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The potential of Joint Multiuser Processing in multi-beam satellite 

systems is assessed in this paper and proved to be a potential 

attractive alternative to current systems. The present contribution 

aims at investigating linear precoding techniques over an accurate 

multi-beam architecture modeling and system characterization. 

Power and precoder design problems are approached through well-

known linear precoding techniques such as Zero Forcing (ZF) and 

Regularized-ZF. A dual-polarization 2-color reutilization scheme is 

considered in combination with precoding techniques. Results show a 

total throughput improvement of +22% achieved by ZF and +38% 

considering R-ZF, with respect to a conventional 4-color reuse scheme 

scenario. 

I. Introduction 

Current broadband satellite system are employing multiple spot beams, allowing 

dividing coverage into small cells and thus, exploiting more efficiently satellite resources. 

This multi-beam architecture has led to a significant boost in overall system capacity by 

reusing the available spectrum several times in the coverage area. The 2
nd

 generation Ka-

band satellites (i.e. Ka-Sat, Viasat-1) is a good example of that, reaching total capacities 

from 90Gbps to 140Gbps thanks to higher Frequency Reuse (FR) factors and higher 

spectral efficiency modulation and coding schemes. The trend continues with the so-

called next generation High Throughput Satellites (HTS), pushing forward evolved 

architectures with an even increased number of beams aiming at reaching Terabit/s like 

performances [1]. Despite the lately achievements, new techniques still need to be 

explored to overcome two of the main significant show-stoppers: the high level of inter-
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beam interferences and the overwhelming number of beams needed to reach such high 

performances.  

Current research work has recently been focused on studying interference mitigation 

techniques (IMTs) as a way to tackle the increasing degradation of inter-beam isolation. 

One of the most interesting IMT applications for that matter is the possibility to consider 

denser FR schemes (w.r.t typical 4-FR pattern) leading to innovative frequency plans and 

significant increase of total system spectral resources. Joint multiuser processing 

techniques are, in this context, considered well-suited for that purpose. Indeed, the 

analogy between Multi User MIMO –Broadcast channel (MIMO-BC) and the forward 

(FWD) link in multi-beam Fixed Satellite Services (FSS) system allows the transposition 

of these IMTs to a satellite broadband framework, in the form of precoding at the 

gateway stations.  

In this paper, the focus is set on assessing linear precoding (LP) techniques applied to 

the FWD link of a HTS system scenario over a European coverage. Power and precoder 

design problems are approached through well-known linear channel inversion techniques 

such as Zero Forcing (ZF) and Regularized-ZF, already assessed on the satellite context 

in [2-4]. In contrast to a large part of existing literature, the present contribution considers 

a Single-feed-per-beam (SFPB) antenna configuration with a per beam power constraint, 

i.e. single High Power Amplifier (HPA) per beam. This configuration, also assessed in 

[4], is considered more realistic than a sum-power constraint, assuming full power 

allocation flexibility on-board the satellite, and more common than multi-feed-per-beam 

(MFPB). 

Another interesting aspect is the use of a 2-color FR scheme (Fig. 2 b)) combined with 

precoding instead of a single polarization full frequency reuse pattern as often considered 

in related literature. The exploitation of dual polarization for MU-MIMO processing in 

multibeam FS services was studied in [5] concluding that dual-polarization can only 

serve as an additional degree of isolation. Indeed, the 2-color FR pattern allows a higher 

isolation (which leads to improving precoding performances, as proved in this paper) but 

also allows fully exploiting all available bandwidth in both polarizations, taking into 

account the single HPA per beam configuration and assuming typical user terminals (UT) 

demodulating in a single polar mode.   

 

The paper is organized as follows: Section II presents the system scenario 

assumptions. System modeling is tackled in section III followed by the simulation 

assumptions, the performances results and its analysis, presented in section IV. Finally, 

conclusions are provided in section V.  

Notation: Boldface uppercase letters denote matrices and boldface lowercase letters 

refers to vectors. We denote by (.) ^  the hermitian trasnpose. The identity matrix is 

denoted by I.   

II. System scenario assumptions  

The improvements that IMTs can provide depends on system assumptions and 

scenario characterization and their effects can be more or less significant in function of 

that choice. Once that said, system parameters considered in the study are presented in 

Fig.1 as well as the reference scenario beam layout. A European-like coverage 



illuminated by 60 beams and a beam width of 0.3° is assumed (~200km of beam 

diameter).    

As stated previously, the assessment is focused on the FWD link, considering a large 

number of fixed UTs uniformly distributed over the coverage. A transparent payload is 

assumed with a time division multiple (TDM) access at the user link such that, in the 

carrier of interest, at each time instant a total of K users are simultaneously served. As 

SFPB antenna configuration is considered, K also corresponds to the number of beams. 

The proposed analysis assumes a single Gateway (GW) to serve all user beams. It should 

be stressed that this assumption is not fully realistic in current systems. Nevertheless, as 

high capacity links between GW are already required to implement smart diversity 

   
a)                                                     b) 

Figure 1. Reference scenario a) 60 beams @0.3° beam layout b) system assumptions     

   
                             a)                                                                       b) 
Figure 2. Frequency Plans a) 4-FR reference scenario b) 2-FR precoding scenario     



strategies, it is considered reasonable to assume that joint coding could be extended 

thanks to the cooperative joint processing among all GW. 

 Conventional 4-FR scheme (Fig.2 a)) performances are derived and used to assess the 

potential gain when LP is applied. System parameters have been carefully chosen to have 

a balanced interference and thermal budget in 4-FR mode. An ideal feeder link 

contribution has been considered in both reference and precoding performance analysis.   

 In terms of Output Back-off (OBO) and intermodulation products, the same level of 

OBO has been kept for 4-FR reference scenario and precoding cases as well as the 

intermodulation products. A quite conservative hypothesis has been considered, assuming 

the Noise Power Ratio (NPR) level in both scenarios.    

III. System model  

Generally speaking, the received signal at user k of a multibeam system can be 

expressed as follows:  
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where ix is the signal transmitted from antenna feed i, kn corresponds to independent and 

identically (i.d.d.) zero-mean Gaussian random noise (with power density No) at 

reception  and 
kjh  are the channel coefficients which model each transmission path from 

the GW to user k. The HPA RF power at saturation associated to beam i is represented by 

pi and, in this case, it is externalized from channel coefficients.   

 

 The received SNIR for a user k for any given FR scheme without linear precoding is 

then:  
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where No  is the noise power density and BWc the carrier bandwidth.  

 

 Focusing on channel characterization, channel coefficients of user k, )( 11 kjkj hhh L= , 

include all attenuation and gain contributions present in the transmission path between 

the GW station and the UT, except for the HPA power contribution. As stated in section 

II, feeder link contribution is considered ideal and thus, is not taken into account on 

channel coefficients.  

    Looking closely to a generic channel coefficient 
kjh (from feed j to beam k), it can 

be expressed as follows:  
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where TxL corresponds to aggregate on-board losses (OBO, antenna and output losses and 

repeater uncertainties), FSLL  and attenL  represent user k Free Space losses and Clear Sky 

attenuation respectively and RxL  symbolizes UT reception losses (input and pointing 

losses). Finally, CXCOTxG /_  and RxG  correspond to the on-board antenna directivity and 

UT antenna gain respectively.  

  It should be noted that, in addition to co-channel gain, cross-polarization 

contribution is taken into account when analyzing the performance of both 4-FR and 2-

FR precoding scenarios. In both cases, the frequency plan considered makes use of both 

circular polarizations which should be reflected in the computation of channel 

coefficients.  

 In terms of propagation attenuation, Clear sky atmospheric attenuation is considered in 

order to assess throughput performances. It is computed taking into account gases 

(oxygen and water vapour) and scintillation at 95% of the time. Propagation losses are 

derived via the ITU-R-P618-9 recommendation [6].  

A.  Linear precoding: ZF and Regularized-ZF 

When precoding is applied, the transmitted signals x can be expressed as:  

 

Tsx =     (4) 

 

being T the (KxK) precoding matrix and s the (Kx1) symbol vector. The kth entry of s 

vector is the constellation symbol addressed to the kth user. Independent unit energy 

constellation symbols are assumed, i.e. { } 1
2
=ksE . 

 As stated in section 1, a per beam power constraint is considered. For the transmitted 

signal ix  it can be expressed as:  

{ } ii pxE £
2

    (5) 

 

For the design of the linear precoders, channel inversion techniques are considered 

herein focusing on ZF and Regularized-ZF.  

 ZF aims at the complete cancellation of intrasystem interferences via precoding of the 

pseudo-inverse of the channel matrix. In the scenario previously described this is directly 

the inverse of the channel matrix as SFPB is assumed (K feeds generate K beams). ZF is a 

simple but suboptimal linear precoding strategy as its design only depends on the channel 

regardless of the noise. The precoding matrix can be expressed as described in Eq. (6), 

where ZFb  corresponds to the normalization factor such as to comply Eq. (5). 

  
1

ZF HT
-= ZFb     (6) 

Not taking into account the noise variance and imposing a zero interference constraint 

at each UT leads to performance degradation in a low SNR regime. By relaxing this 

constraint, it was proved in [7] that a regularized inversion of the channel, this time 

taking into account the noise variance, can significantly improve the system’s 

performance. The corresponding precoding matrix can be expressed as: 
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where RZFb  corresponds once again to the normalization factor such as to comply Eq. (5) 

and RZFa is defined based on the large system analysis given by [8] which derived the 

optimal regularization coefficient to maximize the SNIR.   

  

The proposed precoding analysis for both techniques will be analytically supported 

under perfect channel state information (CSI), implying all channel intra-system 

contributions are well-known by the GW.   

 

IV. Simulation and performance results 

In order to assess the linear precoding techniques presented in previous section, Monte 

Carlo simulations are carried out according to the scenario described in Fig. 1 b).  

As described in section II, the UTs are assumed to be uniformly distributed over the 

coverage region. It is assumed that each of the K simultaneously served users is located in 

a different beam.  

The numerical results will provide system performance measures averaged out on the 

fading and UTs locations statistics (by considering ten thousand fading/locations 

realizations). The throughput (bit/s), which is defiend as the number of useful bits 

transmitted by the GW to the users, is the performance metric considered. It is deduced 

from a modcod table based on DVB-S2 standard which provides the association between 

the required received SNIR and the spectral efficiency (bits/symbol) achieved by the 

different adaptive coding and modulation (ACM) for a packet error rate (PER) of 10−7. It 

should be noted that the computed throughput is the raw throughput at physical layer 

level: i.e. it does not include any generic stream encapsulation overhead nor any IP 

overhead. Within a beam, the same volume of symbols is transmitted to/from each user. 

This computation leads to an average spectral efficiency per beam, which is translated in 

   
a)                                                                          b) 

Figure 3. a) Total SNIR performances per carrier of  ZF, R-ZF (1-FR vs 2-FR) and 4-FR 
reference scenario b) Standard Deviation of  the Average total C/(N+I) per user (ZF and R-ZF)     



throughput per beam. Then it is summed over all beams to get the total system 

throughput.  

Figure 3 a) illustrates by means of a Cumulative Distribution Function (CDF) the total 

link budget performances per carrier of 4-FR reference scenario and ZF and R-ZF with a 

2-FR scheme (continuous line). As observed, the regularized channel inversion achieves 

quite better performances than ZF above all in low SNIR regime, where ZF clearly  

underperforms, presenting in clear sky an unavailability of 0.45%. In dashed lines, for 

comparison purposes, ZF and R-ZF performances have ben plotted considering a 1-FR, 

i.e. same bandwidth per beam than 2-FR case but only a single polarization considered, 

leading to a full frequency reuse scenario. In this case, inter-beam isolation is highly 

degraded and ZF, even suppressing all co-channel interferences, is not able to cope with 

thermal budget degradation. On the contrary, even if penalized by the increase of 

interferences, R-ZF shows less total link budget degradation due to the introduction of the 

noise component in the regularized channel inversion.  

           

Figure 4 depicts total C/(N+I) geographically distributed over the coverage for ZF and 

R-ZF combined with 2-FR (same color scale considered). As it can be observed, R-ZF 

achieves better C/(N+I) values than ZF at the edge of beams where isolation is poorer due 

to adjacent beams re-using the same polarization.  

Interesting results are obtained in Fig.3 b) when plotting the standard deviation of the 

average C/(N+I) values per user in a CDF, obtained through all channel realizations. This 

plot allows assessing the dispersion in SNIR values obtain for each user and shows the 

impact of the scheduling strategy. In this case, a scheduler based on a uniform 

distribution has been considered, i.e. equal probability to be chosen in a given beam. 

Observing the results, ZF is far more impacted by scheduling than R-ZF as 47% of 

C/(N+I) values are beyond 2dB of dispersion for a 15.5% for R-ZF.   

In terms of total throughput, results for the reference 4-FR case and for the LP 

techniques combined with the 2-FR scheme are shown in Table 1. A significant gain is 

obtained by R-ZF with an increase of 38.4% of throughput w.r.t. 4-FR reference scenario 

and 100% availability in clear Sky conditions. Concerning ZF, a 22.3% gain is obtain but 

with an availability in clear sky of 99.5%.  

  
a)                                                                          b) 

Figure 4. Total C/(N+I) performance maps  a) [2-FR] ZF   b) [2-FR] R-ZF     



 

V. Conclusion 

In this paper linear precoding techniques such as ZF and R-ZF have been assessed in 

multibeam satellite system architecture with narrow spot beams (0.3°) covering a 

European region. The performances of a conventional 4-FR scheme have been compared 

to a 2-FR scheme using LP, adding the particularity that in both schemes dual-circular 

polarizations have been taken into account, thus considering both co-channel and co-

polar contributions. This allows for a full reutilization of the available bandwidth in each 

beam adding an extra level of isolation by means of polarization reuse pattern. Results 

are derived considering clear sky fading, ideal CSI and ideal feeder link contribution by a 

single GW which serves all user beams. Results show significant improvement in total 

system throughput, being R-ZF the LP technique with better performances. Further work 

will assess the impact of scheduling strategies in order to improve system throughput, the 

impact of beam width over precoding performance, the introduction of attenuation 

margins in rainy conditions to compute availability as well as the characterization of a 

realistic V-band feeder link contribution.              
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