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Abstract: - The paper presents two readily implementable approaches for Sensor Fault Detection, 
Identification (SFD/I) and faulted sensor data reconstruction, in complex systems. Specifically, 
Principal Component Analysis (PCA) and Self-Organizing Map Neural Networks (SOMNNs) are demonstrated 
for use on industrial turbine systems. In the first approach, Squared Prediction Error (SPE) based on the PCA 
residual space is used for SFD, and a SPE contribution plot is employed for SFI. Furthermore, a missing value 
approach using an extension of PCA is applied for faulted sensor data reconstruction. In the second approach, 
SFD is performed by SOMNN based Estimation Error (EE), and SFI is achieved through an EE contribution 
plot. Data reconstruction is then based on an extension of the SOMNN algorithm. The performance of both 
approaches is demonstrated through use of experimental data during the commissioning of an industrial gas 
turbine in the sub 15MW range. 
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1 Introduction 
Sensor Fault Detection and Identification (SFD/I) 
has attracted considerable recent attention due to 
the benefits of reducing down-time and loss of 
productivity, and increasing the confidence of 
safety, quality and reliability of systems. 

With regard to previously reported techniques 
for SFD/I, Principal Component Analysis (PCA) 
and Artificial Neural Networks (ANNs) have been 
the most popular candidate solutions. PCA based 
Squared Prediction Error (SPE) is well established 
and extensively applied for SFD in industrial 
processes and power control [1-8]. However, since 
SPE alone cannot identify the faulty sensor within a 
group, additional algorithms have been developed 
for this purpose. For instance, a Sensor Validity 
Index (SVI) was introduced for SFI in [1-5]. 
Regarding combined SFD/I, ANN techniques based 
on Multi-Layer Perceptron Neural Networks 
(MLPNNs) and Self-Organizing Map Neural 
Networks (SOMNNs) have been primary 
candidates. MLPNNs have been compared with 
Support Vector Machine (SVM) methods for fault 
detection in rotating machinery, with the 
conclusion that ANN’s performance was generally 
better than SVM in terms of ‘training overhead’ 
and robustness [9]. Furthermore, SOMNNs were 

used for fault detection in induction machine 
systems [10], with a further study in [11] indicating 
that SOMNNs generally provide good solutions 
and give better results than approaches based on 
MLPNNs or other radial basis function neural 
networks (RBFNNs). 

After identifying a faulted sensor, it is possible 
in some circumstances to reconstruct the 
measurements expected from that sensor and 
thereby facilitate improved unit availability. Data 
reconstruction can be achieved by extensions of the 
PCA- [12] and SOMNN-based approaches [13]. In 
this paper, PCA and SOMNN based approaches are 
applied for SFD/I and data reconstruction for an 
industrial turbine system. The efficacy and relative 
merits of both methods are discussed through the 
use of data from experimental trials. 
 
 
2 Methodologies 
 
2.1 PCA 
PCA has been extensively applied for data analysis 
purposes, to reduce large datasets whilst preserving 
‘sufficient’ information contained in the original 
underlying signal. Here, the treatment is restricted 
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to a brief overview to introduce terminology and 
definitions that are subsequently used. 

Let X be the original data matrix with a mean 
0.0 and a standard deviation 1.0. , where 
I rows indicate the dimensions of data, i.e. the 
sensors, while J columns indicate the repetition of 
data from the experiment, i.e. the time steps.  

JI×ℜ⊂X

The associated covariance matrix, , is 
then obtained from  

II×ℜ⊂C
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The eigenvectors and eigenvalues of the 
covariance matrix are found from  

ΛCVV =−1 ,                                 (2) 
where , with the I column vectors 
representing the I eigenvectors of C, and  
is the diagonal matrix of eigenvalues of C, where 
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kijΛ λ= for i=j=k with kλ  as the kth eigenvalue of 
C, and  for . The eigenvectors and 
eigenvalues are arranged in order of decreasing 
eigenvalues. The cumulative sum of the variance 
for the i
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Basis vectors are selected from a subset of the 
eigenvectors while achieving a high value of s on a 
percentage basis, e.g. %95=thresholds . When 
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then the first P columns of V are used as the basis 
matrix , withPI×ℜ⊂αV ijij VV =α for i=1,2,…,I and 
j=1,2,…,P where IP ≤≤1 . 

To describe the original data in principal 
component space, the following relation is used: 

XVY T
α= ,                                (5) 

where  is the principal component matrix, 
which is a representation of X after PCA, with the 
i

PI×ℜ⊂X

th row representing the ith principal component. 
Since  is orthonormal, for a new input data 

signal , an approximation of x is given by: 
αV

1×ℜ∈ Ix
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αα=ˆ .                                (6) 
PCA generates a principal component sub-space 

and a residual sub-space. Decomposing the data 
matrix into two parts, the principal component 
estimation part, and the residual part, gives 

exx += ˆ ,                                 (7) 
where the residual can be expressed as 

( )xVVIe  T
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2.2 SOMNN 
A SOMNN is a competitive learning network.  An 
input data vector, [ ] 1

21 ,...,, ×ℜ∈= I
Ixxxx , with I 

variables (sensors), is associated with a reference 
vector, , which is often randomly initiated 
to give each neuron a displacement vector in the 
input space. For each sample of 

1×ℜ∈ I
ir

)(tx ,  
constitutes ‘the winner’, by seeking the minimum 
distance between the input vector and the reference 
vector, and is calculated from: 

)(twr
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After obtaining a ‘winner’, the reference vectors 
are updated using: 

( )()()()()1( , tttntt iiwii rxrr − )+=+ ,            (10) 
where  is a neighbourhood function, which is 
normally chosen as Gaussian. The reference 
vectors are adjusted to match the training signals, 
in a regression process over a finite number of 
steps, in order to achieve the final ‘self-organizing 
maps’.  

)(, tn iw

 
 
3 Sensor Fault Detection 
To provide an illustrative focus for the study, a 
group of six burner tip temperature sensors on an 
industrial gas turbine system, is studied. Fig.1 
shows an example of field data from an 
experimental trial showing sensor faults on sensor 
6. Data from the first 300 minutes are used as 
training data, and data from 300 to 1440 minutes 
are applied as testing data for both approaches. 
 
 
3.1 PCA based SPE 
The SPE can be obtained by the square of the 
predicted residual, e in (8), as follows 

( xVVIxex  )( 2 T
α
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Fig. 1: Experimental trial: temperature information 



 
Fig. 2: Experimental trial: SPE plot 

 
Here, the eigenvector matrix  is calculated from 
the data history matrix, in this case, the first 300 
minutes, which is considered to be ‘normal’. 

αV

The residuals generated by PCA are variances 
that cannot be modeled in principal component 
space. When no faults are deemed to be present, the 
residuals represent normal dynamics and noise in 
the system, in the PCA residual sub-space. In the 
presence of a sensor fault, there is divergence of 
sensor correlations, and the residual vector deviates 
from the normal range. In this aspect, the detection 
of potential sensor failures is carried out by 
comparing the SPE with a threshold 1δ  defined 
from historic data, and anomalies are deemed to 
occur when 

1δ>SPE .                                  (12) 
Here, the threshold is chosen at a 95% 

confidence level. The SPEs are plotted in Fig.2 for 
the experimental trial. It is shown that abnormal 
conditions are detected after 500 minutes. 
 
3.2 SOMNN based EE 
SOMNN is performed using the same 
measurements, with 6 sensor variables and 1440 
time samples in the network. To obtain a visual 
output of the classifications, the SOMNN is trained 
with the output space as 8×8 hexagonal grids, using 
Matlab Neural Network Toolbox [14].  For the 
training data, the weighting matrices in the 
component planes for the 6 sensors, are shown in 
Fig.3(a). For abnormal operation (data after 500 
minutes), the component planes of the map are 
shown in Fig.3(b). It can be seen that a discrepancy 
exists between the weighting matrix for sensor 6 
and those of the other sensors, indicating a fault on 
sensor 6. 

To detect such effects numerically, an 
Estimation Error (EE) is introduced to monitor the 
performance of the final ‘self-organizing maps’: 

new
w
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which is defined as the distance between the 
winning weight vector  and the input vector 

 in the new state. If the EE is greater than a 
pre-determined percentage of the normal 
distribution profile, the new state signal is 
considered to be abnormal i.e. when 

new
wr

newx
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(a) 

 
(b) 

Fig. 3: Component planes of the self-organizing 
map: (a) normal operation, (b) faults on sensor 6 

 

 
Fig. 4: Experimental trial: EE plot 

 



The threshold is also selected as the 95% 
confidence level from the training data. The EE 
plot is shown in Fig.4 for the same experimental 
trial that shows fault occurring after 500 minutes. 
Although the error measure EE in SOMNN and the 
SPE in PCA are based on different algorithms, it 
can be seen that the results are comparable and in 
good agreement—see Fig.2 and Fig.4. The methods 
therefore provide corroborating techniques. 
 
 
4  Sensor Fault Identification 
SFI can be simply achieved from respective 
contribution plots from both PCA and SOMNN 
based approaches. The contribution to the SPE or 
EE, from each sensor, is calculated and plotted in a 
percentage form, in Fig.5. A greater percentage 
presents more error contribution from that 
particular sensor.  

The error contribution plot is used in 
complement with the SPE (or EE) plots to 
accomplish the SFI after abnormal conditions have 
been detected. Again, it can be seen from both 
results that sensor 6 is at fault after 500 minutes. 

 

 
(a) 

 
(b) 

Fig. 5: Contribution plot: (a) SPE (b) EE 

5 Data Reconstruction 
 
5.1 PCA based Missing Value Approach 
Following the identification of a faulted sensor, a 
decision needs to be made as to whether operation 
of the unit can continue, or whether the unit should 
be shut-down for immediate maintenance. The 
latter option often leads to enforced down-time and 
lost productivity.  An alternative, therefore, is to try 
and reconstruct a ‘best estimate’ of the 
measurements expected from the faulted sensor 
with a view to retaining the ability to keep the unit 
operating.    

The PCA based ‘missing value’ approach is 
now used to reconstruct the faulted signal by using 
the measurements from non-faulted sensors and the 
correlations of the sensors from the training data. 
Assuming the ith sensor is faulty, and the input 
signal is the original signal but without the ith term, 
then 
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The eigenvector matrix  is modified by 
eliminating the ith row for which the ith sensor 
contributed 
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Define [ ] IT
i ℜ∈= 0...0 1 0...0 0ε , with the ith 

component as 1, and other components as 0s. The 
estimate of the faulted signal is calculated from 
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To evaluate the reconstruction performance, 
define the -norm relative reconstruction error,2l E , 
as follows   
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As a test example, normal operational 
measurements from burner tip temperature sensors 
are studied, as in Fig.6. The first 1000 minutes are 
used as training data, and the signal for sensor 6 
from 1000 to 2000 minutes, is estimated. The 
original and estimation signals are shown in 
Fig.7(a). The -norm relative prediction error is 
0.005% for the test example, signifying that the 
reconstruction bears an excellent correspondence 
with the ‘real’ measurements.  

2l

The method is subsequently applied to an 
experimental trial which includes the sensor failure 
depicted in Fig.1.  



 
Fig. 6: Data reconstruction test example 

 

 
(a) 

 
(b) 

Fig. 7: Data reconstruction based on PCA: (a) test 
example; (b) faulted signal 

 
The faulted signal is reconstructed as shown in 
Fig.7(b). It can be seen that the estimates from the 
training data fit well. 
 
5.2 SOMNN based Reconstruction 
Based on the SOMNN algorithm, for a 2-
dimensional output space, the faulted signal can be 
reconstructed by adjusting the weight vector using 
a combination of its k nearest nodes. Firstly, a 
function is defined for monitoring the activation of 

 
(a) 

 
(b) 

Fig. 8: Data reconstruction based on SOMNN: (a) 
test example; (b) faulted signal 

 
output neuron n for an input vector x by using a 
Gaussian kernel: 
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where  is a parameter representing the influence 
region of neuron n. When the current sample of the 
sensor is detected as being faulty, the winning 
neuron for this measurement is no longer valid, and 
the weighting vector is estimated by considering 
the k nearest neighbouring neurons of the 
corresponding winning neuron, in the output space, 
expressed as 

2
nσ
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where  is the estimation of the measurement, i is 
sensor index and m is the neuron index. 

iz

For the test example in Fig.6, the SOMNN 
based reconstruction result is shown in Fig.8(a). 
The -norm relative prediction error is 0.003% in 
this case, demonstrating better performance of the 
SOMNN based data reconstruction than the PCA 
based method.  

2l



The technique is then applied to the 
experimental trial shown in Fig.1, and the signal 
estimation for sensor 6 is shown in Fig.8(b). From 
the results it can be seen that from the onset of the 
‘fault period’, the reconstructed data follows the 
normal trend (given by the behaviour of the other 
sensors) very reliably, and could therefore be used 
in place of the erroneous (faulted) measurements.  

It should be noted that these techniques can also 
be readily adapted to provide expected outputs 
from each sensor in a group, which can then be 
compared to the real-time measurements, and 
thereby provide a further simple mechanism for 
detecting unexpected characteristics.  

 
 

6 Conclusion 
In this paper, PCA and SOMNN based approaches 
are applied for SFD/I and faulted sensor data 
reconstruction, and there relative merits discussed. 
PCA based SPE and SOMNN based EE are used 
for SFD. Contribution plots are employed for SFI. 
Data reconstruction is performed through 
extensions of the PCA and SOMNN techniques. 
Both approaches are shown to be capable detecting, 
identifying and reconstructing data from faulted—
thereby facilitating corroborative use of their 
attributes.  
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