic models are unable
to handle drug solubility.

In order to take more precisely into account the diversity of
these interactions, especially hydrogen bonding, some models
were developed specifically for solid—liquid equilibria (SLE) pre-
dictions, like NRTL-SAC® (a semiempirical activity coefficient
model), PC-SAFT® (ec7|uation of state), or nonrandom hydro-
gen bonding (NRHB)’ (equation of state). However, despite
their great interest, these methods present some drawbacks. In
general, they need a sufficient amount of experimental data.
Without these data, they are not able to predict solubility
accurately whatever the solute and the solvent.

Recent methods like COSMO-based models are also
interesting in their approach. In particular, the COSMO-RS
model® is a predictive model that allows the prediction of
thermodynamic properties by using only data from quantum
chemical calculations. COSMO-SAC,’ another COSMO-based

model, suggests a more empirical approach in addition to
quantum chemistry. However, if these models are quite
promising, they still show some difficulties taking into account
hydrogen bonding properly. In fact, they handle the free energy
character of hydrogen bonding in a quite “empirical manner”."®
In order to be more rigorous, the different ways of associating
molecules in solution have to be considered and taken into
account. Several authors suggested coupling the COSMO-RS
approach with an equation of state'"'* or more recently in
partial solvation parameter approaches (PSPs).'*'* PSPs
combines quantum mechanics with quantitative structure—
property relationships with parameter approaches (Hansen
solubility parameters, for instance). These methods have not
been widely studied for drug solubility so far.

In a previous study,'”” we qualitatively and quantitatively
investigated the use of some thermodynamic models (UNIFAC,
UNIFAC mod. Dortmund, COSMO-SAC, NRTL-SAC) for
SLE. We compared them following several criteria: the mean
square errors, the predicted orders of magnitude versus the
experimental ones, and the solubility temperature dependence.

Despite its relative inaccuracy, the COSMO-SAC method
was found to be a promising model since it does not rely on
any specific database. Moreover, it takes into account molecular
conformations and configurations.

In the first part of this study,'® the last three refinements
of the COSMO-SAC model'’™"" are investigated for SLE
predictions. Even if solubility predictions in polar solvents were
improved compared with the original COSMO-SAC model, the



solubility of large molecules in polar solvents is systematically
overestimated.

In this paper, since COSMO-SAC uses an empirical manner
of taking into account molecular interactions, we propose a
reoptimization of refined COSMO-SAC model parameters
(2007 and 2010) for solubility predictions. To do that, 352 SLE
data points were considered (130 compounds in 36 solvents,
see Table 6). Then, solubility predictions were performed in
the same conditions as before'>' in single and mixed solvents.
If the number of data is smaller than in the study of Hsieh
et al,”® this study shows that COSMO-SAC can be improved
for SLE prediction. However, the relationship between the
electrostatic parameters and the hydrogen bonding ones seems
to be unbalanced. That is why this paper ends with a discussion
on the electrostatic parameters (not optimized in this study).

THEORY

Equilibrium Equation. Phase equilibria are described by
the equality of chemical potentials, 4, in each phase. In the case
of SLE, the thermodynamic equilibrium is called solubility.
The solubility equation for a compound is written as follows:

wo= (1)

The superscript S denotes the solid phase, and the superscript
sat denotes the saturated solution.
Following a classical development of eq 1, the well-known
solubility equilibrium equation is obtained:*"
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where 7" is the activity coefficient, x** the solubility, AH™ is
the molar fusion enthalpy, T™ the fusion temperature, and
AC,, the difference between the molar heat capacity of the

supercooled melt and the solid.

This equation gives the solubility as a function of the solid
state properties of the compound, and the activity coefficient .
The activity coefficient corresponds to the nonideal behavior of
the mixture and is mostly solvent dependent.

Usually, the second part of eq 2 is neglected, and eq 3 is
more commonly used:
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In a previous work,'> we did not observe significative
differences between the results obtained using eq 2 or 3.

COSMO-SAC Models. COSMO-SAC methods are mod-
ifications of the COSMO-RS (conductor-like screening model)
model, developed by Klamt.*** They are based on quantum
chemical calculations for the molecule representation and on
statistical thermodynamics for molecular interactions.

The first COSMO-SAC method was developed by Lin and
Sandler® and was formerly built to predict VLE or LLE. One of
the most important contributions of this model is the
improvement of complex interaction descriptions (dipole—
dipole or hydrogen bonds). To do so, the model takes into
account the donor/acceptor behavior of the different parts or
surfaces (also called “segments”) of the molecule. And so,

COSMO-SAC equations use interaction parameters between
the different “segments” in the mixture.

The complete theory and equations of the COSMO-SAC
model are presented elsewhere.”'””"’ However, in order to
explain why the successive refinements of the original method
might be interesting for solubility predictions of complex
molecules, the major improvements are recalled here, as well as
the role of the hydrogen bond interaction parameters
(optimized in this work).

In 2004, Lin et al.'” suggested a division of the molecule
surfaces of the molecules (o-profiles) into two parts: (1)
surfaces not able to form hydrogen bonds (i.e., the previous
neutral segments); (2) surfaces able to form hydrogen bonds
(surfaces around O, N, or F atoms and H atoms connected to
these atoms).

This division allows a finer description of the molecule
interactions into the AW term, which can take the generic form

AW (al, 63) = Cyg(ol + 62) — (o8, 05) (08 — 05)

4)
with
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In 2007, Wang et al.'® suggested a new averaging method for the
o-profiles calculations and added a probability function for hydrogen
bond formation (screening probability). The aim of this change is

to consider that the probability of occurrence of a complex inter-
action is not 100%. This probability function is expressed as follows:

2
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20,

0

(6)

with 6, equals 0.007 e/A% This parameter corresponds to the
standard deviation of the probability function of a Gaussian type
function for the hydrogen bonds. The higher the value of ¢, is, the
less hydrogen bonds can occur for the lowest values of lol (“less
polar” parts on the molecule surface).

At last, in 2010, Hsieh et al.*’ suggested the last COSMO-
SAC refinement to date. This refinement can be divided into
two major contributions: the electrostatic constant as a
temperature dependent parameter (Cgg = Agg + Bgg/T) and a
division of the molecules surface into three parts, (1) the poyp
profile, (2) the poy profile, corresponding to the surfaces
around OH hydroxyl groups, and (3) the por profile for the
surfaces around O, F, or N atoms with H atoms connected to
them (except OH groups).

Once again, this division allows a finer description of the
interactions in the ¢;, parameter of the AW term:
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Figure 1. COSMO-SAC (2010) predicted solubility with lower hydrogen bonding possibility (for 6, = 0.05) versus experimental solubility for

ibuprofen in different organic solvents with eq 3.

Whatever the COSMO-SAC version, the ¢y, and 6, param-
eters were always calculated using VLE or LLE data. In the next
section, an optimization for SLE predictions is suggested.

A COSMO-SAC OPTIMIZATION FOR SLE

In this section, we propose an optimization of refined COSMO-
SAC (2007 and 2010) for SLE. In order to improve the model’s
accuracy for solubility predictions, we suggest a new optimiza-
tion of the parameters using experimental solubility data (neither
VLE nor LLE). The parameters considered are ¢, and o,

In fact, because there is a difference in the complexity and
size between the solvent and solute molecules, another
modification about the o-profiles is introduced here. Indeed,
if the solute molecules are bigger and more complex, their
ability to form hydrogen bonds should be different than that of
small molecules. As previously shown,'® in the case of complex
organic molecules, interaction sites can be hidden or buried, so
the probability to form hydrogen bonds should be smaller.
Figure 1 shows that prediction accuracy is increased when the
hydrogen bonding probability is decreased. That is why in this
section two probability functions (screening probability) will be

used depending on the considered molecules: p . and P for

solvent
solute or solvent, respectively. The first function has ¢, for standard
deviation, and the second ;. However, it can be suggested that the
0, calculated by Hsieh et al." can be preserved (0.007). Indeed,
the hydrogen bonding ability of the solvents (small molecules)
should be the same as in VLE or LLE (same molecules involved).

To summarize, the parameters optimized in this section are
(1) ¢y and 6; (COSMO-SAC 2007) and (2) cop—om Cor—om
con-or and o; (COSMO-SAC 2010).

To regress the parameters, 352 solid—liquid equilibria data
points were considered (data from the literature®*~2%). In order
to be representative of the complex organic molecules that are
involved in drug solubility modeling, 130 complex molecules

with various functional groups were chosen (aspirin, caffein,
cortisone, prostaglandine, etc.). A wide range of classic organic
solvents were also considered (3$ different solvents). The list of
the compounds is given in the appendix (Tables 6 and 7).
About 24% of the considered equilibria data involved a nonpolar
or aprotic solvent. The others involved a polar or a protic solvent.

Even if the quantity of data is smaller than the study of
Hsieh et al,,'” the main issue is to investigate the possibility of
improving the model for SLE, discuss the relevancy of the
different parameters, and give quite reliable parameters.

The regression procedure was the following: we performed
solubility calculations using the thermodynamic equation for
SLE (eq 3). Then, we used a mean square algorithm in order to
minimize the error between calculated and experimental data in
logarithm:

1% 2
Imse = ; Z (ln(xipredicted) - ln(‘xiexperimental))
i

(8)

where 7 is the number of data points.

In order to optimize the convergence of the global optima,
several initial estimates were considered. However, different
sets of parameters can lead to quite similar Imse. The results are
presented in Table 1.

This table shows the improvement of the optimization from
equilibrium data. Original COSMO-SAC shows a Imse of
6.6878, while the optimized COSMO-SAC 2010 shows a Imse
of 4.7411. The mean square errors are still significantly high
because there are some equilibria that are difficult to accurately
represent. Among them are (1) systems involving compounds
with low solubility (<107%), such as sulfamethoxypyridazine,
sulfadiazine, and piroxicam (these systems cause the Imse to
increase (50% of the greatest errors at the end of the
optimization), especially when the experimental solubility is
very low (about 107 for caffeine in hexane, for example)),



Table 1. Initial and Optimized COSMO-SAC Parameters

model LMSE
original COSMO-SAC 6.6878
parameters
model Cip Gy o LMSE
COSMO-SAC 2007 3484.42 7x 107 7% 107 52298
COSMO-SAC 2007 (opt.) 1613.8 7% 107 275 % 1073 4.8474
parameters
model Con-on Cor-or Con-or ] oy LMSE
COSMO-SAC 2010 4013.78 932.31 3016.43 7 % 1073 7 x 1073 3.588
COSMO-SAC 2010 (opt. 1) 1501.1 8452.4 1816.2 897 x 1073 7 X 1073 4.7411
(2) systems involving nonpolar/aprotic solvents (40% of a) b) NH
the greatest errors), and (3) systems involving water for o /©/ \ﬂ/
COSMO-SAC 2007 optimization (70% among equilibria o)
involving water). OH  HO
It is also important to notice that the new parameters may a
not be the optimal ones (globally). Some other simulations led © COOH o
to different parameters, although not very different. The use of OH ®_/(
a much larger database could give the “best values”. OH
In detail, interaction parameters changed for the two versions e f)

(2007 and 2010). In the model, there are two means of
decreasing hydrogen bonding importance: a decrease of ¢y, or
an increase of 6;. Our calculations led to a significant decrease
of aup; com—on and cop—ot also decreased, whereas cqp_op more
surprisingly significantly increased. Interactions of the kind
OT-OT (dipole—dipole) take now a more significant part in
the global quantification. This new balance shows that
hydrogen bonds take a smaller importance in the model and
that dipole—dipole interactions are revaluated.

For COSMO-SAC 2007, 6, > 6, and ¢y, decreased. However,
for COSMO-SAC 2010, this is not the case since o, < 6, and
con—on decreased at the same time (probably because the whole
balance between coy_op, Cor—or and coy_or Was changed).

RESULTS AND DISCUSSION

Reference Molecules and Criteria. In this work, form I of
paracetamol, ibuprofen, benzoic acid, salicylic acid, and 4-amino-
benzoic acid were chosen as model drugs. These molecules
were chosen because of their different functional groups (OH,
COOH, NH, NH2). Anthracene was added to this list because
of its simple structure. Their structures are presented in Figure 2.

The experimental data used in this study (thermodynamic pro-
perties and solubility) are taken from the literature®®~37373%3%-45
and from previous works.'>'®

Uncertainties in the predictions due to the error in the pure
solid properties were again investigated following a Monte
Carlo method. These last errors were found to be about 17%,
that is, inferior to the nonoptimized models (39%).

The results of this work will be analyzed following three main
criteria: (1) The relative mean square errors (rmse) between
the predicted and experimental solubility (eq 9),

2

I - Xipredicted xiexperimental)
rmse = — z

n < Koo

i iexperimental (9)

(2) The temperature dependence, evaluated as the slope of the
solubility curve dx/dT. It is a very interesting observation since
it gives information on supersaturation calculations or
crystallization yields. As suggested in a previous work,'® the
slope of the function In(x) = k(1/T) + K (in which T is the

H O

\ : > {

/N

H O-H

Figure 2. Structures of (a) ibuprofen, (b) paracetamol, (c) salicylic
acid, (d) benzoic acid, (e) 4-aminobenzoic acid, and (f) anthracene.

temperature and k and K are two contants) is investigated.
A correct k factor, combined with unique accurate solubility
data, may lead to the whole solubility curve:

k k
x2=x1exp?—F
2 1

(10)
where x, and «x, are the solubility at temperature T| and T,
respectively. (3) The orders of magnitudes (in logarithm) and
solubility ranking preservation. (4) The ability of the models to
predict the influence of a new solvent on the solubility.

In all the figures comparing predicted and experimental data, the
models errors from solid state property uncertainties are represented
by error bars. The experimental errors are not represented since
they are of the same order of magnitude as the symbol size.

Solubility in Pure Solvents. First, Table 2 shows that
the optimized models give better results than previously.

Table 2. Mean Quadratic Errors (mse) of Various COSMO-
SAC Predictions (Original, 2007, 2010, and Optimizations)

model rmse” mean standard deviation (%)
original COSMO-SAC 23.5 (24) 29
COSMO-SAC 2007 114 (104) 39
COSMO-SAC 2010 155 (5.4) 64
COSMO-SAC 2007 (opt)  7.15 (7.20) 17
COSMO-SAC 2010 (opt.)  15.70 (15.70) 17

“Numbers in parentheses represent the rmse calculated without
4-aminobenzoic acid.

The relative mean square errors are lower and are much less
sensitive to strong interactions (no noticeable influence of
4-aminobenzoic acid on the rmse, unlike the original models).
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Figure 3. Optimized COSMO-SAC (2007 and 2010) predictions versus experimental solubility: (a) no hydrogen bonding or polar/polar

interactions between solute and solvent and (b) possible interactions.

Table 3. Solubility Orders of Magnitude Experimental and Predicted Using Optimized COSMO-SAC (2007 and 2010), at

303.15 K*
experimental 2007 2010
solvent order of magnitude solvent order of magnitude solvent order of magnitude
Ibuprofen
heptane [-3;-2] heptane [—4;-3.5] heptane [—4;-3.5]
cyclohexane [=2;—1.5] cyclohexane [-3;-2.5] cyclohexane [-3]
ethanol [-1.5;—1] toluene [-2;—-1.5] toluene [-1.5]
toluene chloroform [-1.5-1] ethyl acetate [-1.5-1]
ethyl acetate octanol octanol
isopropanol ethanol chloroform [-1]
acetone isopropanol ethanol
octanol [-1;-0.5] ethyl acetate [-1] isopropanol [<1]
chloroform acetone [-1;,-0.5] acetone
Benzoic Acid
hexane [—4.5;—4] cyclohexane [-5.5;—5] cyclohexane [-5.5=5]
cyclohexane heptane heptane
heptane hexane hexane
acetonitrile [-3;—-2.5] carbon tetrachloride [—4.5;—4] carbon tetrachloride [—4;-3.5]
carbon tetrachloride benzene [-3;-2.5] benzene [—2.5-2]
benzene DMSO [=2;—1.5] octanol [—2;—-1.5]
acetone [-1.5;—1] acetonitrile acetonitrile
octanol octanol butanol [-1.5-1]
isopropanol butanol [-1.5-1] isopropanol
butanol isopropanol DMSO
dioxane dioxane dioxane
DMSO [-1;-0.5] acetone N-methylpyrrolidone
N-methyl pyrrolidone N-methylpyrrolidone [-1;-0.5] acetone [-1;-0.5]

“For ibuprofen and benzoic acid in solubility logarithm.

Also, optimized COSMO-SAC 2007 seems to give the most
accurate results in the studied mixtures.

Figure 3 shows that optimized models give good accuracy
when hydrogen bonding can occur (rmse between 2.8 and 4.2).
This observation tends to validate the optimization, even if the
predicted results do not exactly match the experimental ones.

In the other case (no hydrogen bonds or dipole—dipole inter-
actions between solute and solvent), rmse are higher (between
16 and 19).

More specifically, quantitative results in aprotic and apolar
solvents are not improved compared with the former models.
It is not surprising since the electrostatic parameters were not



changed. This observation and the poor results observed for
anthracene show the method’s limits when there are no
complex interactions such as hydrogen bonding or dipole—
dipole.

Table 3 shows the solubility ranking and predicted solubility
orders of magnitude compared with the experimental ones. The
improvement is not as good as expected. Despite the optimiza-
tion, solubility in polar and aprotic solvent still presents some
issues (see benzoic acid in acetone or acetonitrile). However,
the 2010 optimization shows an actual improvement compared
with the nonoptimized model.

The most interesting results concern the solubility temper-
ature dependence. Indeed, it is difficult to judge quantitatively
the models. The relative mean square errors may give some
clues to evaluate globally the results. But, there are still some

0.3
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0.25
[
2
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0.1 . : : s
10 20 30 40 50
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Figure 4. Mole fraction solubility calculated using COSMO-SAC 2007 of
salicylic acid in acetone using one experimental data point at S0 °C com-
pared with experimental solubility as a function of the temperature.

weaknesses, such as uncertainties introduced by the thermody-
namic properties of the solids, or the quality of the data used
for the optimization. That is why, in this work, we looked more
precisely at the ability of the models to predict the solubility
temperature dependency.

Solubility Temperature Dependence. The predicted
solubility temperature dependence is in good agreement with
the experimental data (Figure 4 and Table S). The k factors
(eq 10) are in better agreement with experimental values
than with the different original COSMO-SAC models (see
Table 4).

Moreover, there is a great improvement in polar solvents
(Table S, except paracetamol in ethanol), especially using the
2010 optimized version. So, it seems possible to obtain the
solubility of a complex organic molecule at any temperature,
knowing one solubility data point at a given temperature, with a
precision lower than 30% (Figure 4). The only problem occurs
in the case of anthracene, for which there is no hydrogen bon-
ding phenomenon but only electrostatic interactions between
instantaneous dipoles. This last observation strenghtens the
idea that the electrostatic parameter could be inappropriate for
solubility predictions in its actual form.

Solubility in Mixed Solvents. To check the accuracy of
COSMO-SAC for solubility prediction in mixed solvents, two
cases were investigated: (1) the solubility increases monotoni-
cally (ibuprofen in ethanol with n-heptane or propylene glycol)
and (2) a second solvent in the mixture implies a synergic effect
on solubility (maximum in the solubilty curve, for example,
paracetamol in acetone/water).

Figure S shows that the optimized version of COSMO-SAC
2007 (but actually not the 2010) improves the prediction
compared with the original versions (see heptane/ethanol). As
before,'® the better the solubility prediction in the pure
solvents, the better the results in mixed solvents when no
synergy effects are observed.

In the second case (Figure 6), the results do not show at
first an improvement of the COSMO-SAC optimizations.
The 2010 version is even less accurate in the representation
of the solubility maximum. Another optimization upon 85
equilibrium data (with mostly polar solvents) led to better
results. The same conclusion can be found with other mixtures,

Table 4. Experimental and Predicted Temperature Dependence: k Coefficient (Experimental Relative Error %), and Regression

opt. COSMO-SAC 2007 opt. COSMO-SAC 2010

Coeflicient
experimental
product solvent k reg. coeff.
ibuprofen toluene —3700 0.998
acetone —2870 0.999
ethanol —3460 0.981
paracetamol acetone —1870 0.999
ethanol —1467 0.998
propanol —1700 0.999
salicylic acid acetone —1140 0.999
acetonitrile —2600 0.999
methanol —1500 0.999
benzoic acid cyclohexane —6230 0.995
acetone —1700 0.999
isopropanol —1690 0.999
octanol —2160 0.994
anthracene toluene —3040 0.992
MEK —4580 0.952

isopropanol —4880 0.938

k reg. coeff. k reg. coeff.
—5085 (38) 0.997 —4600 (24) 0.997
—1825 (35) 0.999 —1560 (45) 0.999
—2440 (29) 0.999 —2440 (29) 0.999
—2120 (13) 0.999 —1760 (6) 0.999
—2690 (83) 0.999 —2750 (88) 0.999
—2960 (74) 0.999 —3055 (80) 0.999
—1652 (45) 0.999 —1195 (5) 0.999
—2575 (87) 0.999 —2095 (20) 0.999
—2530 (68) 0.999 —2315 (54) 0.999
—4845 (22) 0.976 —5230 (16) 0.977
—1205 (29) 0.999 —970 (43) 0.999
—1675 (1) 0.999 —1640 (3) 0.999
—2000 (7) 0.994 —2000 (7) 0.993
—3480 (15) 0.999 —3455 (14) 0.999
—3180 (31) 0.999 —3025 (34) 0.999
—-3670 (25) 0.999 —3645 (25) 0.999



Table 5. Experimental and Predicted (eq 10) Solubilities at Temperature T, and T, for Different Mixtures and Relative Errors

product solvent T, at T, (°C) T, at T, (°C) exptl (frac. mol) exptl (frac. mol)
benzoic acid isopropanol 49.57 491 0.297 0.129
salicylic ac. acetone S0 10 0.241 0.146
ibuprofen acetone 35 10 0.321 0.142
paracetamol ethanol 20 0 0.055 0.038
paracetamol acetone 20 0 0.041 0.021
anthracene toluene 50 20 0.0159 0.0061
original COSMO-SAC original 2007 original 2010 opt. 2007 opt. 2010
pred. at T, (frac.  rel error  pred. at T, (frac. rel error  pred. at T, (frac.  rel. error  pred. at T, (frac.  rel. error  pred. at T, (frac.  rel. error
mol.) (%) mol.) (%) mol.) (%) mol.) (%) mol.) (%)
0.167 29 0.152 18 0.179 39 0.129 0 0.131 1.7
0.181 24 0.160 10 0.134 9 0.117 20 0.143 2
0.244 72 0222 56 0.211 48 0.190 34 0.205 45
0.037 3 0.031 20 0.028 25 0.028 26 0.028 28
0.025 21 0.023 11 0.019 8 0.019 8.5 0.22 4
0.0052 13 0.0053 13 0.0053 13 0.0053 13 0.0053 13
a) o6 v b) o6
propylene heptane exp. acetone exp. ¥ propylene heptane exp.  # acetone exp.
glycol exp. glycol exp.
--- propylene heptane (orig.) --- acetone (orig.) --- propylene heptane (orig.) --- acetone (orig.)
o glycol (orig.) 05 glycol (orig.)
: — propylene heptane (opt.) — acetone (opt.) — propylene heptane (opt.) — acetone (opt.)
glycol (opt.) glycol (opt.)

solubility (mol. frac.)

0.2 0.4 0.8

0.6

ethanol (mol. frac.)

solubility (mol. frac.)

0.8

0.4
ethanol (mol. frac.)

0.6

Figure 5. Experimental and predicted solubility with (a) optimized COSMO-SAC 2007 and (b) optimized COSMO-SAC 2010 of ibuprofen in

mixed solvents as a function of the solvent composition.

like paracetamol in dioxane/water or salicylic acid in ethyl
acetate/water. The improvement of the hydrogen bonding
may allow the models to be interesting for the
of the solubility maxima but not with the
optimized parameter from this study. Thus, this last
conclusion is not very encouraging for solvent mixtures, or
maybe it would need specific parameters (especially with the
presence of water, highly polar).

Electrostatic Parameter. The previous sections have
shown the weaknesses of the optimized models when weak
interactions (van der Waals between two instantaneous
dipoles) are predominant. These interactions are taken into
account in the electrostatic parameter Cgg. In this work, we
propose to investigate the relevancy of this parameter in its
actual form for solubility predictions.

Two solutions can be considered: optimizing Ags and Bgg
using equilibria where there is no hydrogen bonding possibility
or optimizing all the parameters at the same time. In this paper,
the first case is studied.

description
prediction

Agg and Bgg were regressed with anthracene solubility data in
toluene at 25 and 50 °C. In this case, the ¢, parameter has no
influence. At 25 °C, Cgg must be —19500 kcal (mol A*)™-¢™ (x =
6.11 X 1073). At 50 °C, Cyg must be —27000 kcal (mol A*)™.¢™>
(% = 1.59 X 107%). It leads to Agg = —61860 kcal (mol A*)™'.e™
and Bgg = —3.64 X 1077 kcal (mol A*)™(e2 K7L

In order to test these values, solubility predictions of anthracene
in heptane were made (no hydrogen bonding). At 25 °C, we
found 1.67 X 107'% instead of 1.20 X 107>, These results show
that the COSMO-SAC 2010 method is not suitable to
represent cases where the ¢y, parameter has no influence, at
least in the simple case that was investigated.

It seems that the electrostatic (Cgg) and hydrogen bonding
(cyp) parameters might be dependent. Unless anthracene in
toluene shows a very specific behavior, it can be suggested that
there is a balance between them. Indeed, the electrostatic
parameter improvement is complicated (the improvement for
anthracene in toluene causes a decline for anthracene in
heptane). Moreover, a quick attempt to optimize the Apg and
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Figure 6. Experimental and predicted with optimized COSMO-SAC
(2007 and 2010) solubility of paracetamol in acetone/water as a
function of the initial acetone mole fraction.

Bgg parameters (not shown here) did not lead to significant
improvement. Maybe the form of the AW term is not adapted
to this kind of simulations.

In the end, because the hydrogen bonds or dipole—dipole
interactions are predominant in SLE, this problem is negligible
when considering complex molecules in polar solvents.

CONCLUSION

In this work, the most recent refinements of COSMO-SAC
have been optimized for solubility predictions. The optimiza-
tions, based on experimental solubility data extracted from the
literature, have led to new interaction parameters. The obtained
hydrogen bonding parameters are lower than the original, and
the probability to form hydrogen bonds between two segments
are also lower. That is not surprising since the molecules
involved are much more complex than the ones considered in
VLE or LLE. For the molecules commonly considered in drug
solubility, the interaction sites could be hidden or buried, and
the probability to form hydrogen bonds should indeed be
lower.

With the optimized COSMO-SAC models, the results are
very interesting and more accurate than previously (Tables 1
and 2). The orders of magnitude are closer to the experimental,
and the prediction of the temperature dependency is also
improved.

Table 2 also shows that the uncertainties of the optimized
models are smaller than that of the original models. The main
difference found is the modeling of systems where weak
interactions are predominant: instantaneous dipole interactions
are not well quantified. It seems that the electrostatic parameter
is considerably dependent on the hydrogen bonding parameters
in the model.

Also, solubility predictions in mixed solvents are not in better
agreement with the experimental values. More accurate results
can be achieved by performing an optimization using only polar
solvents, especially when water is involved.

In order to improve the results of this study, a larger database
could be used, considering more complex molecules. This
could lead to a most obvious global optimum.

Another trail could be the adjustment of the 6, parameter.
Even if the COSMO-SAC model may disregard the free-energy
character of hydrogen bonding by being too empirical, the size
and flexibility of molecules could be included in the o,
parameter and be characteristic for a given molecule. This
could improve the hydrogen bonding representation but would
need a new optimization for each solute compound.

Last, the form of the molecular interactions should probably
be changed in order to improve weak van der Waals or London
dispersive interactions.

Nevertheless, the refinement and SLE optimization are
relevant and might be useful for quick solubility estimations, or
crystallization yield calculations.

APPENDIX: EXPERIMENTAL DATA USED FOR THE
MODEL OPTIMIZATION

The mixtures used for parameter regression are presented in
Table 6 and the list of solvents in Table 7.

Table 6. List of Compounds for COSMO-SAC Optimization

(Actual Data from the Literature>>™2%)
product number of solvents

3-hydroxybenzoic acid 1
3-methylbenzoic acid 3
4-aminobenzoic acid 17
4-hexyl resorcinol 2
4-hydroxybenzoic acid S
acetanilide 10
anthracene 8
antipyrine 3
aspirin 14
benzoic acid 20
butabarbital 4
butylaminobenzoate 10
butylparaben

caffein 3
citric acid 10
cortisone 2
ephedrin 7
estriol S
ethyl-4-hydroxybenzoate 3
ethyl-p-aminobenzoate 8
fentanyl 2
flurbiprofen 15
fumaric acid 6
ganciclovir

hexachlorobenzene 4
ibuprofen 17
lidocaine N
mefenamic acid 3
metharbital

methylaminobenzoate 11
nandrolone propionate 1
nicotinamide 4
paracetamol 19
phenacetin 13
piroxicam 16
propylaminobenzoate 8
propylhydroxybenzoate 8



Table 6. contiuned

product number of solvents
prostaglandine 1
p-toluic acid 2
salicylic acid 19
sulfamerazine 2
sulfamethoxypyridazine 19
sulfadiazine 13
sulfapyridine 7
theobromine 3
theophylline 6

Table 7. List of Solvents for COSMO-SAC Optimization

1-heptanol
1-hexanol
1-octano
1-pentanol
1-propanol

acetic acid
acetone

acetonitril
benzene
carbontetrachloride
chloroform
cyclohexane
dichloromethane
diethyl ether
1,2-dimethoxy ethane
dioxane

DMF

DMS

ethanol
ethoxyethanol
ethyl acetate
ethylene glycol
glycerol

heptane

hexane
isopropropanol
isopropyl miristate
methanol

MEK

n-methyl pyrrolidone
n-butanol
o-xylene
propylene glycol
THF

toluene

water
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