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Abstract: - This paper investigates the mechanical properties of single-walled carbon nanotubes (SWCNTs). To 
overcome the difficulties of spanning multi-scales from atomistic field to macroscopic space, the Cauchy-Born 
rule is applied to link the deformation of atom lattice vectors at the atomic level with the material deformation 
at a macro continuum level. SWCNTs are modelled as Cosserat surfaces, and a modified shell theory is adopted 
where a displacement field-independent rotation tensor is introduced, which describes the rotation of the inner 
structure of the surface, i.e. the micro-rotation. Empirical interatomic potentials are employed so that the force 
and modulus fields can be computed by the derivations of potential forms from the displacement and rotation 
fields. The method is used to predict the Young’s modulus for SWCNTs, and it is shown that it is capable of 
providing comparable results with atomistic simulations, but with much lower computational overhead. 
 
 
Key-Words: - Single-walled carbon nanotube, Cauchy-Born rule, Cosserat surface, Empirical interatomic 
potential. 
 
1 Introduction 
The discovery of carbon nano-tubes (CNTs) and 
their outstanding properties [1] has led to a 
revolution in nano-technology. However, 
maximizing their potential is impeded by the 
relatively high cost of experiments, which is often 
inflated by the corruption of useful measurements 
due to unexpected manual and handling errors.  It is 
therefore extremely useful to develop theoretical 
tools for studying the mechanical properties of 
CNTs, with results being of particular interest to 
aerospace, biomedical engineering and many other 
sectors.  

To apply continuum mechanics to CNTs, the 
Cauchy-Born rule is often used to link the atomistic 
field to the continuum environment that describes 
the relationship between the deformation of atom 
lattice vectors and the deformation of bulk vectors 
[2]. However, as described in [2], the Cauchy–Born 
rule is not directly applicable to CNTs because they 
can be considered as a curved surface, and the 
deformation gradient maps the deformed vector on 
the tangent space of the deformed curve, instead of 
the real chord vector that resides on the curve. 
Modifications have been therefore been posed for 
the standard Cauchy-Born rule [2-4], all based on 
the addition of higher order terms into the 
deformation gradient in order to better approximate 

the real curve. Specifically, they have traditionally 
been modelled as either linear elastic shells [5,6] or 
non-linear elastic shells [2,7] using continuum 
mechanics methods.  

Here however, the paper now uses the standard 
Cauchy-Born rule to describe the strain at the 
tangent plane, and a modification is proposed by 
adding a displacement field-independent rotation 
tensor at each point of the surface.  A single-walled 
carbon nanotube (SWCNT) can be considered as a 
two-dimensional manifold and can be solved with 
the Cosserat surface shell theory demonstrated in 
[8], where the rotation field is already at a micro-
level. However, this Cosserat surface shell theory is 
based on constitutive laws from conventional 
continuum theory—here the constitutive laws 
derived from empirical interatomic potentials 
which describe the real interactions among atoms.  

The first generation of Tersoff and Brenner 
potentials [9] has been extensively applied in the 
study of CNTs [2,10-12], and in [13] modifications 
were published that are considered as a second 
generation of Brenner potentials, which they 
claimed to be more accurate to model the real 
interatomic reactions of carbon bonds.  This forms 
the basis for the use of the empirical interatomic 
potential forms in this paper.  
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2 Modelling Method 
The primary underlying principle of the method 
considered here, is that the SWCNT is a two-
dimensional manifold whose solution is obtained 
using Cosserat surface shell theory. The 
deformation can be described by a stretch tensor 
and a rotation tensor. Responding to external force, 
the surface deforms providing a force stress field 
and a couple stress field. To solve for these four 
fields and thereby describe the material mechanical 
properties, one needs to identify the correct 
potential forms that are applicable at an atomistic 
level for continuum formulations. Here then, 
empirical functions of potentials are adopted which 
are practical and appropriate to describe the total 
potential of the SWCNT accurately.  
 
2.1 Cauchy-Born Rule 
Consider  as the deformation map when a space-
filling continuum body deforms to 

, i.e. . Let X define a point in 
the body , while x is its position  after 
deformation. Then we have relationship . 
The deformation gradient F is defined as the 
derivative of the deformation map, means that it 
maps infinitesimal line elements from the deformed 
configuration to the reference configuration: 

Φ
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XFx dd =   .                            (1) 
Using elasticity theory, under finite strains, the 
deformation of space-filling continuum is 
homogeneous at the atomistic scale. Thus, the 
space-filling continuum undergoes the same 
deformation as the atomic lattice vectors as 
established by the Cauchy-Born rule: 

FAa =     ,                          (2) 
where a is the deformed lattice vector, and A is the 
undeformed lattice vector in continuum. Eq.(2) is, 
in essence, the Cauchy-Born rule which provides 
the link between atomistic and continuum 
deformations. 

Due to the non-centrosymmetric hexagonal 
atomic structure of CNTs, it is essential to 
introduce an in-plane shift vector as a bridge 
between the two centrosymmetric sub-lattices, as 
described in Fig.1. Let  (i=1,2) define the basis 
vectors of a centrosymmetric sub-lattice, and 

iâ

B̂  be 
the relative shift vector of two sub-lattices. To 
reach the required degrees of freedom, an 
additional kinematic variable is introduced, by 
describing the perturbation of the shift vector, 
donated by . The bond vectors (i=1,2,3) after 
the perturbation are 

η iA

ηAA += ii 0       ,                     (3) 

where  are the undeformed vectors. Let 
, then the bond vectors are 

i0A

ηBP += ˆˆ

PaA ˆˆ 21 +−= ,  and  .  (4)   PA ˆ
2 = PaA ˆˆ13 +−=

 

 
Fig. 1. Multi-lattice, sub-lattices, and shift vector  

 
2.2 Cosserat Surface as a Shell Model 
Let define a two-dimensional surface, and 

 is the surface at time t. At t, X is a point in the 
reference configuration, and x is the point in the 
deformed configuration, and the following relations 
hold 
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Notice, here  is a surface to surface 
map. (

φ
αϑ α =1,2) are the co-ordinates attached to 

the surface at B . Let TB , be the tangent 
spaces of 

tTB
B  and  , respectively, and the 

covariant base vectors can be calculated as 
tB
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The deformation gradient is defined as the tangent 
of the surface map, φF T= . F can be give as tensor 
product 

α
α GgF ⊗=   .                          (7) 

The displacement field is introduced by the 
displacement vector  

Xxu −=  ,                              (8) 
and we have 

( ) ααα GuGF ⊗+= , ,                      (9) 
where comma denotes partial derivatives. 

One of the assumptions of shell theory is that a 
displacement field, as well as a rotation field, are 
attached to the Cosserat surface, both of which are 
assumed to be independent of one another. The 
rotation field is introduced by an orthogonal tensor 

)3(SO∈R which is defined as 
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And where with  to be the 
corresponding axial vector of 

TΩΩ −= ω
Ω . 

Then, the first Cosserat deformation tensor is 
defined as 

FRU T=:   .                      (11) 
and the second Cosserat deformation tensor is 

α
α GRRεΚ ⊗−= ,:

2
1 T .            (12) 

where  is the Ricci tensor, and (:) denotes a 
double contraction.  

ε

Using pure ‘mechanical theory’, the internal 
potential function for the Cosserat surface depends 
on the two strain tensors U and K 

( ) ( )dAV KUKU ,, intint ∫= B
ρφ ,        (13)                                      

where ρ  is the density of the surface. The force 
tensor and the couple tensor are defined as 

( )
U

KUS
∂

∂
=

,: intφρ  and ( )
K

KUT
∂

∂
=

,: intφρ .   (14) 

Notice that here S and T are the Boit-like stress 
tensors, which is different from but related with the 
first and second Piola-Kirchhoff stress tensor. For 
the Cosserat surface, the principle of virtual work 
holds 

( ) 0,int =− extWV KUδ     .               (15) 
where is the external virtual work. For further 
information, readers are directed to [8]. 

extW

 
2.3 Potentials 
The mechanical properties of CNTs are largely 
determined by the interatomic forces, which are 
governed by the chemical bonds, expressed in 
terms of interatomic potential models. In this paper, 
a second generation Brenner reactive empirical 
bond order (REBO) potential is chosen, where the 
total potential of the system is given by 

( ) ( )[ ]∑ ∑
+=
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,            (16)        

where  is the distance between atoms i and j, and ijr

ijb  is  many-body empirical bond order term.  
and  are the repulsive and attractive terms, with 
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where  is a cut-off function.  cf
The full expansion of the empirical potential 

form and the selections of the parameters are 
directed to [13] for further explanation. It can be 
seen that the potential form is a function of the 
bond lengths and the bond angles between two 

adjacent atoms and also with the second 
neighbourhood atoms. 

 
 

3 SWCNT Modelling 
Cosserat surface theory is applied in modelling and 
simulating SWCNTs’ behaviour, when they are 
modelled as cylindrical shells. Empirical potential 
forms are applied. The in-plane and out-of-plane 
contributions are derived for the calculation of 
stress and moment fields.  

If an atom A is considered to be the origin (i 
atom), the potential is expressed as 

),,,,( jikijkjkikij rrrVV θθ= , which involves the atoms 
at atom A’s first neighbourhood and second 
neighborhood, as shown in Fig.2. 

 

 
Fig. 2. Atom A and its first and second nearest 

neighbors 
 
Defining  

( )BADBACADACABAB rrrVV θθ ,,,,= , 
( )CADBACADABACAC rrrVV θθ ,,,,= , 
( )CADBADACABADAD rrrVV θθ ,,,,= , 
( )BABBABBABBBBBA rrrVV

2121
,,,, θθ= , 

( )CACCACCACCCCCA rrrVV
2121
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( )DADDADDADDDDDA rrrVV

2121
,,,, θθ= , 

the total potential is obtained by 
DACABAADACAB VVVVVVV +++++= .   (18)                   

The strain tensor and the curvature tensor are 
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The components , ,  and contribute 
to the extra terms for shear energy and spin energy 
in the total energy formulation. Two principal 
directions  and  can be found on the 
reference plane. Let  and  be the components 
of the undeformed vector A along  and  
directions, which then rotate to and by 
rotation tensors  and , as shown in Fig.3, 
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which defines the micro-rotation on the reference 
plane. 

The principal curvatures  and  can be 
obtained from 
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The principal directions can be obtained from 
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The lattice vector  is the vector that the 
undeformed lattice vector A rotates to after 
applying the rotation tensor, which is given by 

'A

( ) ( ) IIIIII VAVRVAVRA ⋅+⋅= 21'   .     (22) 
The final deformed lattice vector is obtained 
after rotating by R then stretching by U, which is 
expressed as 

'a

( ) ( ) IIIIII VAVURVAVURa ⋅+⋅= 21'   . (23) 
The bond length after deformation is 

Aa TUU=   .                          (24) 
 

 
Fig. 3.  Micro-rotation on the reference plane 

 
The strain density is the total potential of the atom 
over the area it possesses 

( )
0

0 S
VVVVVV,,W DACABAADACAB +++++

=ηKU ,   (25) 

where ( ) 2
00 2/33 AS = .  is the undeformed bond 

length. Considering the shift vector in Eq.(3), we 
have  

0A

( )ηrFr += 0
ss   ,                          (26) 

where the index s is a general term for all the 
bonds, for instance when s=AB, is the deformed 
lattice vector of A-B bond. Since the length doesn’t 
change during the rotation, the deformed bond 
length only depends on the strain tensor U 

ABr

( ) ( ) ( )ηrUUηrηU ++= 00, s
T

ssr   ,              (27) 
where  is the undeformed bond vectors of the 
bond s. From Eq.(23), we have  

0
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And the bond angles can be calculated from the 
deformed bond vectors, for example,  

ACAB

ACAB
BAC rr

rr ⋅
= arccosθ   .                 (29)                   

Define the bond lengths , , , , , 
, , ,  as  (i=1,2,…,9) and 
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DAD2
θ  as iθ  (i=1,2,…,9).  and ia iθ  can be 
calculated in the potential form. The internal degree 
of freedom  can be determined by minimizing the 
strain energy density  with respect to  
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The force tensor can be obtained from 
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The couple tensor is  
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The tensor-like stretch modulus reads 
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And the tensor-like bending modulus reads  
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In the non-linear calculation, the minimizing of the 
strain energy density  with respect to η  
carries out by an updating procedure where the 
change of  η  is calculated by 
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By inserting  into the potential, the stress fields 
and the modulus fields can be calculated via finite 
element iterations.  

η

 
 
4 Results 
A cylindrical shell model under stretch is designed 
as shown in Fig.4. Uniform stretching load is 
applied at both ends of the cylindrical shell. The 
length of the tube is fixed to L=8nm, the load at 
both ends is of a constant value of F=16nN, while 
the uniform load applied is p=16nN/b, with b being 
the width of sheet and Db π= , where D is the 
diameter of the tube, and u is the displacement. 
SWCNT’s Young’s modulus is calculated from the 
displacement u, through the relation 



Dhu
FLE

π
=    .                             (36) 

First, an armchair SWCNT is studied and tube 
diameters are chosen from 0.407nm, increasing to 
4.746nm, i.e. from (3,3) to (35,35) armchair 
SWCNTs. To provide results that can be compared 
with those of other authors, the effective wall 
thickness is chosen to be 0.34nm, as in [3,14-18]. 
The same method is applied to zigzag SWCNTs 
with length L=8nm, and F= 16nN. Accordingly, 
(6,0) to (60,0) zigzag SWCNTs are studied. The 
resulting values of Young’s modulus for zigzag 
SWCNTs, as well as for armchair SWCNTs, are 
converging at 0.72TPa.  

 
Fig. 4.  Sketch of cylindrical shell model under 

tension 
 

 
Fig. 5. Dependence of Young’s modulus on tube 

diameter for zigzag SWCNTs 

 
Fig. 6. Dependence of Young’s modulus on tube 

diameter for zigzag SWCNTs [15] 

[15] applied atomistic modelling through the 
use of ABAQUS, and produced results for Young’s 
modulus of zigzag SWCNTs under axial tension, 
and compared it with two other authors, as shown 
in Fig.6. The results computed from the proposed 
approach, as shown in Fig.5, are in good agreement 
with the results from the literatures. [16] presented 
a molecular mechanics model to predict Young’s 
modulus of SWCNTs. By comparing the Young’s 
modulus for armchair and for zigzag SWCNTs, 
they obtained results with the same trend, as shown 
in Fig.8. Although they arrived at a minimum value 
of Young’s modulus of ~1.04TPa, it showed that 
Young’s modulus of zigzag SWCNTs is slightly 
larger than the one of armchair SWCNTs. The 
method proposed here provides comparable results, 
and the values become very close with increasing 
tube diameter, as shown in Fig.7. 
 

 
Fig. 7. Comparison of Young’s modulus for 

armchair and zigzag SWCNTs 

 
Fig. 8. Comparison of Young’s modulus for 

armchair and zigzag SWCNTs [16] 
 
 
5 Conclusion 
This paper has presented an atomistic and 
continuum mixing approach to simulate SWCNT’s 



behavior, where the link between micro- and 
macro-space is by the standard Cauchy-Born rule. 
A Cosserat surface shell theory is adopted, where a 
rotation tensor is introduced to present a micro- 
rotation, which is independent from displacement 
field. SWCNT is modeled as a Cosserat surface, 
where the empirical atomistic potential forms are 
established based on the second generation REBO 
potentials. Force and modulus fields are derived 
from the derivatives of the potentials over the 
displacement and rotation fields. From the results 
of the Young’s modulus, it is shown that, the 
Cosserat surface model is capable of providing 
comparable results with atomistic simulations, but 
with much lower computational overhead. 
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