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Abstract
In this paper we describe possible interpretation and reduction of fuzzy attributes in Generalized

One-sided Concept Lattices (GOSCL). This type of concept lattices represent generalization of

Formal Concept Analysis (FCA) suitable for analysis of data tables with different types of at-

tributes. FCA as well as generalized one-sided concept lattices represent conceptual data mining

methods. With growing number of attributes the interpretation of fuzzy subsets may become un-

clear, hence another interpretation of this fuzzy attribute subsets can be valuable. The originality

of the presented method is based on the usage of one-sided concept lattices derived from submod-

els of former object-attribute model by grouping attributes with the same truth value structure.

This leads to new method for attribute reduction in GOSCL environment.

Keywords: Generalized one-sided concept lattices, Galois connections, object-attribute model

1. Introduction

The large amount of available data and the growing needs for their analysis brings up the new

challenges to the area of data mining. The challenges include capture, curation, storage, search,

sharing, analysis, and visualization. It is an emerging field where the need for more effective and

understandable methods and algorithms is evident.

Formal concept analysis (FCA, cf. [8]) is one of the effective mathematical tools for identifi-

cation of conceptual structures among data sets and knowledge processing. Mathematical theory

of FCA is based on the notions of formal context, which formally describes object-attribute model

and formal concept, which is formed by extent intent pair. The extent is understood as the col-

lection of all objects belonging to the concept, while the intent is the multitude of all attributes

common to all those objects. The set of all formal concepts of a formal context forms a complete

lattice, called the concept lattice, which reflects the relationship of generalization and specializa-

tion among the formal concepts. A concept lattice is an effective tool in FCA and is very suitable

for mining potential concepts of datasets. Nowadays, FCA has been applied to a variety of fields

such as decision making, information retrieval, data mining, knowledge discovery, software engi-

neering, business intelligence, as well as in other areas related to machine learning and artificial

intelligence.

In the classical formal contexts, the relationship between the objects and the attributes is de-

scribed by a binary relation that can only specify whether or not an attribute is possessed by an
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object. In many real applications, however, the relationship may be many-valued or fuzzy. There-
fore, some attempts have recently been devoted to introduce fuzzy concept lattice with properties
similar with the classical ones. We mention the general approaches dealing with fuzzy subsets
of objects and fuzzy subsets of attributes, cf., [1],[2],[12],[20],[21] and [22]. All interesting ap-
proaches are extensively studied and extended in order to achieve their application for different
types of data analytical problems and inputs, e.g., we can mention many new results related to
different fuzzy models and related topics, cf., [3],[4],[13],[15],[16],[19].

A special role in fuzzy FCA play one-sided concept lattices, where usually objects are con-
sidered as a crisp subsets and attributes obtain fuzzy values. In this case interpretation of object
clusters is straightforward as in classical FCA. Consequently, all known applications developed
for classical concept lattices can be used in the theory of one-sided concept lattices. From existing
one-sided approaches we mention papers of Krajči [11], Yahia and Jaoua [5], [10], All these men-
tioned approaches allow to consider only one type of structure for truth degrees. In [21] and [6]
it was described an approach to one-sided concept lattices involving different types of truth value
structures, which generalizes all recently known approaches and is more convenient for analysis
of object-attribute models. An application of this approach to the object-attribute models with
different types of attributes can be found in [7].

Since mathematical theory of concept lattices is based on the notion of Galois connection, in
preliminary section we recall some basic notations and results from theory of partially ordered
sets and Galois connections. Further, we give a definition of formal context, which is mathe-
matical formalization of the object-attribute models with different types of attributes. Next we
provide theoretical background for generalized one-sided concept lattices, which are suitable for
analysis of such object-attribute models. We also present an incremental algorithm for generation
of generalized one-sided concept lattices from the given formal context.

In many real situations the number of considered objects and attributes rise dramatically. In
this case the corresponding generalized one-sided concept lattice become too large and readibility
of hierarchical relations contained in concept lattice becomes difficult. Hence the reduction of
attribute set can help with readibility of informations contained in hierarchical structure of con-
cept lattice. In the third section we describe one of the possible reduction of attribute sets, using
submodels of original object-attribute model. An important aspect of our reduction is, that this
reduction carries all information as former object-attribute model. In mathematical language we
describe a construction of formal context with fever attributes, such that corresponding general-
ized one-sided concept lattices are isomorphic. Our reduction involves one-sided concept lattices
with one type of truth value structure. This theory is well developed and can be usefully applied
in many real situations dealing with object-attribute models with one type of attribute. We prove
two theorems which show the isomorphism between generalized one-sided concept lattice derived
from original formal context and concept lattice derived from reduced one. At the end we demon-
strate this reduction on simple illustrative example, where we also show an interpretation of object
clusters by another object clusters obtained from reduced formal context.

2. Preliminary section

In this section we describe the necessary theoretical background for generalized one-sided concept
latices. Basic idea behind fuzzification of concept lattices is the usage of graded truth. Classical
logic is bivalent, i.e., each proposition is either true or false. In fuzzy logic, to each proposition
there is assigned a truth degree from some scale of truth degrees with more than two values.

Generalized one-sided concept lattices as they are presented in [21] and [6] are generalizations
of already known one-sided concept lattices. They are build in the framework of crisp subsets of
objects and generalized L-fuzzy subsets of attributes. Classical L-fuzzy subsets described by
Goguen [9] are represented as functions
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f : U → L (1)

from some universe U into truth value structure L, which is represented by complete lattice.

The set of all L-fuzzy subsets is usually denoted by LU . Let us remark that by complete lattice

we understand partially ordered set (L,≤) where least upper bound or supremum of any subset

H ⊆ L exists in L and dually greatest lower bound or infimum of H exists in L. We shall denote

the supremum of the subset H ⊆ L by symbol
∨

H and infimum of H by symbol
∧

H .

As a generalization of the notion of L-fuzzy subset we will deal with so-called generalized

fuzzy sets. This notion appeared in connection with fuzzy formal concept analysis for the first

time in [21]. Let U 6= ∅ be an universe and (Lu)u∈U be a system of possibly different complete

lattices, which represent truth value structure for each element u ∈ U . By a generalized fuzzy set

we will consider a function

f : U →
⋃

u∈U

Lu (2)

such that f(u) ∈ Lu for each u ∈ U . Moreover we will consider "componentwise” partial order

on the set of all generalized fuzzy subsets, i.e., f ≤ g if f(u) ≤ g(u) for all u ∈ U . From

the algebraic point of view the concept of the set of generalized fuzzy subsets coincides with the

notion of direct product of complete lattices (Lu)u∈U , which is usually denoted by the symbol
∏

u∈U Lu. In the sequel we will use the same symbol for the set of generalized fuzzy subsets of

the system (Lu)u∈U . If we consider the system (Lu)u∈U of identical lattices, i.e., Lu = L for

all u ∈ U , then we obtain the equality LU =
∏

u∈U Lu. Hence, the notion of generalized fuzzy

subsets or direct product of lattices generalizes the notion of fuzzy subsets. It is well known fact

that the direct product of lattices forms complete lattice if and only if all members of the family

are complete lattices. The straightforward computations show that the lattice operations in the

direct product
∏

u∈U Lu of complete lattices are calculated componentwise, i.e., for any subset

{fj : j ∈ J} ⊆
∏

u∈U Lu we obtain

(

∨

j∈J

fj
)

(u) =
∨

j∈J

fj(u) and
(

∧

j∈J

fj
)

(u) =
∧

j∈J

fj(u), (3)

where this equalities hold for each index u ∈ U .

If one consider two element lattice 2 = {0, 1} with 0 < 1, then 2
U represents classical or

crisp subsets of the set U . In this case 2
U is identified with characteristic functions of the set U ,

thus 2U represents the power set of the set U .

Theory of fuzzy concept lattices is based on pairs of mappings between complete lattices,

commonly known as Galois connections. Let (P,≤) and (Q,≤) be an ordered sets and let

ϕ : P → Q and ψ : Q→ P

be maps between these ordered sets. Such a pair (ϕ, ψ) of mappings is called a Galois connection

between the ordered sets if the following condition is fulfilled:

p ≤ ψ(q) if and only if ϕ(p) ≥ q. (4)

In order to describe generalized one-sided concept lattices, we first formalize notion of object-

attribute model with different types of attributes. As it is usual in classical FCA we will call this

formalization as generalized one-sided formal context.

A 4-tuple
(

B,A,L, R
)

is said to be a generalized one-sided formal context if the following

conditions are fulfilled:

(1) B is a non-empty set of objects and A is a non-empty set of attributes.
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(2) L : A → CL is a mapping from the set of attributes to the class of all complete lattices.
Hence, for any attribute a, L(a) denotes the complete lattice, which represents structure of
truth values for attribute a.

(3) R is generalized incidence relation, i.e., R(b, a) ∈ L(a) for all b ∈ B and a ∈ A. Thus,
R(b, a) represents a degree from the structure L(a) in which the element b ∈ B has the
attribute a.

In theory of one-sided concept lattices the main aim is to introduce a Galois connection be-
tween classical subsets of the set of all objects 2

B and the direct products of complete lattices
∏

a∈A
L(a) which represents a generalization of fuzzy subsets of the attribute universe A.

Let
(

B,A,L, R
)

be a generalized one-sided formal context. Then we define a pair of mapping
↑: 2B →

∏

a∈A
L(a) and ↓:

∏

a∈A
L(a) → 2

B as follows:

↑
(

X
)

(a) =
∧

b∈X

R(b, a), (5)

↓ (g) = {b ∈ B : ∀a ∈ A, g(a) ≤ R(b, a)}. (6)

For any generalized one-sided formal context the pair (↑, ↓) defined by (5) and (6) forms a
Galois connection between 2

B and
∏

a∈A
L(a).

Based on this Galois connection we are able to define one-sided concept lattices. For for-
mal context

(

B,A,L, R
)

denote C
(

B,A,L, R
)

the set of all pairs (X, g), where X ⊆ B,
g ∈

∏

a∈A
L(a), satisfying

↑
(

X
)

= g and ↓ (g) = X.

Set X is usually referred as extent and g as intent of the concept (X, g).
Further we define partial order on C

(

B,A,L, R
)

as follows:

(X1, g1) ≤ (X2, g2) iff X1 ⊆ X2 iff g1 ≥ g2. (7)

Let
(

B,A,L, R
)

be a generalized one-sided formal context. Then C
(

B,A,L, R
)

with the
partial order defined by rule (7) forms a complete lattice, where

∧

i∈I

(

Xi, gi
)

=
(

⋂

i∈I

Xi, ↑↓
(

∨

i∈I

gi
)

)

(8)

∨

i∈I

(Xi, gi) =
(

↓↑
(

⋃

i∈I

Xi

)

,
∧

i∈I

gi

)

(9)

for each family (Xi, gi)i∈I of elements from C
(

B,A,L, R
)

.
At the end of this section we recall an algorithm (see Algorithm 1) for creation of generalized

one-sided concept lattice. The main idea is to create set of all intents first and consequently using
(6) obtain the corresponding set of pairs (extent, intent).

3. Attribute reduction and representation in GOSCL

In this section we describe possible reduction and representation of the attributes in generalized
one-sided lattice framework. Attribute reduction in concept lattice theory was investigated by
several authors, cf. [17][18] for attribute reduction in multi-adjoint concept lattices framework
and [14][23] for attribute reduction in other specific fuzzy concept lattices. For GOSCL model,
our method (as it will be proved by theorems in this section) presents a novel approach which can
be successfully applied to object-attribute models with different types of attributes.
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Algorithm 1 Incremental algorithm for GOSCL

Require: generalized context
(

B,A,L, R
)

Ensure: set of all concepts C
(

B,A,L, R
)

1: L←
∏

a∈A
L(a) . Direct product of attribute lattices

2: I ← {1L} . I ⊆ L will denote set of intents

3: C
(

B,A,L, R
)

← ∅
4: for all b ∈ B do

5: I∗ ← I . I∗ represents “old" set of intents

6: for all g ∈ I∗ do

7: I ← I ∪ {R(b) ∧ g} . Generation of new intent

8: end for

9: end for

10: for all g ∈ I do

11: C
(

B,A,L, R
)

← C
(

B,A,L, R
)

∪ {(↓ (g), g)}
12: end for

13: return C
(

B,A,L, R
)

. Output of the algorithm

In many real situations large amount of attributes in data tables is represented by the same

truth value structure, e.g., there are binary attributes represented by two element chain 2 or real

valued attributes with truth structure [0, 1]. Consider an object-attribute model. which is formally

represented by generalized one-sided context (B,A,L, R). We are able to group attribute with the

same truth value structures, i.e., we have partition {Ai}i∈I of attribute set such that A =
⋃

i∈I
Ai

and Ai1 ∩ Ai2 = ∅ for each i1, i2 ∈ I . Let i ∈ I be any index, then L(a1) = L(a2) for all

a1, a2 ∈ Ai. Hence, we will denote the same truth value structure corresponding to each attribute

from the set Ai by symbol Li.

From the former context (B,A,L, R) we can obtain family of subcontexts (B,Ai,L, Ri)
such that all attributes have assigned the same complete lattice Li. All these subcontexts now

form classical one-sided contexts and we can use well developed theory of classical one-sided

concept lattices for representation of fuzzy subsets of attributes. Representation and meaning

of single attribute in object-attribute model is given by circumstances under which this model

is considered. However, interpretation of more attributes can often become problematic. Thus,

considering about subsets of attributes in the framework of the well known classical one-sided

concept lattices can be useful for interpretation of results obtained by GOSCL.

First we describe isomorphic representation of generalized one-sided concept lattices with the

smaller number of attributes, which are represented by one complex attribute with L-fuzzy subsets

as truth value structure. We will use the algebraic fact that
∏

a∈A
L(a) ∼=

∏

i∈I
Li

Ai , i.e., direct

product of complete lattices is isomorphic to direct product of corresponding direct powers. Let

g ∈
∏

a∈A
L(a). We will use the isomorphism given by the rule

g 7→ g, where g ∈
∏

i∈I

Li
Ai (10)

such that for each i ∈ I , g(i) is function

g(i) : Ai → Li with value
(

g(i)
)

(a) = g(a) for all a ∈ A. (11)

Now we define generalized one-sided context with |I| complex attributes. The object set B

remains unchanged. Further, we have new attribute set A = {Ai : i ∈ I}, where each symbol Ai

represents complex attribute derived from set Ai. For all i ∈ I we put L(Ai) = LAi

i
, thus any
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complex attribute will be characterized by Li-fuzzy subsets over universe Ai. Finally, we define
the generalized incidence relation R : B ×A →

⋃

i∈I
LAi

i
as follows:

R(b, Ai) = g(i), where
(

g(i)
)

(a) = R(b, a) for each i ∈ I, a ∈ Ai. (12)

The 4-tuple (B,A,L, R) forms a generalized one-sided context. Consequently, we can apply
the definition (5) and (6) in order to obtain generalized one-sided concept lattice. We will denote
the corresponding mappings by ↑ and ↓. In this case

↑
(

X
)

(Ai) =
∧

b∈X

R(b, Ai) (13)

↓(g) = {b ∈ B : ∀i ∈ I, g(i) ≤ R(b, Ai)} (14)

Now we can prove the following theorem, which says that concept lattice derived from former
formal context and concept lattice obtained using pair of mappings ↑ and ↓ are isomorphic as
partially ordered sets.

Theorem 1 Let (B,A,L, R) be a generalized one-sided formal context and {Ai}i∈I be partition

of attribute set with L(a1) = L(a2) for each a1, a2 ∈ Ai. Then generalized one-sided concept

lattices obtained by (5), (6) and (13), (14) respectively, are isomorphic

Proof We will show that one can find the desired isomorphism by rule

(X, g) 7→ (X, g),

where g is defined using (10) and (11).
First we will show that this correspondence is defined correctly. For this reason we show that

for each concept (X, g) the image (X, g) belongs to the concept lattice C(B,A,L, R), i.e. we
show that ↑ (X) = g and ↓ (g) = X implies ↑(X) = g and ↓(g) = X . From definition (5) we
have

g(a) = ↑(X)(a) =
∧

b∈X

R(b, a),

which yields
(

g(i)
)

(a) =
∧

b∈X
R(b, a) by (11). Now applying the rule (13) we obtain

(

↑
(

X
)

(Ai)
)

(a) =
(

∧

b∈X

R(b, Ai)
)

(a) =
∧

b∈X

R(b, a),

which gives ↑(X) = g. Similarly, we can prove

{b ∈ B : ∀a ∈ A, g(a) ≤ R(b, a)} = {b ∈ B : ∀i ∈ I, g(i) ≤ R(b, Ai)}

which is equivalent to ↓(g) = ↓(g).
Finally, we prove that our mapping is bijective order preserving. Since (X1, g1) ≤ (X2, g2)

if and only if (X1, g1) ≤ (X2, g2) we obtain that our mapping is order preserving and injective.
concept lattices are uniquely determined by the set of extents and our mapping leave extents un-
changed, we obtain that resulting structure are isomorphic. If (X, g) is concept in C(B,A,L, R),
then (X, ↑ (X)) is the concept in C(B,A,L, R) and we have (X, ↑ (X)) = (X, g), hence this
correspondence is surjective too.

This isomorphism theorem gives us the possibility to reduce Li-fuzzy subsets of attributes
to the much smaller structures. The main aim is to use corresponding one-sided concept lattices
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as new truth value structures for attributes Ai. Let (B,Ai,L, Ri) be formal contexts obtained

by grouping the attributes with same truth value structure Li and Ci = C(B,Ai,L, Ri) be the

corresponding one-sided concept lattices. Now we define one-sided formal context as follows:

The set of objects will be identical with the former one, attribute set will be A = {Ai : i ∈ I} and

the function L : A → CL is defined as L(Ai) = Ci. The incidence relation R̈ : B × A →
⋃

i∈I
Ci

is set to be

R̈(b, Ai) = (↓i ↑i (b), ↑i (b)); for all b ∈ B, i ∈ I, (15)

where (↑i, ↓i) denotes Galois connection obtained from context (B,Ai,L, Ri) using (5) and

(6)

Now we define pair of mapping ↗ : 2B →
∏

i∈I
Ci and ↙ :

∏

i∈I
Ci → 2

B .

↗ (X)(Ai) =
∨

b∈X

R̈(b, Ai) (16)

↙ (g) = {b ∈ B : ∀ i ∈ I, g(i) ≥ R̈(b, Ai)} (17)

Similarly as in previous case we define concepts as pairs (X, g), X ⊆ B, g ∈
∏

i∈I
Ci

satisfying

↗ (X) = g and ↙ g = X.

Further, we define partial order on the set of all concepts as

(X1, g1) ≤ (X2, g2) iff X1 ⊆ X2 iff g1 ≤ g2.

The set of all concepts with this partial order will be denoted by B(B,A,L, R̈)

Theorem 2 The concept lattice C(B,A,L, R) and B(B,A,L, R̈) are isomorphic.

Proof First observe that using expression (9) for supremum in concept lattice for any X ⊆ B and

i ∈ I we obtain

↗ (X)(Ai) =
∨

b∈X

R̈(b, Ai) =
∨

b∈X

(↓i↑i (b), ↑i b) =

(

↓i↑i
(

⋃

b∈X

↓i↑i (b)
)

,
∧

b∈X

↑i (b)
)

=
(

↓i↑i (X), ↑i (X)
)

.

Further, from the definition (5) of ↑i we obtain

↑i (X)(a) =
∧

b∈X

R(b, a) = ↑(X)(a).

This yields that mapping ↑ coincide with each mapping ↑i on the set Ai. Hence we can define

a mapping Φ: C(B,A,L, R) → B(B,A,L, R̈) as

Φ(↑ (X))(i) =↑ (X) �Ai
=↑i (X).

Since the concept lattices are uniquely determined by the set of all intents and Φ is the bijection

between the sets of intents, we obtain that Φ is isomorphism between corresponding concept lat-

tices.

Next we demonstrate the potential usage of this theorem on complex object-attribute models

with different types of attributes. First step is the grouping the particular attributes with the same

truth value structures as it is schematically described at Figure 1. The attributes with same truth

value structures can be considered more similar each other, hence it is appropriate to consider this

group of attributes as sub-object-attribute model of the former one.

Consider the following example.
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Figure 1: Grouping attributes with same truth value structures.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

r 0 0.2 1 0.3 1 0 0.1 1 2 0
s 1 0.6 0 0.6 0 1 0.5 1 2 1
t 1 1.0 0 0.7 0 0 0.5 3 2 1
u 0 0.2 0 0.3 1 0 0.1 3 1 0
v 1 0.2 3 0.0 0 1 1.0 2 0 1
x 0 0.0 1 1.0 0 1 0.0 2 2 1
y 1 0.2 0 0.3 1 0 0.5 2 2 0
z 0 0.6 0 0.6 1 0 0.1 3 3 1

Table 1: Data table of object-attribute model

Example 1

The object-attribute model, given by Table 1, contains set of objects B = {r, s, t, u, v, x, y, z} and
set of attributes A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}. The attributes are characterized by
three different truth value structures. Attributes a1, a5, a6, a10 are binary, i.e., L(a1) = L(a5) =
L(a6) = L(a10) = 2, where 2 represents two element chain. Attributes a2, a4, a7 real, i.e.,
they are characterized by unit interval [0, 1] of real numbers. Finally, attributes a3, a8, a9 are
characterized by four element chain 4 = {0, 1, 2, 3} with 0 < 1 < 2 < 3.

By grouping attributes with same truth value structure we obtain three subcontexts depicted
in Table 2, corresponding one-sided concept lattices are shown on Figure 2.

a1 a5 a6 a10

r 0 1 0 0

s 1 0 1 1

t 1 0 0 1

u 0 1 0 0

v 1 0 1 1

x 0 0 1 1

y 1 1 0 0

z 0 1 0 1

a2 a4 a7

r 0.2 0.3 0.1
s 0.6 0.6 0.5
t 1.0 0.7 0.5
u 0.2 0.3 0.1
v 0.2 0.0 1.0
x 0.0 1.0 0.0
y 0.2 0.3 0.5
z 0.6 0.6 0.1

a3 a8 a9

r 1 1 2
s 0 1 2
t 0 3 2
u 0 3 1
v 3 2 0
x 1 2 2
y 0 2 2
z 0 3 3

Table 2: Subcontexts for particular types of truth value structures - left: binary attributes, mid:
real attributes, right: 4-valued attributes
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(1,1,1,1)

 y  
(1,1,0,0)

 z  
(0,1,0,1)

 s ,v  
(1,0,1,1)

 s,t,v 
(1,0,0,1)

 s,v,x 
(0,0,1,1)

 r,u,y,z 
(0,1,0,0)

 s,t,v,y 
(1,0,0,0)

 s,t,v,x,z 
(0,0,0,1)

 r,s,t,u,v,x,y,z 
(0,0,0,0)

  
(1.0,1.0,1.0)

 t  
(1.0,0.7,0.5)

 v  
(0.2,0.0,1.0)

 x  
(0.0,1.0,0.0)

 s , t  
(0.6,0.6,0.5)

 t ,x 
(0.0,0.7,0.0)

 s,t,y 
(0.2,0.3,0.5)

 s,t,z 
(0.6,0.6,0.1)

 s,t,v,y 
(0.2,0.0,0.5)

 s,t,x,z 
(0.0,0.6,0.0)

 r,s,t,u,y,z 
(0.2,0.3,0.1)

 r,s,t,u,v,y,z 
(0.2,0.0,0.1)

 r,s,t,u,x,y,z 
(0.0,0.3,0.0)

 r,s,t,u,v,x,y,z 
(0.0,0.0,0.0)

  
(3,3,3)

 v  
(3,2,0)

 x  
(1,2,2)

 z  
(0,3,3)

 r ,x  
(1,1,2)

 t ,z  
(0,3,2)

 v,x 
(1,2,0)

 t,u,z 
(0,3,1)

 r,v,x 
(1,1,0)

 t,x,y,z 
(0,2,2)

 t,u,x,y,z 
(0,2,1)

 r,s,t,x,y,z 
(0,1,2)

 t,u,v,x,y,z 
(0,2,0)

 r,s,t,u,x,y,z 
(0,1,1)

 r,s,t,u,v,x,y,z 
(0,1,0)

Figure 2: Corresponding concept lattices for particular contexts - up-right: binary attributes, up-

left: real attributes, bottom: 4-valued attributes
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A1 A2 A3

r {r, u, y, z}; (0, 1, 0, 0) {r, s, t, u, y, z}; (0.2, 0.3, 0.1) {r, x}; (1, 1, 2)

s {s, v}; (1, 0, 1, 1) {s, t}; (0.6, 0.6, 0.5) {r, s, t, x, y, z}; (0, 1, 2)

t {s, t, v}; (1, 0, 0, 1) {t}; (1.0, 0.7, 0.5) {t, z}; (0, 3, 2)

u {r, u, y, z}; (0, 1, 0, 0) {r, s, t, u, y, z}; (0.2, 0.3, 0.1) {t, u, z}; (0, 3, 1)

v {s, v}; (1, 0, 1, 1) {v}; (0.2, 0.0, 1.0) {v}; (3, 2, 0)

x {s, v, x}; (0, 0, 1, 1) {x}; (0.0, 1.0, 0.0) {x}; (1, 2, 2)

y {y}; (1, 1, 0, 0) {s, t, y}; (0.2, 0.3, 0.5) {t, x, y, z}; (0, 2, 2)

z {z}; (0, 1, 0, 1) {s, t, z}; (0.6, 0.6, 0.1) {z}; (0, 3, 3)

Table 3: Incidence relation R̈ of new object-attribute model.

Now we will use the obtained one-sided concept lattices as truth value structures for our new
object attribute model with three element attribute set. From the former object-attribute model we
have A1 = {a1, a5, a6, a10}, A2 = {a2, a4, a7} and A3 = {a3, a8, a9}, hence A1 will denotes
new complex attribute with truth value structure equal to the concept lattice on the up-left part of
the Figure 2. Similarly A2 and A3 will denote new complex attributes with truth value structure
equal to the concept lattice on the up-right and bottom part of the Figure 2 respectively. The
incidence relation R̈ is described in the Table 3.

Let us remark that R̈(b, Ai) = (↓i↑i (b), ↑i (b)) for all b ∈ B and i = 1, 2, 3. Now we
can use the result of Theorem 2 and obtain another interpretation of fuzzy attribute subsets in the
basic model. Since generalized one-sided concept lattices defined by (5), (6) and by (16), (17)
respectively are isomorphic (more over the sets of extents coincide), we present the one-sided
concept lattice given by basic model (see Figure 3).

This lattice is obtained by conventional method and in some cases (especially when the num-
ber of of object and attributes rise dramatically) the interpretation of object clusters using attribute
fuzzy subsets become problematic or less clear.

The Theorem 2 gives possibility to characterize object clusters by fuzzy subsets of concept
lattices. Since concepts in concept lattices are ordered pairs of type (extent,intent) and set of
extents uniquely determines concept lattice, we can give the characterization of object subsets by
extents (again object subsets) of derived submodels.

As an example consider the concept
(

{r, s, t, y, z}; (0, 0.2, 0, 0.3, 0, 0, 0.1, 1, 2, 0)
)

from lat-
tice depicted on Figure 3. One possible (traditional interpretation) of this concept is that the set of
objects {r, s, t, y, z} is determined by generalized fuzzy subset (0, 0.2, 0, 0.3, 0, 0, 0.1, 1, 2, 0) ∈
∏

10

i=1
L(ai), which represents some kind of threshold for given subset of object.

Another possible interpretation is due to Theorem 2. In this case we can characterize the set
of objects {r, s, t, y, z} as the ordered triple

(

↓1↑1 ({r, s, t, y, z}), ↓2↑2 ({r, s, t, y, z}), ↓3↑3 ({r, s, t, y, z})
)

where for all i = 1, 2, 3 the subset ↓i↑i ({r, s, t, y, z}) can be found in concept lattices corre-
sponding to the derived submodels. In our case these concept lattices are depicted on Figure 2. To
be more concrete, the value ↓i↑i (X) for any subset X ⊆ B can be found as the smallest subset
in given concept lattice containing the set {r, s, t, y, z}. This follows from the fact that the set of
extents in any concept lattice forms closure system, hence the smallest subset containing given set
is equal to the intersection of all subsets containing it. Particularly for our example we obtain the
triple

(

{r, s, t, u, v, x, y, z}, {r, s, t, u, y, z}, {r, s, t, x, y, z}
)

.

As we can see {r, s, t, y, z} (↓i↑i ({r, s, t, y, z}) for each i = 1, 2, 3, hence information
about this cluster of object is not obtained in any of the three submodels of the former object-
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Figure 3: Concept lattice (top element is on the left side, bottom element on the right side).
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Figure 4: Merging different object-attribute models into one complex model.

attribute model. This kind of information can be useful for analysis of more object-attribute
models, which are merged together (see Figure 4 for schematic description and [6] for theoretical
explanation).

In this case this method allow us to identify all subsets of objects which are not contained in
any previous model but form extents in newly formed complex model. Moreover these extents
can be characterized using previous submodels, thus can be interpreted in well-known framework
of one-sided concept lattices.

Finally, we also mention that result of Theorem 2 gives reduction of considered object-
attribute model in two aspects. First, the number of attributes is smaller. Further, using one-sided
concept lattices derived from submodels as truth value structure provide dramatical decrease and
simplification of complete lattices tied with fuzzy subsets of attributes with same truth value struc-
tures LAi

i
for all i ∈ I .
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[4] Bělohlávek, R; Vychodil, V. Formal concept analysis and linguistic hedges. International

Journal of General Systems, 41(5), pp. 503-532, 2012.

[5] Ben Yahia, S; Jaoua, A. Discovering knowledge from fuzzy concept lattice. Data Mining

and Computational Intelligence, pp. 167-190, Physica-Verlag, Heidelberg, Germany, 2001.

[6] Butka, P; Pócs, J. Generalization of one-sided concept lattices. Computing and Informatics,
32(2), pp. 355-370, 2013.



� � �] ^ _ ` a b _ c d e f a g _ d h i h j k e l a m m d n o p k j k

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[7] Butka, P; Pócs, J.; Pócsová J. Use of Concept Lattices for Data Tables with Different Types

of Attributes. Journal of Information and Organizational Sciences, 36(1), pp. 1-12, 2012.

[8] Ganter, B.; Wille, R. Formal concept analysis. Mathematical foundations. Springer, Berlin,

1999.

[9] Goguen, J. A. L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18(1), pp.

145-174, 1967.

[10] Jaoua, A.; Elloumi, S. Galois connection, formal concepts and Galois lattice in real rela-

tions: application in a real classifier. The Journal of Systems and Software, Vol. 60, pp.

149-163, 2002.
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