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ABSTRACT. The Euler-Poinsot rigid body motion is a standard mechanical
system and is the model for left-invariant Riemannian metrics on SO(3). In
this article, using the Serret-Andoyer variables we parameterize the solutions
and compute the Jacobi fields in relation with the conjugate locus evaluation.
Moreover the metric can be restricted to a 2D surface and the conjugate points
of this metric are evaluated using recent work [4] on surfaces of revolution.

1. Introduction. Using geometric optimal control, the Euler-Poinsot rigid body
motions are the extremals of the left-invariant Riemannian problem on SO(3)

@ = Z u; RA; min /T Z Lu2de
dt &= """ werzom Jo e

=1,3 i=1,3
with
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where RA;,i = 1,2,3 form a basis of left-invariant vector fields on SO(3) and the
principal moments of inertia of the body are oriented using Iy > I, > I3 > 0.
Conversely by chosing an appropriate frame every left-invariant metric on SO(3)
can be written in this form.

From standard geometric analysis, see [1] the following is well known. The ex-
tremal curves are solutions of the left-invariant Hamiltonian
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where M = (My, My, M3) is the angular momentum of the body measured in a
specific moving frame. The motion is Liouville integrable and every trajectory
is confined by the first integrals to a two-dimensional torus on which the motion
is pseudo-periodic and characterized by two frequencies described using the Euler-
Poinsot representation. Moreover the integral curves can be computed using elliptic
integrals of the first and third kind, see [11].

A set of symplectic variables was introduced by Serret-Andoyer (see the survey
[7]) to reduce the Hamiltonian to the form

1 /sin2 2
H(g,k,l,G’,K,L)z—(Sm I cos®l

s\t Iz>(G L?) +

21 3 ’

where G, K, L are the dual variables associated to g, k, [. If I = I the Hamiltonian
depends only on momenta, but in general a further transformation is required to
integrate the motion using Hamilton-Jacobi method. Finally such a transformation
can be easily related to the standard action-angle variables to represent the rigid
body motion [10] (they are crucial in perturbation analysis).

The aim of this article is to study the Euler-Poinsot motion from the geometric
optimal control point of view. Indeed such a system is related to the attitude control
problem of a satellite [3] (assuming a direct control of the angular velocity by impulse
torques) and the limit case Iy — +oo defines a left-invariant SR-metric on SO(3)
[15] and is associated to the dynamics of spin systems [16]. In this framework the
important and difficult problems are to determine the conjugate and cut loci:
fixing Ry € SO(3), the conjugate locus C(Ry) is formed by the extremities of
extremal curves where optimality is lost for the C'-neighboring curves while the
cut locus Cey(Ro) is formed by extremities of extremals where the optimality is
lost globally. Besides the interest of such computations in optimal control, the
analysis of conjugate loci in Riemannian manifold has a long history in geometry,
which goes back to Jacobi’s study of the conjugate locus on ellipsoids, see [8] for
recent advances. The conjugate locus for the rigid body in the case of two equal
moment of inertia was descrided very recently in [2].

The main contribution of this article is to describe the conjugate locus of the
Serret-Andoyer metric g, = (S(—“;; + 2/%_1@» ,where z(y) = 2 (% + %) as-
sociated to the restriction of H to the (g,l, G, L)-space and the principal moments
of inertia being oriented according to I; > I > I3. The analysis relies on recent
studies of metrics on surfaces of revolution [13] and refined developments on two-
spheres of revolution [4], [14]. The key tool is to reduce the metric to the polar
form g = dp? + m(p)d#? which is used to evaluate the Jacobi fields and the con-
jugate locus. The interest of interpreting the Serret-Andoyer metric in a geometric
framework of surfaces of revolution is to show the analogy with the conjugate locus
computations on oblate ellipsoids of revolution. It is a first step toward the com-
putations of the conjugate locus for left-invariant metrics on SO(3) through the
Jacobi fields parameterized using the polar normal form.

2. Riemannian metrics on surfaces of revolution. The objective of this sec-
tion is to introduce the concepts and to recall the properties of the metrics on
surfaces of revolution [13], presenting also the recent developments to compute the
conjugate locus on two-spheres of revolution [4], [14].



2.1. Generalities of Riemannian metrics on surfaces of revolution. Taking
a chart (U, ¢) the metric can be written in polar coordinates as

ds? = d¢? + m(p)do?
One use Hamiltonian formalism on T*U, % is the vertical space, 0% is the hori-

zontal space and « = pdq is the (horizontal) Liouville form. The associated Hamil-
tonian is

1 2
H== 2 6
2 (pv " m(so))

and we denote exp tH the one-parameter group. Parameterizing_}by arc-length
amounts to fix the level set to H = 1/2. Extremal solutions of H are denoted
v :t— (q(t,qo,p0),p(t,q0,p0)) and fixing qo it defines the exponential mapping
exp,, : (t,po) = q(t, qo, po) = Il(exp tﬁ(qo,po)) where I : (¢, p) — ¢ is the standard
projection. Extremals are solutions of the equations

do _, dpy _ 1 2m(0)
de 7% et 279m2(p)’
40 _ _po dpy _

dt m(p)’ dt

Definition 2.1. The relation py = C? is called Clairaut relation (in Hamiltonian
form) on surfaces of revolution. We have two types of specific solutions: meridians
for which pg = 0 and 6(¢) = 6y and parallels for which %‘f(()) = p,(0) = 0 and
o(t) = ¢(0).

Remark 1. From the extremals equations parallels are solutions of m’(p) = 0.

2
Integrating H = 1/2 as the mechanical systems (%ﬂte)2 + mp&) = 1 and denoting
2
V(e,pg) = Wp("q)—) the potential mapping they correspond to local extrema (py

being a fixed parameter).

Assumptions. In the sequel we shall assume the following

e (A1) ¢ =0 is a parallel solution and the corrresponding parallel is called the
equator.
e (A2) The metric is reflectionally symmetric with respect to the equator:

m(—p) =m(p).

Parameterizing by arc-length, one gets
2
do\" o m
dt m(p)’

m(p)
m(p) — g’

hence %f = +1/g, where

9(,p0) =

By symmetry, one can assume 6(0) = 0, py € [0, /m(¢(0)] and %f(()) > 0. Moreover
one restricts our analysis to extremals such that ¢(0) = 0. Arc-length parameter-
ized extremal v is defined by t — (¢(t, pg), 0(¢, pe)) and %f > 0 corresponds to an



increasing branch and %ﬁ—’ < 0 a decreasing branch. One has
dp 1 40 py
dt  Tg dt  m(p)
and for an increasing branch one can parameterize 6 by ¢ and we get

d0 _ g(p,po)po _
@ = W = f(.po).

where

f(§0p9) =

Po
vmlp)y/m(p) -
)

2.2. Jacobi equation and conjugate locus. We denote e; = 0‘9@ ey = \/%0—0
m(ep

the orthonormal basis. Using Hamiltonian formalism, H defines a quadratic form on
the cotangent bundle and differentiating H = 1/2 along an extremal parameterized
by arc-length one gets the relation (p,dp) = 0.

Definition 2.2. If v is a reference extremal, Jacobi equation is the variational
equation

oz _ OH(y(1)) _

T - 9. 05 =@
and we denote J(t) a Jacobi field, that is a non trivial solution of Jacobi equation.
The time ¢, is said to be conjugate to ¢ = 0 if there exists a Jacobi field J(t) =

(6g(t), 0p(t)) such that d¢(0) = dq(t.) = 0.

If v is parameterized by arc-length two Jacobi fields are crucial in our analysis.

e Ji(t) = (0z, dp) denotes the Jacobi field vertical at time ¢ = 0, that is 6g(0) =0
and such that (p(0),dp(0)) = 0.

o Js(t) is the (Poincaré) Jacobi field vertical at time ¢ = 0 and generated by the

tangent to the curve A — (¢g(0), p(0) + Ap(0)).

The following facts are standard in Riemannian geometry [6] but translated in
terms of symplectic geometry. First of all H(p(0) + Ap(0)) = (A +1)2H(p(0)) and
the level set is not preserved. Moreover along an extremal we have the following:
q(t, 90, Apo) = q(At, go, o) and p(¢, qo, Apo) = Ap(AL, qo. po). Hence the Poincaré Ja-
cobi field can be easily computed:

) = 2 (t.90, (A + )po) _,dg
Ao it

— (%, g0, po)

op (t, g0, (A + 1)po)
OAa=0

d
op(t) = = p(t. qo,po) + td—f(t,qo,po)-

In particular a(J2) is non zero since a(dq<t)) = (t)dq—(t2 = 2H = 1. Secondly
along an extremal curve one has a(d‘é—iﬂ) p(t) =5~ dq(t) H(q(t),p(t)). Hence the
one-parameter group exp tH preserves the restrlctlon of « to the level set H =1/2.
Since J1(0) is vertical one has a(J1(0)) = a(J1(¢)) = 0. Therefore we have.

Proposition 1. Conjugate points are given by the relation dII(J1(t)) =0 and

o - () ),




In particular we have at any time the collinearity condition:
Op o0
papa_pe + paa—pe =
Next we determine the conjugate locus of a point on the equator. First of all we
have corollary 7.2.1 [13].

0.

Lemma 2.3. Let py € (0,1/m(0)) such that ?ii; > 0 on (0,t). Then in this interval
there exists no conjugate times.

Let I = (0,4/m(0)) be a positive interval such that for any py € I, the derivative
of the increasing branch starting at the equator vanishes at time 7/4 and ¢, =
@(T'/4). Then the trajectory ¢ — o(t, pg) is periodic with period T given by

T P+
1= / 9(, p)de
0

and the first return to the equator is at time 7'/2 and the variation of 6 is given by
ot
A0=2 [ f(o,po)de.
0

Definition 2.4. The mapping py € I — T'(pyp) is called the period mapping and
R : py — A0 is called the first return mapping.

Definition 2.5. The extremal flow is called tame on I if the first return mapping
R is such that R’ < 0.

Proposition 2. For extremal curves with pg € I, in the tame case there exists no
congugate times on (0,7/2).

Proof. Asin [4] if R’ < 0, the extremal curves initiating from the equator with ppel
are not intersecting before returning to the equator. As conjugate points are limits
of intersecting extremal curves, conjugate points are not allowed before returning
to the equator. O

Assumptions. In the tame case we assume the following

2/
(A3) At the equator the Gauss curvature G = —\/ﬁav;n(w is positive and
maximum.
Lemma 2.6. Under assumption (A3), the first conjugate point along the equator
is at time w/+/G(0) and realizes the minimum distance to the cutl locus Cey(0). It
is a cusp point of the conjugate locus.

Proof. See for instance [12]. |

Parameterization of the conjugate locus under assumptions (A1-2-3) for pg € I and
©(0) = 0. The conjugate locus will be computed by continuation, starting from the
cusp point at the equator. Let pp € I and ¢t € (T/2,T/2 + T/4). One has the
formulae

oep0) = M0 + [T

and on [T/2,t], % < 0, ¢ < 0. Hence

' dt
t 0
Do
dt:/ J(@.pe)dep.
/T/2 m(e) & (t,p0)




According to proposition 7.2.1 [13] conjugate times are given by the relation
Op(t,ps) _ 90(t,po) _
9pe Ope
Hence we deduce the following.

0.

Lemma 2.7. For py € I and conjugate times between (T/2,T/2+T/4) the conju-
gate locus is solution of
90(. py)

Opy
where 0(p, pg) = Ab(pg) + f;) J (@, pg)de.

Analysis of equation (1). One notes py — @1.(py) the solution of the equation
initiating from the equator. Differentiating one has

—0, (1)

-0
a0+ [ 2Lap—0
© 8]90

at p1.(pg). Differentiating again we obtain
0 92
0 0 0
Aa//+/ _J;dQD— Salc _f:
o1 ODg dpy  Ope
One can easily check that %% > 0 and %{r > 0. In particular
4

dp1, ( , /” »f )(W)‘l
= A0 + —=d —_— .
dpo o1, ODF ?) \opo

Proposition 3. If A¢” > 0 on I, then %‘%ﬂ # 0 and the curve pg — (©1c(po),
01.(ps)) is a curve defined for pg € I and with no loop in the plane (p,0). In
particular it is without cusp point.

Proof. By definition, the conjugate locus for py € I is the envelop of the extremal
curves initiating from the equator. One extremity is the cusp point at the equator
and the curve can be continuated since it is geometrically clear that the conjugate
point is located on (7'/2,T/2 + T/4), that is before the second zero of %f. a

To simplify the computations one use [4].

Lemma 2.8. We have:

T"(po)
R (py) = .
(po) 505
Computations on the ellipsoid of revolution: the oblate case. The ellipsoid of revo-

lution with respect to the z-axis is generated by the curve:

y=sinp, 2 =ccosy

where 0 < € < 1 corresponds to the oblate case while € > 1 is the prolate case. The
restriction of the Euclidian metric is

9= Fi(p)d¢® + Fy(p)do?
where Fy = cos? ¢ + e2sin? ¢, Fy = sin® ¢.
The case ¢ = 1 is the round sphere and we shall restrict to the oblate case. In

this case the Gauss curvature is positive and increasing from the north pole to the
equator.



The metric can be written in the polar form thanks to:
de = F/"*(p)dp

which leads to introduce the elliptic function of the second kind: ® = E(, k) where
the modulus is k%2 = 1 — &2.

We shall compute the period mapping in the (1, §)-coordinates, ¥ = 7/2 — ¢
and ¥ = 0 is the equator. The Hamiltonian is

2
R i
2\ Fi(p)  Fa(e)
and with H = 1/2, one gets

dy (cos? ¢ — p2)'/?
dt  costp(sin? o + €2 cos? ) /2’

Denoting 1 — pg — sin? ¢y and making the rescaling Y = sin ¢ Z, where Y = sin ¢,
the equation

2 201 _ v2\\1/2
U ) A
. 2
(sin v (1 - 7))

(62 + Z%sin? ¥3(1 — £2))/2
(1— Z2)1/2
Hence the formulae for the period mapping is
T /1 (e2 + Z2sin? Yy (1 — £2))1/2
1 1-22)17

becomes

dZ = dt.

dz.

We introduce:

a = \/62 +sin? ¢ (1 — £2),
5 sin® ¥y (1 — 2)

a2
2
Hence we have:

T

1 a(m/Q +m2Z2)
4./0 V(1= Z2)(m2 + m22Z?)

1 2
4o |m/?K(m) +m2/ Z dz
o /(1 —22)(m"?+m?Z?)

K(m)
= 4am?K(m) + 4am? / en? udu,
0

where Z = cnw. Using [11] one gets:
T = 4da(m?K(m)+ (E(m)—mK(m))
= 4daE(m).
A straightforward computation gives us

T'(pg) < 0 < T"(po).



Hence the conjugate locus can be continued from the horizontal cusp point at the
equator to the vertical cusp point at the meridian § = 7 , when py — 0. (Observe
lim,, 0 R(ps) = m ). By symmetry one gets easily the standard astroidal shape of
the conjugate locus.

Observe the difference with the prolate case.

In this case the curvature is minimum at the equator, the first return mapping
is increasing and the miminum is at pg — 0 and is equal to 7. In this case the
conjugate locus is constructed by continuation from a vertical cusp at § = 7 to an
horizontal cusp at the equator.

In both cases the cut loci can be determined from the conjugate locus and the
symmetries of the extremal flow: a segment of the equator in the oblate case versus
a segment of the meridian in the prolate case.

Remark 2. In the oblate case, one can similarly evaluate the different conjugate
loci corresponding to **-conjugate points, ¢ = 1,2, .... For instance for the second
locus, we replace in lemma 2.7, 6 by the formulae

0. 9) = 200(pp) + / " Flopo)de,

for t € [T,T + T/4], ¢ > 0 and the “four cusps Jacobi conjecture of the conjugate
loci” can be checked as an exercice left to the reader.

3. Left-invariant metrics on SO(3) and the Serret-Andoyer formalism in
Euler-Poinsot rigid body motion.

3.1. Left-invariant metrics on SO(3). We recall the geometric framework us-
ing [9], [L]. We note (eq, €2, e3) the fixed frame and (E(t), E2(t), E5(t)) the mov-
ing frame attached to the body and formed by principal axis. The position of
the body is represented by the matrix R(¢) = (FE1(t), Ea(t), E5(t)) and is solu-
tion of 4 = > i—13uiRA;. The motion is obtained by minimizing j;)T Ldt, with
L=%" =13 I;u? where the principal moment of inertia in the distinct case are ori-
ented using I; > I, > I3. The rigid body dynamics can be derived using Pontryagin
maximum principle and appropriate coordinates. Le £ be an element of T5(SO(3))
and denotes H; = £(RA;),7 = 1,2,3 the symplectic lifts of the vector fields RA;.
The pseudo-Hamiltonian takes the form

i=1,3 i=1,3
and the maximization condition of the maximum principle implies %—Z = 0. Hence
w; = H;/I; and plugging such w; into H we get the true Hamiltonian
1 (H? H? H?
H o—— (=t 22 223} 2
¢ 2<Il+12+13 )

Note that the vector H=(H,, Ho, H3) represents the angular momentum of the
body measured in the moving frame and related by H; = I;€); to the angular velocity
Q = (2:Q9,93).

The Euler equation describing the evolution of the angular velocity is

dH,

T~ A = {Hi 1) )



and {, } denotes the Poisson bracket. The Lie bracket of two matrices is computed
using the convention [A,B] = AB — BA and we have the relation {H;, H;} =
&([As, 44]). Computing

[Ala AQ] — _A?n [AlvAB] — AQ} [A27 AS] — _Al

and Euler equation is
dH, = HyHs (i _ i)

dt I I
dH, 11
2 _HH. ==
dt ! 3(11 13)
dH; 11
o HH((—-—).
dt ! 2(12 Il)

The following proposition is standard.
Proposition 4. The Euler equation is integrable by quadratures using the two first
integrals: the Hamiltonian H,. and the Casimir |H|> = H? + H? + H3.

Remark 3. The solutions of Euler equations are called polhodes in classical me-
chanics. The limit case with two or three equal principal moments of inertia can
be treated similarly. Also, as pointed in [9], the above calculations hold for every
left-invariant Hamiltonian H = f(H;, Ha, H3) on SO(3). In particular the SR-case
is derived next as a limit of the Riemannian case.

3.2. The sub-Riemannian case. Setting uq = vy, with ¢ — 0, one gets a control
system with two inputs only. Since w; = H;/I; this is equivalent to I; — +oo. Then
1 (H? H2
H — (=243
c 2 ( I * I3 )
with the corresponding Euler-Lagrange equation. This is the model for left-invariant
SR-metrics on SO(3) depending upon one parameter k? = I5/I3.
Once the Euler equation is integrated the next step is to parameterize the solu-
tion. It relies on the following general property [9].

Proposition 5. For every left-invariant Hamiltonian H, = f(Hy, Ha, H3) the full
systems 1is integrable by quadratures using the first integrals: the Hamiltonian H
and the Hamilonian lift £(A;R) of the right-invariant vector fields A;R.

Note that he additional first integrals are simply deduced from Noether theorem
in Hamiltonian form.

3.3. Explicit integration and Euler angles. Euler angles are introduced on
SO(3) to complete the computations. They are denoted ¢1, ¢2, ¢3 and defined
using the following convention:

R = (exp ¢1A3) (exp Aago) (exp ¢3As) .
As it is shown in [9], the angles ¢5 and ¢ can be founded using the relations
Hy = —|H|sin ¢o cos ¢3, Hy = |H|sin ¢ sin ¢3, Hz = —|H| cos ¢a,
while ¢; is computed by integrating the equation
doy  VH| (sinds 3 —cosonfife ) 11| (M55 + Mo )
At Hysings — Hycosgs H? + H2
The following proposition is useful for the computations.

(4)



2 2 2
Proposition 6. Using Fuler angles the Hamiltonian H, = % (%L + % + %)
takes the form
CoS ¢3

2
1
He == (poasings — 22 (py, — py,
° =31, (P¢2 sings — — o (Por — Pos 005(752))

. 2
1 sin ¢3 1,
+ A (I%z cos ¢3 + S 6 (Pp, — Do cOS ¢2)) + oL, Do

3.4. The Serret-Andoyer variables and the associated metric. Euler-Poinsot
Hamiltonian can be computed in the symplectic Andoyer variables, see [7]. The mo-
ment of inertia are oriented according to I; > Is > I3 and the Andoyer variables are
denoted by (g, k, !, G, K, L) where G, K, L denote the canonical impulses associated
to (g,k,l) . They are defined by

Hy =/G?—L[?sinl, Hy=+\/G2—L2cosl, H3z= L.
Hence G = |H| and the Hamiltonian takes the form

1 (sin®l  cos?l 9 9 L2
—5(11 + IQ)(G —L)JrQ—I3 (5)

The complete relations between Andoyer variables and Euler angles are:

He(g,k,l.G K. L)

p¢1:K
p¢3:L

1
Do, SN g = —5\/G2 — L2V/G?2 — K?sing

COS (g = % (KL— VG2 — 124/G? —KQCOSg)

¢1 = k + arctan (M)
Do, SIN Q2

¢2 _ l =+ arctan (m)
Dg, SN @2

In the sequel we use the following notations for the Andoyer representation

= § 102 -5) (Asiy + Beosy) + ) ®

[NCR

where

H
b= Gl y=t=arctn (1) 2= (Asin?y ¢ Boosy).
2

A=1', B=L"' C=1I;",
and the Hamiltonian takes the form
11z z
He(2,y,0, D2, Py: Pw) = 5 [51935 + (C - 5) pf,} ,
where A < B < C, z€[24,2B],C -5 > 0.

Thus H. is associated to the so-called Riemannian Serret-Andoyer metric

2 2
9a = d$2+

Tz (2C — z)dy2 (™



Remark 4. This metric is not related to the original metric on SO(3) since the
symplectic transformation mixed state variables and impulses. In particular, con-
jugate points of both metrics are not in correspondance. Nevertheless we have the
following.

Lemma 3.1. Denote by L the fiber T;SO(B) in Buler angles representation ¢ =
(&1, P2, P3), then L is a Lagrangian manifold in Serret-Andoyer variables.

Proof. This is clear since Andoyer variables are symplectic coordinates. O

3.5. The pendulum representation. The dynamics of rigid body is well un-
derstood using Euler-Poinsot interpretation. The polhodes describes the evolution
of the angular velocity in the moving frame and are contained in algebraic curves
intersecting the ellipsoids AH? + BH3 + CH2 = c; with the spheres of constant
angular momentum H? + HZ + H2 = cy. They form periodic curves except pair of

separatrices contained in the planes Hz = £,/ gT_éH 1. Besides those remarkable
properties they can be parameterized using Jacobi or Weierstrass elliptic functions,
see [11]. In particular the Euler equation can be used to define the cn — dn Jacobi el-
liptic functions. To complete the integration one uses Euler-Poinsot interpretation.
According to this representation the end-point of the angular velocity in a fixed
frame describes a curve in a plane orthogonal to the angular momentum. Such
a curve is called an herpolhode in mechanics. Its description by an angle and
its parameterization using the elliptic integral of the third kind II is given in [11].
Altogether this gives a pseudo-periodic motion described by two frequencies.

Serret-Andoyer representation leads to a different geometric interpretation that
we describe next.

Using H.(7,y,w.ps,py. Pw) = 5 [5P2 + (C — ) p2] one gets the equations

dx dpz

o P (Asin?y + Bcos®y) . T 0, «
d d
d_zzi =p, (C— Asin?y — B cos? Y), % =(B—A) (pi —pz) siny cos v,
completed by the trivial equations
dw  dpy
e dt

The reduced system (8) describes the evolution of the extremals of the Andoyer
metric. One has %% = py(C — 3) and the isoenergetic curves H, = h gives us

()
Z o dt
=Dy + ——— = 2h,
270 (0-3)
where h > 0 since H. > 0. By homogeneity one can set h = % which amounts to

parameterize the extremals by arc-length. The Hamiltonian function is m-periodic
with respect to the y-variable. It verifies the following relations:

H.(y,py) = H(y,—py), He(y,py) = He(—Yy.Dy)-

The equilibrium points are p, = 0, y = %’T In the neighborhood of the
point y = p, = 0 the cigenvalues of the linearized system are solutions of \? =
(B — A)(C — B)p? and they are real since A < B < C and in the neighborhood of
y = 5, py = 0 they are purely imaginary. In consequence in order to parameterize



all phase trajectories in the plane (y,p,) it is sufficient to integrate with y(0) = 7.
To resume we have.

Proposition 7. The Euler-Poinsot motion projects in the (y,py) plane into a pen-
dulum motion which can be ineterpreted on the cylinder y € [0, 7], with a stable
equilibrium at y = 5 and an an unstable at y = 0. They exist two types of periodic
trajectories: oscillating trajectories homotopic to zero and rotating trajectories.
The non periodic trajectories are separatrices joining 0 to m and represent separat-
ing polhodes. The trajectories are reflectionally symmetric with respect to the two

azes: y = 0 and py = 0.

Remark 5. This representation gives two types of trajectories while Euler-Poinsot
representation gives only one type of peudo-periodic trajectories.

4. Main results: Polar form of the metric and integration. Description
of the conjugate locus.

4.1. Polar form of the metric. The Serret-Andoyer metric is given by
2
(20-2)
To get the polar from one integrates the equation

dy

\/C'— (Asin®y + Bcos?y)

2
Go = —da® + dy?, z=2(Asin’y+ Bcos’y).
2

with the initial condition y(0) = 5. One sets X =siny, y € [-7,+7) and we have

dX

@ X
o7 :/1 JI-X2)((C-B) +(B-A4)X?)

B /X dX
1 /(1 —X2) (k2X2 +k'?)
where a =/C — A, k> = 5—:‘2, 1>k>0,k?=1-— k2 Taking ¢(0) = 0, one has

= /1 dx — en (X, k).
Jx /(1= X2) (k2 + k2X?2) ’
Hence
X =siny = cn(—ap, k) = cn(ap, k). 9)

This yields
z=2(Asin®y + Beos’y) =2 (Acn? (ap, k) + Bsn? (ap, k)

and
m(p) = 2_ !
=L Acen?(ap, k) + Bsn?(ap, k)

Hence we get the following proposition using the notation x = 6.

Proposition 8. The Serret-Andoyer metric g, takes the polar normal form de? +
m(p)d0? where m(p) = [Acn®(ap. k) + Bsn?(ap, k)™t € [I, L], k* = £=4,
a=+C — A. It is reflectionally symmetric with respect to the equator (m(—y) =
m(y)).



4.2. Geometric analysis. The Hamiltonian associated to the metric is H =

2
%(pf, + mp(‘jp )) and parameterizing using H = % one gets the mechanical system

(%‘f)2 + V (¢, ps) = 1 where the potential is given by
V(p,pg) = pj [Acn® (o, k) + Bsn?(ap. k)]

Lemma 4.1. The potential is symmetric with respect to the equator o = 0: V(p) =
V(=) and is periodic of period QKT(]“) It has a minimum at ¢ = 0 given by p3 A

and a maximum at ¢ = % given by pr and is monotonic on [0, %]

To compute the extremals starting from the equator ¢ = 0 we proceed as follows.
One can restrict to pp > 0 and one must have py € [0, v/T;]. We have two types of
solutions associated to the pendulum representation :

e Rotating trajectories: for physical solution one has py € (1/I3,v/I2) but to get
a complete metric they are extended to py € (0,+/12).
e Oscillating trajectories: pg € (v 1o, vIh).
Except the separatrices all the trajectories are periodic and due to the symmetry
with respect to the equator ¢ = 0 it is sufficient to parameterize the following:

e For oscillating trajectories denote , the intersection of the potential with
the level set 1. We parameterize the branch between [0, o4 ].
e For rotating trajectories, one may assume ¢ € [0, %]

4.3. Parameterization. One set Y = sn?(ap, k) and for the increasing branch we
integrate

¥ i-mla+ B Ay

Moreover
dY =2asncndnde.

Using v = /O — A4, k? = B=4, dn® = 1 — k? sn?, one gets:
dy
2B — A)pg\/Y (1-Y)(&-Y) (¥, -Y)

where Y, denotes the root of 0 =1 — p2(A+ (B — A)Y).

The two cases are distinguished by the position of this root. In the oscillating case
where py € (v/I2,+/I1) one has Yy = sn?(ayp, k) and for py € (0,/I3), Y > 1.
In the limit case pj = &, Y} = 1. Also observe that when pj = & = I, this
root is given by Y, = % = % Hence we recover the different physical cases in
Euler-Poinsot easily.

To integrate, we use a specific homographic integration because the roots are
explicit. Besides the geometric interest it is related to the uniformization of the
computations of the conjugate locus in relation with [5]. We proceed as follows.

dt =

(10)

4.3.1. Parameterization of oscillating trajectories. We have for pg € (v/T, /11 ) four
distinct roots for the polynomial at the right-hand member of (10): 0 < Y, <1< %
and for the non fixed roots we use the notation Y; = Y, and Y5 = k% and the motion
can be restricted to the interval [0,Y;]. The equation (10) takes the form

2
(S5) =~z - Py (r = vy = v - va) (1)



and we set

Y(1-Y))
== 12
U AR (12)
and 7 is monotone increasing from 0 to 1. We have
Y 2nY; (1 - Y,
-1 ay == it 1)d’72 (13)
?Yr + (1 -Y1) [2Y; + (1 - Y3)]
and after simplication the equation (11) takes the normal form
an\ 2
(57) = s - A7 = Y1 = ) m? 4 ) (14)
with
Yi(Ya —1)
2 e 242
m° = —Y2 v m 1-m
Denoting
M? = pj(B = A)*(Y2 = V1) (15)
one gets the parameterization
n(t) = en(Mt + o, m).
Therefore we have
_ KCHQ(Mt‘FdJO,m) _ Y1 CHQ(Mt'i_?vZ)Ovm) (16)
C [Yien2(Mt+o,m) + (1 —-Y1)]  1-Y;sn2(Mt+g,m)’
To integrate the f-variable one uses the following relations [11], p. 68.
o+ Bsn?u sn? u
———du = A— d 17
/0 A+ psn2u “= )\2(/8 a)/1+z/an2 “ (17)

where v = §. To compute the integral in the right-hand member, one introduces
the complex parameter a defined by

14
bn a = —W (18)

and the elliptic integral of the third kind

“ mQ snacnadnaanzJ

II = d 19
(u,a,m) o 1—m2sn?asn?v v (19)

Therefore
do B (B — A)Y; cn?(Mt + vy, m)
5 ~PlA+(B—A)Y]=ps {A + (1 =Yy sn2(Mt + ¥o,m))
One sets ]
a=l Bl A=gr p=-l
and with 6(0) = 0, we obtain
0(t) = po [At+ (B—-A) [ t+ — 2 (ﬁ/\ ap) H (20)

where

t 2 u 2
sn“u 1 sn® u
1= ——dt=— ——du, = Mt

/0 1+vsn2u M Jy, 1 +vsnZu o %o



which can be represented with (19)

/“ sn?u d (u, a,m)

U= .
wo 1 +vsn?u m2snacnadna

The parameter a is given by
o _Yo— N
m2 Yo -1
This gives the complete parameterization of the Euler-Poinsot rigid body motion
using the Serret-Andoyer variables since the remaining components are defined by
Dy = %f and the additional first integrals.

> 1.

4.3.2. Parameterization of rotating trajectories. In this case Y. > 1 and we use the
transformation
2 Y(i-1)
YW -Y

and for Y =0, 7 =0 and for Y = 1, n = 1. We omit the details of the compu-
tations. We have two cases pg € (v/I3,vI2) and py € (0,+/I3), the case py = /I3
corresponding to the collision of Y, with % Geometrically, it has no effect since
we consider onty the part of the trajectory between 0 and 1.

4.4. Construction of the conjugate locus. We shall use the framework of Sec-
tion 2. One needs some preliminary computations.

Lemma 4.2. The Gauss curvature of the Serret-Andoyer metric is given by
(A+B+C)(z—2_)(z—2z4)

G =
52
) 2(AB+AC+BC++/(AB+AC+BC)?>—3ABC(A+B+C i .
with z4 = (AB+ACH V X+B:C ) ATBTO) It has a positive maxi-
mum W at the equator.

Proposition 9. For oscillating trajectories where I, < p3 < I, the first return
mapping of the Serret-Andoyer metric is a strictly convex monotone decreasing
function.

We immediatly deduce the conjugate locus at the equator. For rotating trajec-
tories there is no conjugate points. For oscillating trajectory and pg positive the
conjugate locus is a curve formed by two symmetric branches with respect to the
equator and the branch in ¢ < 0 is starting from the horizontal cusp point at the

equator when pg — I to form when pg — Iy a branch asymptotic to the parallel
K (k)

direction ¢ = ——;

Remark 6. This can be compared with the oblate ellipsoid of revolution. The
astroidal caustic ending at § = m when py — 0 is replaced by an asymptotic branch
when p2 — I due to the separatrix in the pendulum.
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