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Abstract

We present a novel method to integrate multiple 3D
scans captured from different viewpoints. Saliency infor-
mation is used to guide the integration process. The multi-
scale saliency of a point is specifically designed to reflect
its sensitivity to registration errors. Then scans are par-
titioned into salient and non-salient regions through an
Markov Random Field (MRF) framework where neighbour-
hood consistency is incorporated to increase the robustness
against potential scanning errors. We then develop different
schemes to discriminatively integrate points in the two re-
gions. For the points in salient regions which are more sen-
sitive to registration errors, we employ the Iterative Closest
Point algorithm to compensate the local registration error
and find the correspondences for the integration. For the
points in non-salient regions which are less sensitive to reg-
istration errors, we integrate them via an efficient and effec-
tive point-shifting scheme. A comparative study shows that
the proposed method delivers improved surface integration.

1. Introduction
Due to the development of laser scanning techniques, 3D

reconstruction of a surface model from multiple scans has
gained considerable attention. Such a reconstruction usu-
ally comprises three main steps: (1) scanning object sur-
face from various viewpoints, (2) registering the scans into
a common coordinate system, and (3) integrating the scans
to produce a single composite model. While much attention
has been paid to the second problem, rather less has been
given to the third step. Although recent high precision laser
scanners can scan surfaces of objects with a high accuracy,
scanning errors caused by sensing noise, outliers and occlu-
sions are still inevitable. Generally, the cheaper the scanner,
the less accurate and more noisy the captured data. Fur-
thermore, further errors are introduced by mis-registration:
registration errors remain even when using state-of-the-art
automatic 3D registration methods [12, 13, 20]. Integration
should be robust in the presence of these errors.

1.1. Related work

Existing integration methods can be divided into four
main groups: volumetric, mesh-based, point-based and
segmentation-based approaches.

Volumetric methods such as [6, 8, 19] integrate data by
voxelising them and then merging them in each voxel us-
ing data fusion algorithms. These methods require highly
accurate registration (often estimated via manually-assisted
camera calibration, or simply assumed to be given as known
input. In practice, volumetric methods often work poorly
or even fail in the presence of typical registration errors,
a problem demonstrated both theoretically and experimen-
tally in [25].

Mesh-based methods such as [18, 22, 24] detect overlap-
ping regions between triangular meshes. Then, the most ac-
curate triangles in the overlapping regions are kept, and all
remaining triangles are reconnected. This is computation-
ally expensive as triangles outnumber mesh vertices and are
more geometrically complex. Some mesh-based methods
thus just use a 2D triangulation for efficiency, but projec-
tion from 3D to 2D leads to ambiguities if it is not injective.
Such methods can fail for highly curved regions where no
suitable single projection plane exists. Mesh-based methods
is also not robust to registration errors [26].

Point-based methods like [16, 25] operate on points only.
The detection of correspondences is performed through
point repositioning where potential corresponding points
are usually moved closer to each other. Then the detected
corresponding points in overlapping areas are merged di-
rectly or via clustering. Point-based methods are relatively
efficient because all processes are based on only points, of
which there are significantly fewer than triangles. However,
the integrated surface tends to be rough due to scanning
noise and registration errors.

Segmentation-based methods such as [7, 26] partition or
decompose the input data into different categories and em-
ploy different integration strategies to process the data in
different categories. The idea is based on the fact that dif-
ferent types of data have different properties and thus one
integration scheme may not be applicable to all data. In
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Figure 1. During integration, the same magnitude of registration
error can have different effects in different regions. Left: a regis-
tration error Rp in a non-salient region. Right: a registration error
with the same magnitude in a salient region. A surface formed
by averaging the input surfaces (a trivial approach to integration)
gives good results in the non-salient region but not the salient re-
gion.

[26], principal component analysis (PCA) is employed to
segment a base surface into non-featured and featured ar-
eas and then use fuzzy-c means and k-means clustering ap-
proaches to integrate the points in the two areas separately.
The problem of this method is that the PCA-based segmen-
tation essentially relies on thresholding and is thus not re-
liable in the presence of scanning noise and registration er-
rors. As a result, some featured points are wrongly classi-
fied as non-feature points, often leading to an oversmoothed
surface after the integration. In [7], input scans are decom-
posed into high and low frequency components and only
the low frequencies are fused while the high frequency con-
tents are kept intact. However, this method requires highly
accurate registration.

1.2. The proposed work

Most existing integration methods are not robust in the
presence of registration errors which may move real corre-
sponding points away from each other and outliers closer
to each other. Usually, registration methods merely seek
to minimise such registration errors. However, Fig. 1 illus-
trates the fact that the same magnitude of registration er-
rors have significantly different effects on the integration
in salient and non-salient regions. In other words, during
integration, points in salient regions are more sensitive to
registration errors than ones in non-salient regions. There-
fore, it is natural to consider partitioning scans into salient
and non-salient regions and then using a robust strategy to
integrate points in salient regions while using a less robust
but more efficient strategy to integrate points in non-salient
regions. Furthermore, a simple thresholding-based segmen-
tation is not robust because saliency or ‘featureness’ [26]
values are usually not reliable in the presence of scanning
noise and registration errors. We thus employ an Markov
Random Field (MRF) modeling neighbourhood consistency
for a robust segmentation. Here, the neighbourhood consis-
tency is based on the fact that if the neighbours of a point
are salient/non-salient, this point is likely to be so as well.

By combining the aforementioned ideas, we proposes

a novel method for the robust integration of multiple 3D
scans. Firstly, saliency detection is performed by estimat-
ing the multi-scale representation of each input scan. Sec-
ondly, the detected saliency information is incorporated into
an MRF framework and the Belief Propagation (BP) algo-
rithm is employed to solve this MRF, partitioning scans into
salient and non-salient regions. Thirdly, for the points in
salient regions, we employ the Iterative Closest Point (ICP)
algorithm to adjust their positions and then integrate them;
for the points in non-salient regions, we integrate them via a
point shifting scheme. The final output of the proposed in-
tegration method is a single point cloud. To render the point
cloud as a watertight surface, a triangulation algorithm is
necessary although this non-trivial technique is out of the
scope of this paper.

2. Saliency detection
We first perform saliency detection for each scan. It in-

volves two stages: 3D scale space construction and multi-
scale saliency estimation.

2.1. 3D DoG scale space

SIFT [14] employs the Difference-of-Gaussians (DoG)
operator to construct a 2D scale space. In this paper, we
extend this method to 3D to construct a 3D scale space.

We apply a bank of S Gaussian filters on a scan M to
produce a multi-scale representation Ds for M . G(p, σ) is
a Gaussian kernel with standard deviation σ centred at the
point p ∈M . Each Gaussian kernel is applied over a spher-
ical region centred at p with a radius r. All points within
this region are viewed as the neighbours of p and involved
in the convolution. In this work, we set r = 2.355∗F ∗σ in
line with the principle of full width at half maximum where
F is a normalisation parameter related to the scanning res-
olution R (average inter-point distance) of the scan M and
we choose F = 2R. This neighbourhood region can be
viewed as a good approximation of a geodesic region of ra-
dius r. We propose a new algorithm for the Gaussian filter-
ing adaptive to the number of detected neighbours of each
point:

• For a point p, find all of its kp neighbours (including
itself) within a distance equal to r from all of the points
in the scan M .
• Sort the kp neighbours in the descending order of the

distance to p to produce a kp dimensional vector vp.
So the first element in the vector is p itself and the last
one is the point furthest from p.
• For the neighbourhood of each p, construct a discrete

Gaussian kernel with standard deviation σ sampled as
a kp-dimensional vector.
• Sort the elements in this Gaussian kernel in descending

order, yielding an adaptive Gaussian kernel Gp. Thus
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in the following convolution, nearer neighbours have
more weights.
• Do convolution using vp and Gp.
• Repeat the steps listed above for all points on M .

After the Gaussian filtering, the 3D DoG scale space is
constructed by computing the difference of a pair of layers
at scale s:

Ds(p) = Gp(p, σs)−Gp(p, ησs), s = 1, 2, ...S (1)

where Gp denotes the Gaussian applied to the point p. η
is set as 1.6, which makes the DoG a good approximation
of the Laplacian of Gaussian (LoG). By ‘approximation’,
we mean DoG(x)/LoG(x) ≈ constant or the DoG is ap-
proximately equal to the scale-normalised LoG which can
achieve true scale invariance.

A reasonable balance between reliability of saliency de-
tection and computational cost (especially for the follow-
ing MRF labeling) is achieved, in our experience, by using
four scales of filtering with σs ∈ {0.6, 1.2, 1.8, 2.4}. Note
that an optimal σbest can be calculated using the method
proposed in [2]. Other papers using different 3D Gaus-
sian filters suggest that σ should be chosen according to the
size of the object. For example, in [11], values used are
σs = {2ε, 3ε, 4ε, 5ε, 6ε} where ε is 0.3% of the length of
the diagonal of the bounding box of the model. Using such
parameter settings, σ could be rather small if the object is
very small in size. This may not be problematic for the orig-
inal paper as its aim is saliency detection but it will result
in difficulty during MRF labeling later. The reason is that
a steep Gaussian puts too much weight on the centre point,
leading to similar saliency values at different scales. The
one-point cost measured by saliency difference in Eq. (4)
can thus be ambiguous and consequently the labeling result
will not represent a meaningful segmentation. Here, we fix
the values of σs for easy implementation as our tests show
that in most cases, an optimal value σbest does not change
the segmentation result too much although it has a signifi-
cant effect on the resultant saliency map.

2.2. Multi-scale saliency estimation

Ds(p) is a 3D vector representing the displacement of
the point p from its original position in M after the filter-
ing. Note that the effect of a registration error at a point
is essentially an unexpected displacement of the point (to
move it away from its corresponding point). This is the rea-
son that we define the saliency in a scale-dependent manner
on its Gaussian-weighted 3D position rather than mean cur-
vature as in [11]. The displacement more directly indicates
the sensitivity to registration error which is the key to our in-
tegration algorithm. Such a displacement is related to local
surface geometry (i.e., the positions of the neighbours). We
estimate a Gaussian-weighted value in a neighbourhood to

measure such a sensitivity to displacement, which is based
on the fact that if one point is poorly registered, its neigh-
bours are likely to be so as well. To reduce it in a scalar
quantity, we project the vector Ds(p) onto the normal n(p)
at the point p to obtain the scale map Ms:

Ms(p) = ‖n(p) ·Ds(p)‖ , s = 1, 2, 3, 4 (2)

This works because: (i) such a projection indeed reduces the
displacement in a scalar quantity as Ms(p) ≤ ‖Ds(p)‖, (ii)
the displacement of a point in the direction of normal will
not change (or only slightly change) the size of the mesh,
reducing the shrinking effect which rises typically when we
do Gaussian filtering to 3D meshes [17], and (iii) the surface
topology is retained as the displacement is along the normal.

Then, we employ the method proposed in [10] to nor-
malise the scale maps. Firstly, the values in each map are
normalised to a fixed range in order to eliminate modality-
dependent amplitude differences. Secondly, the location of
the map’s global maximum A is detected. Thirdly, the aver-
age ā of all other local maxima is computed and the map is
globally multiplied by (A− ā)2.

The normalisation is designed to globally promote maps
in which a small number of strong peaks (corresponding
to salient locations) are present, while globally suppressing
maps which contain numerous comparable peaks. To fur-
ther enhance the difference between salient and non-salient
locations, we apply an arc-tangent operation to each scale
map to produce the final saliency map M̂s. These maps in-
dicate the degree to which points in different locations have
different sensitivity to potential registration errors in terms
of the effects on the final integration results.

3. Saliency-guided segmentation
Once the multi-scale saliency map M̂s, s ∈ {1, 2, 3, 4}

is obtained, previous methods either (i) directly save all the
information (all scales, all neighbourhoods, all saliency val-
ues, etc) attached to one point which can be used to pro-
duce a descriptor (often a vector of high dimension), or
(ii) output a single-saliency map by simply computing the
sum or the average of all multi-scale saliency maps to sim-
plify the information. The first type of methods are good at
producing a distinctive descriptor for each point, but such
approaches result in high computational cost. For speed,
some researchers thus reduce the dimension of the descrip-
tor vector in some way, by eliminating unimportant infor-
mation. This typically leads to a trade-off between quality
of results and speed. The second type of methods [5, 11]
are fast but do not make good use of the information em-
bedded in the multi-scale saliency maps. In particular, the
saliency of each point is no longer particularly distinctive.
Furthermore, range scans normally included spikes, holes,
or even cluttered background. Such scanning noise may
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lead to unreliable saliency detection. Thus, to more ro-
bustly judge whether a point is salient or not, we should not
only consider its detected saliency, but also investigate its
neighbours as neighbouring points are likely to have consis-
tent properties. In the proposed method, the neighbourhood
consistency is incorporated through an MRF framework.

In the MRF, the label set comprises the scale indices
{s} = {1, 2, 3, 4}. For a point p, each label has a corre-
sponding scale saliency {M̂s(p)} for the scale s. In line
with the standard MRF formulation where the points/sites
are written as subscripts and the labels assigned to the points
are variables to be determined, in the rest of this paper, we
rewrite the saliency {M̂s(p)} as {M̂p(s)}. The MRF en-
ergy function can be expressed as:

E(s) =
∑
p∈M

Ep(sp) + β
∑

p

∑
q∈Np(s)

Epq(sp, sq) (3)

where β is a weighting parameter and theNp(s) denotes the
neighbourhood of p at scale s as used in Gaussian filtering,
but now without p itself).

3.1. Observation term

In Eq. (3), the observation term Ep(sp) is a one-point
cost function associated to the state (label) that we are most
likely to observe at point p. It is defined as the difference
between the saliency corresponding to a certain scale and
the largest saliency at p:

Ep(sp) =
∣∣∣M̂p(sp)−max

s
M̂p(s)

∣∣∣ , s = 1, 2, 3, 4 (4)

It can be seen that the label ŝp = arg maxs(M̂p(s)) always
produces the lowest one-point labeling cost at p in such a
model.

3.2. Compatibility term

The compatibility term captures the label compatibil-
ity between two neighbouring points in a pairwise MRF
model. It can be regularised by the general and scene-
specific knowledge. For instance, the smoothness prior,
essentially an intensity consistency strategy applied to a
neighbourhood, is widely used in 2D applications such as
image segmentation, restoration and depth estimation, etc.
In this work, we carry out a scale consistency strategy which
encourages two neighbouring points to take the same la-
bel since neighbouring points are likely to have the same
properties. The compatibility term is the widely used Potts
model [3]:

Epq(sp, sq) =
{

1, sp 6= sq,
0, otherwise

(5)

3.3. Inference via belief propagation

We solve this MRF in accordance with the maximum a
posteriori probability (MAP) criterion. The MAP criterion
requires the minimisation of the MRF posterior energy ex-
pressed in Eq. (3) derived from the negative log-likelihood
of the posterior probability. Therefore, our aim is to find a
label assignment s∗ = {s∗p|p ∈ M} which minimises the
energy in Eq. (3). Several methods have been developed to
solve such a problem [23]. We employ the belief propaga-
tion (BP) method here, which works by passing messages
in an MRF network. It is briefly summarized as follows:

1. For all point pairs (p, q) where q ∈ N (p), initialising
message m0

pq to zero, where mt
pq is a vector of dimen-

sion given by the number of possible labels S (S = 4
in this work)and denotes the message that point p sends
to a neighbouring point q at iteration t.

2. For t = 1, 2, . . . , T , updating the messages as

mt
pq(sq) = min

sp

(
Ep(sp) + βEpq(sp, sq)

+
∑

h∈N (p)\q

mt−1
hp (sp)

)
. (6)

N (p) \ q denotes the neighbours of p other than q.
3. After T iterations, computing a belief vector,

bq(sq) = Eq(sq) +
∑

p∈N (q)

mT
pq(sq) (7)

and then determining labels at each point as:

s∗q = arg min
sq

(
bq(sq)

)
(8)

As can be seen from Eq. (6), the computational complexity
for the calculation of the message vector is O(S2) as we
need to minimise over sp for each choice of sq . By a simple
analysis, we can reduce it to O(S), as shown below:

1. Rewriting Eq. (6) as,

mt
pq(sq) = min

sp

(
βEpq(sp, sq) + f(sp)

)
(9)

where f(sp) = Ep(sp) +
∑

h∈N (p)\q

mt−1
hp (sp)

2. Considering two cases: sp = sq and sp 6= sq

If sp = sq , βEpq(sp, sq) = 0, thus mt
pq(sp) = f(sq)

If sp 6=sq, βEpq(sp, sq)=β,mt
pq(sq)=minsp

f(sp)+β

3. Synthesizing the two cases to give:

mt
pq(sq) = min

(
f(sq),min

sp

f(sp) + β
)

(10)
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Figure 2. Saliency detection, MRF labeling and segmentation of one scan of the Stanford Bunny.

Using Eq. (10), the minimisation over sp need be performed
only once, independent of the value of sq . In other words,
Eq. (6) needs two nested FOR loops to compute the mes-
sages but Eq. (10) just needs two independent FOR loops.
Therefore, the computational complexity is reduced from
O(S2) to O(S).

We then convert the label assignment to a segmentation.
Typically, most points are assigned the same label as shown
in Fig. 2, and these points comprise the non-salient regions.
All other points comprise the salient regions.

4. Point shifting and local ICP

In this section, we give the details of the integration
scheme guided by the saliency-determined segmentation.
Given two registered 3D scans (3D point clouds), P1 and
P2, we use two schemes to integrate points in salient and
non-salient regions respectively.

Integration in non-salient regions. For the points in
non-salient regions, we present an efficient point shifting
method modified from the centroid initialisation algorithm
in [25] to integrate them. First, the overlapping and non-
overlapping areas of P1 and P2 are efficiently detected. A
point in one point cloud is deemed to belong to the over-
lapping area if its distance to the nearest point in the other
point cloud (its corresponding point) is within a threshold;
otherwise it belongs to the non-overlapping area. A k-D tree
is used to speed up the search. The threshold is set to 3R,
where R is the scanning resolution of the input scans. This
threshold is generally large enough not to miss any real cor-
respondence between the overlapping scans to be integrated
when their registration is reasonably accurate [25].

After detecting the overlap, we compute the normals for

the points in overlapping areas and set S1 and S2 to de-
note the points in the non-overlapping areas belonging to P1

and P2 respectively. Next, we compute a point set Soverlap

which represents the integrated points for the points from
both overlapping areas. To bring the corresponding points
closer to each other, each point P in the overlapping areas is
shifted along its normal N towards its corresponding point
P∗ by half of its distance to P∗:

P→ P + 0.5d ·N, d = ∆P ·N, ∆P = P∗−P (11)

A sphere with radius r = 1.5R is defined, centered at
each such shifted point of the reference point cloud P2.
If other points fall into this sphere, then their original un-
shifted points are retrieved. The average position of these
unshifted points is then computed and returned. The set of
all such positions forms the point set Soverlap. Then the
integration result in non-salient region is Pnon−salient =
Soverlap ∪ S1 ∪ S2.

This strategy (i) compensates for registration errors as
corresponding points are closer to each other, (ii) does
not alter the tangential spread of the overlap, as points
are moved along their normals, and (iii) leaves the surface
topology unaffected, as again, the shift is along the normal.

Integration in salient regions. For the points in salient
regions, the aforementioned point shifting scheme is not
suitable (again, see Fig. 1) – it usually leads to an over-
smoothed surface. We thus use the iterative closest point
(ICP) algorithm to reposition these points to reduce the er-
rors caused by inaccurate registration. Although ICP is a
classical method to register entire scans, it has also been
used for local registration [4]. In our method, the ICP is
merely applied to the points in salient regions. Doing so
has four advantages. First, registering the whole dataset is
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Figure 3. Left: Joint meshes of 10 Bunny scans without integra-
tion; Right: Joint meshes of 17 Frog scans without integration

more difficult as it usually includes noise such as outliers or
even clutters. An ICP applied to local salient regions is less
likely to suffer from such noise. Second, initial transfor-
mation between neighbouring scans is usually good enough
for refinement. Thus the local ICP here is more likely to
produce reliable result. Thirdly, the local ICP offers a more
accurate registration for the salient points which are visually
more important than the non-salient points. It is essentially
a desired error distribution which usually leads to a visually
better integration. Fourthly, a local ICP is more efficient
than a global ICP as fewer points are involved.

In detail, for the points in salient regions, we first de-
tect the overlapping area using the same scheme as for
integration of non-salient regions. Then, we employ the
ICP algorithm to align the points from P1 in the over-
lapping area with the points from P2 in the overlapping
area. Note that in this local registration, we do not only
reposition some points from P1, but also, as a byproduct,
find the correspondences between some repositioned points
from P1 and some points from P2 in the overlapping ar-
eas. We then simply integrate each pair of correspond-
ing points by averaging to obtain the integrated point set
Soverlap. The points S1 and S2 in non-overlapping areas
remain unchanged. Similarly, the integration result in non-
salient region is Psalient = Soverlap ∪ S1 ∪ S2.

Finally, we obtain the integrated point cloudPintegrated=
Pnon−salient∪Psalient for the input point clouds P1 and P2.
Then we can do the integration for Pintegrated and the next
input 3D scan P3. After all input scans have been integrated
through this procedure, a single integrated point set is ob-
tained. We then employ the power crust method [1] to tri-
angulate the final integrated points to make a mesh.

5. Experimental results
In the experiments, we test 6 sets of multi-view 3D scans.

The Bird (156094 points, 17 scans), the Frog (174097
points, 17 scans), the Lobster (176906 points, 18 scans), the
Teletubby (90848 points, 17 scans) and the Duck (220560
points, 18 scans) datasets were obtained from the Minolta
Database [9] and the Bunny dataset (362230 points, 10

Figure 4. Left: Integration of the Bunny scans using the proposed
method; Right: Integration using the SFK method [26]

scans) was obtained from the Stanford 3D Scanning Repos-
itory. The Bunny dataset was captured at high resolution
and highly accurate alignment parameters are given. The
more noisy Minolta scans are captured at much lower reso-
lutions and the alignment parameters are not given. We thus
employed the state-of-the-art algorithms proposed in [13]
and [15] to perform automatic pairwise and global registra-
tion for these scans. The registered multi-view 3D scans
were then used as the input data for our experiments. As
shown Fig. 3, the Minolta scans contain larger registration
and scanning errors. Note that existing integration meth-
ods usually require the registration error to be an order of
magnitude lower than the measurement error. However,
for the Minolta scans, this assumption is not satisfied. As
demonstrated in Table 1, the average registration errors are
is about 1/3 to 1/2 of the scanning resolution. Fig. 3 visu-
alises the different scales of registration errors within dif-
ferent datasets by showing joint meshes of all (registered)
input scans without integration.

Most integration methods can produce a good surface
model for the well-registered Bunny scans. For exam-
ple, Fig. 4 compares our integration method with the
segmentation-based method [26] (we call it SFK for short
as it first performs a segmentation and then employs fuzzy-
c means and k-means clustering to integrate points). Al-
though both deliver good results, our method still performs
slightly better, especially on preserving local details (see the
eye of the bunny).

The more challenging Minolta scans are widely used for
comparing methods. As shown in Fig. 5 and 6, different
methods performs significantly differently. In sharp con-
trast, our method produces clear eyes, mouth and wings for
the bird, eyes, fingers and pocket (on the chest) for the tele-
tubby, and toes, eyes, and mouth for the frog, etc. In gen-
eral, the volumetric method fails to produce a clean surface
model. The mesh-based method and the k-means clustering
produce improved surface models but also sometimes gen-
erate fragments (see the frog’s toes, the teletubby’s ears, the
lobster’s eyes and the duck’s neck and mouth). The pairwise
MRF and the SFK suffer from oversmoothing although they
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Figure 5. Rows: Integration results of Bird and Teletubby scans. From left to right: one input scan (ground truth), volumetric method [8],
mesh-based method [22], k-means clustering [25], pairwise MRF [16], SFK [26], our method

Figure 6. Columns: Integration results of Frog, Lobster and Duck
scans. From top to bottom: one input scan (ground truth), vol-
umetric method [8], mesh-based method [22], k-means cluster-
ing [25], pairwise MRF [16], SFK [26], our method

Table 1. RS, average of resolutions of all range scans; RE, average
registration error over reciprocal correspondences [13]; SDRE,
standard deviation of registration errors; 3DGC1, average 3D Gini
coefficient of the surface model produced by our method; 3DGC2,
average 3D Gini coefficient of the surface model produced by the
pairwise MRF [16]; 3DGC3, average 3D Gini coefficient of the
surface model produced by the k-means clustering [25].

usually produce a clean surface.
We have also made quantitative comparisons by com-

puting 3D Gini coefficients [21]. The 3D Gini coefficient
is a quantitative version of the comparison shown in Fig. 5
and 6 where we use a single scan as the ground truth and
compare it with its corresponding region of the integrated
surface model. The 3D Gini coefficient quantitatively mea-
sures the mesh similarity between one input scan (taken as
ground truth) and its corresponding surface region of the
integration by computing the cumulative distribution of the
joint probability of two transformed curvatures. The smaller
the 3D Gini coefficient, the more similar the input scan with
its corresponding region of the integrated surface. Overall
integration quality is given by averaging the 3D Gini coeffi-
cients between the integrated surface model and each input
scan. The smaller the average 3D Gini coefficient, the better
the integration.

Fig. 5 and 6 qualitatively demonstrate that our new
method, pairwise MRF [16] and k-means clustering [25]
seem most successful. Therefore, in the quantitative com-
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parison, we compute the average 3D Gini coefficients of
the surface models produced by the three integration meth-
ods. The results are shown in the last three columns of Ta-
ble 1. For each Minolta dataset, our new method achieves
the smallest average 3D Gini coefficient. In general, accord-
ing to the average 3D Gini coefficient, our new method (cor-
responding to 3DGC1) achieves the best result, k-means
clustering (corresponding to 3DGC3) is next best, and pair-
wise MRF (corresponding to 3DGC2) is worst.

All experiments used a dual core, 2.4GHz, 3.25GB
RAM PC. The integration of each dataset took 15–30 min-
utes, mainly depending on the number of the points in the
datasets and the number of iterations that the BP algorithm
used to reach convergence or an acceptable solution.

6. Conclusion

We present a saliency-guided method for the robust inte-
gration of multiple 3D scans. Its novelty is twofold. On the
one hand, using the specifically defined saliency to guide
a segmentation-based integration achieves the robustness to
large registration errors. On the other hand, incorporating
the saliency information into an MRF for the segmentation
increases the robustness to potential scanning noise. While
most existing methods uniformly treat data to be integrated,
we first partition input scans into salient and non-salient re-
gions and then integrate 3D points in different regions using
different strategies. A comparative study using 6 models
with altogether 97 scans from two well-known databases
shows that the proposed method outperforms the selected
state of the art ones. Future work will concentrate on the
robust and efficient integration of all input scans simultane-
ously using global optimisation.
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