
 

 

ACUTE NEUROMUSCULAR, KINETIC, AND KINEMATIC RESPONSES TO 

ACCENTUATED ECCENTRIC LOAD RESISTANCE EXERCISE 

 

By 

 

THOMAS GRANT BALSHAW 

 

 

A thesis submitted to 

The School of Sport 

University of Stirling 

For the Degree 

DOCTOR OF PHILOSOPHY 

 

 

Health and Exercise Sciences Research Group 

School of Sport 

University of Stirling 

April 2013 

 

 



TG Balshaw: PhD Thesis  Page i 

 

DEDICATION 

This thesis is dedicated to the memory of my grandmother, Anne Feeley. I’m 

overcome with sadness when I think that you are not here to see me complete this 

journey. You will never be forgotten. 

 

ACKNOWLEDGEMENTS 

 Firstly I would like to thank my two supervisors Dr. Angus Hunter and Professor 

Kevin Tipton for their guidance and advice throughout my time at the University of 

Stirling. Angus in particular deserves special mention; he has believed in me since my 

arrival in Stirling in September 2009 and has played a large part in my development as 

a researcher. 

 Special thanks go to Chris McGlory and Lorcan Cronin for their support and 

friendship over the last 2-3 years. Thanks also go to Neil Donald of the SportScotland 

Institute of Sport for his input, assistance, and involvement with data collection 

throughout my time in Stirling. I would also like to thank Dr. Oliver Witard and Dr. Lee 

Hamilton who have always made time for me whenever I have needed their advice or 

to draw on their experience. My thanks go out to Frank Kelly for his technical expertise 

and Kate Howie for her assistance with statistical analysis. 

 I would like to thank my mother and father, Shirley and Ian Balshaw, as well as 

their partners Dr. David Simm and Lorraine Balshaw. I feel extremely fortunate to have 

had their love and support throughout my PhD studies; I would not have come through 

this process without them.  

 My thanks go to the following individuals for their contributions to data 

collection, pilot work, and assistance with data analysis: Dr. Iain Gallagher, Ross 

Chesham, Madhurananda Pahar, Dave Clark, Sam Haslam, Alan Murdoch, Gordon 

McRorie, Tom Smale, David Boyd, Andy Carroll, and Craig McClintock. 



TG Balshaw: PhD Thesis  Page ii 

 

THESIS ABSTRACT 

 Neurological and morphological adaptations are responsible for the increases in 

strength that occur following the completion of resistance exercise training 

interventions. There are a number of benefits that can occur as a result of completing 

resistance exercise training interventions, these include: (i) reduced risk of developing 

metabolic health issues; (ii) decreased risk and incidence of falling; (iii) improved 

cardiovascular health; (iv) elevated mobility; (v) enhanced athletic performance; and 

(vi) injury prevention. Traditional resistance exercise (constant load resistance exercise 

(CL)) involves equally loaded eccentric and concentric phases, performed in an 

alternating manner. However, eccentric muscle actions have unique physiological 

characteristics, namely greater force production capacity and lower energy 

requirements, compared to concentric actions. These characteristics have led to the 

exploration of eccentric-focused resistance exercise for the purposes of injury 

prevention, rehabilitation, and enhancement of functional capacity. 

 Accentuated eccentric load resistance exercise (AEL) is one form of eccentric-

focused resistance exercise. This type of resistance exercise involves a heavier 

absolute external eccentric phase load than during the subsequent concentric portion 

of a repetition. Existing training study interventions comparing AEL to CL have 

demonstrated enhancements in concentric, eccentric, and isometric strength with AEL. 

However, no differences in strength adaptations have been reported in other AEL vs. 

CL training studies. Only 7 d intensified AEL training interventions have measured 

neuromuscular variables, providing evidence that enhanced neuromuscular 

adaptations may occur when AEL is compared to CL. Therefore, a lack of information 

is currently available regarding how AEL may differentially affect neuromuscular control 

when compared to CL. Furthermore, the equivocal findings regarding the efficacy of 

AEL make it difficult for exercise professionals to decide if they should employ AEL 

with their athletes or patients and during which training phase this type of resistance 
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exercise could be implemented. Therefore, the aims of this thesis were: (i) to examine 

differences in acute neuromuscular, kinetic, and kinematic responses between AEL 

and CL during both lower-body single-joint resistance exercise and multiple-joint free 

weight resistance exercise; (ii) to assess acute force production and contractile 

characteristics following AEL and CL conditions; (iii) to investigate the influence of 

eccentric phase velocity (and time under tension) on acute force production and 

contractile characteristics following AEL and CL conditions; and (iv) to compare 

common drive and motor unit firing rate responses after  single- and multiple-joint AEL 

and CL. 

Before investigating neuromuscular, kinetic, and kinematic responses to AEL it 

was deemed necessary to evaluate normalisation methods for a multiple-joint free 

weight resistance exercise that would permit the implementation of AEL. Therefore, the 

aim of the first study of the thesis was to evaluate voluntary maximal (dynamometer- 

and isometric squat-based) isometric and submaximal dynamic (60%, 70%, and 80% 

of three repetition maximum) electromyography (EMG) normalisation methods for the 

back squat resistance exercise. The absolute reliability (limits of agreement and 

coefficient of variation), relative reliability (intraclass correlation coefficient), and 

sensitivity of each method was assessed. Strength-trained males completed four 

testing sessions on separate days, the final three test days were used to evaluate the 

different normalisation methods. Overall, dynamic normalisation methods 

demonstrated better absolute reliability and sensitivity for reporting vastus lateralis and 

biceps femoris EMG compared to maximal isometric methods. 

Following the methodological study conducted in Chapter 2, the next study 

began to address the main aims of the thesis. The purpose of the third chapter of the 

thesis was to compare acute neuromuscular, kinetic, and kinematic responses 

between single-joint AEL and CL knee extension efforts that included two different 

eccentric phase velocities. Ten males who were completing recreational resistance 

exercise attended four experimental test day sessions where knee extension 
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repetitions (AEL or CL) were performed at two different eccentric phase velocities (2 or 

4 s). Elevated vastus lateralis eccentric neuromuscular activation was observed in both 

AEL conditions (p= 0.004, f= 5.73). No differences between conditions were detected 

for concentric neuromuscular or concentric kinematic variables during knee extension 

efforts. Similarly, no differences in after-intervention rate of torque development or 

contractile charactersitics were observed between conditions. 

To extend the findings of the third chapter of the thesis and provide mechanistic 

information regarding how AEL may differentially effect acute neuromuscular variables 

that have been reported to be undergo chronic adaptations, additional measures that 

were taken before and after the intervention described in the previous chapter were 

analysed. Therefore, the purpose of the fourth chapter of the thesis was to compare 

motor unit firing rate and common drive responses following single-joint AEL and CL 

knee extension efforts during a submaximal isometric knee extension trapezoid force 

trace effort. In addition, motor unit firing rate reliability during the before-intervention 

trapezoid force trace efforts was assessed. No differences in the maximum number of 

detected motor units were observed between conditions. A condition-time-point 

interaction effect (p= 0.025, f= 3.65) for firing rate in later-recruited motor units 

occurred, with a decrease in firing rate observed in after-intervention measures in the 

AEL condition that was completed with a shorter duration eccentric phase. However, 

no differences in common drive were detected from before- to after-intervention 

measures in any of the conditions. The time period toward the end of the plateau 

phase of before-intervention trapezoid force trace efforts displayed the greatest 

absolute and relative reliability and was therefore used for motor unit firing rate and 

common drive analysis. 

The purpose of the fifth chapter was to compare acute neuromuscular and 

kinetic responses between multiple-joint AEL and CL back squats. Strength-trained 

males completed two experimental test day sessions where back squat repetitions 

(AEL or CL) were performed. Neuromuscular and kinetic responses were measured 
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during each condition. No differences in concentric neuromuscular or concentric kinetic 

variables during back squat repetitions were detected between conditions. Elevated 

eccentric phase neuromuscular activation was observed during the AEL compared to 

the CL condition in two to three of the four sets performed for the following lower-body 

muscles: (i) vastus lateralis (p< 0.001, f= 15.58); (ii) vastus medialis (p< 0.001, f= 

10.77); (iii) biceps femoris (p= 0.003, f= 6.10); and (iv) gluteus maximus (p= 0.001, f= 

7.98). There were no clear differences in terms of the neuromuscular activation 

contributions between muscles within AEL or CL conditions during eccentric or 

concentric muscle actions. 

Following the investigation of acute motor unit firing rate and common drive 

responses to lower limb single-joint AEL and CL in the fourth chapter of the thesis, the 

question arose as to whether or not similar responses would occur in a more complex 

model, such as a multiple-joint resistance exercise. Multiple-joint resistance exercise 

poses different neuromuscular activation, coordination, and stabilisation demands. 

Therefore, the purpose of the sixth chapter of the thesis was to compare acute motor 

unit firing rate and common drive responses following multiple-joint lower-body free 

weight AEL and CL. In addition, motor unit firing rate reliability during the before-

intervention trapezoid force trace efforts, performed on a custom-built dynamometer, 

was assessed. No differences in motor unit firing rate or the number of motor units 

detected were observed between conditions. Condition-time-point interaction effects 

were observed for maximum peak cross-correlation coefficients (p= 0.028, f= 8.24), 

with a decrease from before to after intervention measures in the CL condition. 

However, differences in mean peak cross-correaltion coefficients and cross-correlation 

histogram distributions were not detected between conditions. As in Chapter 4 the time 

period toward the end of the plateau phase of before-intervention trapezoid force trace 

efforts displayed the greatest absolute reliability and was therefore used for motor unit 

firing rate and common drive analysis. Whereas, relative reliability was shown to be 

“poor” across all time phases. 
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The results of the studies that comprise this thesis contribute new knowledge to 

the AEL research literature. In particular, the way that motor unit recruitment strategy 

responses were investigated following interventions provided new information 

regarding the acute neuromuscular effects of AEL and a new potential approach to 

investigating the hypothesised similarities between motor learning and resistance 

exercise. Previously, only transcranial magnetic stimulation had been used for this 

purpose. However, the contrasting motor unit firing rate and common drive response 

results of Chapter 4 and 6 of the thesis indicate further research is required to 

ascertain how acute measures quantified through the decomposition of surface EMG 

(such as motor unit firing rate and common drive) are related to chronic neuromuscualr 

adaptations following resistance exercise. 

The findings presented in the thesis also add to the existing body of AEL 

research literature by providing practitioners with novel data regarding the acute 

neuromuscular, kinetic, and kinematic responses during AEL. The results presented in 

Chapter 3 and 5 of the thesis suggest that AEL resistance exercise implemented in 

both single- and multiple-joint resistance exercise models presents no negative acute 

variable responses. Neither of the AEL models investigated acutely reduced concentric 

kinetic outputs, decreased neuromuscular contributions or activation from key agonist 

muscles during concentric or eccentric phases, or caused after-intervention lower-body 

force production or contractile characteristics to decline more than following CL. In 

addition, both AEL models involved greater eccentric phase knee extensor muscle 

contributions compared to CL. Therefore, given these findings exercise professionals 

who prescribe training interventions may want to consider the use of AEL depending 

on the characteristics and training goals of the individuals they work with. Despite 

these encouraging acute neuromuscular, kinetic, and kinematic responses to AEL 

further research is clearly required to confirm the efficacy of AEL on a longitudinal 

basis. Specifically, the efficacy of AEL for the concurrent enhancement of both chronic 

concentric and eccentric knee and hip extensor strength, eliciting chronic 
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neuromuscular adaptations in these muscles, and preventing injury in a range of 

populations remains unclear. 
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THESIS INTRODUCTION 

 The completion of resistance exercise training interventions leads to 

neurological (Gabriel et al., 2006), morphological (Folland and Williams, 2007), and 

skeletal adaptations (Snow-Harter et al., 1992). Such adaptations include increases in 

muscular strength, muscle mass, and bone mineral density. Consequently, the effect 

of resistance training on health and functional outcomes has been investigated in 

clinical, general, and athletic populations. Resistance exercise has been shown to 

reduce the risk of developing metabolic disease (Grontved et al., 2012), decrease the 

risk (Liu-Ambrose et al., 2004) and incidence of falling (Rubenstein et al., 2000; 

Campbell et al., 1999; Campbell et al., 1997; Buchner et al., 1997), improve 

cardiovascular health (Cornelissen and Fagard, 2005; Kelley and Kelley, 2000), benefit 

mobility and activities of daily living (Lastayo et al., 2010; Dibble et al., 2009; Lastayo 

et al., 2009; Dibble et al., 2006; Lastayo et al., 2003a), enhance athletic performance 

(Channell and Barfield, 2008; Myer et al., 2005), and reduce injury (Petersen et al., 

2011; Askling et al., 2003). Previously, numerous resistance exercise variables have 

been investigated with the aim of ensuring optimal practices for achieving adaptation. 

Eccentric-focused resistance exercise has received particular attention, given 

the greater force producing capabilities and lower energy requirements of eccentric 

muscle actions. These physiological characteristics have led to the suggestion that 

during traditional constant load resistance exercise (CL) eccentric muscle actions are 

undertrained, compared to concentric actions (Hortobagyi et al., 2001a). 

Consequently, the potential uses of resistance exercise employing eccentric-only, 

heavy, or supramaximal eccentric loads (accentuated eccentric load resistance 

exercise (AEL)) have been investigated. Contrasting results currently exist regarding 

the effectiveness of lower-body AEL for enhancing chronic strength adaptations 

beyond that of CL. Existing lower-body training intervention studies comparing AEL to 

CL have demonstrated superior enhancements in concentric (Brandenburg and 
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Docherty, 2002; Hortobagyi and Devita, 2000; Nichols et al., 1995), eccentric 

(Hortobagyi et al., 2001a; Hortobagyi and Devita, 2000), and isometric (Norrbrand et 

al., 2008; Hortobagyi et al., 2001a; Hortobagyi and Devita, 2000) strength with AEL. 

Therefore, indicating AEL can be a beneficial training practice. However, no 

differences in strength adaptations have been reported in other AEL vs. CL training 

intervention research (Friedmann-Bette et al., 2010; Yarrow et al., 2008; Godard et al., 

1998; Ben-Sira et al., 1995; Nichols et al., 1995). Additionally, uncertainty remains 

over which mechanisms may be responsible for the superior strength gains that can 

occur with AEL. As a result of the equivocal training programme intervention reports, 

regarding chronic strength gains, it is currently difficult for practitioners to ascertain the 

efficacy of implementing AEL training interventions with different populations. These 

contrasting results are compounded by a lack of measures assessing neuromuscular 

adaptation, beyond intensified 7 d training interventions. 

The lack of clarity regarding the efficacy of lower-body AEL, as a result of the 

current training intervention literature investigating this type of resistance exercise, 

may be addressed, in part, by acute studies comparing neural responses between 

AEL and CL. Recent research supports the hypothesis that resistance exercise is 

similar to motor learning (Selvanayagam et al., 2011; Carroll et al., 2001). Therefore, 

indicating acute neural responses during and after resistance exercise may provide an 

indication of the nature of the chronic strength adaptations following a training 

intervention. To date, no acute lower-body AEL studies have compared neuromuscular 

variables to equivalent CL conditions, whilst simultaneously measuring kinetic or 

kinematic output. Therefore, research comparing acute neuromuscular activation and 

detailed recruitment strategy responses, during and following AEL, may be particularly 

informative. Specifically, such studies could help exercise professionals to decide 

whether or not to employ AEL with their athletes or patients and also provide important 

mechanistic information to understand how AEL might influence chronic strength 

adaptations. However, before identifying specific research questions that would 
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provide novel physiological data from the investigation of eccentric-focused resistance 

exercise (and specifically AEL), it was necessary to conduct a review of the current 

applications of eccentric-focused resistance exercise for the purposes of injury 

prevention, rehabilitation and enhancement of functional capacity. 

CHAPTER 1: CURRENT APPLICATIONS OF ECCENTRIC-FOCUSED RESISTANCE EXERCISE FOR INJURY PREVENTION, 
REHABILITATION, AND ENHANCEMENT OF FUNCTIONAL PERFORMANCE 

 
 

CHAPTER 1 

LITERATURE REVIEW 

CURRENT APPLICATIONS OF ECCENTRIC-FOCUSED 

RESISTANCE EXERCISE FOR INJURY PREVENTION, 

REHABILITATION, AND ENHANCEMENT OF FUNCTIONAL 

PERFORMANCE 
 

 

1.1 Introduction 

Resistance exercise typically involves the completion of dynamic muscle 

actions against external loads. The repeated performance of acute resistance exercise 

training sessions, such as within a progressive training programme intervention, leads 

to chronic neurological (Gabriel et al., 2006), morphological (Folland and Williams, 

2007) and skeletal adaptations (Snow-Harter et al., 1992). Such adaptations ultimately 

lead to increases in muscular strength, muscle mass and bone mineral density. 

Consequently, the effect of resistance exercise training on health and functional 

outcomes has been investigated in a range of populations. 

These chronic adaptations following resistance exercise training interventions 

can: (i) reduce the risk of developing metabolic health issues (Grontved et al., 2012); 

(ii) decrease the risk (Liu-Ambrose et al., 2004) and incidence (Rubenstein et al., 

2000; Campbell et al., 1999; Campbell et al., 1997; Buchner et al., 1997) of falling; (iii) 

improve cardiovascular health (Cornelissen and Fagard, 2005; Kelley and Kelley, 

2000); (iv) increase functional mobility and activities of daily living 
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(Lastayo et al., 2010; Dibble et al., 2009; Lastayo et al., 2009; Dibble et al., 2006; 

Lastayo et al., 2003a); (v) enhance athletic performance (Channell and Barfield, 2008; 

Myer et al., 2005); (vi) prevent injury (Petersen et al., 2011; Askling et al., 2003); and 

(vii) be used to rehabilitate following injury (Gerber et al., 2007a; Gerber et al., 2007b; 

Gerber et al., 2006; Coury et al., 2006). These health and functional changes are of 

benefit to clinical, general, and athletic populations.  

Previously, numerous variables within resistance exercise training 

programmes, have been investigated in order to develop optimal practices for 

achieving physiological adaptations. These variables include: (i) training frequency 

(Rhea et al., 2003); (ii) training volume (Rhea et al., 2003); (iii) rest period duration 

(Ratamess et al., 2012a; Ratamess et al., 2012b; Willardson and Burkett, 2008; 

Ratamess et al., 2007; Willardson and Burkett, 2006a; Willardson and Burkett, 2006b); 

(iv) load (Rhea et al., 2003); and (iv) the type of muscle actions used (Moore et al., 

2012; Vikne et al., 2006; Higbie et al., 1996; Duncan et al., 1989; Komi and Buskirk, 

1972). The combination of muscle actions employed during resistance exercise has 

received particular attention (Roig et al., 2009; Hortobagyi et al., 2001a; Hortobagyi 

and Devita, 2000; Colliander and Tesch, 1990). Specifically, it has been identified that 

eccentric muscle actions have greater force producing capabilities (Elftman, 1966) and 

lesser energy requirements (Abott et al., 1952), compared to concentric muscle 

actions. These physiological characteristics have led to the suggestion that eccentric 

muscle actions are undertrained during traditional CL (Hortobagyi et al., 2001a). 

Concentric muscle actions involve shortening of the musculotendinous unit, whereas 

eccentric actions involve lengthening of the unit against external force. Both of these 

muscle actions can be performed during a typical resistance exercise. However, the 

unique characteristics of eccentric muscle actions have led to the potential uses of 

resistance exercise employing eccentric-only, heavy, or supramaximal eccentric loads 

being investigated. Given that the focus of this chapter was to examine the 

applications of eccentric-focused resistance exercise it was beyond the scope of this 
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literature review to examine existing research investigating skeletal muscle damage 

responses to single or repeated bouts of eccentric exercise. The purposes of this 

chapter were threefold. Firstly, to review the current rehabilitation, injury prevention, 

and functional applications of resistance exercise involving: (i) only eccentric muscle 

actions; and (ii) heavier eccentric compared to concentric phase loads. Secondly, to 

detail the physiological mechanisms supporting the use of eccentric-focused 

resistance exercise for its current applications. Thirdly, to identify future studies that 

may potentially add to the existing body of eccentric-focused resistance exercise 

research.  

 

1.2 Physiology of eccentric muscle actions 

 Before reviewing the current uses of eccentric-focused resistance exercise, the 

unique physiological characteristics of eccentric muscle actions are briefly 

summarised. These unique characteristics have led to the exploration of eccentric-

focused resistance exercise in the following range of health and functional 

performance applications that will be discussed in this chapter. Eccentric muscle 

actions display greater force production capabilities and lower energy requirements 

than concentric muscle actions. The Elftman proposal (Elftman, 1966) describes a 

force production hierarchy, such that eccentric muscle actions produce greater force 

than both isometric and concentric actions. The greater force production during 

eccentric muscle actions has been postulated to be due to: (i) unique neuromuscular 

activation strategies (Nardone et al., 1989; Nardone and Schieppati, 1988); (ii) 

development of tension through the elastic component of the myosin contractile protein 

filaments and parallel elastic component (Huxley, 2000; Curtin and Woledge, 1981); 

and (iii) rapid repeated reformation of cross bridges following detachment (Flitney and 

Hirst, 1978; Joyce et al., 1969).  



Chapter 1  Page 6 

 

Resistance exercise performed with a constant absolute external load involves 

the completion of both concentric and eccentric muscle actions. However, lower levels 

of neuromuscular activation have been consistently displayed during eccentric muscle 

actions (Grabiner and Owings, 2002; Madeleine et al., 2001; Kay et al., 2000; Westing 

et al., 1991; Moritani et al., 1987; Bigland and Lippold, 1954). Two explanations have 

been offered for the lower neuromuscular activation observed during eccentric actions: 

(i) unique neuromuscular recruitment strategies (Howell et al., 1995; Nardone et al., 

1989; Nardone and Schieppati, 1988); and (ii) passive force generation from the 

parallel and series elastic components (Kossev and Christova, 1998; Curtin and 

Woledge, 1981; Huxley and Peachey, 1961). The passive force generated from 

parallel and series elastic structures may reduce the amount of neuromuscular 

activation required to meet force production demands during eccentric muscle actions. 

Previously, studies investigating eccentric neuromuscular activation have suggested 

large, high threshold motor units are preferentially recruited and lower threshold motor 

units are derecruited during such actions (Howell et al., 1995; Nardone et al., 1989; 

Nardone and Schieppati, 1988). The concept of unique eccentric neuromuscular 

recruitment strategies has gathered support as a result of studies demonstrating 

different recruitment patterns (Nardone et al., 1989; Nardone and Schieppati, 1988), 

observations of smaller motor evoked potentials (Abbruzzese et al., 1994), delayed 

motor evoked potential recovery time (Tallent et al., 2012), and reduced H-reflex 

responses (Abbruzzese et al., 1994; Romano and Schieppati, 1987) during eccentric 

compared to concentric muscle actions. Reduced motor neuron pool excitability at the 

motor cortex (Abbruzzese et al., 1994) or the spinal cord (Enoka, 1996) have been 

postulated to explain the smaller motor evoked potential and H-reflex responses 

observed during muscle lengthening. However, the concept of unique eccentric 

recruitment strategies contradicts the widely accepted Henneman size principle 

(Henneman et al., 1965) and not all studies have observed differences in 
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neuromuscular recruitment between eccentric and concentric muscle actions (Stotz 

and Bawa, 2001; Bawa and Jones, 1999). 

The theory that greater eccentric force production is a product of reduced 

eccentric neuromuscular activation and greater force generation contributions from 

passive elastic components has gained support, from both animal and human model 

studies (Kossev and Christova, 1998; Curtin and Woledge, 1981; Huxley and 

Peachey, 1961). Research investigating isolated frog muscle has suggested the elastic 

component of the myosin contractile filaments and that of the series elastic component 

contribute to greater force production during eccentric muscle actions (Curtin and 

Woledge, 1981; Huxley and Peachey, 1961). In addition, it is believed that during 

eccentric muscle actions in whole intact muscles the parallel elastic components are 

also responsible for the greater force production observed (Curtin and Woledge, 

1981). Furthermore, reduced neuromuscular activation and firing rates have been 

observed during eccentric actions (Laidlaw et al., 2000; Kossev and Christova, 1998), 

supporting the concept that passive structures generate force and decrease force 

production contributions from contractile proteins. Additionally, the role of rapid 

reattachment of cross bridges following forced detachment during eccentric muscle 

actions is also postulated to contribute to elevated eccentric force levels (Flitney and 

Hirst, 1978; Joyce et al., 1969). Controversy continues over which mechanisms, or 

combination of mechanisms, are responsible for the greater force production during 

eccentric muscle actions. 

With regard to energy requirements, eccentric muscle actions require lower 

oxygen uptake (Bonde-Petersen et al., 1972; Bigland and Lippold, 1954; Abott et al., 

1952), use less phosphocreatine (Ryschon et al., 1997; Wilkie, 1968), and have 

reduced levels of adenosine triphosphate breakdown (Ryschon et al., 1997; Wilkie, 

1968). The lower energy cost of eccentric muscle actions may be due to the lower 

volume of active muscle mass (Grabiner and Owings, 2002; Madeleine et al., 2001; 

Kay et al., 2000; Westing et al., 1991; Moritani et al., 1987; Bigland and Lippold, 1954) 
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in combination with reduced adenosine triphosphate hydrolysis. Decreased eccentric 

adenosine triphosphate hydrolysis occurs as a result of a proportion of muscle tension 

being generated from the forced detachment of cross bridges (Ryschon et al., 1997). 

The greater force producing capabilities and lower energy requirements of eccentric 

muscle actions have led to the eccentric phase being manipulated during resistance 

exercise in an attempt to benefit various applications including: (i) injury prevention; (ii) 

rehabilitation; and (iii) functional performance. Eccentric-only and AEL are the two 

main eccentric-focused resistance exercise variants that have been employed in the 

existing research literature. 

 

1.3 Distinct types of eccentric-focused resistance exercise 

1.3.1 Eccentric-only resistance exercise 

Eccentric-only resistance exercise involves the completion of a loaded 

eccentric muscle action phase followed by an assisted or unloaded concentric phase. 

This type of resistance exercise allows individuals to complete a loaded eccentric 

phase whilst also performing multiple repetitions. Although a concentric element 

remains during eccentric-only resistance exercise, the fact that this phase is assisted 

or completely unloaded means any concentric phase training effect is likely to be 

negligible. Eccentric-only resistance exercise can be implemented during: (i) 

dynamometer resistance exercise; (ii) resistance machine exercise; (iii) body mass-

based exercises (e.g. unilateral heel drops (Figure 1.1) and Nordic hamstring exercise 

(Figure 1.2)); (iv) single- and multiple-joint free weight resistance exercise; or (v) 

eccentric ergometry (Figure 1.3). The removal of concentric phase load can be 

achieved by manual removal by assistants, as a function of computer or resistance 

machine settings, or the performance of the concentric phase by the uninjured limb 

(such a during unilateral heel drops). Loading during this type of training varies and 

can range from submaximal intensities based on a percentage of concentric repetition
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Figure 1.1 A unilateral heel drop exercise. From the start position 
standing on a bench or step (A) the right leg is used to lower the 
body with either an extended (B) or bent leg (C). At the bottom of the 
exercise (B,C) the left leg is placed back on the step and used to 
perform the concentric portion of the exercise to return to the start 
position (A). Replicated with permission (Alfredson et al., 1998). 
 
 
 
 
 
 
 
 
 
 
Figure 1.2 The Nordic hamstring exercise. Completed in pairs, one 
training partner holds the ankles of the other (A), whilst the anchored 
partner extends their knees (B), lowering them to the ground. The 
anchored partner then uses their hands to brake their landing (C) and 
return themselves to the start position for the next repetition (A). 
Replicated in accordance with U.S. fair use guidelines (Hibbert et al., 
2008).

B C 
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Figure 1.3 Eccentric ergometer. When the pedals move toward the 
participant the knee extensors are activated to resist the movement of the 
pedals, as the magnitude of the ergometer exceeds the force produced by 
the participant the knee extensor muscles undergo eccentric muscle 
actions. Replicated with permission (Lastayo et al., 2009). 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4 Eccentric flywheel leg curl ergometer. Flywheel training 
devices involve a strap winding and unwinding around a rotating shaft, 
during the eccentric and concentric phases of a given exercise, 
respectively. Flywheel devices provide variable resistance dependent on 
the amount of force developed in a given repetition. AEL can be applied 
during flywheel training, as force greater than that produced in the 
preceding concentric phase must be produced to decelerate the winding 
of the strap around the rotating shaft. Replicated with permission (Askling 
et al., 2003).  
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maximum to maximal isokinetic eccentric efforts. Depending on the involved 

population, the use of eccentric exercises with body mass alone may be employed, 

especially if pain upon loading is experienced (Alfredson et al., 1998). Therefore, 

eccentric-only resistance exercise in its numerous forms can be applied in various 

situations ranging from exercise physiology laboratories to field based training 

practices. 

 

1.3.2 AEL 

 AEL involves the completion of loaded concentric and eccentric phases. 

However, heavier loading is employed during the eccentric phase in relation to the 

subsequent concentric phase (Doan et al., 2002). This type of resistance exercise 

attempts to equate training intensities between eccentric and concentric phases, given 

the greater force production capacity of eccentric muscle actions. AEL requires rapid 

reduction of load for the subsequent concentric phase of each repetition so as 

repetitions can be performed in a smooth and continuous manner. A number of 

systems, of varying expense and complexity, have been developed to facilitate such 

transitions during AEL. These systems include: (i) flywheel resistance machines 

(Figure 1.4); (ii) specialised variable resistance weight stack devices (Figure 1.5); (iii) 

automated simulated resistance machines (Figure 1.6); (iv) weight releaser hooks 

(Figure 1.7); and (v) manual removal of a proportion of eccentric load (Figure 1.8). 

Eccentric phase loads during AEL are typically at least 5.0%, heavier than the 

concentric phase loads implemented (Doan et al., 2002). However, the eccentric 

phase load used is dependent on the level of concentric loading and the type of 

system employed to overload the eccentric phase. Therefore, AEL can potentially be 

more difficult to implement than eccentric-only resistance exercise as loading, 

transitions between phases, and the cost of specialised AEL machinery must be 

considered. However, this type of eccentric-focused resistance exercise may negate 

the need for the completion of heavy eccentric-only resistance exercise in addition to 
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Figure 1.5 The MaxOut bench press machines implements a 
selectorised electrical motor which provides assistance during 
the concentric phase of the bench press and then disengages 
to overload the eccentric phase of the bench press. Replicated 
with permission (Yarrow et al., 2008). 
 
 
 
 
 
 

 
Figure 1.6 Simulated resistance training device from IM lifter. 
The device permits free weight barbell training via the use of a 
laser sensor which moves the motorised arms on each side of 
the machine. This laser function safeguards the barbell without 
contacting the barbell during performance of a given exercise. 
The device also allows separate simulated loads to be 
programmed for the concentric and eccentric phases of a 
selected exercise.  
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Figure 1.7 Application and release of AEL weight releaser 
hooks during the bench press. Replicated with permission 
(Doan et al., 2002).  
 
 

 
 
Figure 1.8 Implementation of AEL via manual application (A) 
and removal (B) of weight plates at either side of the barbell at 
the top (A) and bottom (B) of a box squat repetition. Replicated 
with permission (Watkins, 2010). 

Weight release hooks hang from 

the bar during the eccentric 

phase of the lift allowing for a 

heavier eccentric load 

Weight release hooks pivot 

forward as the base of the device 

touches the ground the hooks 

release from the bar just as the 

bar touches the lifter’s chest 

(height of release is adjustable) 

Weight release hooks are now 

cleared from the bar and less 

weight is lifted concentrically 

than was lowered eccentrically 

A 

B 

C 
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CL practices for individuals aiming to maximally develop both their concentric and 

eccentric strength. 

 

1.4 Use of eccentric-focused resistance exercise for rehabilitation 

and injury prevention 

1.4.1 Tendinosis rehabilitation 

 Chronic tendinosis is characterised by pain and degeneration of tendon tissue 

(Khan et al., 1999). The pathogenesis of chronic tendinosis is unclear (Fredberg and 

Stengaard-Pedersen, 2008). Mechanical overloading (Archambault et al., 1995), which 

may occur with high training volumes or with increased activity following prolonged 

periods of inactivity has been implicated in causing the condition. However, in a large 

population study of individuals with Achilles tendinosis physical activity levels were not 

predictive of the development of the condition (Astrom, 1998). Therefore, mechanical 

loading may not be causative but merely provoke tendinosis symptoms (Alfredson, 

2005). The pain experienced with tendinosis can severely limit or prevent physical 

activity (Cook et al., 1997) and potentially shorten the duration of athletic careers 

(Kettunen et al., 2002). In addition, symptoms can persist after the end of an 

individual’s athletic career (Kettunen et al., 2002). 

The use of eccentric-only resistance exercise for the management of tendinosis 

has typically involved progression of exercise load (Norregaard et al., 2007; Jonsson 

and Alfredson, 2005; Visnes et al., 2005; Roos et al., 2004; Mafi et al., 2001; Niesen-

Vertommen et al., 1992), exercise velocity (Jensen and Di Fabio, 1989), or both load 

and velocity (Young et al., 2005). For individuals with unilateral lower body tendinosis, 

the injured leg is used to perform the eccentric portion of an exercise, whereas the 

uninjured limb performs the concentric phase (Alfredson et al., 1998). For bilateral 

lower-body tendinosis patients, assistance from the upper-body or a helper facilitates 

the participant in returning to the start of the eccentric phase of the repetition (Visnes 
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et al., 2005). However, other studies have involved concentric muscle actions of the 

injured limb to return to the start of each repetition (Young et al., 2005; Silbernagel et 

al., 2001; Cannell et al., 2001; Niesen-Vertommen et al., 1992).  

Previous research has demonstrated eccentric-only resistance exercise to 

reduce pain during loading (Norregaard et al., 2007; Langberg et al., 2007; Sayana 

and Maffulli, 2007; Jonsson and Alfredson, 2005; Young et al., 2005; Roos et al., 

2004; Ohberg et al., 2004; Fahlstrom et al., 2003; Mafi et al., 2001; Silbernagel et al., 

2001; Cannell et al., 2001; Alfredson et al., 1998; Niesen-Vertommen et al., 1992), 

improve power (Visnes et al., 2005), and increase both eccentric (Alfredson et al., 

1999; Niesen-Vertommen et al., 1992) and concentric (Alfredson et al., 1999; Niesen-

Vertommen et al., 1992) strength. In addition, eccentric resistance exercise has been 

shown to be more effective for improving strength and reducing pain compared to 

concentric-only resistance exercise (Jonsson and Alfredson, 2005), night splint usage 

(Roos et al., 2004), non-thermal ultrasound (Stasinopoulos and Stasinopoulos, 2004), 

and transverse friction massage (Stasinopoulos and Stasinopoulos, 2004). However, 

eccentric-only resistance exercise has also been reported to be equally effective for 

reducing pain, increasing strength, and facilitating returning to previous activity levels 

when compared to concentric-only resistance exercise (Mafi et al., 2001; Silbernagel 

et al., 2001; Cannell et al., 2001; Niesen-Vertommen et al., 1992), combined eccentric 

and concentric resistance exercise (Young et al., 2005), stretching (Norregaard et al., 

2007), and eccentric-only resistance exercise combined with night splint usage (Roos 

et al., 2004). Therefore, eccentric-only resistance exercise is largely considered to be 

an effective form of treatment for managing chronic tendinosis (Maffulli and Longo, 

2008). However, current tendinosis treatment research findings are unclear as to 

whether or not eccentric-only resistance exercise is superior to other types of 

resistance exercise (Jonsson and Alfredson, 2005), alternative treatments (Norregaard 

et al., 2007), or interventions combining resistance exercise and alternative treatments 
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(Roos et al., 2004). Furthermore, the efficacy of employing AEL for the treatment of 

tendinosis has not yet been determined. 

The mechanistic influence of eccentric-only resistance exercise on the 

symptoms of tendinosis is postulated to be due to: (i) increased collagen synthesis 

repairing degenerated portions of the tendon; (ii) disruption of neovessel formation by 

upregulation of anti-angiogenic factors resulting from fluctuations in hydrostatic 

pressure (Shalabi et al., 2004; Alfredson and Lorentzon, 2003); (iii) enhanced 

eccentric phase neuromuscular control reducing forces the tendon is exposed to 

during loading (Baur et al., 2004); or (iv) a reduction in the concentration of substances 

(glutamate, calcitonin gene related peptide, and substance P) associated with the 

symptomatic pain experienced with tendinosis (Alfredson and Lorentzon, 2003). In 

particular, the latter two mechanisms have received minimal attention. Studies have 

noted differences in eccentric neuromuscular activation of the lower leg musculature 

during running (Baur et al., 2004) and heel drop exercises (Reid et al., 2012) when 

comparing individuals with and without chronic tendinosis. However, synchronous 

neuromuscular measures during kinetic and kinematic assessments of gait, jumping, 

or running have not been incorporated within existing tendinosis training intervention 

research. Therefore, the potential role of neuromuscular adaptation in the treatment 

and management of tendinosis remains unclear. Glutamate levels have been shown to 

be unchanged following an eccentric-only resistance exercise training intervention 

(Alfredson and Lorentzon, 2003). It was consequently speculated that eccentric-only 

resistance exercise, which can be painful in individuals with tendinosis, may 

desensitise glutamate receptors. Decreased receptor sensitivity would explain the 

reported return to previous activity levels and reduction of pain, without a concomitant 

reduction in glutamate levels (Alfredson and Lorentzon, 2003). However, whether or 

not changes in other substances (calcitonin gene related peptide and substance P) 

implicated in symptomatic tendinosis pain (Fredberg and Stengaard-Pedersen, 2008) 

occur, and how these alterations may influence strength and pain following eccentric-
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only resistance exercise have not yet been investigated. Therefore, future research 

investigating neuromuscular control adaptations, calcitonin gene related peptide and 

substance P concentrations following eccentric-only resistance exercise in tendinosis 

patients seems warranted. Such research would further current understanding of how 

eccentric-only resistance exercise influences strength and pain in tendinosis patients. 

 

1.4.2 Anterior cruciate ligament rehabilitation 

 Anterior cruciate ligament injury occurs commonly in a range of sports (Agel et 

al., 2005; Myklebust et al., 2003; Roos et al., 1995). Large strength losses can occur 

after anterior cruciate ligament surgery (Feller and Webster, 2003; Meighan et al., 

2003; Arangio et al., 1997). In addition, anterior cruciate ligament injury can often lead 

to decreases in sporting career duration (Mikkelsen et al., 2000; Gerich et al., 1997; 

Roos et al., 1995; Noyes et al., 1983) and the level of competitive sports participation 

(Ejerhed et al., 2003). Resistance exercise forms an integral component of post-

anterior cruciate ligament surgery rehabilitation and quadriceps muscle strength has 

been associated with positive outcomes following anterior cruciate ligament surgery 

(Wojtys and Huston, 2000; Risberg et al., 1999; Wilk et al., 1994). Research examining 

optimal resistance exercise protocols has manipulated numerous variables to 

determine the most effective anterior cruciate ligament rehabilitation programmes. 

Investigated anterior cruciate ligament rehabilitation programme variables have 

included: (i) kinetic chain exercise type (Hooper et al., 2001; Mikkelsen et al., 2000; 

Bynum et al., 1995); (ii) rate of exercise progression (Beynnon et al., 2005; Shelbourne 

and Trumper, 1997; Shelbourne and Nitz, 1990; Noyes et al., 1987); (iii) the amount of 

time post-surgery when full range of movement is permitted (Noyes et al., 1987); and 

(iv) the type of muscle actions included (Gerber et al., 2009; Gerber et al., 2007b; 

Gerber et al., 2006; Coury et al., 2006). 

The potential importance of eccentric-focused resistance exercise for anterior 

cruciate ligament patients was identified following observations of deficient movement 
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strategies during gait and eccentric strength deficits in this population (Lastayo et al., 

2003a). However, to date only a limited number of studies have investigated the use of 

eccentric-only resistance exercise for rehabilitation following anterior cruciate ligament 

injury (Gerber et al., 2009; Gerber et al., 2007b; Gerber et al., 2006). Both eccentric 

isokinetic dynamometry and eccentric ergometers have been employed in these 

studies. Current findings have shown the completion of eccentric-only resistance 

exercise during anterior cruciate ligament rehabilitation to increase concentric strength 

(Gerber et al., 2009; Gerber et al., 2007b; Gerber et al., 2006), eccentric strength 

(Coury et al., 2006), and single-leg jumping distance (Gerber et al., 2009; Gerber et 

al., 2007b) compared to pre-surgery or pre-training intervention measures. Eccentric-

only resistance exercise has also been shown to be successful in facilitating patient’s 

return to pre-injury activity levels (Gerber et al., 2009; Gerber et al., 2006). In addition, 

equivalent traditional rehabilitation programmes including concentric resistance 

exercise did not result in the same improvements in strength and single-leg jump 

distance as eccentric-only resistance exercise rehabilitation regimes (Gerber et al., 

2009; Gerber et al., 2007b). 

The reported benefits of eccentric-only resistance exercise anterior cruciate 

ligament rehabilitation have been attributed to increases in muscle and connective 

tissue stiffness (Coury et al., 2006). The higher force levels involved in eccentric-only 

resistance exercise anterior cruciate ligament rehabilitation are believed to be 

responsible for the greater increases in strength and muscle mass (Gerber et al., 

2007b), compared to those seen with equivalent concentric programmes. The positive 

results reported from the limited research literature following eccentric-only compared 

to concentric-only resistance exercise or traditional anterior cruciate ligament 

rehabilitation suggest that eccentric-only resistance exercise anterior cruciate ligament 

rehabilitation is more effective, whilst also being safe and well tolerated by patients 

(Gerber et al., 2007b). The use of AEL during anterior cruciate ligament rehabilitation 

has not yet been investigated. It may be expected that AEL would produce similar 
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anterior cruciate ligament rehabilitation benefits to eccentric-only resistance exercise, 

given the high levels of eccentric force that are also involved in this type of training. 

However, studies investigating AEL compared to other types of resistance exercise 

employed during anterior cruciate ligament rehabilitation are required to investigate: (i) 

whether or not AEL is more or less effective in comparison to existing rehabilitation 

practices; (ii) if AEL can be safely implemented with anterior cruciate ligament 

rehabilitation patients; and (iii) if this type of resistance exercise is tolerable for anterior 

cruciate ligament rehabilitation patients. 

 

1.4.3 Hamstring muscle strain injury prevention 

 Research investigating the use of eccentric-focused resistance exercise in the 

prevention of muscle strain injuries has focused predominantly on the hamstring 

muscle group (Petersen et al., 2011; Arnason et al., 2008; Gabbe et al., 2006; Brooks 

et al., 2006). The high rates of hamstring injury reported in sprinting and team sports 

make both injury prevention and reduction of reinjury areas which can have 

considerable benefits for competitive performance and career duration (Mjolsnes et al., 

2004). Both eccentric-only resistance exercise (Petersen et al., 2011; Arnason et al., 

2008; Gabbe et al., 2006; Brooks et al., 2006) and AEL (Askling et al., 2003) have 

been employed in hamstring injury prevention intervention studies. Eccentric-only 

resistance exercise has been implemented via the Nordic hamstring exercise 

(Petersen et al., 2011; Arnason et al., 2008; Gabbe et al., 2006; Brooks et al., 2006) 

(Figure 1.2) and isokinetic dynamometry (Croisier et al., 2002). AEL has been 

implemented using a knee curl flywheel device (Askling et al., 2003). Eccentric-

focused resistance exercise is believed to prevent injuries by increasing eccentric 

strength (Mjolsnes et al., 2004) and shifting the angle of peak eccentric force to longer 

muscle lengths (Brockett et al., 2001). Both of these adaptations are believed to 
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protect the hamstrings and therefore reduce the incidence of injuries to this muscle 

group. 

 Interventions implementing the Nordic hamstring exercise have reduced the 

incidence of hamstring injury (Petersen et al., 2011; Arnason et al., 2008) and 

decreased the severity of hamstring injury with regard to the distribution of injuries 

(Arnason et al., 2008). Eccentric-only resistance exercise implemented via isokinetic 

dynamometry has also been shown to be effective in preventing hamstring injury 

occurrence (Queiros Da Silva et al., 2005; Croisier et al., 2002). Similarly, AEL injury 

prevention interventions have demonstrated decreased hamstring injury rates and 

improved strength and power (Askling et al., 2003). In contrast, other findings suggest 

Nordic hamstring exercise training interventions do not reduce the incidence of injury 

(Engebretsen et al., 2008; Gabbe et al., 2006) or the prevalence of injury reoccurrence 

(Arnason et al., 2008). The equivocal findings from the eccentric-only resistance 

exercise research in this area are likely due to differences in training volume (Gabbe et 

al., 2006) and programme adherence (Engebretsen et al., 2008; Gabbe et al., 2006). 

The only AEL hamstring injury prevention study conducted demonstrates the potential 

of this training method to reduce injury rates (Askling et al., 2003). 

Previously, a rehabilitation intervention progressing from isometric to combined 

concentric and eccentric resistance exercise has displayed high hamstring injury 

reoccurrence rates at short- and long-term follow-up time-points (Sherry and Best, 

2004). This may potentially be due to the daily training frequency employed in this 

study compared to other hamstring injury prevention studies or the resistance exercise 

regime employed. Indeed, eccentric-only resistance exercise has been shown to 

increase eccentric strength compared to combined eccentric and concentric resistance 

exercise (Mjolsnes et al., 2004). The high rate of injury reoccurrence (Sherry and Best, 

2004) and lack of improvement in eccentric strength (Mjolsnes et al., 2004) following 

combined eccentric and concentric resistance exercise training interventions suggests 

eccentric-focused resistance exercise may be a superior injury prevention strategy. 
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The finding that combined eccentric and concentric resistance exercise failed to 

increase eccentric strength may mean this type of training was also insufficient to 

cause an increase in the muscle length at which peak eccentric force occurs (Mjolsnes 

et al., 2004; Brockett et al., 2001). Therefore, combined eccentric and concentric 

resistance exercise may not have influenced either of the postulated mechanisms that 

are belived to be responsible for reduced hamstring injury rates following eccentric-

focused resistance exercise. However, limited direct comparisons have been made 

between eccentric-focused resistance exercise and other types of resistance exercise 

for the purposes of hamstring injury prevention. One study has reported the addition of 

eccentric–only resistance exercise to a combined eccentric and concentric resistance 

exercise and stretching programme to reduce the incidence of hamstring injury, 

compared to a group completing only combined eccentric and concentric resistance 

exercise (Brooks et al., 2006). Elsewhere, no differences have been reported in the 

occurrence of hamstring injury when eccentric-only, concentric-only, and combined 

eccentric and concentric resistance exercise have been employed (Croisier et al., 

2002). Therefore, further research is required to elucidate whether eccentric-focused 

resistance exercise is more effective in reducing the incidence of hamstring injuries 

compared to other types of resistance exercise. 

 

1.4.4 Fall incidence reduction 

 The risk of falling at least once a year increases with age for adults aged 65 or 

older (Stalenhoef et al., 1997; Downton and Andrews, 1991; Blake et al., 1988; Tinetti 

et al., 1988; Campbell et al., 1981; Prudham and Evans, 1981). Falls have previously 

been identified as the leading cause of accidental death in older adults, a high 

proportion of these falls occur on stairs (Cavanagh et al., 1997). When falls do not 

prove to be fatal, hip fractures are often sustained (Parkkari et al., 1999; Grisso et al., 

1991) which can lead to disability and functional impairment (Carter et al., 2001). Step 
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frequency in older adult populations during stair descent appears to be greater than 

ascent at a self-selected velocity (Larsen et al., 2008) and fall frequency is at least 

three times greater during stair descent, compared to ascent (Startzell et al., 2000). 

Therefore, suggesting eccentric muscle action characteristics are implicated in the 

incidence of falls. This seems particularly likely given the importance of eccentric 

muscle actions during stair descents (Lastayo et al., 2003b; McFadyen and Winter, 

1988; Andriacchi et al., 1980). Indeed, the ability to produce precise changes in 

eccentric force deteriorates more than concentric force with age (Hortobagyi et al., 

2001b; Enoka, 1997). The decrease in force steadiness with ageing is attributed to 

increases in motor unit firing rate variance (Laidlaw et al., 1999).  

Previously, combined eccentric and concentric resistance exercise has been 

shown to reduce eccentric force error in older adults (Hortobagyi et al., 2001b; Laidlaw 

et al., 1999). Furthermore, a number of studies employing combined eccentric and 

concentric resistance exercise have reduced the incidence of falls in older adult 

populations compared to control groups (Rubenstein et al., 2000; Campbell et al., 

1999; Campbell et al., 1997; Buchner et al., 1997). Therefore, combined eccentric and 

concentric resistance exercise appears to be an effective intervention in reducing the 

incidence of falls. However, the efficacy of using AEL or eccentric-only resistance 

exercise for reducing the incidence of falls compared to other types of resistance 

exercise has not yet been investigated. If found to be equally or more effective than 

combined eccentric and concentric resistance exercise for preventing the incidence of 

falls, eccentric-focused resistance exercise models may provide a training model that 

is both an effective and energy efficient exercise model for exercise-intolerant older 

adults (Lastayo et al., 2003a). Therefore, future research investigating the benefits of 

AEL and eccentric-only resistance exercise for reducing the incidence of falls, would 

help further inform exercise prescription for older adult populations identified as being 

at risk of falling. 
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1.5 Use of eccentric-focused resistance exercise for functional 

performance 

1.5.1 Enhancement of strength 

Eccentric-only resistance exercise 

 Strength adaptations following resistance exercise are important for both young 

and older adults. Strength levels have been demonstrated to be correlated with 

sprinting and jumping performance in athletic populations (Wisloff et al., 2004). 

Additionally, lower limb strength has been associated with the frequency of falls in 

older adults (Lord et al., 1995). Therefore, strength development is essential for both 

athletic and older adult populations. 

 Numerous studies have examined strength gains following eccentric-only vs. 

concentric-only resistance exercise in healthy young participants (Moore et al., 2012; 

Vikne et al., 2006; Hortobagyi et al., 1996b; Komi and Buskirk, 1972). Eccentric-only 

resistance exercise has been shown to increase eccentric (Mjolsnes et al., 2004; 

Farthing and Chilibeck, 2003a; Higbie et al., 1996; Hortobagyi et al., 1996a; 

Hortobagyi et al., 1996b; Tomberlin et al., 1991; Duncan et al., 1989; Komi and 

Buskirk, 1972), concentric (Farthing and Chilibeck, 2003a; Komi and Buskirk, 1972), 

and isometric strength (Mjolsnes et al., 2004; Lastayo et al., 1999; Hortobagyi et al., 

1996a; Komi and Buskirk, 1972). Equally, concentric-only resistance exercise has 

been shown to increase eccentric (Moore et al., 2012; Vikne et al., 2006; Seger et al., 

1998; Tomberlin et al., 1991), concentric (Higbie et al., 1996; Hortobagyi et al., 1996a; 

Hortobagyi et al., 1996b; Duncan et al., 1989), and isometric (Moore et al., 2012; 

Hortobagyi et al., 2000; Seger et al., 1998; Hortobagyi et al., 1996a) strength. 

Eccentric strength adaptations have been demonstrated to be greater following 

eccentric-only resistance exercise training interventions compared to concentric-only 

resistance exercise (Vikne et al., 2006; Mjolsnes et al., 2004; Higbie et al., 1996). In 

addition, similar concentric strength gains have been displayed following eccentric-only 
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and concentric-only resistance exercise training interventions (Vikne et al., 2006; 

Hortobagyi et al., 2000). In contrast, other studies suggest that strength adaptations 

are mode specific for eccentric-only and concentric-only resistance exercise (Higbie et 

al., 1996; Hortobagyi et al., 1996a; Hortobagyi et al., 1996b; Duncan et al., 1989; Komi 

and Buskirk, 1972). For example, eccentric-only resistance exercise stimulates greater 

or exclusive increases in eccentric compared to concentric strength. Therefore, it 

remains unclear if employing eccentric-only resistance exercise consistently leads to 

improvements in both concentric and eccentric strength. 

Previous research has reported the effectiveness of combined eccentric and 

concentric resistance exercise with healthy older adults for increasing concentric 

strength (see reviews (Reeves et al., 2006; Macaluso and De, 2004)). However, 

compared to the eccentric-only resistance exercise research conducted with young 

healthy participants, limited research has explored the use of this type of resistance 

exercise with older adults (Reeves et al., 2009; Lastayo et al., 2003a). Eccentric-only 

resistance exercise has been shown to lead to muscle action specific increases in 

strength in older adults, with no change in the strength levels of the opposing 

concentric muscle action (Reeves et al., 2009). The use of eccentric-only resistance 

exercise with older adults has been advocated as absolute eccentric strength is better 

maintained than concentric strength in this population (Roig et al., 2010). Furthermore, 

the high force levels and low energy cost of eccentric muscle actions have been 

suggested to provide the required levels of mechanical stress for strength and muscle 

mass gains for exercise-intolerant older individuals (Lastayo et al., 2003a). Further 

studies are required to substantiate the efficacy of using eccentric-only resistance 

exercise for improving both strength and related mobility performance in older adult 

populations. 
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AEL 

Several studies have investigated the effectiveness of AEL for improving 

strength and power compared to CL. Enhanced concentric power (Friedmann-Bette et 

al., 2010; Sheppard et al., 2008a), concentric (Brandenburg and Docherty, 2002; 

Hortobagyi and Devita, 2000; Nichols et al., 1995), eccentric (Hortobagyi et al., 2001a; 

Hortobagyi and Devita, 2000), and isometric (Norrbrand et al., 2008; Hortobagyi et al., 

2001a; Hortobagyi and Devita, 2000) strength have been reported in both young and 

older adults following AEL. Elsewhere, no differences in strength adaptations have 

been reported in AEL vs. CL training studies (Friedmann-Bette et al., 2010; Yarrow et 

al., 2008; Godard et al., 1998; Ben-Sira et al., 1995). The greater chronic strength 

gains with AEL have been attributed to both neuromuscular (Hortobagyi et al., 2001a; 

Hortobagyi and Devita, 2000) and morphological (Norrbrand et al., 2008; Friedmann et 

al., 2004) adaptations. In contrast, other longer duration AEL training intervention 

studies have not reported morphological changes in either CL or AEL conditions, 

despite greater chronic strength adaptations occurring with AEL (Norrbrand et al., 

2008; Brandenburg and Docherty, 2002). Therefore, neuromuscular adaptations seem 

to be a crucial factor in the superior strength and power improvements reported with 

AEL. However, besides two AEL studies of short duration (7 d) employing intensified 

training, no measures of neuromuscular adaptation have been performed during 

longer duration AEL interventions. 

Acute AEL studies have also been conducted as a result of speculation that 

chronic enhancements in strength and power reported with AEL occur due to elevated 

acute concentric kinetic and kinematic responses within individual training sessions, 

that make up the overall intervention (Sheppard and Young, 2010; Ojasto and 

Hakkinen, 2009a; Sheppard et al., 2007; Doan et al., 2002). Increased neural 

stimulation, recovery of elastic energy, greater contractile filament overlap, and 

amplified development of tension in the eccentric phase have been theorised to be 

responsible for the larger acute concentric kinetic and kinematic outputs observed with 
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AEL (Doan et al., 2002). To date, only a single acute upper-body study has 

synchronously measured neuromuscular, kinetic, and kinematic variables (Ojasto and 

Hakkinen, 2009a). In this study, no elevation in concentric neuromuscular activation 

occurred, despite an enhancement in concentric peak and mean power occurring in 

the AEL condition (Ojasto and Hakkinen, 2009a). Furthermore, acute lower limb 

studies comparing AEL to CL have not included neuromuscular measures (Moore et 

al., 2007; Sheppard et al., 2007). Therefore, whether or not differential acute 

neuromuscular responses occur either during or after lower limb AEL is uncertain. 

Although, enhanced chronic strength adaptations have been reported following AEL, 

the mechanistic rationale for employing this type of resistance exercise is far from 

conclusive. Further research employing a spectrum of neuromuscular measures may 

elucidate differential acute demands and physiological responses that may be 

implicated in the enhanced chronic strength gains that have been observed with AEL. 

 

1.5.2 Enhancement of mobility and activities of daily living 

 Quality of life is considered to be influenced, in part, by an individual’s mobility 

(Campanelli, 1996). Losses of strength and muscle mass occur in a range of 

conditions (Scott et al., 2011; Bhasin et al., 2000; Hurley, 1995; Stelmach et al., 1989) 

and can lead to reduced functional mobility and impairments in the ability to perform 

other activities of daily living. Decreased mobility levels and the inability to perform 

activities of daily living often leads to institutionalisation and can severely impact 

quality of life (Campanelli, 1996), whilst also leading to a variety of health and 

residential care costs (Paterson and Warburton, 2010). 

 The effectiveness of eccentric-only resistance exercise for improving functional 

mobility has been investigated in a range of populations with conditions predisposing 

these individuals to strength and muscle mass losses
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(Lastayo et al., 2011; Lastayo et al., 2010; Dibble et al., 2009; Lastayo et al., 2009; 

Hansen et al., 2009; Mueller et al., 2009; Marcus et al., 2009; Dibble et al., 2006; 

Lastayo et al., 2003a). Such studies have employed specialised recumbent eccentric 

ergometers that allow progressive increases in loading (Meyer et al., 2003). 

Improvements in 6 min walk (Dibble et al., 2006), 10 m walk (Dibble et al., 2009), timed 

up and go (Dibble et al., 2009; Lastayo et al., 2003a), stair ascent (Lastayo et al., 

2009), and stair descent (Lastayo et al., 2010; Lastayo et al., 2009; Lastayo et al., 

2003a) performance have been reported from pre- to post-intervention with eccentric 

ergometry training. Furthermore, the improvements in 6 min walk (Lastayo et al., 2011; 

Dibble et al., 2006), 10 m walk (Dibble et al., 2009), balance (Lastayo et al., 2003a), 

and stair descent (Dibble et al., 2009; Lastayo et al., 2009; Lastayo et al., 2003a) 

following eccentric ergometry have been reported to be greater than those following 

combined eccentric and concentric resistance exercise (Dibble et al., 2009; Lastayo et 

al., 2009; Dibble et al., 2006; Lastayo et al., 2003a) or usual care programmes 

(Lastayo et al., 2011). In contrast, improvements in timed up and go (Lastayo et al., 

2009; Mueller et al., 2009) and stair ascent (Lastayo et al., 2009) performance after 

eccentric ergometry exercise have not been found to be greater than those reported 

with combined eccentric and concentric resistance exercise. The lack of differences 

reported between eccentric-only and combined eccentric and concentric resistance 

exercise interventions in the stair ascent and timed up and go tasks is perhaps due to 

the predominant role of concentric muscle actions, or the brevity of these tests, 

respectively. Tasks with a greater eccentric component such as the stair descent and 6 

min walk test appear to respond more positively to eccentric-only resistance exercise 

compared to combined eccentric and concentric resistance exercise in the populations 

that have been investigated. Only one study has examined changes in functional task 

performance (stair ascent, balance, shelf task, and bag carry) in an older adult 

population following AEL (Nichols et al., 1995). However, the functional task results of 

the AEL and CL training groups in this study were combined and then compared to a 
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non-exercising control group (Nichols et al., 1995). Therefore, based on the results 

presented it was not possible to determine if AEL improved functional task performance 

more than CL.  

Individuals from populations who characteristically experience muscle atrophy 

appear to improve functional mobility in tasks that have a dominant eccentric 

component following eccentric resistance exercise. The effectiveness of AEL and 

eccentric-only resistance exercise for a range of other disease populations has yet to 

be investigated. The performance of mobility tasks in individuals with other conditions 

who experience muscle atrophy (e.g. acquired immunodeficiency syndrome, multiple 

sclerosis, muscle dystrophy, and Guillain-Barré syndrome) following eccentric-focused 

resistance exercise has not been examined. The comparison of eccentric-focused 

resistance exercise to other types of resistance exercise would provide essential 

information that would inform exercise prescription for these populations and potentially 

contribute to the maintainance or improvement of mobility. 

 

1.6 Conclusions and implications from the literature review 

Both AEL and eccentric-only resistance exercise have a range of uses in 

rehabilitation, injury prevention, and functional performance enhancement. Therefore, 

these two types of eccentric-focused resistance exercise have application to a large 

range of different populations, from athletes to individuals who have conditions where 

muscle atrophy occurs. The existing research investigating these two types of 

eccentric-focused resistance exercise has informed the exercise prescription of 

practitioners who work with these diverse populations. A number of future research 

projects that would add to the existing eccentric-focused resistance exercise literature 

have been identified in this chapter. In particular, the use of AEL for the development of 

chronic strength and power adaptations remains a controversial topic, given the 

contrasting research findings and general lack of neuromuscular measures in the 

existing research in this area. This controversy is compounded by the number of 
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interacting variables inherent in longitudinal training intervention research studies. 

Research investigating acute neuromuscular responses to lower-body AEL in 

comparison to CL may provide practitioners with information that would guide their 

decision to use this type of resistance exercise. In addition, this line of research would 

determine how AEL influences neuromuscular variables, such as motor unit firing rate 

and common drive, that may be implicated in chronic strength adaptations. 

 

1.7 Aims of the thesis 

In order to investigate acute neuromuscular responses during lower-body 

multiple-joint free weight AEL compared to CL it was deemed important to: (i) evaluate 

potential surface electromyography (EMG) normalisation methods; and (ii) investigate 

the reliability of motor unit firing rates during lower-body isometric efforts. Therefore, 

there were two methodological aims of this thesis: 

 To evaluate the reliability of maximal isometric (both with and without the use of 

a dynamometer) and submaximal dynamic normalisation methods for concentric 

and eccentric phase EMG during the back squat exercise. 

 To establish the reliability of motor unit firing rate determined from high density 

EMG during an isometric trapezoid force trace effort. 

The main aims of the thesis were: 

 To examine differences in acute neuromuscular, kinetic, and kinematic 

responses between AEL and CL conditions during: 

(i) Lower-body single-joint resistance exercise. 

(ii) Lower-body multiple-joint free weight resistance exercise. 

 To assess acute force production and contractile characteristics following AEL 

and CL conditions. 
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 To investigate the influence of eccentric phase velocity (and time under tension) 

on acute force production, power output, and contractile characteristics 

following AEL and CL conditions. 

 To compare common drive and motor unit firing rate responses after AEL and 

CL. 

CHAPTER 2: EVALUATION OF ELECTROMYOGRAPHY NORMALISATION METHODS FOR THE BACK SQUAT 
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2.1 Introduction 

Before comparing neuromuscular responses during lower-body multiple-joint 

free weight AEL and CL it was deemed necessary to: (i) select a lower-body resistance 

exercise that had application for use by both athletic and general populations; and (ii) 

establish an appropriate surface EMG normalisation method for the selected resistance 

exercise. The free weight barbell back squat was selected as the lower-body resistance 

exercise to be investigated as a result of its widespread use amongst athletic 

populations and its inclusion within position statements on progressive resistance 

exercise for the general population (Ratamess et al., 2009). The back squat is a staple 

multiple-joint free weight resistance exercise that can be used to increase the strength 

of knee and hip extensor muscles such as the vastus lateralis and biceps femoris. 

Increasing the force production capabilities of these muscles can often translate into 

improvements in performance of one or several athletic skills (Channell and Barfield, 

2008; Myer et al., 2005), such as sprinting, jumping, throwing, or striking. 

Normalisation, the practice of reporting EMG data as a percentage of that 

achieved during a controlled reference task is a prerequisite for reducing intrinsic and 
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extrinsic factors that contribute to signal variation (Lehman and McGill, 1999). 

Normalisation methods allow for comparison of neuromuscular activation between 

different muscles, participants, and studies (Mathiassen et al., 1995; Knutson et al., 

1994). Existing research has evaluated normalisation methods for dynamic single-joint 

upper-body resistance exercise (Burden and Bartlett, 1999; Allison et al., 1993), but not 

multiple-joint lower-body resistance exercise. Dynamometer-based maximal voluntary 

isometric muscle actions (MVC) have previously been recommended for EMG 

normalisation across different activities (Merletti, 1999). However, the incorporation of 

the MVC normalisation method into research examining neuromuscular activation 

during dynamic muscle actions has been questioned for several reasons (Albertus-

Kajee et al., 2010; Nishijima et al., 2010; Farina et al., 2004; Hunter et al., 2002; 

Clarys, 2000; Allison et al., 1993; Yang and Winter, 1983). Such issues include: (i) 

muscle fibre shifting beyond the electrode detection area (Albertus-Kajee et al., 2010; 

Farina et al., 2002); (ii) conclusions regarding absolute neuromuscular activation 

(Albertus-Kajee et al., 2010; Clarys, 2000); (iii) motivational issues (Burden, 2010); and 

(iv) the disparity between muscle action, load, and velocity of the MVC normalisation 

task and the dynamic activity being investigated (Allison et al., 1993). Moreover, MVC 

normalisation requires specialized equipment and additional data collection time 

(Nishijima et al., 2010), which places further demands on the researcher and 

participant sample.  

Irrespective of exercise activity, existing research has investigated the use of 

different intensity efforts and muscle action types for normalisation. Several studies 

have demonstrated that submaximal isometric (Mathur et al., 2005; Kollmitzer et al., 

1999; Yang and Winter, 1983) and maximal dynamic normalisation methods (Ball and 

Scurr, 2010; Rouffet and Hautier, 2008; Mathur et al., 2005), can provide viable 

alternatives to MVC normalisation for upper (Yang and Winter, 1983) and lower limb 

(Ball and Scurr, 2010; Rouffet and Hautier, 2008; Mathur et al., 2005; Kollmitzer et al., 
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1999) muscles. Only two studies have evaluated the between-day reliability of 

submaximal dynamic normalisation protocols (for cycling (Albertus-Kajee et al., 2010) 

and running (Albertus-Kajee et al., 2011)). Therefore, the evaluation of EMG 

normalisation methods for the back squat will allow neuromuscular responses to AEL 

and CL to be compared for this specific exercise.  

The purpose of the present study was threefold: firstly, to evaluate the reliability 

of maximal isometric (both with and without a dynamometer) and submaximal dynamic 

normalisation methods for concentric and eccentric phase neuromuscular activity 

during the back squat exercise; secondly, to examine the sensitivity of each method in 

detecting statistical differences between neuromuscular activity levels in incremental 

intensity dynamic back squat exercise sets, as recently conducted in normalisation 

research for other exercise modes (Albertus-Kajee et al., 2011; Albertus-Kajee et al., 

2010); thirdly, to assess differences in neuromuscular activation between strength-

trained individuals during the back squat. The measurement of inter-participant 

variability was included because it had not previously been detailed for strength-trained 

individuals performing the back squat exercise. 

 

2.2 Methods 

2.2.1 Participants 

Ten males (aged: 24.4 ± 6.9 years, body mass: 82.0 ± 9.6 kg, height: 1.76 ± 

0.04 m, sum of seven skin folds: 69.8 ± 40.3 mm, mean ± standard deviation (SD)), 

with a minimum of 2 years’ of experience of performing the back squat exercise 

(relative three repetition maximum (3RM) strength: 1.7 ± 0.2 times body mass, absolute 

3RM back squat bar load: 139.0 ± 20.1 kg) were recruited to participate in the study. 

Informed consent was obtained from each participant before testing commenced, 

following approval of the investigation from the University of Stirling Research Ethics 

Committee. The study was conducted in accordance with the principles outlined in the 
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Declaration of Helsinki (2008). Participants completed test sessions at the same time of 

day to account for circadian variation (Atkinson and Nevill, 1998). In addition, 

participants avoided exhaustive exercise in the 24 h prior to each test session and 

maintained usual dietary habits. 

 

2.2.2 Procedures 

Baseline assessment test session: 3RM strength test and familiarisation 

The first session of four conducted within the investigation involved the 

establishment of back squat 3RM. The remaining three subsequent test day sessions 

allowed the evaluation of reliability, sensitivity, and inter-participant variability of each 

normalisation method. Prior to the 3RM assessment participants were provided with a 

predicted 3RM based on estimated one repetition maximum (one repetition maximum 

load (kg) x 0.92), in order to guide load selection (Baker, 1995). Participants selected 

load and repetition number for the four warm-up sets in an incremental manner to 

prepare for four attempts at establishing 3RM to the nearest 2.5 kg (Eleiko Sport, 

Halmstad, Sweden). After the warm-up sets, recovery between 3RM attempts was 

standardised at 3 min (Harman and Garhammer, 2008). 

 Squat stance width was selected by the participant prior to the 3RM warm-up 

sets and this was marked on the lifting surface to control stance width and position 

within the squat rack during all testing sessions. A flexible two-dimensional 

electrogoniometer (TSD130B, Biopac Systems Inc, California, USA) was attached to 

the participant’s dominant leg during all test day sessions to ensure sufficient dynamic 

back squat depth (Caterisano et al., 2002). In addition, forward lean of the torso during 

all dynamic back squats was visually checked, to ensure it was not excessive 

(Caterisano et al., 2002). The average duration of the concentric and eccentric phases 

during the heaviest successful 3RM attempt and back squats during subsequent test 

sessions was determined by measuring barbell displacement via a linear transducer 

(Celesco PT5A-125-S47-UP-10K-M6, Chatsworth, California, USA). This allowed the 
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prescription of individualised dynamic back squat velocities in the subsequent test day 

sessions. The concentric and eccentric phase durations across dynamic back squat 

normalisation tasks and the investigated activity dynamic back squat sets during 

subsequent test sessions were 1.32 ± 0.01 s and 1.41 ± 0.02 s, respectively (mean ± 

SD)). Following the 3RM attempts participants completed familiarisation tasks in order 

to prepare for the subsequent test day sessions. 

Participants were familiarised with the execution of controlled velocity squats. 

Participants completed as many squats with an unloaded barbell as necessary to 

become accustomed to meeting audible tones produced from a custom-built 

metronome, signalling the start of the eccentric and concentric phases of the back 

squat. A 2 s inter-tone duration for each back squat phase was used for familiarisation 

purposes. Isometric back squat familiarisation was also completed, directly after 

metronome habituation. The barbell was fastened to a squat rack at a height permitting 

70° of knee flexion (0° equalling full knee extension) to allow isometric squats to be 

performed. A 70° knee flexion angle was selected as this amount of flexion has 

previously been shown to correspond with peak isometric force production (Knapik et 

al., 1983). 

 

Loading determined from 3RM for subsequent test day sessions 

The sum of the barbell load for the heaviest successful 3RM attempt and 88.6% 

of body mass were used to establish 3RM back squat system mass (Brandon et al., 

2011). This percentage of body mass was used in the calculation of system mass as 

the foot and shank are not moved vertically during the back squat (Dugan et al., 2004; 

de Leva, 1996). Barbell load was adjusted accordingly for each subsequent test day 

session, in order to equate system mass load for dynamic back squat normalisation 

tasks and dynamic back squat exercise sets across sessions. 
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2.2.3 Experimental protocol 

Subsequent test day sessions 

The three subsequent test day sessions following the baseline strength test 

session day commenced with the completion of five different normalisation tasks 

(Figure 2.1). The five normalisation tasks were as follows: (i) a seated dynamometer-

based isometric MVC; (ii) a maximal isometric back squat (MIS); (iii) a 60% of 3RM 

back squat set; (iv) a 70% of 3RM back squat set; and (v) an 80% of 3RM back squat 

set. Loads of 60%, 70%, and 80% of 3RM where selected for the submaximal dynamic 

normalisation tasks in accordance with recommendations to perform incremental 

intensity lifts before heavy resistance exercise (Harman and Garhammer, 2008). 

Therefore, the evaluation of normalisation tasks corresponding to a warm-up before the 

exercise of interest could potentially remove the need for additional unrelated tasks 

used for normalisation such as MVC. Time between test days was 8.70 ± 0.62 d (mean 

± SD). 

MVC normalisation task. The first normalisation task within the subsequent test 

day sessions was a 5 s dynamometer-based knee extension MVC. Three MVCs were 

performed with the participant’s dominant leg at 70° of knee flexion (0° equalling full 

extension; Biodex 3 dynamometer, Biodex Medical Systems, Shirley, New York, USA; 

Figure 2.2). The 70° knee joint flexion position allowed knee joint angles to be equated 

between MVC and MIS normalisation tasks. One min recovery periods separated every 

maximal isometric effort. During MVCs participants were firmly restrained at the 

shoulders, waist, and non-dominant leg to minimise extraneous bodily movements. 

Dynamometer axis, seat, and attachment settings were standardised across trial days 

for each participant. The lateral femoral epicondyle was positioned in line with the 

dynamometer axis and the dynamometer attachment strap was positioned above the 

lateral malleolus. The instruction to produce maximal force as quickly as possible from 

the start signal was given prior to all maximal isometric efforts on each 
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Figure 2.1 Experimental protocol for an individual test day session. Dynamic 
normalisation method and dynamic back squat exercise set intensities are percentages 
of a 3RM strength test. 

 

test session day. Participants were also instructed to maintain force as evenly as 

possible once maximum force had been reached. A computer monitor displaying the 

MVC force trace was placed in front of participants at eye-level to assist participants in 

maintaining force levels after peak force had been attained. Participants received 

intense verbal encouragement during all maximal isometric efforts (Campenella et al., 

2000). Prior to the MVC efforts participants completed a standardised warm-up (six 5 s 

isometric efforts (three at 50% and three at 75% of perceived maximum), with 30 s 

recovery periods). MVCs were followed (in randomised order) by the remaining 

normalisation tasks. 

MIS normalisation task. Three 5 s maximal isometric back squats (MISs) were 

performed on a force platform (400 series force platform, Fitness Technology, 

Adelaide, Australia), with the barbell secured to the frame of the force platform squat 

rack at a height permitting 70° of knee flexion. Three 5 s isometric back squat warm-up 

efforts at 75% of perceived maximum were conducted prior to the MIS efforts. 

Participants were instructed to maintain force as evenly as possible during MISs once 

maximum force had been reached. It is important to note that hip flexion did differ 

between the isometric normalisation tasks as the MIS was performed in an upright 

position whereas the MVC was performed with participants seated. 
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Figure 2.2 Biodex 3 dynamometer.  
 

60%, 70%, and 80% of 3RM normalisation tasks. Three different dynamic back 

squat normalisation tasks were conducted. A range of different dynamic back squat 

normalisation task intensities were used, based on the recent assertion that differences 

may exist between submaximal dynamic normalisation tasks (Albertus-Kajee et al., 

2010). Five dynamic back squat repetitions were completed in each different intensity 

normalisation task set. The dynamic back squat normalisation task sets were 

conducted in the following order: (i) 60% of 3RM; (ii) 70% of 3RM; and (iii) 80% of 

3RM. Three min recovery periods between submaximal intensity warm-up squat sets 

were used. 

Performance of the investigated exercise activity: dynamic back squat exercise 

sets. Once all five normalisation tasks were completed, each of the three subsequent 

test day sessions concluded with four sets of different intensity dynamic back squats. 

Three min recovery intervals were used between dynamic back squat exercise sets 
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Each dynamic back squat set consisted of three repetitions at the following intensities: 

(i) 65% of 3RM; (ii) 75% of 3RM; (iii) 85% of 3RM; and (iv) 95% of 3RM. 

 

2.2.4 EMG 

EMG data collection 

  Vastus lateralis and biceps femoris EMG were recorded (Biopac MP100, 

Biopac Systems Inc, California, USA) from the dominant leg during all test activities 

during the three subsequent test day sessions. Skin preparation involved removal of 

hair, cleansing of the skin with alcohol swabs, and abrasion with emery paper. A 

reference electrode secured with micropore tape was positioned on the patella of the 

participant’s dominant leg. A bipolar electrode configuration (VERMED A10005-60 

performance plus ECG diagnostic electrodes, Vermont, USA) was applied to the vastus 

lateralis and biceps femoris in accordance with the surface EMG for the non-invasive 

assessment of muscles guidelines (Hermens et al., 2000). Specifically, the bipolar 

electrode configuration with a 2 cm inter electrode distance was applied at the following 

locations: vastus lateralis; 66% along the line from the anterior spina iliaca superior to 

the lateral side of the patella, biceps femoris; 50% on the line between the ischial 

tuberosity and the lateral epicondyle of the tibia (Surface ElectroMyoGraphy for the 

Non-Invasive Assessment of Muscles, 2013). EMG was sampled at a rate of 2000 Hz 

and anti-aliased with a 500 Hz low pass filter. A 10 Hz high pass filter was also applied. 

The Biopac MP100 system had an input impedance and common mode rejection ratio 

of 2MΩ and >110 dB, respectively. 

 

EMG data processing 

EMG signals were root mean square processed. Average root mean square 

was calculated for a moving window 100 ms time period across the entire waveform for 

each activity. Root mean square processing was used to analyse EMG based on 

previous recommendations for research investigating neuromuscular activation levels 
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(Hägg et al., 2004). Root mean square processing was conducted by the software used 

to operate the EMG system (AcqKnowledge® 3.8.1, Biopac Systems Inc, California, 

USA), in accordance with the manufacturer’s guidelines (Acqknowledge® software 

guide, 2008). 

 

Extraction of processed EMG data from normalisation tasks and dynamic back squat 

exercise sets 

MVC and MIS normalisation methods. The three MVCs and MISs conducted 

during each session were analysed to determine which produced the greatest peak 

torque and peak force value, respectively. The mean EMG amplitude from the middle 3 

s period of the 5 s peak torque MVC and peak force MIS from each test day was used 

to produce two separate isometric normalisation values (Albertus-Kajee et al., 2010). 

The use of synchronised channels of the EMG system displaying torque from the 

dynamometer (during MVCs) and channel spikes when metronome tones sounded 

(during the MIS) permitted the selection of the central 3 s period of each maximal 

isometric task for analysis. 

60%, 70%, and 80% of 3RM normalisation tasks and dynamic back squat 

exercise sets. The mean root mean square processed EMG amplitude from each 

concentric and eccentric phase across back squat repetitions during the 60%, 70%, 

and 80% of 3RM normalisation tasks, and dynamic back squat sets was extracted. 

Concentric and eccentric back squat EMG data were identified based on synchronised 

knee joint angle data obtained from a two-dimensional electrogoniometer and 

integrated AcqKnowledge® software. The period from the greates to the smallest knee 

joint angle of the squat was identified as the eccentric phase of the back squat 

repetitions. The period from the smallest to the greatest knee joint angle of the squat 

was identified as the concentric phase of the back squat repetitions. The EMG from the 

60%, 70%, and 80% of 3RM tasks was used to produce three separate normalisation 

task reference values for each muscle action phase. The EMG taken from each 
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repetition during dynamic back squat sets was reported as a percentage of each 

normalisation task EMG value (e.g. (concentric EMG value from repetition one in the 

65% of 3RM dynamic back squat exercise set ÷ MVC normalisation task EMG value) x 

100). Subsequently, a mean normalised EMG value for each dynamic back squat set 

intensity and muscle action phase was calculated for each of the five normalisation 

methods. Therefore, five normalised EMG data sets per participant within each 

subsequent test day session were generated for each muscle action phase.  

 

2.2.5 Statistical analysis 

The distribution of data within the current study was assessed using Q-Q plots. 

Subsequently, normal distribution of data was confirmed. In an attempt to address the 

diverse use of reliability statistics within the EMG normalisation method literature, a 

range of measures were reported in the current study. Absolute reliability represents 

the level of within-individual variance when the same participant reports for repeated 

test sessions (Atkinson and Nevill, 1998). This measure was assessed via intra-

participant coefficient of variation and limits of agreement. Intra-participant coefficient of 

variation was calculated for mean concentric and eccentric EMG from each different 

intensity dynamic back squat exercise set reported as a percentage of each 

normalisation method, as previously detailed (Albertus-Kajee et al., 2011). Intra-

participant coefficent of variation standards were adopted from previous 

electromyography research and were defined as follows: <12.0%= “good”, 12.0-20%= 

“acceptable”, >20.0%= “unacceptable” (Albertus-Kajee et al., 2010). Intra-participant 

coefficient of variation was also calculated for peak MVC torque and maximal isometric 

squat force, in order to assess the output of each of these tasks. The practice of 

calculating intra-participant coefficients of variation for normalisation task kinetic or 

kinematic outputs has previously been used as an additional way of confirming 

normalisation task standardisation (Albertus-Kajee et al., 2011; Ball and Scurr, 2010). 

Limits of agreement for each normalisation method were calculated as previously 
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detailed (Bland and Altman, 1986). Between-day differences in normalised dynamic 

back squat set EMG (produced during the calculation of limits of agreement) for each 

of the five normalisation methods were also reported as an additional absolute 

reliability measure (Gant et al., 2006).  

Relative reliability is the extent to which participant order (based on ranking for 

a particular variable) varies when the same group of individuals are tested on repeat 

occasions (Atkinson and Nevill, 1998). Intraclass correlation coefficient was used to 

assess relative reliability. The classification of intraclass correlation coefficient results 

was adopted from recent normalisation method research also completing between-day 

measures (Albertus-Kajee et al., 2011; Albertus-Kajee et al., 2010). Where negative 

intraclass correlation coefficient values were displayed this was taken to denote greater 

within-participant than between-participant variance (Larsson et al., 1999). Intraclass 

correlation coefficient values and 95% confidence intervals were calculated with 

statistical spreadsheets downloaded from www.sportsci.org (Hopkins, 2010). 

Minitab 15 statistical software (Minitab Ltd., Coventry, UK) was used to conduct 

a normalisation method (MVC vs. MIS vs. 60% of 3RM vs. 70% of 3RM vs. 80% of 

3RM) x dynamic back squat set load (65% of 3RM vs. 75% of 3RM vs. 85% of 3RM vs. 

95% of 3RM) repeated measures analysis of variance for EMG from each muscle 

action phase on all three test days in order to assess sensitivity. The ability of each 

normalisation method to detect statistical differences between load increments on 

consecutive test days was used as a way of quantifying sensitivity levels (Albertus-

Kajee et al., 2010). In addition, a repeated measures analysis of variance (65% of 3RM 

vs. 75% of 3RM vs. 85% of 3RM vs. 95% of 3RM) was conducted on the unnormalised 

EMG taken from the dynamic back squat exercise sets on a single test day session 

(test day three). This analysis allowed for the sensitivity of the unnormalised EMG data 

to be assessed. A significance level of p< 0.05 was selected to determine statistical 

differences. Tukey post-hoc analysis was used to determine where differences 
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occurred with load increment during dynamic back squat sets for each normalisation 

method and the corresponding unnormalised EMG values. 

Inter-participant variability is the extent of the differences displayed between 

participants within a sample for a given measure, providing an indication of the spread 

of values of the measure in relation to the sample mean (Knutson et al., 1994). Inter-

participant coefficient of variation was used to assess inter-participant variability and 

determine if a “common” (<12.0%) level of neuromuscular recruitment was displayed 

across dynamic back squat sets for a homogeneous strength-trained participant 

sample (Hug et al., 2004). Inter-participant coefficient of variation for each different 

intensity dynamic back squat exercise set was calculated for every normalisation task 

on each test day, for both muscle action phases as previously described (Bolgla and 

Uhl, 2007). Inter-participant coefficient of variation was also calculated for 

unnormalised EMG for test day three to allow comparison between inter-participant 

variability with and without the use of normalisation. 

 

2.3 Results 

2.3.1 Absolute reliability of peak kinetic measures from the MVC and MIS 

normalisation methods 

In order to address potential motivational issues and standardise maximal 

isometric normalisation tasks, the absolute reliability of the MVC (peak torque, N.m) 

and MIS (peak force, N) kinetic outputs were calculated. The MVC and maximal 

isometric squat normalisation tasks produced coefficient of variation values of 8.0 ± 

3.9% and 4.8 ± 2.4% (mean ± SD), respectively. 

 

2.3.2 Absolute reliability of the normalisation methods 

Table 2.1 details unnormalised EMG data from subsequent test day three, 

whereas Tables 2.2 and 2.3 display normalised EMG averaged across test day 
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sessions. It has previously been stated that the use of coefficient of variation depends 

greatly on the magnitude of the normalisation tasks; hence exercise activities using 

normalisation tasks with smaller amplitudes inherently display smaller coefficient of 

variation values (Burden, 2010; Burden et al., 2003). Therefore, only maximal isometric 

or submaximal normalisation tasks were compared to each other for intra-participant 

coefficient of variation results. The MIS normalisation method produced smaller (4.5-

8.2% smaller) intra-participant coefficient of variation values than the MVC method for 

the vastus lateralis in both concentric and eccentric muscle actions (Table 2.4). The 

MIS normalisation method also produced smaller intra-participant coefficient of 

variation values compared to the MVC method for the biceps femoris during concentric 

and eccentric actions. However, intra-participant coefficient of variation values were 

much more similar for the biceps femoris than the vastus lateralis (MIS 1.6-1.9% 

smaller than the MVC normalisation method, Table 2.5). The 80% of 3RM-

normalisation method displayed smaller intra-participant coefficient of variation values 

than both the 60% and 70% of 3RM methods for the vastus lateralis during concentric 

and eccentric muscle actions (2.1-7.2% smaller, Table 2.4). The biceps femoris intra-

participant coefficient of variation values were similar to the vastus lateralis, with the 

80% of 3RM normalisation method displaying smaller coefficient of variation values 

than both 60% of 3RM and 70% of 3RM methods (0.8-6.3% smaller, Table 2.5), for 

both muscle actions. 

The limits of agreement intra-participant reliability measure is based on the 

difference scores between-test days and the SD of the difference scores (Hopkins, 

2000; Bland and Altman, 1986). The coefficient of variation is influenced by the ratio of 

the mean and SD of the normalisation output (Burden, 2010). However, the limits of 

agreement are not affected by the same problem. Therefore, limits of agreement 

results for all normalisation methods were compared. The 80% of 3RM task 

demonstrated narrower 95% limits of agreement range values for the vastus lateralis 

during both muscle actions compared to the other normalisation methods (Table 2.4). 
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Table 2.1 Unnormalised root mean square processed vastus lateralis and biceps femoris EMG amplitude (mV) during the normalisation tasks 
and investigated exercise activities from subsequent test day session three. Unnormalised values are presented for both maximal isometric 
normalisation tasks, whereas concentric and eccentric values are presented for dynamic normalisation tasks and the investigated dynamic back 
squat exercise. Additionally, inter-participant variability for the unnormalised EMG is reported as inter-participant coefficient of variation. 
 

 

  

Vastus lateralis 
 

Biceps femoris 

    
Mean ± SD 

     
Mean ± SD 

  Isometric 
normalisation tasks 

MVC     0.95 ± 0.53           0.06 ± 0.02     

MIS 
  

1.02 ± 0.63 
     

0.14 ± 0.10 
  

 
Muscle Action Concentric 

 
Eccentric 

 
Concentric 

 
Eccentric 

Dynamic 
normalisation tasks 

  Mean ± SD 
 

Mean ± SD 
 

Mean ± SD 
 

Mean ± SD 

60% of 3RM 0.70 ± 0.32 
 

0.39 ± 0.16 
 

0.12 ± 0.07 
 

0.06 ± 0.01 

70% of 3RM 0.81 ± 0.40 
 

0.45 ± 0.18 
 

0.16 ± 0.11 
 

0.07 ± 0.02 

80% of 3RM 0.90 ± 0.44   0.52 ± 0.21   0.19 ± 0.12   0.08 ± 0.02 

Investigated exercise 
activity: dynamic 

back squat exercise 
sets 

65% of 3RM 0.69 ± 0.32   0.39 ± 0.16   0.15 ± 0.10   0.06 ± 0.02 

75% of 3RM 0.75 ± 0.33 
 

0.46 ± 0.18 
a
 

 
0.16 ± 0.10 

 
0.07 ± 0.02 

85% of 3RM 0.86 ± 0.37 
A
 

 
0.55 ± 0.21

 A B
 

 
0.20 ± 0.11 

A b
 

 
0.08 ± 0.02

 a
 

95% of 3RM 1.00 ± 0.42 
A B c

 
 

0.64 ± 0.26
 A B C

 
 

0.26 ± 0.14 
A B C

 
 

0.10 ± 0.04 
A B c

 

Inter-participant 
coefficient of 

variation across back 
squat exercise sets 

  

43.8 ± 1.8 

  

61.6 ± 7.2 

  

39.5 ± 1.4 

  

32.8 ± 6.4 
        

 

A,a denotes significant difference from EMG at 65% of 3RM load. B,b denotes significant difference from EMG at 75% of 3RM load. C,c denotes 
significant difference from EMG at 85% of 3RM load. Lower case versions of each letter denote significant difference at p< 0.05 level, upper case 
letters denote significant difference at p< 0.01 level. 
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Table 2.2 Concentric and eccentric vastus lateralis EMG activity at each different intensity dynamic back squat exercise set reported as a 
percentage of each normalisation task.  
 

  
Normalisation method

 

Muscle 
action phase 

Dynamic back squat 
exercise set intensity 

MVC 
 

MIS 
 

60% of 3RM 
 

70% of 3RM 
 

80% of 3RM 

Mean ± SD
#
 

 
Mean ± SD 

 
Mean ± SD 

 
Mean ± SD 

 
Mean ± SD 

Concentric 

65% of 3RM 74.6 ± 24.5 
 

77.0 ± 22.3 
 

98.8 ± 8.6 
 

88.0 ± 5.7 
 

78.4 ± 7.8 

75% of 3RM 81.9 ± 26.2 
 

84.8 ± 23.4 
 

108.7 ± 6.7 
 

96.8 ± 2.4 
 

86.2 ± 6.2 

85% of 3RM 94.9 ± 33.1 
 

97.0 ± 27.3 
 

125.8 ± 17.0 
 

111.6 ± 9.2 
 

99.2 ± 6.9 

95% of 3RM 109.1 ± 37.2 
 

111.3 ± 30.9 
 

144.4 ± 17.9 
 

128.3 ± 11.8 
 

114.2 ± 11.7 

Mean across sets 90.1 ± 15.2 
 

92.5 ± 15.0 
 

119.5 ± 20.0 
 

106.2 ± 17.7 
 

94.5 ± 15.7 

Eccentric 

65% of 3RM 44.7 ± 13.9 
 

47.3 ± 14.7 
 

101.0 ± 14.2 
 

87.2 ± 9.0 
 

76.7 ± 5.7 

75% of 3RM 51.9 ± 16.9 
 

54.7 ± 17.4 
 

117.2 ± 16.8 
 

100.9 ± 9.1 
 

88.7 ± 4.6 

85% of 3RM 61.9 ± 21.5 
 

64.8 ± 21.8 
 

138.2 ± 19.9 
 

119.1 ± 10.9 
 

104.7 ± 6.7 

95% of 3RM 71.4 ± 25.2 
 

74.1 ± 23.5 
 

159.7 ± 23.9 
 

137.8 ± 14.7 
 

120.9 ± 10.0 

Mean across sets 57.5 ± 11.6 
 

60.2 ± 11.7 
 

129.0 ± 25.5 
 

111.3 ± 22.0 
 

97.7 ± 19.3 
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Table 2.3 Concentric and eccentric biceps femoris EMG activity during dynamic back squat exercise sets reported as a percentage of each 
normalisation task. 

 

  
Normalisation method 

Muscle 
action phase 

Dynamic back squat 
exercise set intensity 

MVC 
 

MIS 
 

60% of 3RM 
 

70% of 3RM 
 

80% of 3RM 

Mean ± SD 
 

Mean ± SD 
 

Mean ± SD 
 

Mean ± SD 
 

Mean ± SD 

Concentric 

65% of 3RM 180.5 ± 105.2 
 

110.2 ± 57.2 
 

112.7 ± 17.0 
 

92.3 ± 10.4 
 

76.3 ± 7.6 

75% of 3RM 202.7 ± 100.7 
 

128.6 ± 67.7 
 

128.7 ± 14.3 
 

105.4 ± 8.7 
 

87.0 ± 6.8 

85% of 3RM 243.5 ± 110.7 
 

154.2 ± 72.7 
 

155.1 ± 21.4 
 

127.1 ± 13.5 
 

104.0 ± 7.0 

95% of 3RM 332.9 ± 170.1 
 

208.4 ± 88.0 
 

182.5 ± 25.2 
 

168.9 ± 22.4 
 

137.5 ± 13.5 

Mean across sets 239.9 ± 67.3 
 

150.3 ± 42.7 
 

144.7 ± 30.7 
 

123.4 ± 33.5 
 

101.2 ± 26.7 

Eccentric 

65% of 3RM 103.2 ± 34.7 
 

51.3 ± 26.6 
 

104.2 ± 12.3 
 

90.2 ± 8.2 
 

76.2 ± 7.0 

75% of 3RM 119.0 ± 36.1 
 

58.9 ± 29.2 
 

121.2 ± 17.0 
 

104.8 ± 12.1 
 

88.5 ± 8.3 

85% of 3RM 140.9 ± 40.7 
 

70.7 ± 35.9 
 

145.5 ± 21.4 
 

125.4 ± 16.0 
 

105.5 ± 10.4 

95% of 3RM 179.9 ± 61.0 
 

88.1 ± 43.6 
 

187.7 ± 54.1 
 

161.5 ± 42.5 
 

134.9 ± 29.5 

Mean across sets 135.8 ± 33.2 
 

67.3 ± 16.0 
 

139.7 ± 36.2 
 

120.5 ± 30.9 
 

101.3 ± 25.4 
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Table 2.4 Summary of concentric and eccentric phase vastus lateralis EMG absolute reliability measures for the five normalisation methods 
across different intensity dynamic back squat exercise sets. 

 
 

 

 

 

 

 

 

  

Difference 
between test 

days 
  

95% Upper 
limits of 

agreement 
  

95% Lower 
limits of 

agreement 
  

Intra-participant 
coefficient of 

variation 
Coefficient of 

variation 
descriptor Muscle 

action 
phase 

Normalisation 
method 

Mean ± SD   Mean ± SD   Mean ± SD   Mean ± SD 

Concentric 

MVC 15.1 ± 3.6 
 

83.6 ± 17.8 
 

-53.5 ± 11.2 
 

24.3 ± 0.5 Unacceptable 

MIS 1.3 ± 1.8 
 

54.8 ± 3.7 
 

-52.1 ± 4.7 
 

16.1 ± 2.2 Acceptable 

60% of 3RM 0.0 ± 2.2 
 

39.8 ± 8.3 
 

-39.7 ± 6.4 
 

10.2 ± 0.6 Good 

70% of 3RM 0.1 ± 1.9 
 

30.8 ± 2.1 
 

-30.7 ± 2.2 
 

9.7 ± 1.6 Good 

80% of 3RM 0.4 ± 1.7   22.7 ± 3.8   -22.0 ± 2.1   7.6 ± 1.1 Good 

Eccentric 

MVC 9.2 ± 2.8 
 

51.3 ± 13.0 
 

-33.0 ± 7.8 
 

21.7 ± 0.5 Unacceptable 

MIS 0.5 ± 1.3 
 

37.2 ± 8.4 
 

-36.2 ± 6.5 
 

17.2 ± 1.6 Acceptable 

60% of 3RM 3.0 ± 3.0 
 

67.1 ± 15.5 
 

-61.1 ± 10.8 
 

14.2 ± 0.8 Acceptable 

70% of 3RM 1.1 ± 2.4 
 

41.3 ± 12.7 
 

-39.1 ± 9.9 
 

10.3 ± 0.4 Good 

80% of 3RM 0.7 ± 2.1   23.3 ± 8.2   -22.0 ± 6.0   7.0 ± 0.4 Good 
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Table 2.5 Summary of concentric and eccentric phase biceps femoris EMG absolute reliability measures for the five normalisation methods 
across different intensity dynamic back squat exercise sets. 

 

  

Difference 
between test 

days 
  

95% Upper limits 
of agreement 

  
95% Lower limits 

of agreement 
  

Intra-participant 
coefficient of 

variaition 
Coefficient of 

variation 
descriptor Muscle 

action phase 
Normalisation 

method 
Mean ± SD   Mean ± SD   Mean ± SD   Mean ± SD 

Concentric 

MVC 40.4 ± 10.4 
 

304.0 ± 69.7 
 

-223.2 ± 49.1 
 

28.5 ± 1.1 Unacceptable 

MIS 8.5 ± 4.2 
 

129.7 ± 39.7 
 

-112.7 ± 32.3 
 

26.6 ± 1.0 Unacceptable 

60% of 3RM -30.1 ± 19.9 
 

30.2 ± 7.2 
 

-90.4 ± 33.4 
 

18.9 ± 4.1 Acceptable 

70% of 3RM -17.3 ± 14.9 
 

35.8 ± 13.1 
 

-70.5 ± 42.2 
 

16.3 ± 5.9 Acceptable 

80% of 3RM -6.6 ± 10.4   28.5 ± 6.5   -41.7 ± 24.1   12.6 ± 3.5 Acceptable 

Eccentric 

MVC 20.1 ± 3.9 
 

106.9 ± 24.6 
 

-66.8 ± 21.2 
 

22.5 ± 0.8 Unacceptable 

MIS 7.1 ± 1.3 
 

45.5 ± 14.4 
 

-31.3 ± 13.0 
 

20.9 ± 2.9 Unacceptable 

60% of 3RM -0.5 ± 2.8 
 

63.5 ± 27.8 
 

-64.5 ± 30.1 
 

12.5 ± 1.6 Acceptable 

70% of 3RM -3.1 ± 3.3 
 

58.0 ± 24.4 
 

-64.1 ± 29.1 
 

12.5 ± 1.0 Acceptable 

80% of 3RM 0.1 ± 2.4   40.2 ± 9.3   -40.0 ± 11.7   11.7 ± 1.6 Good 
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Table 2.6 Summary of concentric and eccentric phase vastus lateralis and bicep femoris EMG relative reliability (intraclass correlation coefficient) 
and inter-participant variability (inter-participant coefficient of variaition) measures for the five normalisation methods across dynamic back squat 
exercise sets. 

 

  
Vastus lateralis 

 
Biceps femoris 

  
Intraclass correlation 

coefficent  
Inter-participant 

coefficient of variation  
Intraclass correlation 

coefficent  
Inter-participant 

coefficient of variation 

Muscle action 
phase 

Normalisation 
method 

Mean LCI
$
 UCI

$$
 

 
Mean ± SD 

 
Mean LCI UCI 

 
Mean ± SD 

Concentric 

MVC 0.57 0.19 0.85 
 

39.5 ± 1.2 
 

0.70 0.37 0.91 
 

56.3 ± 4.2 

MIS 0.62 0.26 0.88 
 

32.8 ± 1.2 
 

0.73 0.42 0.92 
 

53.2 ± 3.8 

60% of 3RM 0.13 -0.20 0.59 
 

14.0 ± 2.4 
 

0.30 -0.08 0.71 
 

17.6 ± 1.8 

70% of 3RM -0.02 -0.29 0.45 
 

11.1 ± 0.9 
 

0.27 -0.10 0.69 
 

15.7 ± 2.8 

80% of 3RM 0.34 -0.05 0.74 
 

10.8 ± 1.5 
 

0.13 -0.20 0.59 
 

13.0 ± 2.2 

Eccentric 

MVC 0.56 0.18 0.85 
 

38.7 ± 1.9 
 

0.60 0.23 0.87 
 

36.6 ± 2.6 

MIS 0.70 0.37 0.91 
 

36.0 ± 0.9 
 

0.87 0.68 0.96 
 

52.9 ± 0.4 

60% of 3RM 0.05 -0.25 0.52 
 

20.6 ± 0.4 
 

0.42 0.02 0.78 
 

21.0 ± 7.5 

70% of 3RM 0.14 -0.20 0.60 
 

14.3 ± 1.2 
 

0.23 -0.13 0.67 
 

19.3 ± 6.9 

80% of 3RM 0.27 -0.10 0.69 
 

9.5 ± 1.4 
 

0.30 -0.08 0.72 
 

17.1 ± 4.7 
 

$ lower confidence interval, $$ upper confidence interval. 
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Concentric muscle actions for the biceps femoris displayed the 80% of 3RM 

normalisation method to have the narrower 95% limits of agreement range values. The 

80% of 3RM and MIS normalisation methods displayed similar 95% limits of agreement 

values for the biceps femoris during the eccentric muscle action (Table 2.5). 

 

2.3.3 Relative reliability of the normalisation methods 

The normalisation method displaying the highest intraclass correlation 

coefficient value for the vastus lateralis during both muscle actions was the MIS 

normalisation method (Table 2.6). The intraclass correlation coefficient values obtained 

for the vastus lateralis during both muscle action phases for the MIS normalisation 

method were classified as “fair” (0.60-0.79), based on standards defined within the 

existing normalisation method research (Albertus-Kajee et al., 2010; Sleivert and 

Wenger, 1994). All other normalisation methods displayed “poor” (<0.60) intraclass 

correlation coefficient values for the vastus lateralis. The MIS normalisation method 

also displayed the highest intraclass correlation coefficient values for the biceps 

femoris during both concentric (“fair”) and eccentric (“good” (0.80-1.00)) muscle actions 

(Table 2.6). The MVC normalisation method achieved “fair” intraclass correlation 

coefficient classification for the biceps femoris for both muscle actions. All other 

normalisation methods displayed “poor” intraclass correlation coefficient values for the 

biceps femoris during both muscle action phases. 

 

2.3.4 Sensitivity of the normalisation methods 

 Normalised EMG data for the dynamic back squat exercise sets were reported 

for each trial day (Figure 2.3 and 2.4) to avoid reduction of the SD by averaging across 

trial days (Albertus-Kajee, 2008). Load effects were demonstrated for MVC, MIS, 60% 

of 3RM, 70% of 3RM, and 80% of 3RM normalisation methods on all three test days 

(Table 2.7). During both muscle action phases for the vastus lateralis the MIS, 60% of 

3RM, 70% of 3RM, and 80% of 3RM normalisation methods were the most sensitive to 
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load increments. These methods were the most sensitive as they more consistently 

differentiated between increases in neuromuscular activation with a greater number of 

load increments than the MVC normalisation method (Figure 2.3 A-C and 2.4 A-C). 

During the eccentric phase for the vastus lateralis these methods were able to 

differentiate between all load increments on each test day. However, for the vastus 

lateralis during the concentric phase on two of the three test days neuromuscular 

activation levels could not be differentiated between the 65% of 3RM and 75% of 3RM 

loads for any normalisation method. During the concentric phase for the biceps femoris 

the 60% of 3RM, 70% of 3RM, and 80% of 3RM normalisation methods were more 

sensitive than the isometric normalisation methods (Figure 2.3 D-F and 2.4 D-F). The 

MVC, 60% of 3RM, and 70% of 3RM normalisation methods most consistently 

differentiated between neuromuscular activation levels for a greater number of load 

increments during the eccentric phase for the biceps femoris. The most consistently 

sensitive normalisation methods for the biceps femoris failed to differentiate between 

neuromuscular activation levels for the 65% of 3RM to 75% of 3RM load increment 

during both muscle action phases. In addition, the most consistently sensitive 

normalisation methods failed to differentiate between biceps femoris neuromuscular 

activation with load increments between 75% of 3RM and 85% of 3RM on two of the 

three test days (Figure 2.3 D-F and 2.4 D-F). 

The comparison between the most consistently sensitive normalisation methods 

and unnormalised EMG values on test day three revealed similar levels of sensitivity. 

Unnormalised EMG was able to differentiate between the same number of load 

increments as the most sensitive normalisation methods for both muscle action phases 

for the biceps femoris and for the eccentric phase for the vastus lateralis (Table 2.1, 

Table 2.7, Figure 2.3 F, and Figure 2.4 C and F). However, unnormalised EMG was not 

able to differentiate between the same number of load increments as the most 

sensitive normalisation methods for the vastus lateralis during concentric muscle 

actions (Table 2.1 and Figure 2.3 C). 
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Figure 2.3 Concentric EMG for each normalisation method across dynamic back squat 
sets for the vastus lateralis (A-C) and biceps femoris (D-F). The bar charts display 
where significant differences occurred between different intensity back squat sets for 
each normalisation method for test session day one (A, D), day two (B, E) and day 
three (C, F). * denotes significant difference from EMG at 65% of 3RM load. # denotes 
significant difference from EMG at 75% of 3RM load. $ denotes significant difference 
from EMG at 85% of 3RM load. Symbols (*, #, $) in bold and enlarged denote 
significant difference at p< 0.05 level, symbols not in bold denote significant difference 
at p< 0.01 level.  
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Figure 2.4 Eccentric EMG for each normalisation method across dynamic back squat 
sets for the vastus lateralis (A-C) and biceps femoris (D-F). The bar charts display 
where significant differences occurred between different intensity back squat sets for 
each normalisation method for test session day one (A, D), day two (B, E) and day 
three (C, F). * denotes significant difference from EMG at 65% of 3RM. # denotes 
significant difference from EMG at 75% of 3RM. $ denotes significant difference from 
EMG at 85% of 3RM. Symbols (*, #, $) in bold and enlarged denote significant 
difference at p< 0.05 level, symbols not in bold denote significant difference at p< 0.01 
level.  
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Table 2.7 Repeated measures analysis of variance load effect p- and f-value results for each normalisation method and unnormalised EMG from 
subsequent test day three.  
 

 
Muscle action phase Concentric Eccentric 

 
Muscle Vastus lateralis Biceps femoris Vastus lateralis Biceps femoris 

Normalisation method Day p f p f p f p f 

MVC 

1 <0.001 24.13 <0.001 21.88 <0.001 43.81 <0.001 16.80 

2 <0.001 21.04 <0.001 17.75 <0.001 23.72 <0.001 30.48 

3 <0.001 19.76 <0.001 28.88 <0.001 33.42 <0.001 25.18 

MIS 

1 <0.001 36.08 <0.001 30.54 <0.001 69.26 <0.001 18.50 

2 <0.001 37.60 <0.001 23.21 <0.001 42.30 <0.001 16.84 

3 <0.001 40.64 <0.001 32.56 <0.001 31.42 <0.001 20.82 

60% of 3RM 

1 <0.001 40.43 <0.001 58.87 <0.001 79.06 <0.001 16.29 

2 <0.001 33.38 <0.001 22.45 <0.001 69.52 <0.001 45.63 

3 <0.001 30.08 <0.001 30.08 <0.001 65.70 <0.001 18.94 

70% of 3RM 

1 <0.001 42.05 <0.001 60.85 <0.001 94.49 <0.001 15.48 

2 <0.001 40.99 <0.001 33.46 <0.001 82.60 <0.001 54.57 

3 <0.001 36.91 <0.001 36.91 <0.001 68.09 <0.001 20.27 

80% of 3RM 

1 <0.001 41.23 <0.001 72.67 <0.001 117.15 <0.001 20.66 

2 <0.001 44.85 <0.001 38.56 <0.001 95.33 <0.001 60.80 

3 <0.001 33.98 <0.001 33.98 <0.001 71.57 <0.001 23.16 

Unnormalised EMG 3 <0.001 16.69 <0.001 37.46 <0.001 41.96 <0.001 15.21 
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2.3.5 Inter-participant variability of the normalisation methods 

Similar to intra-participant coefficient of variation, inter-participant coefficient of 

variation also depends on the magnitude of the normalisation task amplitude (Burden, 

2010). Therefore, only maximal isometric or submaximal normalisation tasks were 

compared to each other for inter-participant coefficient of variation results. The MIS 

normalisation method displayed smaller inter-participant coefficient of variation values 

for both muscle actions for the vastus lateralis compared to MVC normalisation method 

(2.7-6.7% smaller, Table 2.6). Coefficient of variation values for the biceps femoris 

were smaller for the MIS method (3.1% smaller) compared to the MVC task during the 

concentric phase. However, the biceps femoris coefficient of variation was smaller for 

the MVC method (16.3% smaller) compared to the MIS task during the eccentric 

phase. The 80% of 3RM normalisation method displayed smaller coefficient of variation 

values across muscle actions for both the vastus lateralis and biceps femoris (0.3-

11.1% smaller) compared to the 60% of 3RM and 70% of 3RM methods (Table 2.6). In 

comparison to the inter-participant coefficient of variation calculated for the 

unnormalised EMG from the dynamic back squat exercise sets (on test day three) the 

use of the dynamic normalisation methods (60% of 3RM, 70% of 3RM, and 80% of 

3RM) reduced the inter-participant coefficient of variation during both muscle actions 

for the vastus lateralis and biceps femoris (Tables 2.1 and 2.6). The use of the 

isometric normalisation methods (MVC and MIS) reduced the inter-participant 

coefficient of variation compared to the unnormalised EMG coefficient of variation 

during both muscle actions phases for the vastus lateralis but not the biceps femoris 

(Tables 2.1 and 2.6). The 70% of 3RM (concentric phase) and 80% of 3RM (concentric 

and eccentric phases) tasks were the only normalisation methods to display inter-

participant coefficient of variations below 12.0%, which was the threshold set for 

defining “common” neuromuscular recruitment levels between participants (Hug et al., 

2004). 
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2.4 Discussion 

2.4.1 Absolute reliability of the normalisation methods 

The first aim of the present study was to evaluate the reliability of different EMG 

normalisation methods for the free weight back squat. The results of the study provide 

novel data to the existing EMG normalisation methodology literature. In terms of 

absolute reliability, it was demonstrated that the MIS method provided a smaller 

coefficient of variation and a narrower limits of agreement range than the MVC 

normalisation method. The mean intra-participant coefficient of variation values from 

the MVC normalisation method for both concentric and eccentric phases of the back 

squat were extremely similar to those recently reported in the same muscles for MVC 

normalisation for running (Albertus-Kajee et al., 2011). However, intra-participant 

coefficient of variation values tended to be higher than those from MVC normalisation 

for the vastus lateralis and biceps femoris during cycling (Rouffet and Hautier, 2008) 

and MVCs of the triceps surae (Ball and Scurr, 2010). Furthermore, the coefficient of 

variation values reported here for MVC and MIS normalisation methods are 

considerably smaller than those documented for MVC normalisation of the medial 

gastrocnemius during a balance board exercise (Knutson et al., 1994). The MIS 

normalisation method produced similar coefficient of variation values for the two 

investigated muscles as those reported for MVC methods in previous studies (Ball and 

Scurr, 2010; Rouffet and Hautier, 2008). 

The 80% of 3RM method demonstrated smaller intra-participant coefficient of 

variation compared to the other submaximal dynamic normalisation methods (60% of 

3RM and 70% of 3RM) and smaller 95% limits of agreement ranges compared to all 

other methods (including MVC and MIS). The 80% of 3RM intra-participant coefficient 

of variation values reported in the current study were smaller than those recently 

reported for a submaximal dynamic normalisation method for running (Albertus-Kajee 

et al., 2011). In addition, the 80% of 3RM normalisation method displayed smaller intra-

participant coefficient of variation values than those reported for submaximal isometric 



Chapter 2  Page 57 

 

normalisation tasks for the vastus lateralis (Mathur et al., 2005) and triceps surae (Ball 

and Scurr, 2010).  

The coefficient of variation has been used extensively in the research literature 

but comparing maximal and submaximal normalisation tasks is problematic, as the 

amplitude of submaximal tasks can reduce the coefficient of variation (Burden, 2010; 

Burden et al., 2003). Smaller coefficients of variation produced from submaximal 

compared to maximal normalisation tasks may not actually represent better absolute 

reliability. Therefore, within the current study only maximal or submaximal 

normalisation tasks were compared for intra-participant coefficient of variation. The 

coefficient of variation has other limitations that have previously been detailed, such 

that normalised EMG from a task may not always be within the coefficient of variation 

established and may underestimate absolute reliability in future participants (Atkinson 

and Nevill, 1998). However, the measure represents mainly biological variation, is 

easily applied to new participants, and is not influenced by participant sample size (Ball 

and Scurr, 2010; Hopkins, 2000). 

Limits of agreement have not previously been reported in the normalisation 

literature. Therefore, comparisons could not be made to the current study. Limits of 

agreement allow the comparison of maximal and submaximal normalisation methods 

as they are not influenced by the same issues that apply with the coefficient of 

variation. Limits of agreement are calculated on differences between repeated tests, 

not on the mean and SD of such tests, as with the coefficient of variation (Burden, 

2010; Hopkins, 2000). However, the limits of agreement are affected by sample size 

unlike the coefficient of variation (Atkinson and Nevill, 1998). Therefore, larger 

participant samples strengthen the use of the limits of agreement. Nevertheless, it is 

not always possible to recruit large participant samples when investigating highly 

specific populations. Other concerns regarding the use of 95% limits of agreement 

levels are that this measure may be too stringent and meaningful improvements or 

adaptations may be overlooked (Hopkins, 2000). 
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The greater absolute reliability of the 80% of 3RM normalisation method, as 

demonstrated from the limits of agreement results, compared to the maximal isometric 

methods may be explained by the highly similar nature of this normalisation task to the 

investigated activity (dynamic back squat exercise sets). Given the muscle actions, 

velocity, and range of movement of the 80% of 3RM normalisation method was the 

same as that of the dynamic back squat exercise sets, this seems a logical 

explanation. However, the contribution of elastic energy storage and utilisation during 

the dynamic submaximal dynamic back squat normalisation tasks cannot be directly 

accounted for in the current study. The apparent similarity between the 80% of 3RM 

normalisation method and dynamic back squat exercise sets does not however explain 

why during the eccentric phase of the back squat the MVC (vastus lateralis and biceps 

femoris) and MIS (vastus lateralis) methods demonstrated better limits of agreement 

values than the 60% of 3RM and 70% of 3RM methods. This difference remains to be 

elucidated, but may be a related to the differential muscle recruitment strategies 

believed to be involved in the performance of eccentric and concentric muscle actions 

(Enoka, 1996). Regardless of this issue, normalising concentric vastus lateralis and 

biceps femoris EMG from the dynamic back squat exercise sets to a very similar 

reference task may better account for biological variance in neuromuscular recruitment 

strategies for this specific muscle action, compared to unrelated isometric tasks. The 

limits of agreement results presented suggest that researchers aiming to assess 

individual vastus lateralis and biceps femoris EMG responses or adaptations during the 

back squat exercise should normalise to the 80% of 3RM normalisation task, as 

opposed to conventional or alternate maximal isometric tasks. 

 

2.4.2 Relative reliability of the normalisation methods 

The other aspect of the first aim of the current study concerned relative 

reliability of the investigated normalisation methods. If the research question proposed 

for a given study involves comparisons of neuromuscular activation between 
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individuals, the normalisation method selected should demonstrate good relative 

reliability. The relative reliability results of the current study add new information to the 

existing research literature, as it was demonstrated the MIS normalisation method had 

the greatest relative reliability for vastus lateralis and biceps femoris EMG during 

concentric and eccentric muscle actions across dynamic back squat exercise sets. 

However, this task displayed only “fair” intraclass correlation coefficient classifications, 

except for eccentric biceps femoris EMG where relative reliability was “good”. All 

dynamic normalisation methods displayed “poor” relative reliability for both vastus 

lateralis and biceps femoris EMG across dynamic back squat set loads. 

The intraclass correlation coefficient results of the current study are in contrast 

to recently published findings. Cycling and running studies have demonstrated maximal 

dynamic (Albertus-Kajee et al., 2011) and submaximal dynamic normalisation methods 

(Albertus-Kajee et al., 2010) to have better relative reliability for the vastus lateralis and 

biceps femoris than equivalent MVC tasks. MVC and dynamic normalisation method 

intraclass correlation coefficients have been demonstrated to be similar for hip 

musculature exercise tasks (Bolgla and Uhl, 2007). The intraclass correlation 

coefficient is useful for calculating correlations for investigations involving multiple 

measures (Hopkins, 2000; Atkinson and Nevill, 1998). However, interpretation of the 

intraclass correlation coefficient should not be made without supporting reliability 

statistics (Atkinson and Nevill, 1998). The current study demonstrated the MIS method 

to provide better relative reliability for the vastus lateralis and biceps femoris compared 

to other back squat normalisation methods. These results suggest that researchers 

aiming to compare vastus lateralis and biceps femoris neuromuscular activation 

between experienced strength-trained individuals should use the MIS task when 

investigating concentric and eccentric muscle actions during the dynamic free weight 

back squat. 
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2.4.3 Sensitivity of the normalisation methods 

The second aim of the study was to examine the ability of each method to 

statistically differentiate between neuromuscular activation levels at different dynamic 

back squat exercise intensities. The sensitivity findings from the current study provide 

novel information to the research literature as the 60% of 3RM and 70% of 3RM 

methods most consistently differentiated between load increments for the two muscles, 

across the concentric and eccentric phases. The current study produced similar 

findings to recent cycling EMG normalisation research identifying dynamic 

normalisation methods to better separate vastus lateralis and biceps femoris EMG with 

power output increments than an MVC method (Albertus-Kajee et al., 2010). However, 

research from the same group demonstrated MVC and dynamic normalisation methods 

to be equally sensitive to increments in running speed for vastus lateralis and biceps 

femoris EMG (Albertus-Kajee et al., 2011).  

As raw EMG during the dynamic back squat exercise sets produced five 

different data sets when referenced to each normalisation task, it can be confirmed the 

amplitude of the 60% of 3RM and 70% of 3RM methods were responsible for the 

current sensitivity findings. These methods displayed greater sensitivity for eccentric 

and concentric vastus lateralis and biceps femoris EMG compared to the other 

methods. The fact that the 60% of 3RM and 70% of 3RM tasks produce smaller 

reference values than the other normalisation tasks likely explains this finding. 

However, this does not explain why the other higher amplitude normalisation tasks 

were found to be equally sensitive for single muscle actions in one but not both of the 

investigated muscles. 

The other finding from the current study with regard to sensitivity was 

unnormalised EMG was equally as sensitive as the 60% of 3RM and 70% of 3RM 

normalisation methods, except for the vastus lateralis during the concentric phase. 

Previous studies investigating elbow flexion-extension exercise have reported similar 

findings. During this upper-body exercise it was demonstrated that unnormalised EMG 
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(Burden and Bartlett, 1999; Allison et al., 1993), MVC (Allison et al., 1993) and dynamic 

normalisation reference values taken from within the investigated task (Burden and 

Bartlett, 1999; Allison et al., 1993) were sensitive to load increment. Furthermore, 

unnormalised EMG and MVC methods have been reported to demonstrate greater 

sensitivity compared to dynamic within task normalisation values. However, this was 

noted to be due to the use of different normalisation values at each different intensity 

load, for each dynamic normalisation method (Burden and Bartlett, 1999). This issue 

was not encountered in the present study as separate dynamic normalisation methods 

were employed. These sensitivity results suggest researchers interested in 

investigating differences in vastus lateralis and biceps femoris neuromuscular activity 

with load increment during the back squat should use the 60% of 3RM or 70% of 3RM 

normalisation methods. 

 

2.4.4 Inter-participant variability of the normalisation methods and 

unnormalised EMG 

The third aim of the current study was to assess the extent of neuromuscular 

activation heterogeneity in a group of strength-trained individuals experienced in 

performing the back squat exercise. Inter-participant variability has previously been 

used to determine normal EMG profiles during tasks such as walking (Winter and Yack, 

1987) and the extent of homogeneity in neuromuscular recruitment patterns in elite 

cyclists (Hug et al., 2004). The findings of the current study add to the existing 

normalisation method literature as it was demonstrated “common” neuromuscular 

recruitment strategies were only displayed for the 70% of 3RM and 80% of 3RM tasks 

and not by either maximal isometric method or unnormalised EMG. It would be 

expected that a group of individuals with similar strength levels and back squat training 

experience would display similar neuromuscular activation levels, regardless of the 

normalisation method employed. However, this was not the case. Previous research 

has reported a highly homogeneous group of professional endurance-trained cyclists 
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not to display “common” muscle activation patterns, although normalisation values 

were derived from within the investigated task in this study (Hug et al., 2004). The inter-

participant variability of the maximal isometric methods was smaller than the majority of 

previous studies detailing variability with MVC normalisation (Bolgla and Uhl, 2007; 

Hunter et al., 2002; Knutson et al., 1994). However, the inter-participant variability for 

maximal isometric methods was higher than the results of other studies (Rouffet and 

Hautier, 2008). 

The majority of research investigating inter-participant variability using dynamic 

normalisation methods has used normalisation reference values taken from within the 

investigated task (Bolgla and Uhl, 2007; Burden and Bartlett, 1999; Knutson et al., 

1994; Allison et al., 1993; Yang and Winter, 1984). The current study used 

normalisation reference values taken from separate dynamic normalisation tasks, as it 

had previously been noted that the use of within-task normalisation values can 

negatively affect sensitivity (Burden and Bartlett, 1999). The findings presented from 

the current study demonstrate smaller inter-participant coefficient of variation values for 

submaximal normalisation methods compared to those previously detailed for 

normalisation values derived from the dynamic task investigated (Bolgla and Uhl, 2007; 

Knutson et al., 1994; Yang and Winter, 1984). Although, comparisons of inter-

participant coefficient of variation values between different intensity dynamic 

normalisation reference values from separate studies may be problematic due to the 

limitations of the coefficient of variation mentioned previously (Burden, 2010; Burden et 

al., 2003). The finding from the current study that all normalisation methods reduced 

inter-participant variability for the vastus lateralis compared to unnormalised vastus 

lateralis EMG is consistent with some previous studies (Burden et al., 2003; Burden 

and Bartlett, 1999), but not others (Allison et al., 1993; Yang and Winter, 1984). 

However, the fact that isometric normalisation tasks did not reduce inter-participant 

variability for the biceps femoris compared to unnormalised EMG is consistent with 

findings opposing results from the vastus lateralis in the current study (Allison et al., 
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1993; Yang and Winter, 1984). Researchers who are concerned with inter-participant 

variability during the back squat exercise in strength-trained individuals should be 

aware that all normalisation methods employed in the current study reduced variability 

in comparison to unnormalised EMG for the vastus lateralis, but not the biceps femoris. 

 

2.5 Conclusions 

Overall, dynamic EMG normalisation methods for the back squat were 

demonstrated to be superior compared to maximal isometric methods when 

considering absolute reliability and sensitivity. Therefore, the 80% of 3RM 

normalisation method will be employed later in this thesis when comparing 

neuromuscular and kinetic responses to AEL and CL during the back squat exercise. 

Additionally, dynamic EMG normalisation methods for the back squat reduced inter-

participant variability compared to unnormalised EMG for both muscle actions and 

muscles. In contrast, maximal isometric methods only reduced inter-participant 

variability for the biceps femoris. Therefore, researchers conducting studies concerning 

these three measures should use submaximal dynamic, as opposed to maximal 

isometric normalisation methods. This finding has important implications for future 

research as the measurement of vastus lateralis and biceps femoris EMG during the 

back squat does not have to be confined to facilities equipped with isokinetic 

dynamometers and also reduces data collection time demands. In order to develop the 

EMG normalisation literature in future, further research needs to be conducted. 

Research studies should evaluate the absolute reliability, inter-participant variability, 

and sensitivity of the EMG of other muscles during the back squat and other key lower-

body resistance exercises. 
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2.6 Recommendations for normalisation method selection 

 The 80% of 3RM normalisation method should be used when assessing individual 

responses or adaptations of vastus lateralis and biceps femoris neuromuscular 

activation during the concentric and eccentric phases of the back squat exercise. 

 The MIS normalisation method should be employed when comparing vastus 

lateralis and biceps femoris neuromuscular activation between experienced 

strength-trained individuals during the concentric and eccentric muscle actions of 

the back squat exercise. 

 The 60% or 70% of 3RM normalisation methods should be used when 

investigating differences in vastus lateralis and biceps femoris neuromuscular 

activation with increasing loads during the concentric and eccentric phases of the 

back squat exercise. 

 MVC, MIS, or submaximal dynamic normalisation methods can be used when 

examining vastus lateralis neuromuscular activation inter-participant variability 

during either the concentric or eccentric phases of the back squat exercise in 

strength-trained individuals. 

 The use of normalisation methods does not reduce biceps femoris inter-participant 

variability during either the concentric or eccentric phases of the back squat 

exercise compared to unnormalised EMG. 

 

2.7 Contribution of the chapter to the aims of the thesis 

The current chapter addressed the first of the methodological aims of the thesis by 

evaluating the reliability of maximal isometric and submaximal dynamic EMG 

normalisation methods for the back squat exercise. The chapter contributed new 

guidance for researchers measuring EMG during the back squat, as normalisation 

methods for this particular exercise had not previously been investigated. In order to 

address the other aims outlined in the first chapter of the thesis the remaining 

investigations progressed by comparing acute neuromuscular, kinetic, and kinematic 
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responses between AEL and CL, during and after single- and multiple-joint resistance 

exercise models. 

CHAPTER 3: ACUTE NEUROMUSCULAR, KINETIC, AND KINEMATIC RESPONSES TO LOWER-BODY SINGLE-JOINT ACCENTUATED ECCENTRIC LOAD RESISTANCE EXERCISE 
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ACUTE NEUROMUSCULAR, KINETIC, AND KINEMATIC 

RESPONSES TO LOWER-BODY SINGLE-JOINT ACCENTUATED 

ECCENTRIC LOAD RESISTANCE EXERCISE 
 

 

Balshaw TG, Chesham RA, Hunter AM. 

 

3.1 Introduction 

Before comparing neuromuscular, kinetic, and kinematic responses to AEL and 

CL in a lower-body multiple-joint free weight exercise model, it was first important to 

investigate these responses in a simplified single-joint resistance exercise model. This 

approach was taken in order to reduce technical variation and exercise proficiency 

issues inherent within multiple-joint free weight resistance exercise. Furthermore, the 

investigation of single-joint AEL has application for achieving strength gains from cross-

education in the contralateral untrained or injured leg (Shima et al., 2002), as well as its 

use during rehabilitation (Schmitz and Westwood, 2001). 

Training interventions comparing AEL and CL have been conducted to assess 

the efficacy of AEL for enhancing chronic strength adaptations. AEL has been shown to 

elicit greater strength gains, compared to CL (Norrbrand et al., 2008; Friedmann et al., 

2004; Brandenburg and Docherty, 2002; Hortobagyi et al., 2001a; Hortobagyi and 

Devita, 2000). However, other AEL training intervention studies have demonstrated 

strength adaptations to equate those seem with CL (Friedmann-Bette et al., 2010; 

Yarrow et al., 2008; Barstow et al., 2003; Godard et al., 1998; Ben-Sira et al., 1995; 

Nichols et al., 1995). The ambiguous findings in the existing AEL training interventions 

make it difficult for practitioners to decide if they should employ this type of resistance 

exercise with their athletes or clients. Acute multiple-joint free weight lower-body 
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research has previously investigated concentric kinetic variables in order to determine 

the likely benefits of using AEL on a longitudinal basis (Moore et al., 2007). However, 

no acute AEL knee extensor research exists investigating physiological responses or 

manipulating other AEL training programme variables, such as exercise velocity that 

have previously been reported to effect the nature and magnitude of chronic strength 

adaptations (Farthing and Chilibeck, 2003a). Therefore, currently there is inadequate 

information available to practitioners considering employing AEL. Specifically, it is 

unclear what effect acute AEL has on neuromuscular activation, contractile 

characteristics, kinetic, and kinematic responses compared to CL. 

Determining the acute neuromuscular, contractile characteristic, kinetic, and 

kinematic responses to single-joint lower-body AEL would inform the prescription or 

refinement of resistance training programmes for individuals within both athletic and 

rehabilitative training settings. The results produced from such an investigation would 

help exercise professionals to decide whether or not to employ AEL with their athletes 

or patients, during which training phase this back squat variant could be implemented, 

and how AEL may acutely effect neuromuscular control compared to CL. The primary 

purpose of the current study was to compare eccentric and concentric phase 

neuromuscular activation, kinetic, and kinematic responses during AEL and CL in a 

knee extensor resistance exercise model that has application to exercise-intolerant 

individuals and those undertaking rehabilitation. The secondary purpose of the study 

was to investigate the influence of eccentric phase velocity on neuromuscular 

activation and kinetic outputs during AEL and CL in a knee extensor resistance 

exercise. The final purpose of the study was to evaluate after-session rate of torque 

development and contractile characteristic responses between AEL and CL conditions. 

Tensiomyography provides a non-invasive peripheral measure of contractile 

characteristics from selected individual muscles (Dahmane et al., 2001; Valencic and 

Knez, 1997) and has been shown to be stable under a range of different muscle 

conditions (Ditroilo et al., 2013). Furthermore, tensiomyography can be used to detect 
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changes in contractile function following several different exercise interventions (Hunter 

et al., 2012; Garcia-Manso et al., 2012; Garcia-Manso et al., 2011). Thus, 

tensiomyography was employed in the current study to assess contractile characteristic 

differences between conditions following AEL and CL. 

 

3.2 Methods 

3.2.1 Participants 

Ten males (aged: 22.2 ± 1.3 years, body mass: 78.4 ± 6.1 kg, height: 1.80 ± 

0.06 m, sum of seven skin folds: 62.3 ± 15.0 mm, unilateral 3RM concentric knee 

extension strength: 119.5 ± 15.0 N.m) with a minimum of 6 months resistance training 

experience (at least two sessions per week during this time period) participated in the 

study. Written informed consent was provided by all participants prior to the start of 

testing, after approval had been granted by the University of Stirling Research Ethics 

Committee. The principles of the Declaration of Helsinki (2008) were adhered to 

throughout the study. 

 

3.2.2 Procedures 

Unilateral concentric knee extension 3RM 

Concentric strength assessments were performed on a Biodex 3 dynamometer 

with the participant restrained as described in Chapter 2 (section 2.2.3). The lateral 

femoral epicondyle was aligned with the dynamometer axis and the participant’s 

dominant leg was strapped to the axis attachment arm above the lateral malleolus. 

Concentric 3RMs were performed in the isotonic dynamometer mode. In the isotonic 

setting participants had to overcome the programmed level of torque before movement 

of the axis leg attachment would occur (Remaud et al., 2005). Increases in torque 

produced from the knee extensor muscles were absorbed by the dynamometer and 

resulted in an increase in knee joint angle velocity (Kovaleski et al., 1995). Therefore, 
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the load was essentially constant and velocity varied dependent on the torque exerted 

by the participant (Power et al., 2010; Remaud et al., 2005). Three incremental load 

warm-up sets, with decreasing numbers of repetitions (set 1: 10 repetitions, set 2: 5 

repetitions and set 3: 3 repetitions), were performed to prepare participants for 

attempts at establishing their 3RM.  

 

Tensiomyography 

Tensiomyography measures were performed with participants seated and 

restrained in the Biodex 3 dynamometer at a fixed knee joint angle of 70° of flexion (full 

extension equalling 0°) as described in Chapter 2 (section 2.2.3). Participants remained 

relaxed with their leg supported whilst tensiomyography measures were conducted. 

The tensiomyography digital displacement transducer (GK 40, Panoptik d.o.o., 

Ljubljana, Slovenia) incorporating a spring of 0.17 N/mm-1 was mounted to an 

adaptable tripod and was placed one hand breadth from the superior posterior aspect 

of the patella (Delagi et al., 1975), perpendicular to the vastus lateralis muscle belly in 

order to measure radial displacement (Tous-Fajardo et al., 2010). Two 3.2 cm diameter 

stimulating electrodes (PALS Platinum Neurostimulation Electrodes, Axelgaard 

Manufacturing Co. Ltd, Denmark) were placed either side of the tensiomyography 

displacement sensor along the line between the greater trochanter and the lateral 

femoral epicondyle. The stimulating electrode inferior to the displacement sensor was 

placed on the vastus lateralis above the muscle-tendon unit. Whereas, the stimulating 

electrode positioned superior to the displacement sensor was placed ~12 cm above the 

tip of the displacement sensor. Stimulating electrode and displacement transducer sites 

were marked with indelible pen to ensure consistent placement across test sessions. 

A TMG-S2 unit (TMG-BMC ltd., Ljubljana, Slovenia)  was used to electrically 

stimulate the vastus lateralis with pulses of 1 ms duration at 10 s intervals (Tous-

Fajardo et al., 2010). The pulses started at an intensity of 15 mA and increased by 5 

mA until maximal displacement increased no further or a stimulus intensity of 110 mA 
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(maximal output) was reached (Tous-Fajardo et al., 2010). The same researcher 

performed all tensiomyography measures across all test sessions. The researcher who 

performed the tensiomyography measures had undertaken training with a course 

provider (Tensiomyography-UK). The tensiomyography stimulator was operated via 

custom-built software that recorded the rate and magnitude of muscle belly 

displacement. These measures were used to calculate: (i) vastus lateralis 

tensiomyography maximal displacement, the maximal muscle displacement upon 

stimulation (Ditroilo et al., 2011; Tous-Fajardo et al., 2010); and (ii) vastus lateralis 

tensiomyography contraction time (Figure 3.1), the time it takes the muscle to displace 

from 10% to 90% of maximal muscle belly displacement (Ditroilo et al., 2011; Tous-

Fajardo et al., 2010). Tensiomyography maximal displacement and contraction time 

were selected as these two variables are considered the most valid tensiomyography 

measures (Krizaj et al., 2008; Dahmane et al., 2005; Dahmane et al., 2001). The 

greatest maximal displacement and contraction time obtained during before- and after-

intervention measurement time-points were used for analysis purposes. 

 

MVCs  

Knee extension MVCs of 2 s duration were completed, with the participant’s 

dominant leg, to quantify rate of torque development. Participants were seated and 

secured in the Biodex 3 dynamometer as described for the 3RM test assessment. Rate 

of torque development was selected as a measure of functional strength given that 

many daily movements relevant to clinical and athletic populations, such as preventing 

a fall (Suetta et al., 2004) and sprint running (Aagaard et al., 2002), take less time than 

required to generate maximal force. Participants were instructed to generate as much 

force as quickly as possible from the signal to commence the MVC. One-min recovery 

periods separated MVCs. MVCs were performed at a knee joint flexion angle of 70° 

(full extension equalling 0°). Torque data from the Biodex 3 dynamometer was 
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Figure 3.1 Typical tensiomyography displacement/time signal recorded as a result of 
percutaneous electrical stimulation. Replicated with permission (Ditroilo et al., 2011).  

 

collected during MVCs via integrated hardware (Biopac MP100, Biopac Systems Inc, 

California, USA) and software (AcqKnowledge® software Version 3.9, Biopac Systems 

Inc, California, USA) in order to quantify rate of torque development. Rate of torque 

development was calculated by dividing the change in torque from 0ms to 50 ms, 100 

ms, 200 ms, and 300 ms (Δ torque ÷ Δ time) (Aagaard et al., 2002), 0 ms (point of 

onset) was defined as 5.0% of peak torque obtained during each 2 s MVC (Ditroilo et 

al., 2011). 

 

3.2.3 Experimental protocol 

The study consisted of seven laboratory visits for each participant. The first three 

visits were used to familiarise participants with knee extension 3RM testing, 

tensiomyography measures, 2 s MVCs, and experimental condition knee extension 

efforts. The final four visits involved the completion of four different experimental 

protocols, conducted in a randomised order, involving the completion of either CL or 

AEL knee extension efforts (Figure 3.2). A minimum of 5 d separated each 

experimental test session. In the 48 h prior to reporting for the first experimental test 

session participants recorded a food and fluid diary. Participants then replicated their 

Contraction time 

Maximal displacement 
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Figure 3.2 Experimental condition protocol. * denotes randomisation of experimental 
conditions.  

 

dietary intake as closely as possible prior to the final three experimental test sessions. 

In addition, participants maintained their normal training practices and completed no 

exercise training in the 24 h prior to reporting for each experimental trial. All testing was 

conducted following an overnight fast. On arrival at the University laboratory 

participants were provided with a standardised breakfast (31 kj•kg-1 body mass) 

consisting of 72.5% carbohydrate, 11.9% protein, and 15.7% fat. A 1 h period was 

taken after the standardised breakfast had been consumed before the experimental 

testing commenced. 

Before either CL or AEL conditions were conducted on each experimental test 

day unilateral 3RM concentric strength of the participant’s dominant leg was 

determined. Completion of 3RM assessments during the familiarisation sessions 

allowed 3RM attempts in experimental test sessions to be limited to a maximum of two 

or three. This approach was taken in order to prevent the 3RM assessment negatively 

influencing the performance of the experimental condition knee extension efforts. 

Absolute reliability of the 3RM across experimental test day sessions was quantified via 

the calculation of intra-participant coefficient of variation ((SD ÷ mean) × 100) at 3.4%. 

A 10 min recovery period was taken after the knee extension 3RM, before-intervention 
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vastus lateralis tensiomyography measures and five 2 s MVCs were then performed. 

One-min recovery periods separated MVCs.  

Six min after the 2 s MVCs were completed participants commenced 

experimental condition knee extension sets. On each experimental test day participants 

completed one of the following knee extension conditions on the Biodex 3 

dynamometer using the same setting as during 3RM assessments: (i) CL with a target 

2 s duration eccentric phase (CL-2s); (ii) CL with a target 4 s duration eccentric phase 

(CL-4s); (iii) AEL with a target 2 s duration eccentric phase (AEL-2s); and (iv) AEL with 

a target 4 s duration eccentric phase (AEL-4s; Figure 3.2). Participants were seated 

and secured on the dynamometer during experimental condition sets as described for 

the knee extension 3RM assessment. Participants performed the eccentric phase of 

experimental condition repetitions by attempting to match a verbal stop-watch count (of 

either 2 or 4 s) given by a member of the research team for each repetition. Only the 

eccentric knee flexion phase velocity was controlled by a verbal count, the concentric 

knee extension phase was performed as explosively as possible. Participants were 

instructed to transition as quickly as possible between knee flexion and extension 

phases and to kick out as explosively as possible for each knee extension repetition. 

Participant breathing during each experimental condition set involved inspiration during 

knee flexion and expiration during knee extension. This breathing routine was 

employed to assist the pacing of the eccentric phase and the explosive nature of the 

concentric phase (Fleck and Kramer, 2004). Knee extension repetitions were 

performed through a minimum 70° range of movement, from 90° of knee flexion to 20° 

of flexion (0° equalling full extension). A minimum 70° range of motion was used given 

the large decreases in knee extension force production beyond this range (Knapik et 

al., 1983). The duration of the eccentric phase for each condition was: CL-2s = 1.78 ± 

0.27 s, CL-4s = 3.33 ± 0.31 s, AEL-2s = 1.72 ± 0.23 s, AEL-4s = 3.35 ± 0.40 s (mean ± 

SD). 
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All experimental conditions consisted of 3 sets of 3 unilateral knee flexion-

extension repetitions performed with the dominant leg. Three-min recovery periods 

were employed between sets. The CL interventions involved loading of 85% of 

concentric 3RM in both the knee flexion and knee extension phases. AEL interventions 

involved loading of 120% of concentric 3RM in the knee flexion phase and 85% in the 

knee extension phase. Work done and time under tension was quantified by the Biodex 

3 dynamometer for knee flexion and extension phases in each condition (Table 3.1). 

Knee extension kinetic and kinematic variables from each experimental set (mean 

power and peak velocity) were recorded by software integrated with the Biodex 3 

dynamometer and stored electronically for later analysis. Three min after the final 

experimental knee extension set participants completed the first of five after-

intervention 2 s MVCs. This time period was selected to avoid transient peripheral 

potentiation and reduced muscle excitability that has been reported following exercise 

(Nielsen and de Paoli, 2007; Lentz and Nielsen, 2002). Final tensiomyography 

measures commenced 3 min after the final after-intervention 2 s MVC. 

Tensiomyography measures have previously been demonstrated to remain effected in 

comparison to baseline values for at least 15 min after acute resistance exercise 

interventions (Garcia-Manso et al., 2012). 

 

3.2.4 EMG 

EMG data collection 

During experimental condition sets both vastus lateralis and biceps femoris 

EMG was recorded from the participant’s dominant leg in the same way and using the 

same equipment as described in Chapter 2 (section 2.2.4). A reference electrode was 

placed on the lateral malleolus of the participant’s dominant leg and secured with 

micropore tape. Once electrodes had been positioned in the first experimental 

intervention test session, electrode sites were marked with an indelible pen. 

Participants remarked the electrode sites between test sessions to ensure identical 
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Table 3.1 Work done and time under tension during AEL and CL conditions completed with either a 2 s or 4 s eccentric knee flexion phase.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Work done (J) Time under tension (s) 

 

Knee flexion Knee extension Knee flexion Knee extension 

Condition Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

CL-2s 1,765.9 ± 308.8 1,671.8 ± 217.5 16.0 ± 2.4 4.4 ± 1.3 

AEL-2s 2,285.1 ± 534.4 1,659.5 ± 252.6 15.5 ± 2.1 5.2 ± 2.4 

Absolute difference 519.2 ± 303.7 -12.3 ± 76.1 0.7 ± 3.8 -0.6 ± 2.0 

Percentage (%) difference 28.8 ± 14.8 -0.9 ± 4.5 3.0 ± 18.4 -9.8 ± 18.6 

 

Knee flexion Knee extension Knee flexion Knee extension 

Condition Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

CL-4s 2,151.5 ± 348.2 1,769.5 ± 263.3 29.9 ± 2.7 6.4 ± 4.2 

AEL-4s 2,667.0 ± 344.3 1,708.1 ± 207.8 30.1 ± 3.6 6.0 ± 2.4 

Absolute difference 515.5 ± 216.7 -61.4 ± 131.3 -0.4 ± 2.9 0.1 ± 3.9 

Percentage (%) difference 25.0 ± 11.6 -3.0 ± 6.6 -1.9 ± 15.5 7.8 ± 7.1 
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electrode placement for each testing session. Skin preparation was conducted as 

detailed in Chapter 2 (section 2.2.4). EMG sampling and filtering was conducted as 

described iin Chapter 2 (section 2.2.4). 

 

EMG data processing 

EMG data was root mean square processed using a 100 ms moving window. 

Root mean square processing was conducted across the entire waveform for each 

experimental condition set. EMG processing was completed with the software 

programme AcqKnowledge® (Version 3.9, Biopac Systems Inc, California, USA) 

according to manufacturer guidelines (Acqknowledge® software guide, 2008). 

 

Extraction of processed EMG 

Once processed, EMG from experimental condition sets was extracted. 

Eccentric knee flexion and concentric knee extension phase EMG during experimental 

condition repetitions was extracted based on synchronised dynamometer axis position 

data, indicating the start and end of each phase. A voltage channel from the Biodex 3 

dynamometer quantifying axis position was calibrated, extracted and recorded during 

experimental condition knee extension sets with integrated AcqKnowledge® software. 

Mean EMG from both the eccentric knee flexion and concentric knee extension phases 

of the experimental condition sets were normalised to mean EMG from the 

corresponding muscle action phase recorded during the heaviest successful 3RM 

attempt, conducted at the beginning of the respective test session. Experimental 

condition EMG was normalised to a dynamic exercise task based on recent research 

and findings from the previous chapter of this thesis advocating the use of dynamic 

normalisation methods when investigating tasks involving dynamic muscle actions 

(Albertus-Kajee et al., 2011; Albertus-Kajee et al., 2010). 
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3.2.5 Statistical analysis 

Minitab 16 statistical software (Minitab Ltd., Coventry, UK) was used to conduct 

all statistical analyses. A time-point (before-intervention vs after-intervention) x 

condition (CL-2s vs. AEL-2s vs. CL-4s vs. AEL-4s) repeated measures analysis of 

variance was conducted to assess differences in 2 s MVC rate of torque development 

and tensiomyography measures. A set (set 1 vs. set 2 vs. set 3) x condition (CL-2s vs. 

AEL-2s vs. CL-4s vs. AEL-4s) repeated measures analysis of variance was also 

conducted to assess statistical differences in EMG, knee extension power and velocity. 

A significance level of p< 0.05 was selected to determine statistical differences. Tukey 

post-hoc analysis was used where appropriate. All results are expressed as mean ± 

SD. 

 

3.3 Results 

3.3.1 Concentric and eccentric phase EMG during experimental conditions 

Greater eccentric vastus lateralis EMG was displayed in the AEL-2s and AEL-

4s conditions compared to the CL-2s and CL-4s conditions (p= 0.004, f= 5.73; Figure 

3.3 C). Condition-set interaction (p= 0.929, f= 0.31) effects did not occur for eccentric 

vastus lateralis EMG, but set effects (p= 0.041, f= 3.82) were observed. No condition 

(p= 0.077, f= 2.55), set (p= 0.354, f= 1.10), or condition-set interaction (p= 0.077, f= 

2.55) effects were observed for eccentric biceps femoris EMG. However, both condition 

and condition-set interaction effects approached significance, with a trend for greater 

eccentric biceps femoris activation in the AEL-2s condition (Figure 3.3 D). No condition 

(p= 0.374, f= 1.08), set (p= 0.504, f= 0.71), or condition-set interaction (p= 0.284, f= 

1.28) effects were detected for concentric vastus lateralis EMG (Figure 3.3 A). No 

condition (p= 0.262, f= 1.41), set (p= 0.140, f= 2.20), or condition-set interaction (p= 
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Figure 3.3 Mean vastus lateralis (A,C) and biceps femoris (B,D) EMG during AEL and 
CL conditions conducted with 2 s or 4 s eccentric knee flexion phases. * denotes 
greater (p< 0.05) eccentric EMG for AEL-2s and AEL-4s conditions compared to 
corresponding CL conditions.  
 

0.775, f= 0.54) effects were observed for concentric biceps femoris EMG (Figure 3.3 

B). 

 

3.3.2 Concentric knee extension kinetic and kinematic variables during 

experimental conditions 

Condition (p= 0.484, f= 0.84), set (p= 0.586, f= 0.55), and condition-set 

interaction (p= 0.664, f= 0.68) effects were not observed for concentric knee extension 

power (Figure 3.4 A). Comparisons of concentric peak knee joint angle velocity also did 

not display condition (p= 0.353, f= 1.13), set (p= 0.466, f= 0.80), or condition-set 

interaction (p= 0.439, f= 0.99) effects (Figure 3.4 B). 

CONCENTRIC PHASE ECCENTRIC PHASE 
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Figure 3.4 Concentric knee extension power (A) and knee joint angle velocity (B) 
during AEL and CL conditions conducted with 2 s or 4 s eccentric knee flexion phases.  
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3.3.3 Before- and after-intervention measures 

No condition (p= 0.670, f= 0.52), time-point (p= 0.447, f= 0.63), or condition-

time-point interaction (p= 0.872, f= 0.23) effects were observed for MVC rate of torque 

development at 300 ms. As condition, time-point, and condition-time-point interaction 

effects were also absent for rate of torque development at 50ms, 100ms, or 200ms or 

300 ms, only rate of torque development at 300 ms is reported (Figure 3.5 A). 

Condition (p= 0.621, f= 0.60) and condition-time-point interaction (p= 0.356, f= 1.13) 

effects did not occur for tensiomyography vastus lateralis contraction time. However, a 

time-point effect (p= 0.008, f= 11.50) was observed for tensiomyography vastus 

lateralis contraction time, with a decrease occurring after the intervention compared to 

before-intervention measures (Figure 3.5 C). No condition (p= 0.520, f= 0.77), time-

point (p= 0.639, f= 0.24), or condition-time-point interaction (p= 0.481, f= 0.85) effects 

occurred for vastus lateralis tensiomyography maximal displacement. 

 

3.4 Discussion 

The current study detected elevated eccentric neuromuscular activation for the 

vastus lateralis during AEL compared to CL, whilst concentric phase vastus lateralis 

and biceps femoris neuromuscular activation, kinetic, and kinematic outputs were 

equated between conditions. In addition, a tendency for greater eccentric phase biceps 

femoris neuromuscular activation was displayed during the faster velocity AEL 

condition, but not the other conditions. There was a lack of differences in rate of torque 

development and tensiomyography measures between conditions despite 25.0-29.0% 

more work being completed in the AEL conditions. The results of the study add novel 

data to research investigating the efficacy of knee extensor AEL and indicate that there 

are not any disadvantages of completing acute single-joint knee extensor AEL in terms 

of neuromuscular function or muscle contractile characteristics. In addition, the effect of 

other variables such of as exercise velocity during the eccentric phase of AEL had not 

previously been examined. Therefore, the findings presented provide new physiological 
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Figure 3.5 Knee extension rate of torque development at 300 ms (A), vastus lateralis 
tensiomyography maximal displacement (B), and vastus lateralis tensiomyography 
contraction time (C). * denotes a decrease (p< 0.05) in tensiomyography contraction 
time across conditions from before- to after-intervention measures.  

 

information to guide decisions regarding the efficacy of AEL, the prescription of 

exercise velocity when employing AEL, and the populations this type of resistance 

exercise may be suitable for. 

The greater vastus lateralis eccentric neuromuscular activation during both AEL 

conditions was in agreement with previous acute upper-body AEL research which 

observed elevated agonist eccentric activation (Ojasto and Hakkinen, 2009a; Ojasto 

and Hakkinen, 2009b). Elevated motor unit firing rates or unique eccentric muscle 

action recruitment strategies were likely responsible for the greater eccentric 

neuromuscular activation during the AEL conditions due to the greater eccentric phase 

torque production required in these conditions (Linnamo et al., 2003). The results 

presented here are consistent with acute squat-based research where concentric 
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kinetic outputs did not differ between AEL and CL conditions (Moore et al., 2007). In 

addition, previous research comparing acute concentric neuromuscular responses 

during AEL and CL in the upper-body musculature also detected no differences 

between conditions (Ojasto and Hakkinen, 2009a; Ojasto and Hakkinen, 2009b). This 

body of evidence appears to rule out early hypotheses (Doan et al., 2002) that acute 

elevated concentric neuromuscular activation may contribute to enhancements in 

concentric kinetic output during AEL (Ojasto and Hakkinen, 2009a; Doan et al., 2002). 

The greater eccentric vastus lateralis neuromuscular activation with AEL and equated 

concentric neuromuscular and concentric kinetic measures between conditions implies 

AEL may provide an acute training stimulus that over repeated training sessions could 

develop chronic neuromuscular adaptations of knee extensor muscles during both 

muscle action phases (Hortobagyi et al., 2001a; Hortobagyi and Devita, 2000; 

Kaminski et al., 1998). Further research is required to confirm this on a longtidunial 

basis (e.g. over a 4-12 week duration training intervention). 

The manipulation of eccentric phase velocity appeared to influence only 

antagonist muscle activation during the eccentric phase of repetitions, with a trend for 

greater BF activation displayed in the AEL-2s condition. This trend for greater biceps 

femoris eccentric phase neuromuscular activation during AEL-2s compared to the other 

conditions may have occurred as a response to maintain knee joint stability during a 

task in which a combination of greater force production and rate of muscle lengthening 

was required (Gabriel et al., 2006). Exercise velocity did not influence any other 

variables during knee extension repetitions or after-interventions measures. The fact 

that rate of torque development and tensiomyography measures were not negatively 

impacted in the AEL conditions was unexpected, given the greater amount of work 

completed. Previously, decreased rate of force development, maximal voluntary 

isometric contraction and peak twitch force had been observed following protocols 

employing 2 and 4 s eccentric phases during dynamic resistance exercise (Tran et al., 

2006). The differences between the present study and this previous study investigating 
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the effect of time under tension likely stem from methodological differences including 

the way the concentric phase of repetitions were performed, the set and repetition 

configuration employed, and the muscle group involved (Tran et al., 2006). Vastus 

lateralis tensiomyography contraction time decreased from before- to after-intervention 

for both conditions. The alteration in contraction time may be due to small reductions in 

vastus lateralis muscle fibre pennation angle causing muscle fibre forces to be 

transmitted more quickly along the length of the muscle (Mahlfeld et al., 2004). 

However, increases in tendon compliance have also been demonstrated following high 

force contraction which may explain why increases in after-intervention rate torque 

development where not found despite the decrease in tensiomyography contraction 

time (Kubo et al., 2001). The decrease in contraction time at the after-intervention 

measurement time-point was consistent with research reporting elevated post-

resistance exercise tensiomyography contraction velocity (Garcia-Manso et al., 2012), 

another measure indicative of muscle contraction rate. 

Prior to the current study acute AEL research had not assessed after-intervention 

rate of torque development or contractile characterisitcs. Consequently, there was no 

indication regarding whether or not this type of resistance exercise would be suitable 

for athletic or exercise-intolerant populations who may have limited recovery time 

between training sessions or difficulty performing essential daily tasks. The combined 

neuromuscular, kinetic, kinematic, and contractile characteristic results of the current 

study suggest there are not any acute disadvantages to performing AEL in a healthy 

male recreationally exercising population. Therefore, AEL may be suitable for 

populations completing concurrent training who are required to develop eccentric 

strength and could potentially provide a way of accumulating additional exercise 

volume without compromising mobility or day-to-day function in exercise-intolerant 

individuals. 
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3.5 Conclusions 

 In conclusion, there does not appear to be any disadvantages of completing 

acute single-joint knee extensor AEL in terms of neuromuscular function or muscle 

contractile characteristics. Independent of eccentric phase velocity, AEL required 

elevated eccentric neuromuscular activation, but equated the concentric 

neuromuscular activation and concentric kinetic and kinematic outputs observed with 

CL. In addition, despite the AEL conditions involving a greater amount of work after-

intervention rate of torque development and vastus lateralis contractile characteristics 

were not negatively impacted. Therefore, AEL may be a useful training method for 

populations with a limited capacity to accumulate exercise volume without 

compromising mobility or thre ability to perform day-to-day tasks. However, 

longitudinal AEL studies employing eccentric strength assessments and 

neuromuscular measures are still required to confirm the efficacy of this training 

method for concurrently enhancing the eccentric and concentric strength of the knee 

extensor musculature. 

 

3.6 Contribution of the chapter to the aims of the thesis 

The current chapter addressed three of the main aims of the thesis. Firstly, by 

comparing acute neuromuscular, kinetic, and kinematic responses between lower-body 

single-joint AEL and CL. Secondly, by investigating the influence of eccentric phase 

velocity on acute neuromuscular, kinetic, and kinematic responses during lower-body 

single-joint AEL and CL. Thirdly, by assessing after-session rate of torque development 

and contractile characteristic responses following lower-body single-joint AEL and CL 

conditions. The findings of the current chapter add novel information to the existing 

literature, as no research investigating neuromuscular responses to acute knee 

extensor AEL has been conducted. Furthermore, it was unknown how manipulating 

training programme variables, such as exercise velocity, would influence acute 
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neuromuscular, kinetic, and kinematic responses during or after AEL. These results are 

especially pertinent as equivocal reports regarding the efficacy of AEL training 

interventions make it difficult for practitioners to decide if they should employ AEL. In 

order to address the remaining aims of the thesis further neuromuscular and kinetic 

variables were investigated both in single- and multiple-joint resistance exercise 

models. 

CHAPTER 4: ACUTE MOTOR UNIT FIRING RATE AND COMMON DRIVE RESPONSES TO LOWER-BODY SINGLE-JOINT ACCENTUATED ECCENTRIC LOAD RESISTANCE EXERCISE 

 

 

CHAPTER 4 

ACUTE MOTOR UNIT FIRING RATE AND COMMON DRIVE 

RESPONSES TO LOWER-BODY SINGLE-JOINT ACCENTUATED 

ECCENTRIC LOAD RESISTANCE EXERCISE 
 

 

Balshaw TG, Pahar M, Chesham RA, Graham J, Hunter AM. 

 

4.1 Introduction 

To extend the findings of the third chapter of the thesis and provide mechanistic 

information regarding how AEL may differentially effect acute neuromuscular variables 

that have been reported to be undergo chronic adaptations, additional measures that 

were taken before and after the intervention that was described in the previous chapter 

were analysed. Early responses of the primary motor cortex (Karni et al., 1995; 

Pascual-Leone et al., 1994) have previously been shown to be involved in human 

motor learning, with transcranial magnetic stimulation measures used extensively to 

investigate responses to skill acquisition tasks (Pearce and Kidgell, 2010; Pascual-

Leone et al., 1995). The acute neural responses to resistance exercise have previously 

been likened to motor learning (Lee and Carroll, 2007; Carroll et al., 2001) with motor 

outputs that produce greater kinetic or kinematic responses during resistance exercise 

believed to be consolidated by the brain (Carroll et al., 2001). In order to test the 

hypothesis that favourable kinetic or kinematic outputs are consolidated following 



Chapter 4  Page 85 

 

resistance exercise, a recent study investigated acute transcranial magnetic stimulation 

responses to different types of upper-body resistance exercise (Selvanayagam et al., 

2011). Consequently, it was confirmed that muscle twitch force vector parameters were 

altered following single strength and ballistic upper-body resistance exercise sessions 

(Selvanayagam et al., 2011). This finding supports the association made between 

resistance exercise and motor learning and also indicates acute neural responses may 

contribute to chronic strength adaptation outcomes. 

AEL has previously been demonstrated to acutely produce greater concentric 

phase kinetic and kinematic outputs than CL (Sheppard and Young, 2010; Ojasto and 

Hakkinen, 2009a; Sheppard et al., 2007; Doan et al., 2002). In addition, the greater 

loading employed during AEL also requires greater force production during the 

eccentric phase (Reeves et al., 2009; Lastayo et al., 2003b). Furthermore, heavy 

eccentric-only resistance exercise performed at a fast velocity has been shown to 

result in greater strength gains compared to equivalent training completed at a slower 

velocity (Farthing and Chilibeck, 2003b). The greater increase in strength with faster 

velocity heavy eccentric efforts may be due to the greater acute force levels that are 

involved in such training (Farthing and Chilibeck, 2003b). Therefore, in accordance with 

the hypotheses associating neural responses to resistance exercise to those that occur 

with motor learning (Carroll et al., 2001), faster velocity AEL may have the potential to 

lead to differential acute neural responses. However, the equivocal strength gains 

reported in the existing AEL training intervention literature mean it is unclear if AEL 

leads to enhanced strength adaptations via differential neuromuscular adaptations 

(Brandenburg and Docherty, 2002; Hortobagyi et al., 2001a; Godard et al., 1998; 

Kaminski et al., 1998; Ben-Sira et al., 1995; Nichols et al., 1995). This issue is 

compounded further by the fact that no neuromuscular measures have not been 

incorporated in AEL training intervention studies that extend beyond intensified 7 d 

training periods (Hortobagyi et al., 2001a; Hortobagyi and Devita, 2000). 
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Although transcranial magnetic stimulation has been used previously to 

investigate both chronic adaptations and acute responses to resistance exercise, the 

emergence of new hardware and software, namely high density EMG (De Luca et al., 

2006), now provides the opportunity to non-invasively procure firing rate data from a 

high yield of single motor units (Beck et al., 2011; Nawab et al., 2010). Determining 

how variables such as motor unit firing rate and correlated motor unit activity may be 

effected in a large number of single lower-body motor units (~40) following resistance 

exercise may further our current understanding of how acute responses to resistance 

exercise influence variables that have previously been implicated in chronic neural 

adaptations (Selvanayagam et al., 2011). This type of research, conducted in the 

lower-body musculature, may be particularly interesting given the differences in cortical 

representation between lower-body muscles and the upper-body musculature that has 

previously been examined via transcranial magnetic stimulation measurements 

(Selvanayagam et al., 2011).  

Motor unit firing rate and common drive are both predominantly regulated 

centrally but spinal input can also modulate these measures. Intra-muscular wire 

electrode studies have previously shown motor unit firing rate to increase following 

acute resistance exercise (Kamen and Knight, 2004; Van Cutsem et al., 1998). In 

addition, the timing of firings from a motor unit in relation to those of another unit can 

also reveal acute post-resistance exercise neural adjustments (De Luca et al., 2006). 

For example, cross-correlation analysis of motor unit firing rate, dependent on the pre-

filtering technique applied (Negro and Farina, 2012), can be used to quantify different 

variables (Datta and Stephens, 1990), such as common drive (De Luca et al., 1982). 

Common drive is calculated from mean motor unit firing rate data and represents 

simultaneous fluctuations in firing rate between pairs of motor units (De Luca et al., 

1982). 

Cross-sectional studies have reported greater common drive in strength-trained 

compared to skill-trained individuals (Semmler and Nordstrom, 1998), suggesting 
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increases in common drive may be implicated in the neuromuscular adaptations 

responsible for increases in chronic strength levels. In contrast, other cross-sectional 

research has suggested no differences in common drive exist between skill-, 

endurance-, and strength-trained individuals (De Luca et al., 1982). These studies have 

employed fine wire electrodes in order to obtain individual motor unit firing rate data, as 

a result cross-correlation analysis was restricted to a limited number of motor units 

from each differentially trained population (Semmler and Nordstrom, 1998). The use of 

high density EMG measures negates issues associated with small motor unit yields 

and permits what may be considered a more sensitive measure of common drive 

(Carroll et al., 2011). In addition, high density EMG can allow the assessment of motor 

unit firing rates from distinct motor unit populations that are recruited at differential 

force levels (earlier-recruited and later-recruited motor units) to be assessed. AEL has 

previously been shown to increase the CSA of type IIX, but not other muscle fibre 

types. Whether, different acute neural responses occur between separate motor unit 

populations in a similar way to the reported morphological adaptations following AEL is 

unknown. The comparison of acute motor unit firing rate and common drive responses 

to AEL and CL, determined via high density EMG, may support or dismiss the use of 

AEL for bringing about superior chronic strength adaptations. Therefore, the purposes 

of the study were twofold; firstly, to compare motor unit firing rate and common drive 

responses after lower-body single-joint AEL and CL; and secondly, to assess the 

between-day reliability and inter-participant variability of motor unit firing rate analysis 

during a submaximal lower-body isometric trapezoid force trace effort. 

 

4.2 Methods 

4.2.1 Participants 

The same ten males who were described in Chapter 3 (section 3.2.1) 

completed the additional neuromuscular measurements detailed within this chapter.
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Figure 4.1 Knee extension isometric trapezoid effort force trace (denoted as a 
percentage of MVC peak force) with illustration of the identified time periods that were 
used for motor unit firing rate analysis: (1) ascent or recruitment phase; (2-4) plateau or 
constant force phase; and (5) descent or derecruitment phase.  
 

4.2.2 Procedures 

Isometric trapezoid force trace 

Isometric trapezoid knee extension force trace efforts involved a 3 s quiescent 

period, a linear 7 s ramp-up in force from 0% to 70% of before-intervention peak MVC 

force, a 10 s holding force levels constant at 70% of peak MVC force, a linear 7 s 

ramp-down from 70% to 0% of MVC peak force, and a final 3 s quiescent period 

(Figure 4.1). Isometric trapezoid efforts were performed at a knee joint flexion angle of 

70° (full extension equalling 0°). Participants met the required isometric trapezoid force 

trace via visual feedback displayed on a computer screen positioned in front of them at 

eye level. The majority of studies performing cross-correlation analysis of single motor 

units have employed force levels ≤30% of MVC (Fling et al., 2009). Therefore, findings 

have been limited to motor units recruited at these low force levels. As the AEL and CL 

interventions investigated throughout this thesis involved high force levels it was critical 

to investigate motor unit firing rate and common drive responses at as high an 
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isometric force level that could be maintained for the duration of the 10 s plateau 

phase. The selection of greater isometric force during the trapezoid force trace efforts 

would permit the effect of the AEL and CL interventions on a larger range of motor 

units to be assessed. 

 

4.2.3 Experimental protocol 

The same experimental protocol as detailed in Chapter 3 was completed by 

participants (Figure 4.2). The initial three sessions were used to familiarise participants 

with the tasks to be performed in the four final experimental condition testing sessions. 

A minimum of 5 d separated each experimental test day. In addition to the 

familiarisation tasks listed in Chapter 3 (section 3.2.3) participants were also 

familiarised with the performance of 5 s knee extension MVCs and isometric knee 

extension trapezoid force trace efforts. All isometric knee extension efforts were 

performed with the participant’s dominant leg whilst they were seated and secured on a 

Biodex 3 dynamometer as described in Chapter 2 (section 2.2.2). 

The control of variables before experimental testing sessions was the same as 

that detailed in Chapter 3 (section 3.2.3). 3RM knee extension strength was assessed 

at the beginning of each test day as described in Chapter 3 (section 3.2.2). Fifteen min 

after the knee extension 3RM, before-intervention MVC and isometric trapezoid force 

trace efforts were performed. A single 5 s MVC was performed followed by a single 

isometric trapezoid force trace effort. The 5 s MVCs performed before- and after-

experimental interventions were conducted as described in Chapter 2 (section 2.2.2). 

The absolute reliability of 5 s MVC peak force had previously been established at 8.0% 

in Chapter 2 (section 2.3.1). One min recovery periods separated MVC and isometric 

force trace efforts. Eight min after knee extension repetitions had been completed in 

each experimental condition after-intervention MVC and isometric trapezoid efforts 

were completed.  
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Figure 4.2 Experimental condition protocol. * denotes randomisation of experimental 
conditions.  
 

A 3 min rest period was taken following isometric trapezoid force trace efforts 

before experimental condition knee extension sets were completed. One of the four 

knee extension conditions described in Chapter 3 (section 3.2.3) was completed on 

each test day (CL-2s, CL-4s, AEL-2s, or AEL-4s). The duration of the eccentric phase 

in each condition was as described in the previous chapter (section 3.2.3). 

 

4.2.4 High density EMG and MVC force data collection 

Vastus lateralis high density EMG was measured and amplified during the 

isometric force trace efforts with the use of a modified Bagnoli 16-channel EMG system 

(Delsys, Boston, USA). A five pin sensor was applied to the vastus lateralis between the 

site recommended by Surface Electromyography for the Non-Invasive Assessment of 

Muscles guidelines guidelines for vastus lateralis bipolar surface electrode configuration 

and the belly of the vastus lateralis (Figure 4.3 A). High density EMG electrode 

placement was adjusted to ensure a minimum 4:1 signal to noise ratio was obtained 

before commencing measurements. The sensor consisted of five cylindrical blunted 

probes, each with a diameter of 0.5 mm. The probes occupied the four corners and the 

centre of a 5 x 5 mm square (Figure 4.3 B). The sensor was pressed forcefully in to the 

skin whilst avoiding piercing of the skin and was secured with micropore tape. Before 
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placing and securing the electrode, skin preparation was conducted as detailed in 

Chapter 2 (section 2.2.4). A 5.08 cm diameter reference electrode (HE-R, Dermatrode, 

American Imex, Irvine) was applied to the patella of the participant’s involved leg. The 

high density EMG system recorded four separate bipolar EMG signals from the five-pin 

sensor probe array at a sampling frequency of 20 kHZ. The four signals from each 

isometric trapezoid force trace effort were filtered with a band width of 20 to 1750 Hz 

(De Luca and Contessa, 2012). Vastus lateralis high density EMG and force data from 

the Biodex 3 dynamometer were synchronously recorded via software (EMGworks® 4.0 

Acquisition software, Delsys, Boston, USA) integrated with the high density EMG 

system. Voltage data measured from the Biodex 3 was calibrated within the 

EMGworks® software during the dynamometer calibration to allow force data to be 

captured during MVC and isometric trapezoid force trace efforts. 

 

4.2.5 EMG signal decomposition, analysis, and accuracy 

High density EMG signal decomposition 

Vastus lateralis high density EMG motor unit firing rate, common drive, and 

MVC force data were processed with EMGworks® 4.0 Analysis software (Delsys, 

Boston, USA). In addition Matlab software (Mathworks, Inc., Natick, USA) was used to 

produce absolute motor unit firing rate data from each of the identified time periods 

during the isometric trapezoid force trace efforts (Figure 4.1). In order to decompose 

surface EMG collected with the high density EMG system into constituent motor unit 

action potential trains, Precision Decomposition III algorithms were used (De Luca et 

al., 2006). These algorithms employ the artificial intelligence framework known as 

“Integrated Processing and Understanding of Signals” in order to separate the action 

potentials of different motor units from the overall surface EMG signal. The Precision 

Decomposition III
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Figure 4.3 The five-pin high density EMG sensor applied to the vastus lateralis before 
being secured with micropore tape (A) and next to a 5 pence coin included for size 
reference (B). The pins on the corners of the square are spaced 5 mm apart. 
 

system involves four separate stages that takes the surface EMG signal input (x(t)) and 

produces motor unit action potential trains of the individual motor units (y(j)(t), j= 1, 2,..., 

N) identified within the input signal (Figure 4.4). 

Stage 1: The input signal is filtered with an 8th order Butterworth digital IIR 

band-pass filter (lower cut-off: 24 dB/octave <250 Hz; upper cut-off: 24 dB/octave 

>2,000 Hz). 

Stage 2: During the second phase of the Precision Decomposition III system a 

segmented version of the filtered input signal is passed through a maximum a 

posteriori probability receiver (LeFever and De Luca, 1982). Segments of the filtered 

input signal are determined based on signal amplitude in relation to dynamic range 

criteria for the amplitudes of decomposable motor unit trains. These segments then 

contribute to the construction of motor unit action potential train templates for each 

hypothesised motor unit. The maximum a posteriori probability receiver subsequently 

classifies characteristics of the segmented signal based on amplitude peaks and 

associates a hypothesised motor unit. Specifically, the maximum a posteriori probability 

receiver assigns a component of the segmented signal to a particular motor unit and 

A B 
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Figure 4.4 Block diagram of the main components of the Precision Decomposition III 
algorithms. Replicated with permission (De Luca et al., 2006).  

 

the probability that the motor unit the signal component has been distributed to belong 

to the motor unit’s pulse train is then assessed by a hazard function (LeFever and De 

Luca, 1982). Finally, signal segments are assessed in relation to existing motor units 

and if the maximum a posteriori probability does not determine a match between units 

a new motor unit template is added. However, If a match is determined between a 

signal segment and an existing motor unit template the existing motor unit is updated 

using a recursive relation formula.  

Stage 3. The third phase of the Precision Decomposition III algorithm assesses 

the probability that the motor unit action potential trains of a single motor unit have 

been split into two or more separate motor units using a “trellis traversal” search 

strategy (Castanon, 1990). This strategy also merges trains with a high probability of 

belonging to the same motor unit. The probability separate trains belong to the same 

motor unit is assessed through the level of correlation between trains and how 

uncorrelated they are to other motor unit action potential trains.  
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Stage 4. The final stage of the Precision Decomposition III system reanalyses 

“degenerate” motor unit trains in which interference between two or more action 

potentials results in the maximum a posteriori probability receiver classifying the signal 

segment as belonging to a new motor unit, without finding a matching action potential 

later in the signal. The reanalysis conducted in phase four identifies non-degenerate 

trains from the maximum a posteriori probability receiver that are consistent with the 

data in overlapping regions. This process involves the identification of the maximal 

amplitude motor unit and the points the maximal amplitude motor unit’s local peak 

cross-correlation is greater in relation to that of the other motor units. This process 

allows the probability that the maximal amplitude motor unit’s action potential actually 

occurred at the identified point. A probability threshold is established from the 

maximum probability level produced following correlation of the maximal amplitude 

template with all other motor unit templates. At the points where the probability that the 

identified action potential belongs to the maximal amplitude motor unit exceeds the 

probability threshold, a scaled version of the template of the maximal amplitude motor 

unit is removed from the surface EMG signal. This process is repeated with the 

identification of a new maximal amplitude motor unit following removal of the previous 

maximal amplitude motor unit template. Once this process has been completed for all 

motor units, the correlation results undergo a utility maximisation process (Von 

Neumann and Morgenstern, 1944) allowing decisions to be made regarding which 

motor unit action potential trains are consistent with the overlapping data. 

 

Firing rate and motor unit number analysis 

 The firing rate of motor units from the decomposed high density EMG signals 

were analysed by dividing the motor units by order of recruitment into three separate 

groups (or tertiles): (i) earlier-recruited; (ii) mid-recruited; and (iii) later-recruited motor 

units (Figure 4.5). The three separate groups were formed by arbitrarily dividing the 

total number of motor units by three, if a number of motor units that did not divide 
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Figure 4.5 Firing rate bar plot (A) and mean firing rate curve plot (B) of one participant. Vertical lines on the firing rate bar plot represent the 
firings of each motor unit and each individual curve on the firing rate curve plot represents the mean firing rate of a single detected motor unit (B). 
The black line indicates the force trace produced by the participant as a percentage of knee extension MVC. The red broken line boxes denote 
the three identified motor unit populations used for analysis; 1.) earlier-recruited; 2.) mid-recruited; and 3.) later-recruited motor units.  
 

 

A 
B 
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evenly by three was detected additional motor units were added to the later-recruited 

motor unit group. For example if 34 motor units were detected the earlier-recruited and 

mid-recruited motor unit would have 11 motor units in each group, whereas the later-

recruited motor units would have 12 motor units. This allowed the analysis of three 

populations of motor units which were expected to display differential firing rate 

characteristics (Eccles et al., 1958). Specific 3 s time periods during the isometric 

trapezoid force trace were analysed to provide details of firing rate of each of the three 

motor unit populations during the: (i) ascent; (ii) plateau; and (iii) descent portions of 

the isometric trapezoid force trace efforts (Figure 4.1). In addition, the reliability of 

motor unit firing rate during the identified 3 s time periods was investigated during 

before-intervention isometric trapezoid force trace efforts. Motor unit firing rate 

reliability was assessed to determine the suitability of using each section of the 

trapezoid for analysis. The maximum number of motor units detected during each 

isometric trapezoid force trace effort was also compared between conditions. 

 

Common drive 

 Common drive was analysed using the EMGworks® 4.0 Analysis software. In 

order to quantify common drive, constituent motor unit action potential trains were 

converted to motor unit firing rate curves after being smoothed with an 800 ms Hanning 

window filter. Motor unit firing rate curves for all unique pairs of motor units were then 

cross-correlated during the time period of the constant force part of the isometric force 

trace effort (Figure 4.1; t1= start of selected constant force region, t2= end of selected 

constant force region) which displayed the greatest absolute reliability for motor unit 

firing rate. During this period of constant force correlations between firing rates are not 

expected to result from variation in the force generated by the involved muscle. The 

two input series (R1 and R2) from each unique pairing of motor units were filtered with 

an 8th order high pass Butterworth filter with a cut-off of 0.75 Hz to produce R1 filt and R2 

filt. R1 filt and R2 filt were then subsetted to the region of interest (t1 to t2) producing R1 sub 
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Figure 4.6 Cross-correlation coefficient function output for a single time-point for one 
participant during the study. Each curve displayed on the figure represents the output 
of the cross-correlation between two motor unit mean firing rate curves in which peak 
cross-correlation coefficients occurred within the specified constant force time period of 
the isometric trapezoid force trace effort. Maximum and mean peak cross-correlation 
results were obtained from these coefficient function outputs. 
 
and R2 sub. The normalised cross-correlation was computed between R1 sub and R2 sub 

with up to a 1 s time-lag (Figure 4.6). Pairs of motor units in which peak cross-

correlation coefficients occurred within the specified constant force time period of the 

isometric trapezoid force trace effort were included within the analysis. In keeping with 

recent research conducting common drive analysis all potential combinations of motor 

unit pairs were cross-correlated with each other (Beck et al., 2012). Therefore, if 20 

motor units were detected, from the number of unique combinations of motor unit pairs, 

up to 190 maximum peak cross-correlation values could be included within the 

analysis. The maximum peak cross-correlation value that was obtained across each 

unique pair of motor units that were cross-correlated was used for analysis. In addition, 

the mean of the peak cross-correlations obtained across reference motor units was 

also used for analysis. Frequency histograms of the peak cross-correlation coefficients 

achieved from each unique pair of motor units that were cross-correlated across all 
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participants were plotted, in order to provide further assessment of common drive 

responses (Beck et al., 2012). 

 

Decomposition accuracy 

 The accuracy of the decomposition for each isometric trapezoid force trace 

effort conducted was assessed with “reconstruct and test” analysis (Figure 4.7;(De 

Luca and Contessa, 2012; Nawab et al., 2010). The “reconstruct and test” analysis 

(Nawab et al., 2010) is currently considered the most suitable way of validating the 

decomposition of high density EMG signals (De Luca and Nawab, 2011). This analysis 

(Accuracy = 1 - Nerror/Ntruth (Where Nerror is the total number of unmatched events, and 

Ntruth is the total number of true events)) assesses the level of firing rate accuracy of 

each detected motor unit and the number of errors•s-1, across the entire duration of the 

submaximal isometric trapezoid force trace effort. Each detected motor unit was 

required to display an accuracy level of >85.0% across the entire isometric trapezoid 

force trace effort in order to be included for analysis (Stock et al., 2012). Accuracy 

levels during the plateau phase of the isometric trapezoid force trace efforts were 

typically >92.5%. 

 

4.2.6 Statistical analysis 

Minitab 16 statistical software (Minitab Ltd., Coventry, UK) was used to conduct 

all statistical analysis. The normality of force data and high density EMG variables were 

assessed via Q-Q plots and constant variance, subsequently normality of the data was 

confirmed. A time-point (before-intervention vs. after-intervention) x condition (CL-2s 

vs. AEL-2s vs. CL-4s vs. AEL-4s) repeated measures analysis of variance was 

conducted to assess differences in firing rate, the maximum number of detected motor 

units, cross-correlation coefficients, and MVC peak force between conditions. A 

significance level of p< 0.05 was selected to determine statistical differences. Tukey 
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Figure 4.7 Reconstruct and test analysis output used to determine decomposition 
accuracy for one participant’s knee extension isometric trapezoid force trace effort. 
Motor unit number, accuracy rate, and number of errors•s-1 are displayed on the left 
side of the figure. Vertical spikes on the figure represent each motor unit firing, firings 
with a circle denote a false positive, and firings with crosses denote a false negative.  
 
 
post-hoc analysis was used to determine where differences occurred between loading 

conditions. 

 Absolute and relative reliability, as well as inter-participant variability (all defined 

in Chapter 2 (section 2.2.5)) of firing rate data were calculated for each motor unit 

population (earlier-recruited, mid-recruited, and later-recruited) during the five identified 

time periods (Figure 4.1) of before-intervention isometric trapezoid force trace efforts 

on each experimental test day. Absolute reliability of motor unit firing rate data was 

assessed via intra-participant coefficient of variation and limits of agreement. Intra-

participant coefficent of variation standards were adopted from previous 

electromyography research and were defined as follows: <12.0%= “good”, 12.0-20%= 

“acceptable”, >20.0%= “unacceptable” (Albertus-Kajee et al., 2010). Relative reliability 

of motor unit firing rate data was assessed using intraclass correlation coefficients. 

Intraclass correlation coefficient values and 95% confidence intervals were calculated 
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with statistical spreadsheets downloaded from www.sportsci.org (Hopkins, 2010). 

Intraclass correlation coefficient variation were adopted from a recent neuromuscular 

physiology reliability study and were defined as follows: 0.80–1.00= “excellent”, 0.60–

0.80= “good”, and <0.60= “poor” (Buckthorpe et al., 2012). Inter-participant variability of 

motor unit firing rate data was assessed using inter-participant coefficient of variation in 

order to determine if “common” firing rates existed between participants. 

 

4.3 Results 

4.3.1 Motor unit firing rate, number of detected motor units, and MVC force 

 Time phase four, from the plateau phase of the isometric trapezoid force trace 

effort, demonstrated the greatest absolute reliability across the largest number of motor 

unit firing rate tertiles. The other time phases typically showed lower absolute reliability 

(>12.0% coefficient of variation). Given the greater absolute reliability of time phase 

four this period alone was used for motor unit firing rate analysis. No condition effects 

were detected for firing rate in earlier-recruited (p= 0.092, f= 2.37), mid-recruited (p= 

0.159, f= 1.87), or later-recruited (p= 0.136, f= 2.01) motor unit populations (Figure 

4.8). No time effects were observed for firing rate in earlier-recruited (p= 0.284, f= 

1.30), mid-recruited (p= 0.126, f= 2.84), or later-recruited (p= 0.964, f= 0.00) motor unit 

populations. A condition-time-point interaction effect was observed for the later-

recruited (p= 0.025, f= 3.65) motor units, but not earlier-recruited (p= 0.286, f= 1.33) or 

mid-recruited (p= 0.399, f= 1.02) units. The condition-time-point interaction effect in the 

later-recruited motor unit population revealed a decrease in motor unit firing rate from 

before- to after-intervention measures in the AEL-2s condition (Figure 4.8 C). No 

differences in the maximum number of detected motor units were observed between 

conditions (p= 0.989, f= 0.04; Figure 4.9 A). Additionally, no time-point (p= 0.713, f= 

0.14) or condition-time-point interaction (p= 0.139, f= 1.99) effects were observed for 

the maximum number of detected motor units. MVC peak force demonstrated no 
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condition (p= 0.446, f= 0.92), time-point (p= 0.282, f= 10.01), or condition-time-point 

interaction (p= 0.896, f= 0.20) effects (Figure 4.9 B). 

 

4.3.2 Common drive 

Due to processing difficulties an n of 9 was included for common drive 

analyses. As time phase four of the isometric trapezoid force trace efforts 

demonstrated the greatest absolute reliability across the largest number of motor unit 

populations this plateau phase alone was used for common drive analysis. No 

differences between conditions were shown in common drive, as displayed by 

frequency histogram analysis (Figure 4.10), maximum (p= 0.678, f= 0.51; Figure 4.11 

A) and mean (p= 0.873, f= 0.23; Figure 4.11 B) peak cross-correlation coefficient 

values. Time-point effects were not detected for maximum (p= 0.981, f= 0.00) or mean 

(p= 0.692, f= 0.17) peak cross-correlation coefficient values. Condition-time-point 

interaction effects were not observed for maximum (p= 0.696, f= 0.48) or mean (p= 

0.953, f= 0.11) peak cross-correlation coefficient values. 

 

4.3.3 Decomposition accuracy 

 Before-intervention isometric trapezoid force trace efforts displayed 94.4 ± 

2.5%, 95.5 ± 1.5%, 93.7 ± 2.3%, and 92.7 ± 2.6% accuracy across the duration of the 

entire isometric trapezoid force trace effort in the CL-2s, AEL-2s, CL-4s, and AEL-4s 

conditions, respectively. After-intervention isometric trapezoid force trace efforts 

displayed 93.6 ± 2.4%, 93.2 ± 3.3%, 92.4 ± 2.6%, and 93.1 ± 2.7% accuracy across the 

duration of the entire trapezoid effort in the CL-2s, AEL-2s, CL-4s, and AEL-4s 

conditions, respectively. Before-intervention isometric trapezoid force trace efforts 

demonstrated 1.3 ± 0.6 errors•s-1, 1.0 ± 0.3 errors•s-1, 1.3 ± 0.4 errors•s-1, and 1.6 ± 0.4 

errors•s-1 across the duration of the entire isometric trapezoid force trace effort in the 
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Figure 4.8 Mean vastus lateralis firing rate (pulses•s-1) during the selected region of 
the constant force phase of the isometric trapezoid force trace effort for: (A) earlier-
recruited; (B) mid-recruited; and (C) later-recruited motor units during AEL and CL 
conditions conducted with either a 2 s or 4 s eccentric knee flexion phase. * denotes a 
decrease (p< 0.05) in firing rate from before to after intervention measures in the AEL-
2s condition.  
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Figure 4.9 Maximum number of detected motor units during isometric trapezoid force 

efforts (A) and peak force during MVC knee extension efforts (B) in AEL and CL 

conditions conducted with either a 2 s or 4 s eccentric knee flexion phase.  

 

CL-2s, AEL-2s, CL-4s, and AEL-4s conditions, respectively. After-intervention isometric 

trapezoid force trace efforts demonstrated 1.6 ± 0.7 errors•s-1, 1.4 ± 0.4 errors•s-1, 1.8 ± 

0.6 errors•s-1, and 1.6 ± 0.8 errors•s-1 across the duration of the entire trapezoid effort 

in the CL-2s, AEL-2s, CL-4s, and AEL-4s conditions, respectively. 

 

4.3.4 Absolute reliability, relative reliability, and inter-participant variability of 

motor unit firing rate data 

 Table 4.1 demonstrates that the lowest intra-participant coefficient of variation 

four across motor unit populations were frequently observed in time phase four. Time 

phase four also displayed the narrowest limits of agreement values for mid-recruited 

motor units and overall motor unit firing rates. The greatest intraclass correlation 

coefficient values were displayed in time phases three and four across the motor unit 

populations (Table 4.2). The lowest inter-participant coefficient of variation was 

consistently displayed in time phase four across motor unit populations (Table 4.2). 
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Figure 4.10 Histograms of the maximum cross-correlation coefficients between each pair of motor units that were cross-correlated across all 
participants before and after AEL and CL conditions completed with either a 2 s or 4 s eccentric knee flexion phase. 
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Figure 4.11 Maximum (A) and mean (B) peak cross-correlation coefficients in AEL and 
CL conditions conducted with either a 2 s or 4 s eccentric knee flexion phase.  
 

4.4 Discussion 

4.4.1 Motor unit firing rate, common drive, and force production responses 

 In this study we demonstrated that the motor unit firing rate of later-recruited 

motor units was decreased following acute AEL-2s, whilst the motor unit firing rate of 

earlier-recruited and mid-recruited motor units remained unchanged. Conversely, the 

firing rate of all motor unit populations was maintained in the AEL-4s condition. In 

comparison, the firing rates of all motor unit populations remained unchanged following 

both CL-2s and CL-4s conditions. These findings suggest AEL elicits distinct 

neuromuscular responses in the later-recruited motor units compared to CL. In 

contrast, common drive did not differ between conditions with both peak cross-

correlation coefficients and frequency histograms remaining unchanged when 

compared to before-intervention measures. Furthermore, it was shown that the firing 

frequency of earlier-recruited motor units, mid-recruited motor units, and later-recruited 

motor units had the greatest absolute reliability towards the end of the plateau phase of 

the isometric trapezoid force trace efforts.  

CL-2s AEL-2s CL-4s AEL-4s
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BEFORE

A
AFTERTime-point:

Condition

C
ro

s
s
-c

o
rr

e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

CL-2s AEL-2s CL-4s AEL-4s
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0B
BEFORE AFTERTime-point:

Condition

C
ro

s
s
-c

o
rr

e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

MAXIMUM 
PEAK CROSS-CORRELATION 

MEAN 
PEAK CROSS-CORRELATION 



Chapter 4                      Page 106 

 

Table 4.1 Summary of vastus lateralis firing rate absolute reliability measures for earlier-recruited, mid-recruited, and later-recruited motor units. 
The values in boxes denote the time phase with the greatest reliability for each variable for each motor unit tertile. 
 
 
 

 

 

 

 

 

 

 

  

95% Lower limits 
of agreement 

  
95% Upper limts 

of agreement 
  

Intra-participant 
coefficient of variation 

  

Coefficient of 
variation descriptor 

  

Mean ± SD   Mean ± SD   Mean ± SD 

Motor 
unit 

tertile 

Time 
phase 

                      
    

Earlier-
recruited 

1 -13.6 ± 4.8 

 

12.7 ± 5.0 

 

99.6 ± 63.0 

 

Unacceptable 

2 -6.2 ± 1.3 

 

6.6 ± 3.0 

 

14.3 ± 6.2 

 

Acceptable 

3 -4.3 ± 1.2   4.3 ± 1.1   7.7 ± 3.9 

 

Good 

4 -4.7 ± 1.0 

 

4.3 ± 1.1 

 

7.9 ± 4.1 

 

Good 

5 -8.2 ± 2.0   7.4 ± 2.2   18.5 ± 13.4   Acceptable 

Mid-
recruited 

1 -8.3 ± 1.9 
 

9.3 ± 2.2 
 

149.6 ± 63.7 

 

Unacceptable 

2 -6.8 ± 1.4 

 

9.5 ± 2.6 

 

26.6 ± 13.9 

 

Unacceptable 

3 -3.0 ± 0.8 

 

6.4 ± 1.5 

 

10.0 ± 5.4 

 

Good 

4 -3.2 ± 1.0   5.6 ± 1.1   8.6 ± 5.2 

 

Good 

5 -7.6 ± 1.7   7.4 ± 1.9   35.1 ± 30.7   Unacceptable 

Later-
recruited 

1 -1.9 ± 0.9   2.4 ± 0.8 
 

63.1 ± 89.9 

 

Unacceptable 

2 -5.3 ± 1.0 

 

8.2 ± 2.2 

 

36.4 ± 18.7 

 

Unacceptable 

3 -2.6 ± 1.4 

 

6.0 ± 1.4 

 

12.9 ± 9.0 

 

Acceptable 

4 -1.7 ± 0.9 

 

3.8 ± 0.8   8.7 ± 5.3 

 

Good 

5 -3.5 ± 0.4   3.7 ± 1.0   69.3 ± 42.9   Unacceptable 

Overall 

1 -10.7 ± 3.4 
 

10.4 ± 3.5 
 

133.2 ± 71.8 

 

Unacceptable 

2 -3.7 ± 1.0 

 

6.0 ± 1.8 

 

14.8 ± 6.6 

 

Acceptable 

3 -2.0 ± 1.1 

 

5.3 ± 1.3 

 

8.2 ± 5.2 

 

Good 

4 -2.5 ± 0.8   4.6 ± 0.9   7.1 ± 4.7 

 

Good 

5 -4.1 ± 1.4   5.2 ± 1.8   15.4 ± 9.9   Acceptable 



Chapter 4                      Page 107 

 

Table 4.2 Summary of vastus lateralis firing rate relative reliability and inter-participant variability measures for earlier-recruited, mid-recruited, 
and later-recruited motor units. The values in boxes denote the time phase with the greatest reliability for each variable for each motor unit 
tertile. 
 

  
Inter-participant coefficient of 

variation  
Intraclass correlation coefficient of variation 

  
Mean ± SD 

 
Mean 

Lower confidence 
interval 

Upper confidence 
interval 

Descriptor 

Motor unit 
tertile 

Time 
phase         

Earlier-
recruited 

1 99.5 ± 11.9 
 

0.60 0.29 0.81 Good 

2 19.7 ± 5.3 
 

0.62 0.30 0.82 Good 

3 15.6 ± 2.4 
 

0.74 0.49 0.88 Good 

4 15.3 ± 3.5 
 

0.74 0.49 0.88 Good 

5 23.4 ± 2.5 
 

0.46 0.10 0.73 Poor 

Mid-recruited 

1 177.5 ± 23.4 
 

0.68 0.39 0.85 Good 

2 43.5 ± 7.5 
 

0.71 0.44 0.87 Good 

3 21.1 ± 4.5 
 

0.78 0.56 0.90 Good 

4 20.1 ± 4.5 
 

0.75 0.50 0.89 Good 

5 52.4 ± 6.6 
 

0.73 0.48 0.88 Good 

Later-
recruited 

1 240.8 ± 37.4 
 

0.39 0.02 0.69 Poor 

2 73.2 ± 17.0 
 

0.69 0.40 0.86 Good 

3 29.4 ± 5.4 
 

0.79 0.57 0.91 Good 

4 25.2 ± 5.4 
 

0.85 0.69 0.94 Excellent 

5 97.4 ± 16.7 
 

0.71 0.45 0.87 Good 

Overall 

1 112.8 ± 16.4 
 

0.41 0.04 0.70 Poor 

2 26.1 ± 4.5 
 

0.79 0.57 0.91 Good 

3 20.0 ± 3.1 
 

0.83 0.65 0.93 Excellent 

4 18.7 ± 4.0 
 

0.82 0.63 0.92 Excellent 

5 21.1 ± 4.5 
 

0.56 0.23 0.79 Poor 
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The firing rates of earlier-recruited motor units in the present investigation were, 

as previously reported, greater than later-recruited motor units (De Luca and Hostage, 

2010; De Luca and Erim, 1994; De Luca et al., 1982). The vastus lateralis firing rates 

reported in the current study are lower than those reported in previous work, in which 

peak and mean firing rates of 50.0 and 26.4 pulses•s-1 were reported (Roos et al., 

1999), respectively. Similar average vastus lateralis motor unit firing rates (~20 

pulses•s-1) have been reported both before and after resistance training interventions at 

50-60% (Stock et al., 2012) and 75% (Pucci et al., 2006) of MVC peak force as those 

of earlier-recruited motor units in the present study. However, both Pucci et al (Pucci et 

al., 2006) and Stock et al (Stock et al., 2012) averaged motor unit firing rates rather 

than using the motor unit population classification system employed in the current 

study. The reported differences in vastus lateralis firing rate between the current study 

and previous research is likely due to the different percentages of MVC at which motor 

unit firing rates were measured and the way firing rates were calculated. Previously, it 

has been stated that the use of multiple second time periods where constant force is 

maintained, such as in the current study, provides a better indication of a sustained 

firing rate than when brief ms time periods are used. This has been attributed to force 

fluctuations that may occur during brief time periods where motor unit firing rate is 

calculated (De Luca and Hostage, 2010). 

 The finding of decreased later-recruited motor unit firing rates may be indicative 

of; (i) central fatigue (Stock et al., 2012), despite the maintenance of after-intervention 

MVC force (Behm, 2004); or (ii) an energy preserving intrinsic decrease in motor 

neuron discharge rate known as “late adaptation” in the AEL-2s condition (Behm, 

2004). The reported decrease in motor unit firing rate suggests that AEL performed 

with a quicker eccentric phase effects neural control and places differential demands 

on later-recruited motor units compared to CL. The fact that a differential motor unit 

firing rate response occurred only in the AEL-2s condition suggests the greater force 

production required in the eccentric phase of this condition as a result of both loading 
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and velocity variables (Farthing and Chilibeck, 2003b) may have caused the altered 

later-recruited motor unit firing rate response. It is likely therefore, that later-recruited 

motor units would have been largely responsible for the increased force production 

under the conditions of the AEL-2s intervention. The acute reduction in motor unit firing 

rate following the AEL-2s condition is somewhat related with research that has 

previously shown increases in type IIX muscle fibre cross sectional area beyond 

changes in the same fibre type with CL during a 6 week training intervention study 

(Friedmann-Bette et al., 2010). Although, definite conclusions cannot be made 

regarding the specific type of motor units recruited in the arbitrarily determined earlier-

recruited, mid-recruited, and later-recruited populations, motor units of increasing size 

are recruited with increasing levels of force (Henneman, 1985). 

If the decrease in motor unit firing rate in the AEL-2s condition was caused as a 

result of central fatigue, neuromuscular strategies such as altered motor control may 

have occurred to allow MVC peak force to be maintained. Previously, it has been 

demonstrated that altered central excitatory input can increase the activity of other 

quadriceps muscles to compensate for fatigue of the vastus lateralis (Akima et al., 

2002). Alternatively, alterations in antagonist muscle recruitment strategy may have 

occurred following the intervention (Psek and Cafarelli, 1993). However, motor unit 

firing rates of the other quadriceps muscles and biceps femoris were not measured 

during the isometric trapezoid force trace efforts and therefore these suggestions 

cannot currently be confirmed. The differential firing rate responses in the later-

recruited motor units following the AEL-2s intervention could potentially contribute to 

the superior chronic strength gains that have previously reported with AEL (Hortobagyi 

et al., 2001a; Hortobagyi and Devita, 2000), especially given the role of higher 

threshold motor units in maximal force production. However, it remains to be clarified 

how the acute decrease in later-recruited motor unit firing rate observed in the current 

study, may influence later-recruited motor units at different stages of a long-term AEL 

training intervention. Specifically, the acute decrease in later-recruited motor unit firing 
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rate in the current study is in contrast to prior research documenting increases in motor 

unit firing rate with chronic strength gains following resistance training interventions 

(Folland and Williams, 2007). The fact that only the AEL-2s condition induced an acute 

response in firing rate suggests that the velocity of eccentric muscle actions, not just 

the load employed, influences the acute responses to resistance exercise in a 

recreational resistance exercising population. 

Although the firing rate of later-recruited motor units decreased following the 

AEL-2s intervention, common drive was unchanged following AEL or CL interventions. 

The fact that common drive was not affected by any of the interventions despite a 

decrease in motor unit firing rate suggests that such acute responses can occur 

independently of common drive adjustments. Consistent with the acute responses in 

the present study, previous research has reported adaptations in firing rate, but not 

motor unit synchronisation following a 4 week low force resistance exercise 

intervention (Griffin et al., 2009). Motor unit synchronisation, like common drive, is 

quantified by cross-correlation analysis. The lack of alteration of common drive 

calculated from a large population of motor units following each intervention in the 

current study indirectly supports existing cross-sectional and training intervention 

studies, suggesting strength training does not alter common drive (Beck et al., 2011; 

De Luca et al., 1982). The finding of unaltered common drive following acute resistance 

exercise involving an overloaded eccentric phase was consistent with other acute 

research conducting cross-correlational analysis using a greater volume of eccentric 

exercise to induce muscle damage (Beck et al., 2012), but in contrast to the findings of 

other studies employing eccentric-focused exercise interventions (Dartnall et al., 2011; 

Dartnall et al., 2008). The disparity in findings between studies regarding common drive 

and motor unit synchronisation may be due to differences in the type of electrode 

employed (high density EMG electrode vs. intra-muscular wire electrode) or the type of 

cross-correlation analyses conducted (Dartnall et al., 2011; Dartnall et al., 2008). There 

also remains the possibility that acute common drive responses and chronic 
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adaptations may not be related or contribute (Kidgell et al., 2006) to increased strength 

levels following resistance training interventions (Duchateau et al., 2006). Further 

research is required to determine if similar motor unit firing rate responses are 

observed in a multiple-joint AEL model, which has more application for rehabilitative 

and athletic populations. In addition, research investigating motor unit firing rates 

responses after repeated training sessions, within an AEL training intervention, are 

warranted. Determining how acute responses contribute to longer-term neural 

adaptations would allow for a greater understanding of how chronic concentric and 

eccentric strength is influenced and also help determine the efficacy of using AEL. 

The motor unit firing rate results produced from the current study contradict 

prior upper-body acute surface EMG findings which did not display differential 

responses between AEL and CL (Ojasto and Hakkinen, 2009a; Ojasto and Hakkinen, 

2009b). Whereas, common drive results from the present investigation are consistent 

with the lack of neuromuscular responses in comparison to CL reported within the 

existing acute AEL literature (Ojasto and Hakkinen, 2009a; Ojasto and Hakkinen, 

2009b). The discrepancy in findings between the current study and previous research 

is likely due to the differences in the timing and type of measures quantified. In the 

previous research surface EMG measures were taken whilst participants performed 

acute upper-body AEL and represent neuromuscular activation during this task rather 

than the neural responses that occur afterwards. 

 

4.4.2 Motor unit firing rate absolute, relative and inter-participant reliability 

The quality of findings from the current investigation are supported by the 

“reconstruct and test” analysis (Nawab et al., 2010), which provides quantification of 

signal decomposition accuracy to ensure users can focus on analysing accurate data, 

has previously been validated (De Luca and Nawab, 2011; De Luca et al., 2006). 

However, until now, between-test session reliability of motor unit firing rate data 

produced from decomposed surface EMG signals does not seem to have been 
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assessed. The finding of greater absolute reliability towards the end of the plateau 

phase of the isometric trapezoid force trace effort may be due to the stabilisation of 

motor unit firing rate with time during the sustained isometric contraction (Contessa et 

al., 2009; Bigland-Ritchie et al., 1983). The large intra-participant coefficient of variation 

during the recruitment phase of the contraction may be attributed to the greater force 

fluctuations that are likely to occur during this component of the isometric trapezoid 

force trace effort. The recruitment phase required fine adjustments in force production 

to accurately track the force trace curve, as it increased at a set rate of 10% of MVC 

peak forces-1. Therefore, during the recruitment phase variance in the ability to 

precisely track force trace between test session days may have caused additional 

motor units to be recruited or firing rates to be adjusted within this early part of the 

isometric trapezoid force trace effort, which may explain the “unacceptable” coefficient 

of variation values reported for this phase. 

 

4.5 Conclusions 

The findings of the current study indicate that single-joint lower-body AEL 

employing a ~2 s eccentric phase differentially effects motor unit firing rate on an acute 

basis compared to CL. The lack of alteration of common drive calculated from a large 

population of motor units following each intervention adds indirect support for existing 

cross-sectional and training interventions suggesting strength training may not alter 

common drive. Further research is required to confirm whether or not the same motor 

unit firing rate response occurs in a multiple-joint lower-body AEL model. In addition, 

further research should elucidate how acute motor unit firing rate responses change 

across the course of AEL training programme intervention and how AEL influences 

both chronic concentric and eccentric strength as a result. 
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4.6 Contribution of chapter four to the aims of the thesis 

The current chapter addressed one of the aims of the thesis by comparing common 

drive and motor unit firing rate responses after AEL and CL. The results of this chapter 

are the first to investigate how acute bouts of AEL and CL effect motor unit firing rate 

and common drive. The results of the current chapter contribute new information to the 

body of research investigating AEL as existing research has only investigated 

adaptations and responses of EMG amplitude following AEL training interventions and 

during acute training bouts, respectively. The findings of the current chapter 

demonstrated that the firing rates of later-recruited motor units were reduced following 

an acute bout of AEL completed with a 2 s duration eccentric phase. The acute 

reduction in motor unit firing rate following lower-body single-joint AEL may provide an 

indication of the nature of longer-term adaptations that occur with this type of 

resistance exercise. However, future research incorporating both acute and chronic 

neuromuscular measurements is required to confirm this. In order to make progress 

towards attaining the remaining aims of the thesis the approaches employed in Chapter 

3 and 4 were applied to a multiple-joint free weight lower-body resistance exercise; the 

back squat. 

CHAPTER 5: ACUTE NEUROMUSCULAR AND KINETIC RESPONSES TO WEIGHT RELEASER HOOK ACCENTUATED ECCENTRIC LOAD BACK SQUATS 

 

 

CHAPTER 5 

ACUTE NEUROMUSCULAR AND KINETIC RESPONSES TO 

WEIGHT RELEASER HOOK ACCENTUATED ECCENTRIC LOAD 

BACK SQUATS 
 

 

Balshaw TG, Chesham RA, Donald N, Hunter AM. 

 

5.1 Introduction 

Following the investigation of acute: (i) neuromuscular activation; (ii) kinetic and 

kinematic; (iii) contractile characteristics; (iv) motor unit firing rate; and (v) common 
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drive responses to lower limb single-joint AEL and CL, the question arose as to 

whether similar responses would occur in a more complex multiple-joint resistance 

exercise model. Training interventions comparing AEL and CL have been conducted to 

assess the efficacy of AEL for enhancing chronic strength adaptations. AEL has been 

shown to elicit greater strength gains, compared to CL (Norrbrand et al., 2008; 

Friedmann et al., 2004; Brandenburg and Docherty, 2002; Hortobagyi et al., 2001a; 

Hortobagyi and Devita, 2000; Kaminski et al., 1998). However, other AEL training 

intervention studies have demonstrated strength adaptations to equate those seem 

with CL (Friedmann-Bette et al., 2010; Yarrow et al., 2008; Barstow et al., 2003; 

Godard et al., 1998; Ben-Sira et al., 1995; Nichols et al., 1995). The ambiguous 

findings in the existing AEL training intervention research may be due, in part, to the 

differences in the way that AEL has been implemented. Flywheel devices (Norrbrand et 

al., 2008), resistance machine (Friedmann et al., 2004; Barstow et al., 2003; 

Hortobagyi et al., 2001a; Ben-Sira et al., 1995), and free weight variations (Yarrow et 

al., 2008; Brandenburg and Docherty, 2002) each have different configurations 

affecting the amount of load that can be applied during AEL, how quickly transitions 

between eccentric and concentric phases of the particular exercise can be made, and 

the extent of effort required to stabilise the body in order to maintain exercise posture in 

response to gravity, ground reaction forces, and momentum. Furthermore, many of 

these AEL devices are not portable, financially feasible, or commercially available. 

Free weight resistance exercise is frequently selected rather than over 

resistance machines within both athletic and rehabilitative populations. Lower-body 

resistance exercises, such as the free weight back squat are considered to result in 

strength gains in anterior (knee extensor) and posterior (hip extensor) musculature that 

are more transferable to real-world athletic events and mobility compared to machine-

based resistance exercise, due to the greater neuromuscular activation and 

intermuscular coordination involved (Young, 2006). However, to date, only a single 

AEL free weight squat-based training programme intervention has been conducted 
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(Yarrow et al., 2008). This study utilised free weight resistance exercise combined with 

a commercially unavailable selectorised electric motor resistance machine to 

implement AEL (Yarrow et al., 2008). Weight releaser hooks (Doan et al., 2002) that 

can be applied during the free weight barbell back squat represent a portable, 

commercially available, and financially feasible way to implement AEL in applied 

training settings (GETSTRENGTH, 2013). The use of weight releaser hooks during the 

back squat resistance exercise presents a unique set of demands to the individual 

performing the exercise given the additional eccentric phase load, the distribution of 

this load, and the unassisted removal of the weighted hooks prior to the concentric 

phase of each repetition. However, despite suggestions that acutely overloading the 

eccentric phase may cause additional ɑ motor neurons to be recruited during the 

subsequent concentric phase of an AEL exercise (Doan et al., 2002) no lower-body 

study has investigated neuromuscular activation during a key lower-body free weight 

exercise such as the free weight back squat. Acute concentric kinetic responses to 

ballistic lower-body AEL exercises have previously been investigated (Moore et al., 

2007; Sheppard et al., 2007) and recently a study was completed comparing knee 

extensor neuromuscular and kinetic responses in an AEL flywheel squat model. 

However, these acute lower-body studies have either not measured neuromuscular 

activation (Moore et al., 2007; Sheppard et al., 2007) or use resistance exercise 

models that are dissimilar to traditional resistance training equipment and are 

predominantly used during space flight (Norrbrand et al., 2011). 

Determining the acute kinetic and neuromuscular activation responses to AEL 

barbell squats conducted with weight releaser hooks would inform the prescription or 

refinement of resistance training programmes for individuals within athletic and 

rehabilitative training settings. The results produced from such an investigation would 

help exercise professionals to decide whether or not to employ AEL with their athletes 

or patients, during which training phase this back squat variant could be implemented, 

and how AEL may acutely effect neuromuscular control compared to CL squats. 
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Specifically, this approach would assess how the unique demands of weight releaser 

hook AEL back squats influence: (i) the magnitude of kinetic outputs produced across a 

range of concentric phase loads; (ii) the extent and rate of force production during the 

eccentric phase of the exercise; (iv) the amount of neuromuscular activation from key 

knee and hip extensor musculature; and (iv) the neuromuscular activation contributions 

from and interactions between lower-body agonist muscles. Such an investigation may 

be particularly informative for practitioners given the contrasting results reported in the 

AEL vs. CL training intervention literature. Therefore, the purposes of the current study 

were threefold: firstly, to compare acute kinetic outputs between AEL and CL squats; 

secondly, to investigate how the extent of acute neuromuscular activation is effected 

when back squats are completed with and without weight releaser hooks; and thirdly, to 

examine how acute activation contributions from and interaction between anterior and 

posterior lower-body musculature are effected during weight releaser AEL compared to 

CL squats. In Chapter 2 normalisation methods during the free weight back squat were 

assessed. Submaximal dynamic surface EMG normalisation methods were identified 

as having the greatest absolute reliability between-test days. Therefore, submaximal 

normalisation methods were selected to allow comparisons between neuromuscular 

activation during AEL and CL free weight back squats within the current chapter. 

 

5.2 Methods 

5.2.1 Participants 

Ten strength-trained males (aged: 28.5 ± 6.2 years, body mass: 83.7 ± 10.1 kg, 

height: 1.75 ± 0.08 m, sum of seven skin folds: 65.4 ± 16.9 mm, mean ± SD), 

experienced with the free weight back squat and repetition maximum testing (relative 

3RM back squat strength: 1.7 ± 0.2 times body mass, absolute 3RM back squat back 

squat barbell load: 141.5 ± 18.3 kg) took part in the study. Ethical approval was 

obtained from the University of Stirling Research Ethics Committee. All participants 
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provided written informed consent prior to testing. The study was conducted in 

accordance with the principles outlined in the Declaration of Helsinki (2008). 

 

5.2.2 Procedures 

3RM back squat 

Baseline 3RM back squat testing was performed to allow load prescription 

during experimental condition test sessions. Maximum strength testing commenced 

with incremental intensity warm-up sets, in order to prepare participants for up to five 

attempts at establishing 3RM to the nearest 2.5 kg. 3RM rather than 1RM testing was 

used as subsequent experimental sessions involved multiple sets with 3 repetitions 

prescribed. Multiple repetition maximum tests have previously been demonstrated to 

be reliable with individuals familiar with this type of testing (Taylor and Fletcher, 2012). 

Olympic standard barbell and weight plates were used during all test sessions (Eleiko 

Sport, Halmstad, Sweden). Recovery between each of the warm-up sets and 3RM 

attempts was set at 3-mins (Harman, 2008). Participant squat stance width was 

marked and measured prior to the warm-up and was used in all subsequent sessions. 

During all back squat repetitions completed in the 3RM and the subsequent 

experimental test day sessions exercise posture was monitored to ensure hip and knee 

joint angles remained constant between conditions. Knee joint angles were monitored 

using a two-dimensional electrogoniometer (TSD130B, Biopac Systems Inc, California, 

USA) and integrated hardware (Biopac MP100, Biopac Systems Inc, California, USA) 

and software (AcqKnowledge®, Version 3.9, Biopac Systems Inc, California, USA). 

The upper unit of the electrogoniometer was attached to the thigh and the lower unit 

was secured to the shank of the participant’s dominant leg using micropore tape. 

Measures produced from the goniometer were used to ensure sufficient knee joint 

range of movement (Caterisano et al., 2002). No differences in knee joint angle were 

detected at the lowest part of the back squat between conditions (p= 0.187, f= 2.04; 

mean across sets: AEL: 68.7 ± 1.3°, CL: 65.9 ± 0.4°, mean ± SD, 180° equalling full 
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knee extension). Hip joint angles were controlled by visually monitoring the forward 

lean of the torso to ensure hip joint flexion was not excessive, as previously described 

(Caterisano et al., 2002). 

 

Application of additional eccentric load via weight releaser hooks 

The sum of the barbell load for the heaviest successful 3RM attempt and 88.6% 

of body mass were used to establish 3RM back squat system mass (Brandon et al., 

2011), as decribed in Chapter 2 (section 2.2.2). The loads applied to the barbell and 

weight releaser hooks during back squat repetitions were prescribed in order to equate 

percentages of 3RM system mass. The eccentric phase load during AEL back squat 

repetitions was produced through the combination of: (i) the load applied to the barbell; 

and (ii) the additional load attached via custom-built adjustable weight releaser hooks 

(Doan et al., 2002), at each end of the barbell (Figure 5.1). Assistants responded to 

verbal signals from the participant to apply the hooks at each end of the barbell, 

ensuring simultaneous application of the hooks and balance of the load on the 

participant’s shoulders, before the start of each repetition. At the bottom position of the 

back squat, the load applied by each weight releaser hook was automatically removed 

from the barbell by the contact of the bottom of each hook with custom-built adjustable 

platforms positioned at either side of the squat rack. 

 

Kinetic data capture 

Kinetic data during all experimental back squat repetitions completed in the 

study were recorded using an integrated force platform (400 Series force platform, 

Fitness Technology, Adelaide, Australia), linear transducer (Celesco PT5A, 

Chatsworth, Califronia, USA), and software (Ballistic Measurement System, Version 

2011.0.3, Fitness Technology, Adelaide, Australia) system. The force platform and 

transducer were calibrated against known forces and distances 
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Figure 5.1 Application and release of the AEL weight releaser hooks. (A) Participant free standing at start of squat repetition following 
synchronised application of additional eccentric load (denoted by black line box) via releaser hooks applied by assistants at either end of the 
barbell. (B) Descent of barbell during the eccentric phase of the back squat. (D) Bottom position of the back squat where weight releaser hooks 
are removed from the barbell as the base of the hooks contact the customised height releaser platform (D) Ascent of the barbell during the 
concentric phase of the back squat following removal of weight releaser hooks. (E) End of the concentric phase, assistants ready to apply 
weight releasers for the subsequent repetition.  

E D C B A 
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(Sheppard et al., 2008b). Participants performed all back squat repetitions in each 

experimental condition whilst standing on the force platform and having the transducer 

secured to their barbell. The transducer was mounted overhead to the squat rack frame 

that back squat repetitions were performed within. Kinetic data were sampled at a 

frequency of 200 Hz (Hori et al., 2009; Hori et al., 2008; Hori et al., 2007). All force 

platform and linear transducer data were filtered with a cut-off frequency of 10 Hz using 

a forth order Butterworth digital filter. 

 

5.2.3 Experimental protocol 

Participants reported for four separate test sessions over a 4 week period. 

Participants avoided exhaustive exercise in the 24 h prior to each test session and 

replicated 48 h food and fluid intake diaries recorded prior to the first session before all 

remaining test sessions. Back squat 3RM was established in the first session. The 

second lab visit was used to the familiarise participants with performing AEL back 

squats. During the familiarisation session participants completed sets of three AEL 

back squat repetitions using a 65% of 3RM concentric phase load and additional load 

applied via weight releaser hooks during the eccentric phase to equate loads ranging 

from 90% of 3RM up to the 105% of 3RM. Once participants were accustomed to 

performing AEL squats with the 105% of 3RM eccentric phase load AEL sets with 75-

85% of 3RM in the concentric phase were performed. 

The third laboratory visit involved the randomised completion of either AEL or 

CL squats (Figure 5.2). In the final laboratory session the remaining experimental 

condition was completed. Experimental condition test sessions were separated by 5 d. 

Before experimental condition back squat sets commenced two back squat warm-up 

sets were completed. Each warm-up set consisted of five repetitions, performed at 70% 

and 80% of 3RM system mass, respectively. During warm-up sets both the eccentric 

and concentric phases were completed in time with audible tones produced by a 

custom-built metronome. Inter-tone time (eccentric: 1.6 ± 0.4 s; concentric: 2.4 ± 0.5 s) 
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was determined from 3RM barbell displacement data recorded via the same integrated 

force platform and transducer system, used to collect kinetic data during all back squat 

repetitions, in order to equate the velocity during the heaviest successful 3RM attempt. 

Following warm-up sets, participants performed a further preparatory set 

consisting of three repetitions. The CL condition preparatory set involved a 65% of 

3RM system mass load for both the eccentric and concentric phases. The preparatory 

set in the AEL condition consisted of a 90% of 3RM system mass eccentric phase load 

and a 65% of 3RM system mass load during the directly subsequent concentric phase. 

From the preparatory set onwards, participants completed the eccentric phase of each 

repetition in time with the audible tones from the custom-built metronome, transitioned 

as quickly as possible between phases, and performed the subsequent concentric 

phase as explosively as possible. The audible tones from the custom-built metronome 

were effective in matching eccentric phase duration between sets as no differences 

between conditions were observed (p= 0.269; f= 1.39; mean ± SD across sets: AEL: 

1.5 ± 0.5 s, CL: 1.3 ± 0.3 s). The four back squat sets in each condition (AEL or CL), 

following the preparatory set, involved concentric phase loads of 65% of 3RM system 

mass load (set 1), 75% of 3RM system mass load (set 2), 85% of 3RM system mass 

load (set 3), and 95% of 3RM system mass load (set 4). The eccentric phase loads in 

the CL condition were the same as the concentric phase load in each set, whereas the 

eccentric phase load in the AEL condition was held constant at 105% of 3RM across 

sets. A 105% of 3RM eccentric overload was selected based on pilot work completed 

with a strength-trained population suggesting this load was the heaviest load that could 

be applied for multiple sets and also allowed participants to maintain correct back squat 

range of movement and posture. Each experimental set, regardless of condition, 

consisted of three repetitions. As the purpose of the study was to compare kinetic and 

neuromuscular responses to AEL and CL rather than induce
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Figure 5.2 Experimental condition protocol. * denotes randomisation of experimental 
conditions.  
 

muscle damage, a set and repetition configuration designed to elicit high force and 

power outputs whilst still performing multiple repetitions was selected, rather than a 

high volume set and repetition protocol. Training volume (mass x repetitions x number 

of sets) was calculated for concentric and eccentric phases of the back squat in each 

condition (Kramer et al., 1997). Concentric phase training volume was 1,172.3 ± 159.8 

kg in both conditions. Eccentric phase training volume was 1,815.0 ± 229.9 kg and 

1,172.3 ± 159.8 kg and in the AEL and CL conditions, respectively. The eccentric 

phase training volume was 55.1 ± 3.5% greater in the AEL compared to the CL 

condition. 

 

5.2.4 Kinetic data analysis 

Back squat concentric phase peak force and peak power values produced 

during each repetition in both conditions were extracted from kinetic data capture files. 

The mean of concentric kinetic variables across repetitions within each set was used 

for analysis. The extraction of concentric phase kinetic data was achieved by analysing 

force and power within each period where the barbell was moved from its lowest height 
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to its greatest height, as determined from linear transducer displacement data. 

Concentric phase back squat peak force and peak power data displayed mean intra-

participant coefficients of variation ranging from 1.3-2.4% and 2.6-5.7%, respectively, 

when this absolute reliability measure was calculated for each set in both conditions. 

As the eccentric back squat phase duration was controlled via audible tones from a 

custom-built metronome the magnitude and rate of loading during this phase was 

quantified from force data by analysing eccentric mean force and rate of force 

development (Ebben et al., 2010). Eccentric rate of force development was calculated 

for each repetition by subtracting the force value 250 ms prior to peak force from peak 

eccentric force and dividing by the time elapsed between these two values (250 ms). 

Mean eccentric mean force and rate of force development values were determined 

across repetitions within each set in each experimental condition and were used for 

analysis. The extraction of eccentric phase kinetic data was accomplished by analysing 

force within each repetition where the barbell was moved from its highest height to its 

lowest height, as determined from linear transducer displacement data. Eccentric 

phase back squat mean force and rate of force development data displayed mean 

intra-participant coefficients of variation ranging from 0.2-1.2% and 11.8-18.2%, 

respectively, when this absolute reliability measure was calculated for each set in both 

conditions. 

 

5.2.5 Electromyography 

Electromyography data collection 

Vastus lateralis, vastus medialis, biceps femoris, and gluteus maximus 

electromyography was recorded (Biopac MP100, Biopac Systems Inc, California, USA) 

from each participant’s dominant leg during all warm-up, preparatory, and experimental 

back squat sets in each experimental condition. Skin preparation was conducted as 

described in Chapter 2 (section 2.2.4). A bipolar electrode configuration (VERMED 

A10009-100 ECG diagnostic electrodes, Vermont, USA) was applied to each muscle in 
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accordance with the Surface ElectroMyoGraphy for the Non-Invasive Assessment of 

Muscles guidelines (Hermens et al., 2000). Specifically, the bipolar electrode 

configuration with a 2 cm inter electrode distance was applied at the following 

locations: vastus lateralis; as described in Chapter 2 (section 2.2.4), vastus medialis; 

80% on the line between the anterior spina iliaca superior and the joint space in front of 

the anterior border of the medial ligament, biceps femoris; as described in Chapter 2 

(section 2.2.4), gluteus maximus; 50% on the line between the sacral vertebrae and the 

greater trochanter (Surface ElectroMyoGraphy for the Non-Invasive Assessment of 

Muscles, 2013). A reference electrode was attached to the patella of the participant’s 

dominant leg. Following the first experimental test day, participants remarked the 

electrode sites with indelible ink to ensure placement was the same for their second 

test day. Electromyography data were sampled at a rate of 1500 Hz and anti-aliased 

with a 500 Hz low pass filter. A 10 Hz high pass filter was also applied. The Biopac 

MP100 system had an input impedance and common mode rejection ratio of 2MΩ and 

>110 dB, respectively. 

 

Electromyography data processing 

Electromyography amplitude was established by root mean square processing 

the entire signal, with average root mean square calculated for a moving window 100 

ms time period across the entire waveform for each muscle. This processing method 

was applied to electromyography data collected from the 80% of 3RM warm-up set 

conducted on each test day and all experimental back squat sets in each condition. 

Root mean square processing was used to analyse electromyography based on 

previous recommendations for research investigating neuromuscular activation levels 

(Hägg et al., 2004). Electromyography processing was completed using the software 

used to operate the electromyography system (AcqKnowledge® 3.9.1, Biopac Systems 

Inc, California, USA) according to the system manufacturer’s guidelines 

(Acqknowledge® software guide, 2008). 
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Electromyography data extraction 

The mean root mean square processed electromyography amplitude from the 

concentric and eccentric phase of 80% of 3RM warm-up and experimental condition 

set repetitions was extracted. The eccentric and concentric phase electromyography 

during experimental condition back squats was determined from joint angle data 

collected from the two-dimensional electrogoniometer that was attached to the 

participant’s dominant leg during all test sessions. Electromyography within the period 

from the greatest to the smallest knee joint angle in each repetition was classified as 

eccentric phase data given that full knee extension was classified as 180°. Whereas, 

electromyography data within the period from the smallest to the greatest knee joint 

angle in each repetition was classified as the concentric data. Mean root mean square 

electromyography data from each experimental condition set repetition was normalised 

to the root mean square electromyography from the corresponding muscle action 

phase of the 80% of 3RM system mass load warm-up set, conducted at the start of the 

same test session. Root mean square electromyography from the experimental 

conditions was normalised to the 80% of 3RM warm-up set to assess differences 

between conditions. This normalisation method had demonstrated the greatest 

absolute reliability between-test days compared to other methods in Chapter 2 of this 

thesis (section 2.3.2). 

 

5.2.6 Statistical analyses 

Absolute reliability of kinetic variables measured during each experimental 

condition was quantified by calculating the intra-participant coefficient of variation from 

repetitions within each experimental condition set ((mean ÷ SD) x 100). The standard 

deviation of the two repetitions that produced the greatest kinetic output within each set 

was divided by the mean of these two repetitions and multiplied by one hundred to 

produce the intra-participant coefficient of variation. The mean coefficient of variation 

for each kinetic variable was taken across both experimental conditions for each set. 
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Minitab 16 statistical software (Minitab Ltd., Coventry, UK) was used to conduct all 

statistical analysis. Normality of kinetic and electromyographical variables was 

confirmed following the assessment of Q-Q plots and constant variance. A set (set 1 

vs. set 2 vs. set 3 vs. set 4) x condition (AEL vs. CL) repeated measures analysis of 

variance was conducted on kinetic data. Set (set 1 vs. set 2 vs. set 3 vs. set 4) x 

condition (AEL vs. CL) and muscle (vastus lateralis vs. vastus medialis vs. biceps 

femoris vs. gluteus maximus) x condition (AEL vs. CL) repeated measures analysis of 

variance were used to assess neuromuscular activation and neuromuscular 

contributions from knee and hip extensor muscles between conditions, respectively. 

The approach of comparing neuromuscular activation contributions between knee and 

hip extensor muscles was adopted from previous electromyographical analysis 

research (Ayotte et al., 2007). Tukey post-hoc analysis was used to determine where 

differences between conditions, sets, and muscles occurred. The post-hoc test also 

allowed interaction effects to be assessed. A significance level of p< 0.05 was selected 

to determine statistical differences. All values reported are means ± SD. 

 

5.3 Results 

5.3.1 Kinetic variable differences during the concentric and eccentric phases of 

back squats 

No condition (p= 0.974, f= 0.00) or condition-load interaction (p= 0.391, f= 1.04) 

effects were reported for concentric phase peak force (Figure 5.3 A). Condition (p= 

0.273, f= 1.36) and condition-load interaction (p= 0.383, f= 1.06) effects were also 

absent for peak power (Figure 5.3 B). Load effects were observed with increases in 

concentric peak force (p< 0.001, f= 96.93) and decreases in concentric peak power (p= 

0.016, f= 4.08) occurring with load increments between 65 to 95% of 3RM (Figure 5.3 

A and B). Condition (p< 0.001, f= 271.88), set (p< 0.001, f= 910.94), and condition-set 

interaction (p< 0.001, f= 168.63) effects occurred for eccentric phase mean force. 
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Eccentric phase mean force was 30.4 ± 3.3%, 22.2 ± 2.0%, 14.4 ± 1.5%, and 6.9 ± 

0.9% greater in the AEL compared to the CL condition in sets one, two, three, and four, 

respectively (Figure 5.3 C). No condition (p= 0.419, f= 0.72), set (p= 0.695, f= 0.49), or 

condition-set interaction (p= 0.473, f= 0.86) effects occurred for eccentric rate of force 

development (Figure 5.3 D). 

 

5.3.2 Differences in neuromuscular activation between conditions 

No differences between AEL and CL conditions were detected for concentric 

neuromuscular activation of the vastus lateralis (p= 0.560, f= 0.37), biceps femoris (p= 

0.126, f= 2.84), vastus medialis (p= 0.887, f= 0.02), or gluteus maximus (p= 0.090, f= 

3.61; Table 5.1). Increased concentric phase neuromuscular activation did occur 

across loads in the biceps femoris (p< 0.001, f= 22.60), vastus medialis (p= 0.031, f= 

3.45), and gluteus maximus (p< 0.01, f= 10.09). No load effect (p= 0.560, f= 0.37) was 

observed for concentric vastus lateralis electromyography but condition-load interaction 

effects (p= 0.022, f= 3.76) did occur for this muscle. No condition-load interaction 

effects were demonstrated for concentric vastus medialis (p= 0.462, f= 0.88), biceps 

femoris (p= 0.820, f= 0.31), or gluteus maximus (p= 0.154, f= 1.90) EMG.  

As a product of the greater eccentric phase load in the AEL condition eccentric 

neuromuscular activation was greater for the vastus lateralis (p= 0.004, f= 14.48), 

biceps femoris (p= 0.026, f= 7.09), vastus medialis (p= 0.002, f= 19.46), and gluteus 

maximus (p= 0.011, f= 10.30) in the AEL than the CL condition. Condition-set 

interactions were observed for eccentric vastus lateralis (p< 0.001, f= 15.58), biceps 

femoris (p= 0.003, f= 6.10), vastus medialis (p< 0.001, f= 10.77), and gluteus maximus 

(p= 0.001, f= 7.98) EMG. Post-hoc analysis following the detection of a condition-set
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Figure 5.3 Concentric peak force (A), concentric peak power (B), eccentric mean force 
(C), and eccentric rate of force development (D) in AEL and CL back squat conditions. 
* denotes greater force (p< 0.05) produced than at 65% of three repetition maximum 
(3RM). # denotes greater force (p< 0.05) produced than at 75% of 3RM. $ denotes 
greater force (p< 0.05) produced than at 85% of 3RM. † denotes smaller power output 
(p< 0.05) than at 75%, 85%, or 95% of 3RM. § denotes greater force (p< 0.05) 
produced in AEL than CL condition in corresponding set. 
 
 

interaction effect demonstrated that eccentric vastus lateralis and vastus medialis EMG 

remained elevated in the AEL compared to the CL condition in all but the final set 

(Table 5.1). The post-hoc analysis also demonstrated that eccentric biceps femoris and 

gluteus maximus EMG were only greater in the AEL condition for the first two sets 

(Table 5.1). Set effects were also demonstrated for eccentric vastus lateralis (p< 0.001, 

f= 27.53), vastus medialis (p< 0.001, f= 64.76), biceps femoris (p= 0.001, f= 7.14), and 

gluteus maximus (p< 0.001, f= 10.44) EMG. 
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5.3.3 Differences in neuromuscular activation between muscles within each 

condition 

No differences between AEL and CL conditions were detected for concentric 

neuromuscular EMG at 65% (p= 0.416, f= 0.73), 85% (p= 0.436, f= 0.66), or 95% (p= 

0.904, f= 0.02) of 3RM. A condition effect (p= 0.044, f= 5.50) was found at 75% of 3RM 

for concentric EMG. Muscle effects were observed for concentric EMG at 85% (p= 

0.040, f= 3.18) and 95% (p= 0.001, f= 7.39) of 3RM, but not at 65% (p= 0.684, f= 0.50) 

or 75% (p= 0.428, f= 0.96) of 3RM. Condition-muscle interaction effects only occurred 

at 75% of 3RM (p= 0.003, f= 5.84), not at 65% (p= 0.196, f= 1.67), 85% (p= 0.195, f= 

1.68), or 95% of 3RM (p= 0.107, f= 2.24) (Figure 5.4). In the AEL condition at 75% of 

3RM concentric biceps femoris EMG was 20.8 ± 27.5% greater than that of the vastus 

lateralis (Figure 5.4 C). 

Condition effects indicating greater eccentric EMG in the AEL condition 

occurred in set 1 (p< 0.001, f= 46.60), set 2 (p< 0.001, f= 50.63), and set 3 (p= 0.006, 

f= 12.86), but not in set 4 (p= 0.246, f= 1.54) of 3RM. Muscle effects were observed in 

set 2 (p= 0.021, f= 3.80), set 3 (p= 0.006, f= 5.09), and set 4 (p< 0.001, 10.04), but not 

in set 1 for eccentric EMG. Condition-muscle interaction effects were displayed for 

eccentric EMG in set 1 (p= 0.15, f= 4.20) and set 2 (p< 0.001, f= 9.64), but not in set 3 

(p= 0.668, f= 0.53) or set 4 (p= 0.978, f= 0.06). Eccentric phase gluteus maximus EMG 

during the second AEL set was 15.1 ± 15.8%, 17.4 ± 21.4%, and 30.3 ± 19.9% greater 

than that of the vastus lateralis, vastus medialis, and biceps femoris, respectively 

(Figure 5.4 D). 

 

5.4 Discussion 

Numerous AEL training programme intervention studies have previously been 

conducted (Friedmann-Bette et al., 2010; Norrbrand et al., 2008; Yarrow et al., 2008; 

Brandenburg and Docherty, 2002; Hortobagyi et al., 2001a; Nichols et al., 1995).
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Table 5.1 Concentric and eccentric neuromuscular activation of the knee and hip extensor muscles during weight releaser hook AEL and CL free 
weight back squats.  
 

Muscle action 
phase 

Condition Load or Set 

Vastus 
lateralis  

Vastus 
medialis  

Bicep 
femoris  

Gluteus 
maximus 

Mean ± SD 
 

Mean ± SD 
 

Mean ± SD 
 

Mean ± SD 

Concentric 

AEL 
65% of 3RM 

126.1 ± 34.4 
 

129.3 ± 32.4 
 

128.9 ± 34.7 
 

127.8 ± 39.3 

CL 125.7 ± 23.5 
 

127.0 ± 35.7 
 

117.2 ± 44.2 
 

123.4 ± 37.7 

AEL 
75% of 3RM 

128.4 ± 20.4 
 

137.4 ± 27.0 
 

149.0 ± 32.2 
 

143.7 ± 35.0 

CL 128.1 ± 17.8 
 

135.4 ± 27.6 
 

127.9 ± 30.7 
 

125.7 ± 37.6 

AEL 
85% of 3RM 

129.5 ± 13.4 
 

143.1 ± 28.9 
 

165.1 ± 57.6 
 

143.6 ± 29.1 

CL 137.2 ± 21.8 
 

138.0 ± 23.2 
 

150.6 ± 43.7 
 

139.1 ± 33.4 

AEL 
95% of 3RM 

127.6 ± 16.5 
 

150.7 ± 29.7 
 

185.9 ± 39.7 
 

157.1 ± 29.5 

CL 141.5 ± 19.4 
 

139.1 ± 30.1 
 

173.5 ± 43.7 
 

159.1 ± 34.1 

Eccentric 

AEL 
Set 1 

120.1 ± 13.9* 
 

122.2 ± 13.7* 
 

116.6 ± 21.9* 
 

139.4 ± 42.4* 

CL 86.5 ± 14.3 
 

86.5 ± 9.1 
 

93.0 ± 15.4 
 

75.3 ± 13.7 

AEL 
Set 2 

128.3 ± 13.4* 
 

130.7 ± 20.6* 
 

111.8 ± 11.7* 
 

145.4 ± 19.4* 

CL 99.7 ± 12.4 
 

102.9 ± 11.0 
 

95.6 ± 14.8 
 

93.3 ± 9.2 

AEL 
Set 3 

128.1 ± 11.8* 
 

135.3 ± 17.8* 
 

110.3 ± 9.2 
 

137.7 ± 36.0 

CL 111.8 ± 16.5 
 

115.2 ± 12.8 
 

101.4 ± 18.1 
 

116.2 ± 24.4 

AEL 
Set 4 

131.3 ± 19.1 
 

140.2 ± 17.0 
 

115.4 ± 9.0 
 

145.0 ± 40.3 

CL 127.8 ± 16.4 
 

133.2 ± 14.0 
 

108.0 ± 19.5 
 

136.9 ± 22.1 

 
* denotes greater neuromuscular activation at p< 0.05 level compared to the same set in the CL condition. 
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However, equivocal strength adaptation findings in the AEL training intervention 

research, the range of different techniques and equipment used to implement AEL, and 

the inconsistency in both strength and physiological measures performed across AEL 

studies leave question marks over the efficacy of AEL. Consequently, these issues 

make it difficult for exercise professionals to draw conclusions on what effect employing 

AEL in a free weight barbell back squat model may have on chronic strength 

adaptations following AEL or the acute neuromuscular control and kinetic parameters 

their athletes or patients are exposed to during such training. The purpose of the 

current study was to investigate kinetic and neuromuscular responses during weight 

releaser hook AEL back squats in order to provide practitioners with information 

regarding how implementing lower-body AEL may influence acute training programme 

parameters. 

Evidence exists both for (McBride et al., 2002; Wilson et al., 1993) and against 

(Young, 2006; Toji and Kaneko, 2004; Harris et al., 2000)  the use of training loads that 

produce optimal acute kinetic outputs within training interventions. Regardless of 

whether or not training load is maintained throughout an intervention it is important to 

determine how exercise variations influence kinetic outputs in order to establish safe, 

effective, and exercise-specific training recommendations for athletes and exercise-

intolerant populations. The results of the current study indicated that weight releaser 

hook AEL back squats equate concentric phase peak power and force output during 

CL squats. The concentric phase kinetic findings from the current study were in 

contrast to previous research investigating acute kinetic outputs during heavy upper-

body free weight AEL (Doan et al., 2002) and ballistic lower-body AEL models 

completed without an externally loaded concentric phase (Sheppard et al., 2007). 

However, the finidngs of the current investigation were consistent with an AEL loaded 

lower-body ballistic resistance exercise model (Moore et al., 2007). The fact that acute 

concentric kinetic enhancements in the AEL condition were not observed in the current 
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Figure 5.4 Concentric and eccentric EMG of the knee and hip extensor muscles during 
weight releaser hook AEL back squats and CL back squats at 65% of 3RM load (A and 
B), 75% of 3RM (C and D), 85% of 3RM (E and F), and 95% of 3RM (G and H). Note 
that in the eccentric phase in the AEL condition eccentric phase load was held constant 
at 105% of 3RM across sets. * denotes greater neuromuscular activation compared to 
vastus lateralis within the same condition (p< 0.05), # denotes greater neuromuscular 
activation compared to vastus medialis within the same condition (p< 0.05), $ denotes 
greater neuromuscular activation compared to bicep femoris within the same condition 
(p< 0.05).  
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study may, in part, be a result of the extent of the eccentric load employed. Despite 

previous research eliciting kinetic output enhancements with a 105% eccentric phase 

load (Doan et al., 2002), other researchers have demonstrated individualising the 

extent of the eccentric phase load may be necessary to elicit peak kinetic outputs 

(Ojasto and Hakkinen, 2009a). 

Due to the greater eccentric loading, eccentric phase force was greater in the 

AEL compared to the CL condition in the present investigation. Elevated motor unit 

firing rates or unique eccentric muscle action recruitment strategies were likely 

responsible for the greater eccentric neuromuscular activation during the AEL condition 

due to the greater eccentric phase loading required in this conditions (Linnamo et al., 

2003). The finding of greater eccentric neuromuscular activation in the AEL condition 

was consistent with the acute reports from a lower-body seated flywheel AEL study, 

where greater eccentric force was produced in the AEL flywheel condition (Norrbrand 

et al., 2011). Eccentric rate of force development was not different between the two 

conditions. The lack of differences in eccentric rate of force development in the current 

study could be due to the fact that eccentric phase velocity was controlled in both 

conditions or because of poorer intra-participant absolute reliability of this variable 

(11.8-18.2%). The eccentric kinetic variable results from the current study indicate AEL 

squats do not cause there to be a greater rate of eccentric loading, but do involve a 7-

30% greater magnitude of eccentric force compared to CL. However, it must be noted 

that the way the of eccentric phase was performed, in relation to 3RM eccentric phase 

velocity, may not necessarily replicate the eccentric phase velocity typically employed 

in real-world strength training practices, particularly with lighter load CL. 

The lack of acute concentric neuromuscular activation differences between 

conditions in the current study was consistent with the results of a recent study 

comparing knee extensor neuromuscular activation during seated flywheel AEL 

compared to CL squats (Norrbrand et al., 2011). However, the flywheel AEL device 

employed in this previous study provides differential demands compared to free weight 
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CL squats as AEL flywheel squats require near maximal efforts from the first repetition 

of a set, are performed whilst seated, and are executed along a pre-determined path or 

trajectory. Therefore, several variables, in addition to extra eccentric load, that could 

have influenced neuromuscular activation were manipulated between conditions in this 

previous study. In the current study, only the addition of extra eccentric load and the 

way it was applied were varied between conditions. The fact that concentric 

neuromuscular activation did not differ between conditions in the present investigation 

suggest AEL does not cause additional ɑ motor neurons to be recruited in the 

subsequent concentric phase of an exercise, as previously hypothesised (Doan et al., 

2002). In contrast to the recent acute AEL flywheel squat study where only rectus 

femoris neuromuscular activation increased in the eccentric phase of the exercise 

(Norrbrand et al., 2008), eccentric neuromuscular activation increases were reported in 

the current study across the measured muscles in two to three of the four sets 

performed. As eccentric phase load became more similar between conditions, for 

example in set 3, neuromuscular activation remained elevated in the knee extensor 

musculature. Therefore, suggesting acute anterior lower-body neuromuscular 

activation is effected more than posterior chain activation by weight releaser hook AEL 

squats. This neuromuscular control difference in the AEL condition may result as a 

function of weight releaser hook load distribution during a task considered to be largely 

a posterior chain dominant exercise. The results of the present study demonstrated no 

clear differences in terms of the neuromuscular activation contributions between 

muscles within AEL and CL conditions. Despite biceps femoris and gluteus maximus 

activation being 15-30% greater in the second set of the AEL condition in the 

concentric and eccentric phases, respectively, this was not the case during the other 

AEL sets. Therefore, the use of weight releaser hooks during AEL squats does not 

appear to effect neuromuscular activation contributions from key lower-body agonists 

compared to an equivalent CL exercise. 
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The findings of the present investigation suggest that in comparison to CL 

squats weight releaser hook AEL squats: (i) do not positively or negatively effect acute 

concentric kinetic outputs; (ii) increase the acute forces individuals are exposed to by 

7-30%; (iii) do not enhance concentric phase neuromuscular activation; (iv) cause 

eccentric phase knee extensor neuromuscular activation to be maintained across 

loads; and (v) do not cause differences in neuromuscular contributions from key lower-

body agonists. Therefore, given the findings from the current study exercise 

professionals who prescribe training interventions may want to consider the use of 

weight releaser AEL squats. The decision to use weight releaser hook AEL squats will 

be dependent on several factors including athlete/patient characteristics and training 

intervention goals. But it is important to note that AEL has previously been shown to 

equate concentric strength gains seen with AEL (Yarrow et al., 2008), produce 

eccentric strength gains beyond those observed with CL (Hortobagyi et al., 2001a; 

Hortobagyi and Devita, 2000; Kaminski et al., 1998), and reduce injury frequency 

(Askling et al., 2003) when applied to lower-body musculature via methods that are 

less practical to implement than weight releaser hooks. Further research, following the 

acute findings reported within this study are required to confirm the efficacy of weight 

releaser hook AEL back squats on a longitudinal basis (e.g. training interventions of 4-

12 weeks in duration) for concurrently benefiting both concentric and eccentric strength 

of the knee and hip extensors, eliciting chronic neuromuscular adaptations in these 

muscles, and preventing injury. 

 

5.5 Conclusions 

The findings of the present investigation suggest that weight releaser AEL 

squats appear to present no negative acute concentric kinetic variable responses, 

provide greater eccentric phase kinetic demands in terms of force production, involve 

greater eccentric phase knee extensor contributions across lighter and heavier loads, 

and do not effect the neuromuscular contributions from key agonist muscles during 
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concentric or eccentric phases. Therefore, given these findings exercise professionals 

who prescribe training interventions may want to consider the use of weight releaser 

AEL squats depending on the characteristics and training goals of the individuals they 

work with. Further research is required to confirm the efficacy of weight releaser hook 

AEL back squats on a longitudinal basis for concurrently benefiting both concentric and 

eccentric strength of knee and hip extensor muscles, eliciting chronic neuromuscular 

adaptations in these muscles, and preventing injury. 

 

5.6 Contribution of the chapter to the aims of the thesis 

The current chapter addressed one of the main aims of the thesis by comparing 

acute neuromuscular and kinetic responses between AEL and CL back squats. The 

current chapter adds novel information to the existing literature as the results suggest 

that weight releaser AEL squats present no acute negative neuromuscular or kinetic 

effects. Therefore, in light of the equivocal training intervention findings regarding the 

efficacy of AEL the results of the present chapter may encourage exercise 

professionals who prescribe training interventions to consider the use of weight releaser 

hook AEL squats. In order to address the remaining aims of the thesis and further 

investigate how AEL may effect acute neuromuscular responses it was necessary to 

investigate how motor unit characteristics and maximal force production are influenced 

following lower-body multiple-joint AEL in the final chapter of this thesis. 
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CHAPTER 6: ACUTE MOTOR UNIT FIRING RATE AND COMMON DRIVE RESPONSES TO ACCENTUATED ECCENTRIC LOAD BACK SQUATS 

 

 

CHAPTER 6 

ACUTE MOTOR UNIT FIRING RATE AND COMMON DRIVE 

RESPONSES TO ACCENTUATED ECCENTRIC LOAD BACK 

SQUATS 
 

 

Balshaw TG, Pahar M, Chesham RA, Donald N, Hunter AM. 

 

6.1 Introduction 

Motor unit firing rate was shown to decrease in later-recruited motor units in 

response to single-joint AEL in Chapter 4, whilst common drive was not influenced 

following either AEL or CL interventions. However, it is unclear if the same motor unit 

firing rate and common drive responses observed in Chapter 3, in a single-joint 

resistance exercise, would occur for a multiple-joint resistance exercise. Investigating 

these responses in a multiple-joint resistance exercise model may provide further 

mechanistic insight into how AEL may potentially contribute to enhanced chronic 

strength adaptations (Selvanayagam et al., 2011). Single-joint resistance exercise has 

application for maintaining strength in an injured limb through cross-education (Shima 

et al., 2002) and for rehabilitation purposes (Schmitz and Westwood, 2001). However, 

multiple-joint free weight resistance exercise is considered to place greater demands 

on the neuromuscular and proprioceptive systems. The neuromuscular and 

proprioceptive systems are likely placed under greater demands during free weight 

resistance exercise due to: (i) the greater muscle mass involved; (ii) the coordination 

required between multiple muscles; and (iii) the need to stabilise the body in response 

to gravity, ground reaction forces, and momentum (Maddalozzo and Snow, 2000). In 

addition the chronic strength adaptations that occur with free weight resistance 

exercise are thought to be more transferable to real-world daily and sporting activities 
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(Kraemer and Ratamess, 2004). Accordingly, the decision to compare acute motor unit 

firing rate and common drive responses following the AEL and CL interventions 

detailed in Chapter 5 was made. 

Previously, transcranial magnetic stimulation measurements have been 

employed following acute bouts of upper-body strength and ballistic type resistance 

exercise to provide information regarding central nervous system and neuromuscular 

responses. Although transcranial magnetic stimulation has been used to investigate 

both chronic adaptations (Griffin and Cafarelli, 2007; Carroll et al., 2002) and acute 

responses (Selvanayagam et al., 2011) to resistance exercise, the emergence of new 

hardware and software, namely high density EMG (De Luca et al., 2006), now provides 

the opportunity to non-invasively procure firing rate data from a high yield of single 

motor units (~40) (Beck et al., 2011; Nawab et al., 2010). Determining how centrally 

influenced variables such as motor unit firing rate and correlated motor unit activity 

(e.g. common drive) are acutely influenced in a large number of single motor units 

following resistance exercise may further current understanding of how different types 

of resistance exercise elicit chronic neural adaptations. 

The decomposition of surface EMG makes non-invasively investigating motor 

unit firing rate variables possible. Importantly, high density EMG measures may prove 

to be more sensitive to subtle responses or adaptations in common drive following 

acute resistance exercise bouts or chronic resistance exercise training interventions 

(Carroll et al., 2011). In addition, the high motor unit yield from high density EMG 

measurements provides new opportunities to investigate the responses of motor unit 

subpopulations, which are characterised as having different firing rates (De Luca and 

Hostage, 2010; De Luca and Erim, 1994; De Luca et al., 1982). Intra-muscular wire 

electrode studies have previously shown motor unit firing rate to increase following 

acute resistance exercise (Kamen and Knight, 2004; Van Cutsem et al., 1998), 

whereas the timing of firings from a motor unit in relation to those of another unit can 

also reveal acute post-resistance exercise neural adjustments (De Luca et al., 2006). 
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Cross-sectional studies using fine wire electrodes have reported greater common drive 

in strength-trained individuals in comparison to skill-trained individuals, with control 

group participants displaying intermediate levels of common drive (Semmler and 

Nordstrom, 1998). Therefore, an increase in common drive may be one of the 

neuromuscular adaptations responsible for chronic strength adaptations (Carroll et al., 

2011; Semmler and Nordstrom, 1998). In contrast, other cross-sectional research 

findings dismiss increased common drive as a strength training adaptation (De Luca et 

al., 1982). Although such studies provide invaluable information for understanding 

neural adaptations to strength training, the conclusions from these studies are 

restricted to a limited number of motor units from each different training population 

(Semmler and Nordstrom, 1998). 

AEL has previously been shown to increase the CSA of type IIX, but not other 

muscle fibre types. Whether, different acute neural responses occur between motor 

unit populations in a similar way to the reported morphological adaptations following 

AEL is uncertain. The findings of Chapter 4 (section 4.3.1) suggest this may be the 

case in a single-joint model, but it is unclear whether motor unit firing rate responds 

similarly in a multiple-joint model. The comparison of acute motor unit firing rate and 

common drive responses between AEL and CL, determined from high density EMG, 

may provide new mechanistic insight regarding how each of these types of resistance 

exercise influence neuromuscular control. Therefore, the purposes of the study were 

threefold; firstly, to compare motor unit firing rate and common drive responses after 

lower-body multiple-joint AEL and CL; secondly, to examine differences in lower limb 

maximal force production following AEL and CL back squats; and thirdly, to assess the 

between test day reliability and inter-individual variability of motor unit firing rate 

analysis during a lower-body isometric trapezoid force trace effort. In Chapter 4 of the 

thesis it was established that the firing frequency of earlier-recruited, mid-recruited, and 

later-recruited vastus lateralis motor units had the greatest absolute reliability towards 

the end of the plateau phase of the isometric trapezoid force trace effort, when the 
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effort was performed at a 70° knee joint angle on the Biodex 3 dynamometer. It was 

deemed appropriate to analyse vastus lateralis firing rate reliability in the current study 

as isometric trapezoid force trace efforts were performed on a custom-built 

dynamometer with a different knee joint angle and at a lower isometric force level 

compared to Chapter 4. A lower force level was employed as a result of the demands 

of the acute multiple-joint AEL and CL interventions used. 

 

6.2 Methods 

6.2.1 Participants 

Eight of the ten males who were described in Chapter 5 (section 5.2.1) 

completed the additional neuromuscular measurements detailed within this chapter. 

Due to technical difficulties it was not possible to obtain after-intervention MVC or 

isometric trapezoid force trace effort measures for two of the participants who took part 

in Chapter 5. 

 

6.2.2 Procedures 

Knee extension maximal voluntary isometric contractions 

Knee extension MVCs were performed with the participant’s non-dominant leg 

on a custom-built dynamometer (Figure 6.1), consisting of a strain gauge (Load Cell 

700-001K2 S-Beam, Richmond Industries, Reading, UK) attached to a knee extension 

machine frame. During MVCs participants were firmly restrained with adjustable straps 

(Master Lock Company, Wisconsin, USA) at the shoulders, waist, and non-involved leg 

to minimise extraneous bodily movements. During MVCs the seat settings of the knee 

extension frame and the height at which the strain gauge was attached to the frame 

were standardised and recorded for each participant. This configuration allowed the 

ankle cuff attached to the strain gauge to be positioned above the lateral epicondyle of 

the participant’s involved leg, at a 90° knee joint flexion angle (0° equalling full knee 
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Figure 6.1 Custom-built knee extension dynamometer. Broken line box denotes strain 
gauge unit. 
 

extension; Figure 6.1). A 90° knee joint angle was selected as it allowed a horizontal 

line of pull on the strain gauge unit from its point of attachment to the knee extension 

frame.  

The strain gauge was calibrated in accordance with manufacturer guidelines (1 

Newton = 0.0082 V). An amplifier unit (AMP3, Richmond Industries, Reading, UK) 

allowed voltage data from the strain gauge to be collected during MVCs with an 

integrated software package (EMGworks® 4.0 Acquisition software, Delsys, Boston, 

USA). One min recovery periods were employed between MVCs. Participants were 

instructed to produce a maximal force as quickly as possible from the signal to start the 

MVC, prior to each MVC. Intense verbal encouragement was provided to participants 

during all MVCs (Campenella et al., 2000).  

 

Isometric knee extension trapezoid force trace effort 

Isometric knee extension trapezoid force trace efforts were also performed on 

the custom-built dynamometer with the non-dominant leg at a 90° knee joint angle. The 
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isometric trapezoid effort involved a 4 s quiescent period a, linear 6 s ramp up in force 

from 0% to 60% of peak MVC force, a 10 s holding force levels constant at 60% of 

peak MVC force, and then a linear 6 s ramp down from 60% to 0% of MVC peak force 

and a final 4 s quiescent period (Figure 6.2). Participants met the required isometric 

trapezoid force trace via visual feedback displayed on a computer screen. As the AEL 

and CL interventions within the present investigation involved high force levels it was 

critical to investigate motor unit firing rate and common drive responses at as high 

isometric force level as possible. Performing the plateau phase of the isometric 

trapezoid force trace at the highest force level possible was intended to ensure higher 

threshold motor units that were likely to be recruited during interventions would also be 

active during isometric trapezoid force trace efforts. A 60% plateau phase was selected 

as pilot work conducted for the study suggested this level of force could be maintained 

during isometric trapezoid force trace efforts completed after the AEL and CL 

interventions. 

 

6.2.3 Experimental protocol 

Participants completed the same before-experimental session controls and 

experimental protocols that were detailed in Chapter 5 (section 5.2.3). The initial two 

sessions were used to assess 3RM back squat strength as described in Chapter 5 

(section 5.2.2) and familiarise participants with the tasks to be performed in the final 

two experimental testing sessions. During the familairisation session participants 

practiced as many as five isometric knee extension trapezoid force trace efforts in 

order to ensure they could accurately follow the force trace during experimental 

condition test sessions. Participants practiced the isometric trapezoid force trace in 

addition to the familiarisation session items described in Chapter 5 (section 5.2.3). In 

the final two laboratory visits participants completed a single experimental condition on 
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Figure 6.2 Knee extension isometric trapezoid effort force trace (denoted as a 
percentage of MVC peak force) with illustration of the identified time periods that were 
used for motor unit firing rate analysis: (1) ascent or recruitment phase; (2-4) plateau or 
constant force phase; and (5) descent or derecruitment phase.  

 

each test day in randomised order (Figure 6.3). A minimum of 5 d separated each 

experimental test day. 

On experimental condition test days participants completed three 5 s knee 

extension MVCs and a single isometric trapezoid force trace effort before completing 

CL or AEL knee extension efforts. The recovery period between each isometric effort 

during the before- and after-intervention measures was set at 1 min. In order to prepare 

for the before-intervention MVCs a standardised warm-up consisting of three 5 s 

isometric efforts at 75% of perceived maximum was conducted. The highest torque 

obtained during the three before-intervention MVCs was taken as the peak force MVC 

and used to prescribe force levels during the before and after-intervention trapezoid 

force trace efforts.  Five min after the before-intervention isometric trapezoid force trace 

participants completed warm-up, preparatory, and experimental condition back squat 

sets as described in Chapter 5 (section 5.2.3). After-intervention measures involved the 

performance of a further three MVCs and a single isometric trapezoid force trace effort.
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Figure 6.3 Experimental condition protocol. * denotes randomisation of experimental 
conditions.  
 

After-intervention MVCs commenced 5 min after the end of the final experimental 

condition back squat set. 

 

6.2.4 High density EMG and MVC force data collection 

Vastus lateralis high density EMG was measured as described in Chapter 4 

(section 4.2.4). Vastus lateralis EMG and force data from the strain gauge were 

synchronously recorded via software (EMGworks® 4.0 Acquisition software, Delsys, 

Boston, USA) integrated with the EMG system. Voltage data quantifying force from the 

strain gauge attached to the custom-built dynamometer was amplified (AMP3, 

Richmond Industries, Reading, UK) prior to being recorded. 

 

6.2.5 EMG signal decomposition, analysis and accuracy 

 Vastus lateralis high density EMG was decomposed as detailed in Chapter 4 

(section 4.2.5). Motor unit firing rate data were analysed as described earlier (section 
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4.2.5). Common drive was quantified as described in Chapter 4 (section 4.2.5). The 

number of detected motor units during each isometric trapezoid force trace effort was 

extracted from the EMGworks® Analysis software and analysed as detailed in Chapter 

4 (section 4.2.5). Decomposition accuracy was assessed as described earlier (section 

4.2.5). 

 

6.2.6 Statistical analysis 

 Statistical analyses to assess motor unit firing rate reliability (absolute and 

relative reliability) and inter-participant variability were conducted as described in 

Chapter 4 (section 4.2.6). Time-point (before-intervention vs. after-intervention) x 

condition (AEL vs. CL) repeated measures analysis of variance were conducted to 

assess motor unit firing rate, cross-correlation coefficients, the maximum number of 

motor units detected, and peak MVC force differences between conditions. 

 

6.3 Results 

6.3.1 Motor unit firing rate analysis, number of detected motor units, and MVC 

force. 

 As time phase four demonstrated “acceptable”-“good” absolute reliability 

(assessed via intra-participant coefficient of variation) across motor unit populations 

(earlier-recruited, mid-recruited, later-recruited, and overall), this period alone was used 

for motor unit firing rate analysis. No differences in firing rate occurred between 

conditions for earlier-recruited (p= 0.768, f= 0.09), mid-recruited (p= 0.670, f= 0.20), or 

later-recruited (p= 0.226, f= 1.77) motor unit populations (Figure 6.4). Time-point 

effects were not detected for earlier-recruited (p= 0.768, f= 0.09), mid-recruited (p= 

0.670, f= 0.20), or later-recruited (p= 0.226, f= 1.77) motor unit firing rates (Figure 6.4). 

Condition-time-point interactions were also absent for the firing rates of earlier-recruited 

(p= 0.464, f= 0.60), mid-recruited (p= 0.898, f= 0.02), and later-recruited (p= 0.560, f= 

0.38) motor units (Figure 6.4). No differences in the maximum number of detected 
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motor units were detected between conditions (p= 0.960, f= 0.00; Figure 6.5). 

Additionally, no time-point (p= 0.966, f= 0.00) or condition-time-point interaction (p= 

0.598, f= 0.31) effects were observed for the maximum number of detected motor units 

during isometric trapezoid efforts. MVC peak force demonstrated no condition (p= 

0.974, f= 0.00), time-point (p= 0.491, f= 0.52), or condition-time-point interaction (p= 

0.199, f= 1.96) effects (Figure 6.5).  

 

6.3.2 Common drive 

Due to processing difficulties with a time-point of one of the participants an n of 

7 was included for common drive analysis. As time phase four of the isometric 

trapezoid force trace efforts demonstrated the greatest absolute reliability (assessed 

via intra-participant coefficient of variation) across the largest number of motor unit 

populations (earlier-recruited, mid-recruited, later-recruited, and overall motor unit firing 

rates), this plateau phase alone was used for common drive analysis. No differences in 

the distribution of the common drive frequency histograms were detected from before- 

to after-intervention measures regardless of the condition completed (Figure 6.6). Peak 

cross-correlation histogram frequency occurred in the range of 0.6 to 0.7 in all 

conditions. Similarly no differences in maximum (p= 0.304, f= 1.26; Figure 6.7 A) and 

mean (p= 0.341, f= 1.07; Figure 6.7 B) peak cross-correlation coefficients were 

detected between conditions. Time-point effects were not detected for maximum (p= 

0.981, f= 0.00; Figure 6.7 A) and mean (p= 0.692, f= 0.17; Figure 6.7 B) peak cross-

correlation coefficient values. Condition-time-point interaction effects were observed for 

maximum (p= 0.028, f= 8.24; Figure 6.7 A), but not mean (p= 0.990, f= 0.00; Figure 6.7 

B) peak cross-correlation coefficient values. 

 

6.3.3 Decomposition accuracy 

 Before-intervention isometric trapezoid force trace efforts displayed 93.2 ± 2.1% 

accuracy in the CL and 94.3 ± 1.7% accuracy in the AEL condition. After-intervention 



Chapter 6  Page 147 

 

isometric trapezoid force trace efforts displayed 93.6 ± 2.2% accuracy in the CL and 

93.8 ± 2.2% accuracy in the AEL condition. Before-intervention isometric trapezoid 

force trace efforts demonstrated 1.7 ± 0.6 errors•s-1 and 1.5 ± 0.4 errors•s-1 in the CL 

and AEL conditions, respectively. After-intervention isometric trapezoid force trace 

efforts demonstrated 1.8 ± 0.6 errors•s-1 and 1.7 ± 0.8 errors•s-1 in the CL and AEL 

conditions, respectively. 

 

6.3.4 Absolute reliability, relative reliability, and inter-participant variability for 

motor unit firing rate data 

 Time phase four, three, and five displayed the lowest intra-participant coefficient 

of variation for earlier-recruited, mid-recruited, and later-recruited motor units, 

respectively (Table 6.1). Similar intra-participant coefficient of variation was 

demonstrated for overall motor unit firing rate in time phases four and five. The 

narrowest limits of agreement values were displayed for time phase five, three, and 

four for earlier-recruited, mid-recruited, and later-recruited motor units, respectively 

(Table 6.1). All intraclass correlation coefficient scores were classified as “poor” (Table 

6.2), out of these values the best intraclass correlation coefficient values were 

displayed for earlier-recruited motor units, mid-recruited motor units, later-recruited 

motor units, and overall firing rate in time phases one, two, five and five, respectively. 

Common (<12.0% inter-participant coefficient of variability) motor unit firing rates were 

not displayed in any of the motor unit populations (Table 6.2). Time phase four 

consistently displayed the lowest or second lowest intra-participant coefficient of 

variation values across motor unit populations. 
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Figure 6.4 Mean vastus lateralis firing rate (pulses•s-1) during the selected region of 
the constant force phase of the submaximal knee extension isometric force trace effort 
for: (A) earlier-recruited; (B) mid-recruited; and (C) later-recruited motor units before 
and after AEL and CL conditions.  
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Figure 6.5 Maximum number of detected motor units during isometric trapezoid force 
efforts (A) and peak force during MVC knee extension efforts (B) in AEL and CL 
conditions.  
 

6.4 Discussion 

6.4.1 Motor unit firing rate, common drive, and force production responses 

The results of the study demonstrated no between condition differences for: (i) 

motor unit firing rate; (ii) the number of active detected motor units; or (iii) MVC peak 

force when acute lower-body multiple-joint free weight AEL and CL were compared. 

The maximum peak cross-correlation coeffients was decreased in the CL condition 

following interventions, but other common drive measures were unaffected. The 

findings of the current study indicate that differential acute neuromuscular responses 

do not occur in response to a multiple-joint lower-body AEL model. Absolute reliability 

across different motor unit populations was “acceptable”-“good” in time phase four, the 

final part of the plateau phase of the submaximal isometric trapezoid effort. Therefore, 

both motor unit firing rate and common drive analysis were calculated from time phase 

four. 

Previously, AEL has been shown to increase type IIX muscle fibre cross 

sectional area during a single-joint 6 week resistance training intervention study 

(Friedmann-Bette et al., 2010). Therefore, indicating AEL influences the morphological 

charactersitics of later-recruited muscle fibers. The findings from the present 

investigation differ from those of the single- joint AEL intervention detailed in Chapter 4,  
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Figure 6.6 Histograms of the maximum cross-correlation coefficients between each pair of motor units that were cross-correlated across all 

participants before and after AEL and CL conditions.  
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Figure 6.7 Maximum (A) and mean (B) peak cross-correlation coefficients in AEL and 
CL conditions.  
 

and suggest that lower-body multiple-joint free weight AEL does not effect neural 

responses or place additional demands on later-recruited motor units, compared to CL. 

This may indicate that the isolated nature of single-joint resistance exercise effects the 

later-recruited motor units of the vastus lateralis differently compared to during multiple-

joint resistance exercise where coordination of muscles across joints allows a given 

resistance exercise to be performed. The motor unit firing rates of earlier-recruited 

motor units in the present investigation were, as previously reported in Chapter 4 and 

numerous other studies, greater than those of later-recruited motor units (De Luca and 

Hostage, 2010; De Luca and Erim, 1994; De Luca et al., 1982). As in Chapter 4, the 

vastus lateralis firing rates reported in the current study are less than those reported in 

previous work (Roos et al., 1999). However, similar average vastus lateralis firing rates 

(~20 pulsess-1) have been reported in earlier research, both before- and after-

resistance exercise training interventions at 50-60% (Stock et al., 2012) and 75% 

(Pucci et al., 2006) of MVC peak force, as the firing rates of earlier-recruited motor 

units in the present study. 
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Table 6.1 Summary of vastus lateralis firing rate absolute reliability measures for earlier-recruited, mid-recruited, and later-recruited 
motor units. The values in boxes denote the time phase with the greatest reliability for each variable for each motor unit tertile.  
 

  

95% Lower limits 
of agreement 

  
95% Upper limits 

of agreement 
  

Intra-participant coefficient 
of variation 

  

Coefficient of 
variation 

descriptor 

  

Mean 

 

Mean 

 

Mean ± SD 

Motor unit 
tertile 

Time phase 
                  

Earlier-
recruite 

1 -11.6 

 

9.7 

 

28.6 ± 20.9 

 

Unacceptable 

2 -9.0 

 

8.4 

 

11.9 ± 10.1 

 

Acceptable 

3 -8.8 

 

8.4 

 

10.8 ± 9.8 

 

Good 

4 -8.0   8.0   10.7 ± 8.6 

 

Good 

5 -7.9   7.1   11.6 ± 8.2   Good 

Mid-
recruited 

1 -9.2 

 

10.7 

 

101.0 ± 42.8 

 

Unacceptable 

2 -10.7   10.2 

 

28.4 ± 23.2 

 

Unacceptable 

3 -7.1   6.7   12.4 ± 12.1 

 

Acceptable 

4 -7.6 

 

7.3 

 

14.3 ± 11.2 

 

Acceptable 

5 -13.0   10.6   32.3 ± 30.5   Unacceptable 

Later-
recruited 

1 -4.8 

 

6.9 

 

17.7 ± 50.0 

 

Acceptable 

2 -12.1 

 

13.8 

 

13.8 ± 39.0 

 

Acceptable 

3 -9.7   11.3 

 

38.8 ± 32.1 

 

Unacceptable 

4 -5.6   6.4 

 

2.1 ± 6.0 

 

Good 

5 -10.2   7.2   0.5 ± 1.3   Good 

Overall 

1 -8.5 

 

9.7 

 

27.9 ± 13.4 

 

Unacceptable 

2 -8.6 

 

7.8 

 

17.1 ± 13.6 

 

Acceptable 

3 -7.6 

 

6.9 

 

12.7 ± 11.9 

 

Acceptable 

4 -6.7   6.8   12.3 ± 9.3 

 

Acceptable 

5 -5.6   5.5   11.9 ± 8.2   Good 
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Table 6.2 Summary of vastus lateralis firing rate relative reliability and inter-participant variability measures for earlier-recruited, mid-recruited, 
and later-recruited motor units. The values in boxes denote the time phase with the greatest reliability for each variable for each motor unit tertile.  
 

  

Inter-participant coefficient of 
variation 

  Intraclass correlation coefficient 

  

Mean ± SD 

 

Mean LCI* UCI** Descriptor 

Motor unit 
tertile 

Time phase               
  

Earlier-
recruited 

1 42.7 ± 16.0   -0.30 -0.81 0.46 Poor 

2 16.9 ± 6.1 

 

-0.63 -0.91 0.07 Poor 

3 16.2 ± 5.1 

 

-0.57 -0.90 0.16 Poor 

4 15.2 ± 3.5 

 

-0.47 -0.86 0.29 Poor 

5 15.6 ± 5.0   -0.56 -0.89 0.17 Poor 

Mid-
recruited 

1 144.7 ± 31.5 
 

-0.04 -0.69 0.64 Poor 

2 46.9 ± 1.8   0.07 -0.63 0.70 Poor 

3 19.0 ± 1.2 

 

-0.14 -0.74 0.58 Poor 

4 19.5 ± 2.5 

 

-0.23 -0.78 0.51 Poor 

5 36.9 ± 7.6   -0.05 -0.69 0.64 Poor 

Later-
recruited 

1 215.9 ± 23.2 
 

-0.03 -0.68 0.65 Poor 

2 96.3 ± 7.5 

 

-0.31 -0.81 0.45 Poor 

3 44.6 ± 5.8 

 

-0.22 -0.77 0.53 Poor 

4 22.2 ± 3.0 

 

-0.06 -0.70 0.63 Poor 

5 73.2 ± 14.7   -0.10 -0.72 0.61 Poor 

Overall 

1 26.6 ± 15.9 
 

-0.07 -0.70 0.63 Poor 

2 24.2 ± 0.6 

 

0.16 -0.57 0.74 Poor 

3 18.8 ± 0.6 

 

0.11 -0.60 0.73 Poor 

4 16.9 ± 0.7 

 

0.15 -0.57 0.74 Poor 

5 16.4 ± 3.7   0.21 -0.53 0.77 Poor 

 
* lower confidence interval, ** upper confidence interval. 
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Two of the three measures of common drive were unchanged following AEL or 

CL interventions. The fact that common drive was largely unaffected by either the CL or 

AEL intervention provides indirect support for the concept that changes in common 

drive may not be required for increases in strength (Kidgell et al., 2006; Duchateau et 

al., 2006). Alternatively, measure of common drive may not be acutely responsive in a 

population where adaptations in this variable may have already occurred, due to 

strength training history (Semmler and Nordstrom, 1998). The findings of the current 

chapter provide indirect support for research suggesting alterations in common drive do 

not occur as a result of strength training (Beck et al., 2011; De Luca et al., 1982). 

However, other research conducting cross-sectional investigations of skill-trained, 

strength-trained, and control participants indicate common drive adaptations do occur 

in individuals with divergent training backgrounds (Semmler and Nordstrom, 1998). The 

finding that common drive was unchanged following AEL was consistent with other 

cross-correlational analysis research that used a greater volume of eccentric resistance 

exercise to induce muscle damage (Beck et al., 2012), but in contrast to the findings of 

other studies (Dartnall et al., 2011; Dartnall et al., 2008). The disparity in findings 

between studies regarding common drive may be due to differences in the exercise 

protocol conducted, the type of electrode employed (high density EMG electrode vs. 

intra-muscular wire electrode) or the way cross-correlation analyses were conducted 

(Dartnall et al., 2011; Dartnall et al., 2008). It is important to note that the 

neuromuscular measures employed in the current investigation were performed during 

an isometric task and therefore may not reflect the acute motor unit firing rate or 

common drive responses during dynamic muscle actions, following AEL and CL 

conditions (Semmler et al., 2002). The contrasting common drive results in the current 

study indicate further research may be required to elucidate how AEL and CL influence 

common drive on a longitudinal basis, such as following a training intervention 

programme. 
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The motor unit firing rate results produced from the current study are consistent 

with previous upper-body acute AEL studies, where neuromuscular measures did not 

demonstrate differential concentric neuromuscular responses during AEL compared to 

CL (Ojasto and Hakkinen, 2009a; Ojasto and Hakkinen, 2009b). However, the results 

presented in the current study oppose the decrease in the motor unit firing rate of later-

recruited motor units observed in Chapter 4 during a single-joint lower-body AEL 

model. The difference in findings between the current chapter and Chapter 4 may 

reflect differences in the resistance exercise model, loading, or training volume 

employed in each intervention. The results of the current study suggest that free weight 

multiple-joint lower-body AEL does not lead to differential acute neuromuscular 

responses, as only one of three common drive measures were effected. However, 

given the paucity of neuromuscular measures performed within the AEL training 

intervention literature it may still be worthwhile to investigate common drive adaptations 

during and following a longitudinal multiple-joint free weight lower-body AEL training 

study. To date, only one longer-term AEL training intervention study using a lower-body 

free weight multiple-joint resistance exercise model has been conducted (Yarrow et al., 

2008). However, neuromuscular measures were not performed within the study and 

only concentric strength adaptations were assessed. Two short-term resistance 

machine-based AEL training intervention studies have attributed superior strength 

gains to differential neuromuscular adaptations, with regard to neuromuscular 

activation levels (Hortobagyi et al., 2001a; Hortobagyi and Devita, 2000). Although the 

findings within the present study largely indicate no differences in acute neuromuscular 

responses of the knee extensors, longer duration AEL training studies employing 

measures to quantify neuromuscular adaptation as well as eccentric and concentric 

strength are still required. Such studies would allow conclusions to be made on the 

efficacy of AEL for achieving superior chronic strength adaptations (either concentric, 

eccentric or both types of strength). 
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6.4.2 Motor unit firing rate absolute, relative, and inter-participant reliability 

The quality and reliability of the data in the current chapter are demonstrated by 

the “reconstruct and test” analysis (Nawab et al., 2010). The “reconstruct and test” 

system has previously been validated and provides quantification of signal 

decomposition accuracy to ensure users can focus on analysing accurate data (De 

Luca and Nawab, 2011; De Luca et al., 2006). Similarly to Chapter 4 the firing rate of 

earlier-recruited, mid-recruited, and later-recruited motor units had the greatest 

absolute reliability towards the end of the plateau phase of the isometric trapezoid force 

trace effort. This finding may be due to stabilisation of motor unit firing rate with time 

during the sustained isometric contraction (Contessa et al., 2009; Bigland-Ritchie et al., 

1983). The “poor” between-day relative reliability of the vastus lateralis firing rates for 

each motor unit population may be a function of the homogenous training status of the 

participant sample. In Chapter 4 greater relative reliability was observed for 

recreational resistance exercising individuals, suggesting vastus lateralis motor unit 

firing rate may become more similar with increasing strength levels. Such an 

adaptation may therefore lead to greater within-participant than between-participant 

variance  for motor unit firing rate and consequently impact relative reliability values 

(Larsson et al., 1999). Indeed, reduced motor unit firing rate variability has been 

demonstrated following resistance exercise training in older adult populations (Laidlaw 

et al., 2000). However, previously no change in firing rate variability has been 

demonstrated in younger individuals in response to resistance exercise (Laidlaw et al., 

2000).  

 

6.5 Conclusions 

The findings of the current study indicate that multiple-joint lower-body AEL 

does not acutely influence motor unit firing rate and only influenced one of three 

different common drive variables. Vastus lateralis later-recruited motor unit firing rates 

did not decrease after the AEL intervention, as was the case following the single-joint 
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model employed in Chapter 4. This suggests that the type of resistance exercise model 

used may influence acute motor unit firing rate responses. The lack of response in two 

out of three common drive measures in a large population of motor units following AEL 

or CL interventions, lends indirect support to suggestions from both cross-sectional and 

training intervention research that alterations in common drive may not occur following 

resistance exercise. Further research should be conducted in untrained populations to 

conclude if motor unit firing rate and common drive are as equally unresponsive on 

both acute and longitudinal scales, in order to assess the efficacy of AEL for clinical 

and general populations without a history of strength training. 

 

6.6 Contribution of the chapter to the aims of the thesis 

The current chapter addressed the final aims of the thesis by comparing common 

drive and motor unit firing rate responses after lower-body multiple-joint AEL and CL. 

The results of the present study indicate acute motor unit firing rate responses do not 

occur following either AEL or CL back squats and that the majority of common drive 

measures are unresponsive following both CL and AEL squats. Along with the findings 

of Chapter 4, these results add to the results of previous studies investigating acute 

neural responses via the use of transcranial magnetic stimulation. The results of the 

current study suggest training status and exercise familiarity may influence the acute 

motor unit characteristic responses observed as neither AEL or CL squats acutely 

influenced motor unit firing rate and the majority of common drive measures were 

unaffected other than maximum peak cross-correlation coefficient following CL squats. 
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

 

 

CHAPTER 7 

SUMMARY AND CONCLUSIONS 
 

 

7.1 Thesis summary 

Training interventions comparing AEL and CL have been conducted to assess 

the efficacy of AEL for enhancing chronic strength adaptations. AEL has been shown to 

elicit greater strength gains than CL (Norrbrand et al., 2008; Friedmann et al., 2004; 

Brandenburg and Docherty, 2002; Hortobagyi et al., 2001a; Hortobagyi and Devita, 

2000; Kaminski et al., 1998). However, other AEL training intervention studies have 

demonstrated the strength adaptations observed to equate those seen with CL 

(Friedmann-Bette et al., 2010; Yarrow et al., 2008; Barstow et al., 2003; Godard et al., 

1998; Ben-Sira et al., 1995; Nichols et al., 1995). The greater chronic strength gains 

that have been reported with AEL have been attributed to both neuromuscular 

(Hortobagyi et al., 2001a; Hortobagyi and Devita, 2000) and morphological (Norrbrand 

et al., 2008; Friedmann et al., 2004) adaptations. In contrast, other longer duration AEL 

training intervention studies have not reported morphological changes in either CL or 

AEL conditions, despite greater chronic strength adaptations occurring with AEL 

(Norrbrand et al., 2008; Brandenburg and Docherty, 2002). Therefore, neuromuscular 

adaptations seem to be a crucial factor in the superior strength and power 

improvements reported with AEL. However, besides two AEL studies of short duration 

(7 d) employing intensified training, no measures of neuromuscular adaptation have 

been performed during longer duration AEL interventions. Therefore, a lack of 

information is currently available regarding how AEL may differentially affect 

neuromuscular control when compared to CL. Furthermore, the equivocal findings 

regarding the efficacy of AEL make it difficult for exercise professionals to decide 
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whether or not to employ AEL with their athletes or patients, and during which training 

phase this type of resistance exercise could be implemented. The novel data presented 

in this thesis contributes new knowledge to the AEL research literature by investigating 

how AEL acutely effects neuromuscular control. The findings presented provide both 

mechanistic information and information to guide the exercise prescription of 

practitioners. 

 

7.1.1 Chapter 2: Evaluation of EMG normalisation methods for the back squat 

 Previously no studies had compared the reliability of different surface EMG 

normalisation methods for the barbell free-weight back squat. This methodological 

study was necessary in order to later compare neuromuscular control between AEL 

and CL during a widely used resistance exercise. The study had three aims: (i) to 

evaluate the reliability of maximal isometric and submaximal dynamic EMG 

normalisation methods for concentric and eccentric phase neuromuscular activation 

during the back squat resistance exercise; (ii) to examine the sensitivity of each 

method in detecting statistical differences between neuromuscular activation levels in 

incremental intensity dynamic back squat exercise sets; and (iii) to assess the extent of 

neuromuscular activation heterogeneity in a group of strength-trained individuals 

experienced in performing the back squat exercise. 

In summary, the results of the study showed: 

(i) The 80% of 3RM dynamic back squat EMG normalisation method produced the 

greatest absolute reliability for the vastus lateralis and biceps femoris muscles 

during both concentric and eccentric phases of the back squat. 

(ii) The MIS normalisation method displayed the greatest relative reliability for both 

muscles during eccentric and concentric phases. 

(iii) The 60% of 3RM and 70% of 3RM dynamic back squat EMG normalisation 

methods were the most sensitive for the vastus lateralis and biceps femoris during 

eccentric and concentric phases. 
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(iv) Compared to unnormalised EMG the use of the dynamic normalisation methods 

(60% of 3RM, 70% of 3RM, and 80% of 3RM) reduced inter-participant variability 

during both muscle action phases for the vastus lateralis and biceps femoris. 

(v) The use of the maximal isometric normalisation methods (MVC and MIS) reduced 

inter-participant variability compared to unnormalised EMG during both muscle 

action phases for the vastus lateralis, but not the biceps femoris. 

In conclusion, dynamic EMG normalisation methods for the back squat were 

demonstrated to be superior compared to maximal isometric methods when 

considering absolute reliability and sensitivity. Additionally, dynamic EMG normalisation 

methods for the back squat reduced inter-participant variability compared to 

unnormalised EMG for both muscle actions and muscles. In contrast maximal isometric 

methods only reduced inter-participant variability for the biceps femoris. Therefore, 

researchers conducting studies concerning absolute reliability, sensitivity, and inter-

participant variability measures should use submaximal dynamic tasks as opposed to 

maximal isometric normalisation methods. The results of the study also meant a 

submaximal dynamic normalisation task could be used in Chapter 5 of the thesis for 

the purposes of comparing neuromuscular control during AEL and CL back squats. 

 

7.1.2 Chapter 3: Acute neuromuscular, kinetic, and kinematic responses to 

lower-body single-joint AEL 

Previously, no lower-body AEL studies synchronously measuring neuromuscular 

activation, kinetic, and kinematic responses have been conducted. In light of the 

equivocal AEL vs. CL training intervention strength adaptation results that have been 

reported it is difficult for practioners to decide upon whether or not to employ AEL with 

their athletes or patients, during which training phase this resistance exercise variant 

could be implemented, and how AEL may acutely effect neuromuscular control 

compared to CL. Determining the acute neuromuscular, kinetic, and kinematic 

responses to knee extension AEL would inform the prescription or refinement of 
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resistance training programmes for individuals within athletic and rehabilitative training 

settings. Therefore, the second study of the thesis study had the following aims: (i) to 

examine differences in acute neuromuscular, kinetic, and kinematic responses 

between AEL and CL conditions during unilateral dynamometer-based knee extension 

exercise; (ii) to assess both rate of torque development and muscle contractile 

properties following AEL and CL; and (iii) to investigate the influence of eccentric phase 

velocity (and time under tension) on the parameters detailed in the first two aims of the 

study. 

In summary, the results of the study showed: 

(i) That there were no differences in concentric neuromuscular, kinetic, or kinematic 

variables during knee extension efforts between AEL and CL conditions. 

(ii) That no differences in rate of torque development or tensiomyography measures 

occurred between conditions. 

(iii) That elevated eccentric neuromuscular activation occurred in AEL conditions at 

both investigated velocities, without any decrement in neuromuscular, kinetic, or 

kinematic responses in the subsequent concentric phase. 

In conclusion, there does not appear to be any disadvantages of completing 

acute single-joint knee extensor AEL in terms of neuromuscular function or muscle 

contractile characteristics. Independent of eccentric phase velocity AEL required 

elevated eccentric neuromuscular activation, but equated the concentric 

neuromuscular activation and concentric kinetic and kinematic responses observed 

with CL. In addition, despite the AEL conditions involving a greater amount of work 

after-intervention rate of torque development and vastus lateralis contractile 

characteristics were not negatively impacted. 
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7.1.3 Chapter 4: Acute motor unit firing rate and common drive responses to 

lower-body single-joint AEL 

In an attempt to investigate whether AEL could potentially lead to superior 

chronic adaptations the forth chapter of the thesis compared detailed acute neural 

recruitment strategy differences between the AEL and CL interventions described in 

Chapter 3. The acute neural responses to resistance exercise have previously been 

likened to motor learning with motor outputs producing greater kinematics during 

resistance exercise believed to be consolidated by the brain. AEL has previously been 

demonstrated to acutely present unique kinetic and kinematic outputs when compared 

to CL. In addition, heavy eccentric-only resistance exercise performed at a fast velocity 

has been shown to result in greater strength gains compared to equivalent training 

completed at a slower velocity. Therefore, in accordance with the hypotheses 

associating neural responses to resistance exercise to those that occur with motor 

learning, faster velocity AEL may be considered to lead to differential short-term neural 

responses that may be related to chronic adaptations. Therefore, the study had the 

following aims: (i) to compare vastus lateralis motor unit firing rate and common drive 

responses after lower-body single-joint AEL and CL; and (ii) to assess the between-test 

day reliability and inter-participant variability of motor unit firing rate analysis during an 

isometric trapezoid force trace effort. 

In summary, the results of the study showed: 

(i) That the firing rate of vastus lateralis later-recruited motor units was decreased 

following acute AEL involving a ~2 s eccentric phase, but not any of the other 

conditions. 

(ii) That acute differences in common drive did not occur between conditions. 

(iii) That the absolute and relative reliability of motor unit firing rate was greater during 

the plateau compared to the derecruitment and in particular the recruitment phase 

of the isometric knee extension trapezoid force trace effort. 
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The findings of the fourth chapter of the thesis indicate that single-joint lower-body 

AEL employing a ~2 s eccentric phase differentially effects motor unit firing rate on an 

acute basis compared to CL. The lack of alteration of common drive calculated from a 

large population of motor units following each intervention adds indirect support for 

existing cross-sectional and training interventions suggesting strength training may not 

alter common drive. Further research is required to confirm whether or not the same 

motor unit firing rate response occurs in a multiple-joint lower-body AEL model. In 

addition, further research should elucidate how acute motor unit firing rate responses 

change across the course of AEL training programme intervention and how AEL 

influences both chronic concentric and eccentric strength as a result. 

 

7.1.4 Chapter 5: Acute neuromuscular and kinetic responses to weight releaser 

hook AEL back squats 

Chapter 3 of the thesis investigated neuromuscular, kinetic, and kinematic 

responses and neuromuscular activation during knee extension AEL. However, Lower-

body multiple-joint resistance exercise is considered to place greater demands on the 

neuromuscular and proprioceptive systems compared to single-joint resistance 

machine-based exercise. The neuromuscular and proprioceptive systems are likely 

placed under greater demands during free weight multiple-joint resistance exercise 

given the greater muscle mass involved, the coordination required between multiple 

muscles, and the need to stabilise the body in response to gravity, ground reaction 

forces, and momentum. Therefore, conducting a similar investigation as that detailed in 

Chapter 3 of the thesis was deemed necessary to assist practitioners to decide upon 

whether or not to employ AEL with their athletes or patients, during which training 

phase this type of resistance exercise variant could be implemented, and how AEL 

may acutely effect neuromuscular control compared to CL back squats. Determining 

the acute kinetic and neuromuscular activation responses to AEL back squats would 

inform the prescription or refinement of resistance training programmes for individuals 
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using lower-body multiple-joint resistance exercise within athletic and rehabilitative 

training settings. Therefore, the aims of the study were: (i) to compare acute kinetic 

outputs between AEL and CL squats; (ii) to investigate how the extent of acute 

neuromuscular activation is effected when back squats are completed with and without 

weight releaser hooks; and (iii) to examine how acute activation contributions from and 

interaction between anterior and posterior lower-body musculature are effected during 

weight releaser hook AEL compared to CL squats. 

In summary, the results of the study showed: 

(i) That no between condition differences were observed for concentric kinetic 

variables or eccentric rate of force development.  

(ii) That eccentric phase force was 7.0-30.0% greater in the AEL condition. 

(iii) That concentric knee and hip extensor neuromuscular activation did not differ 

between conditions, but was elevated in the eccentric phase of AEL back squats. 

(iv) That no consistent differences in neuromuscular activation contributions from knee 

and hip extensors were observed between conditions. 

The findings of Chapter 5 suggest that weight releaser AEL squats appear to 

present no negative acute concentric kinetic variable responses, provide greater 

eccentric phase kinetic demands in terms of force production, involve greater eccentric 

phase knee extensor contributions across lighter and heavier loads, and do not effect 

the neuromuscular contributions from key agonist muscles during concentric or 

eccentric phases. 

 

7.1.5 Chapter 6: Acute motor unit firing rate and common drive responses to AEL 

back squats 

Decreases in the firing rate of later-recruited motor units were reported in the 

forth chapter of the thesis. However, it was unclear if the same motor unit firing rate 

and common drive responses observed in the single-joint resistance exercise model in 

used in the second and third chapters of the thesis would occur during multiple-joint 
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AEL. Lower-body multiple-joint resistance exercise is considered to place greater 

demands on the neuromuscular and proprioceptive systems compared to single-joint 

resistance machine-based exercise. Therefore, the aims of the study were as follows: 

(i) to compare vastus lateralis motor unit firing rate and common drive responses after 

lower-body multiple-joint free weight AEL and CL; (ii) to examine differences in lower 

limb maximal force production following AEL and CL; and (iii) to assess the between-

test day reliability and inter-participant variability of vastus lateralis motor unit firing 

rates during an isometric trapezoid force trace effort, completed on a custom-built 

dynamometer. 

In summary, the results of the study showed: 

(i) That motor unit firing rate was not altered following either AEL or CL. 

(ii) That an acute decrease in common drive was observed in the CL condition for 

maximum peak cross correlation following interventions, but mean peak cross-

correlation and cross-correlation histogram distribution were unaffected. 

(iii) That the absolute and relative reliability of motor unit firing rate was greater during 

the plateau compared to the derecruitment and in particular the recruitment phase 

of the isometric trapezoid force trace effort. 

The findings of Chapter 6 indicated that multiple-joint lower-body AEL does not 

acutely influence motor unit firing rate and may only elicit minimal changes in common 

drive parameters. Vastus lateralis later-recruited motor unit firing rates did not decrease 

after the AEL intervention, as was the case following the single-joint model employed in 

Chapter 4. This suggests that the type of resistance exercise model used may 

influence acute neural responses. The lack of response in two out of three common 

drive measures in a large population of motor units following AEL or CL interventions, 

lends indirect support to suggestions from both cross-sectional and training intervention 

research that alterations in common drive may not occur following resistance exercise. 
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7.2 Contributions of the thesis to existing knowledge and thesis 

conclusions 

The results of the studies that comprise this thesis contribute new knowledge to 

the AEL research literature. In particular, the way that acute motor unit recrtuitment 

strategy responses were investigated following AEL and CL provided a new potential 

approach to investigating the hypothesised similarities between motor learning and 

resistance exercise. Previously, only transcranial magnetic stimulation had been used 

for this purpose (Selvanayagam et al., 2011). The motor unit firing results observed in 

the third study of the thesis indicated that only AEL completed with a 2 s eccentric 

phase duration elicited any acute neuromuscular response. However, the contrasting 

motor unit firing rate and common drive response results of Chapter 4 and 6 of the 

thesis indicate further research is required to ascertain how acute measures quantified 

through the decomposition of surface EMG (such as motor unit firing rate and common 

drive) are related to chronic neuromuscualr adaptations following resistance exercise. 

A study combining acute measurements throughout the duration of a resistance 

training intervention study along with before- and after-intervention measures would 

address this question. 

The findings presented in the thesis also add to the existing body of AEL 

research literature by providing practioners with novel data regarding the acute 

neuromuscular, kinetic, and kinematic responses during AEL. The results presented in 

Chapter 3 and 5 of the thesis suggest that AEL resistance exercise implemented in 

both single- and multiple-joint resistance exercise models presents no negative acute 

variable responses. Neither of the AEL models investigated acutely reduced concentric 

kinetic outputs, decreased neuromuscular contributions or activation from key agonist 

muscles during concentric or eccentric phases, or caused after-intervention lower-body 

force production or contractile characteristics to decline more than following CL. In 

addition, both AEL models involved greater eccentric phase lower-body extensor 
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muscle activation compared to CL. Therefore, given these findings exercise 

professionals who prescribe training interventions may want to consider the use of AEL 

depending on the characteristics and training goals of the individuals they work with. 

Despite these encouraging acute neuromuscular, kinetic, and kinematic responses to 

AEL further research is clearly required to confirm the efficacy of AEL on a longitudinal 

basis. Specifically, the efficacy of AEL for the concurrent enhancement of both chronic 

concentric and eccentric knee and hip extensor strength, eliciting chronic 

neuromuscular adaptations in these muscles, and preventing injury in a range of 

populations remains unclear. 

 

7.3 Thesis limitations 

Finally, there were limtiations within the thesis that must be identified to in order 

to reduce weaknesses in future AEL and neuromuscular research. All studies within the 

thesis involved the measurement of lower-body force production, rate of torque 

development, contractile characteristics, motor unit firing rate, or common drive at only 

a single acute time-point following the single- and multiple-joint AEL models that were 

investigated. Previously, transcranial magnetic stimulation research has demonstrated 

particular time-course responses for twitch force magnitude and direction following 

acute bouts of different types of resistance exercise. These distinct transcranial 

magnetic stimulation responses have been shown to last for at least 25 min following 

resistance exercise (Selvanayagam et al., 2011). Due to the number of different 

measurements performed following each AEL and CL intervention, the time required to 

perform each measurement, and the need to provide participants with recovery 

between assessments it was not feasible to perform multiple measurements in the time 

immediately following each intervention. However, measurements could have been 

performed beyond the time immediately following the AEL intervention to ascertain the 

time course before variables returned to baseline. In particular, time-points 
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corresponding to typical time periods between training sessions for athletes completing 

concurrent training could have been used to enhance the practical application of the 

results. In addition, measuring involuntary muscle responses at the same time-point as 

motor unit firing rate and common drive would have provided a definite indication that 

there were no local muscular changes that could have influenced motor unit firing rate 

or common drive measurements.  
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Appendix A: Example participant information sheet 
 
PARTICIPANT INFORMATION SHEET 
 
Reliability of Reporting Muscle Activity during Free Weight Squatting as 
a Percentage of Voluntary Maximal and Submaximal Contraction 
Protocols. 
 
Primary Investigator: 
Tom Balshaw. Postgraduate Research Student, University of Stirling. (email: 
t.g.balshaw@stir.ac.uk, mobile: 07703055187) 
 
Investigation Supervisor: 
Dr Angus Hunter. Lecturer, University of Stirling (email: 
a.m.hunter1@stir.ac.uk) 
 
 You are invited to take part in the above titled sports science research 
project.  To ensure you are fully aware of why you have been asked to 
participate and the activity involved (should you choose to participate), it is 
important to provide you with some more details. Please read the following 
information carefully and discuss it with those who may be required, or you 
feel will help you make a decision on whether or not to participate in the study. 
If you have any questions regarding any aspect of the study please contact 
either the researcher or research supervisors via their contact details (listed 
above). 
 
Purpose of the study. 
 i) The primary purpose of the study is to determine the most reliable 
way of reporting muscle activity at different loading levels during the dynamic 
resistance training exercise, the free weight back squat. 
ii) The secondary purpose of the project is to investigate the relationship 
between the level of muscle activation and the percentage of relative back 
squat load (e.g. percentage of one repetition maximum for each individual 
participant). 
 
 The findings of this study will provide a strong rationale for the use of 
one of three methods of reporting muscle activity in a subsequent research 
project and will also allow evaluation of the relationship between back squat 
intensity and muscle activation to determine the response of muscle activity to 
a range of back squat loads. 
 
Why we would like you to participate. 
 You have been selected because you are a resistance trained habitual 
squatter (with a resistance training age of at least 2 years). The study 
subsequent to this investigation will investigate immediate responses to an 
advanced type of strength training that resistance trained individuals may use, 
therefore in the current study it is important to use individuals of similar 
resistance training age to ensure measures taken can be consistently 
reproduced and are representative of the desired dependent variables. 
 

mailto:t.g.balshaw@stir.ac.uk
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Do you have to take part? 
 This sheet is simply an invitation to take part in the study, once you 
have thoroughly read the information provided it is your own decision whether 
or not you wish to take part in the project. If you decide to take part you will be 
asked to sign a sheet confirming your informed consent. Signing the informed 
consent does not mean you have to finish the project testing and you will be 
free to withdraw your consent at any point during the project without giving 
reason, if you decide to withdraw from the project you will still receive the 
same high level of treatment. 
 
What are you required to do if you participant in this study? 
 
 Individuals recruited for testing will be required to take complete rest or 
only undertake very easy exercise and also maintain their usual dietary habits 
and record a food diary (intake to be reproduced before subsequent sessions) 
in the 24 hours before testing sessions. Participating in this study will involve 
visiting the University four times for testing sessions (one per week) over a 4 
week period. The first session will last approximately one hour and will involve 
the establishment of 3 RM back squat performance and familiarisation with the 
maximum contraction procedures used in the following sessions. Testing 
session 2, 3 and 4 will last approximately one hour, with the first 20 minutes 
involving preparation of the participant’s skin (shaving of hair on the two lower 
limb muscle sites required to be measured, alcohol swabbing and skin 
abrasion of these sites) and placement of sensors to measure muscle activity 
(1 quadriceps muscle and 1 hamstring muscle). Following the application of 
muscle sensors participants will complete two maximal contraction and one 
sub-maximum contraction protocols. Subsequent to these three tasks, four 
incremental intensity sets of three repetitions of back squats will be completed 
(Figure 1 lists back squat intensities) with muscle activity measured during all 
activities. The loads prescribed will equate for differences in body mass so all 
individuals are lifting the same relative intensity (e.g. System Mass 3 RM= 
body mass plus weight lifted during 3 RM testing, values below are 
percentage of system mass 3 RM). 

 

 
Figure 1. Test Protocol. 
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Risks and benefits of participation. 
 When participating in maximal lifting efforts there is always a chance 
that muscle injury can occur, individuals will undergo the familiarisation 
session and on the day of testing a thorough warm up. Session 1 
(familiarisation) will allow individuals who have never completed maximal 
isometric contractions of the knee extensor muscles on the isokinetic 
dynamometer and maximal isometric squats the opportunity to become used 
to these procedures prior to session 2, 3 and 4. Appropriate spotting 
procedures will be implemented for all trials. As resistance trained habitual 
squatters participants will not be exposed to any risks or loads they are not 
facing regularly in training in sessions 2, 3 and 4. 
 The main benefit for participants will be the provision of their body 
composition and 3 RM back squat assessment results. The role recruited 
individuals will play in establishing reliable methods may also be beneficial to 
their longer term sporting performance as the research group conduct further 
work investigating advanced strength training methods, with the option for the 
findings of subsequent projects to be provided to the individuals and/or their 
coaches. 
 
Confidentiality. 

Your identity will be kept confidential and any information will be stored 
under the restrictions outlined in the data protection act (1998). At the 
commencement of the study, you will be allocated a participant code, which 
will be the only means of identifying your results. Under no circumstance will 
your name appear in any publication arising from this study. 
 
Results. 
 The results of the study will be made available to you and/or your coach 
as a concise summary (if you wish) and will be published in a scientific peer 
reviewed journal at some point after 2010. None of the participant’s identities 
as stated in the confidentiality section (above) will be included in any 
publication. 
 
Ethical approval. 
This study has been reviewed and approved by the University of Stirling 
Research Ethics Committee. 
 
Contact for further information. 
If you have any questions or concerns please feel free to contact the primary 
investigator and or investigation supervisors (contact information is listed at 
the top of this information sheet). 
 
Please note you will be issued with a copy of this information sheet and the 
informed consent sheet should you decide to participate in the study. 
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Appendix B: Example informed consent sheet 

INFORMED CONSENT FORM 
 
CONSENT BY PATIENT/VOLUNTEER TO PARTICIPATE IN: A sports science 
research project at the University of Stirling 
 
Name of Patient/Volunteer:  .................................................................................. 
 
Name of Study: Reliability of reporting muscle activity during free weight 
squatting as a percentage of voluntary maximal and sub-maximal contraction 
protocols 
 
Principal Investigator: Tom Balshaw 
 
I have read the patient/volunteer information sheet on the above study and have 
had the opportunity to discuss the details with the principal investigator and/or 
the research supervisors and ask questions. The principal investigator has 
explained to me the nature and purpose of the tests to be undertaken. I 
understand fully what is proposed to be done. 
 
I have agreed to take part in the study as it has been outlined to me, but I 
understand that I am completely free to withdraw from the study or any part of 
the study at any time I wish. I understand and agree that my participation in the 
study is entirely at my own risk. 
 
I understand that these trials are part of a research project designed to promote 
scientific knowledge, which has been approved by the Sports Studies Ethics 
Committee, and may be of no benefit to me personally.  The Sports Studies 
Ethics Committee may wish to inspect the data collected at any time as part of 
its monitoring activities. 
 
I also understand that my General Practitioner may be informed that I have 
taken part in this study if any unusual or surprising observations are made (If I 
agree for contact to be made). 
 
I hereby fully and freely consent to participate in the study which has been fully 
explained to me. 
 
Signature of Participant: ........................................................................ 
 
Date: ...................................................................................................... 
 
I confirm that I have explained to the patient/volunteer named above, the nature 
and purpose of the tests to be undertaken. 
 
Signature of Investigator: ....................................................................... 
 
Date: ....................................................................................................... 
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Appendix C: Example body composition assessment sheet 

BODY COMPOSITION ASSESSMENT SHEET 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Participant Code   
  

Participant Name   
  

Sex (male=1, female=2)   
  

Sport   
  

Date of Measurement   
  

Date of Birth   
  

Measure 1 2 3 3rd Measure? 

Body mass          

Stretch stature          

Triceps sf         

Subscapular sf         

Biceps sf         

Iliac Crest sf         

Supraspinale sf         

Abdominal sf         

Front Thigh sf         

Medial Calf sf         
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Appendix D: Example food and fluid intake diary/exercise log 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendices  Page 196 

 

 

Appendix E: Motor unit firing rate analysis information  
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Appendix F: Common Drive analysis information 
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