
Bachelor thesis 2018

Analysis, design, and implementation of

an infrastructure-less situation

awareness application

Student : Flavien Bonvin

Professor : Yann Bocchi

Submitted : 30.07.2018 www.hevs.ch

ABSTRACT

This work aims to implement an application based on opportunistic communication. It must be

operational in a disaster situation when the cellular network is not available.

During this work, a first part was consecrated to the study of the several types of ad hoc

networks and the various technologies related to them. This has served as a foundation for the

study of ad hoc networks in smartphones since an android application was developed.

In a second phase, we defined the main requirements and features of the application. After

that, the analysis of the existing solution was effectuated. We took care to emphasize the

differences between the market solution and our implementation of the use case. It was necessary

for us to know if such an application had its place in the market and if it was the case, in which way

it differs from the competition.

Once this was done, we developed the application. We have recorded the different reflections

made during the implementation to show the different issues. Those issues can be related to either

the back or the front end of the application. To do this, we had to project ourselves into the

position of someone experiencing this kind of event.

Finally, we have devoted a part of the document to the analysis of the results to know if an

application of this kind, relying on ad hoc networking, can be used during a disaster.

Keywords

Ad hoc networks, Google Nearby, opportunistic communications

i

FOREWORD

This work was done in the context of a bachelor’s thesis in Business Information Technology at

the HES-SO Valais. It was proposed by the professor Yann Bocchi and Gianluca Rizzo. We received

the task to develop a tool that will explore the potential of opportunistic communication offered by

the Android system.

Theoretical research on ad hoc communications had been conducted in the past, but because

of software and hardware limitations, it was difficult to implement them. Modern technologies such

as Google Nearby and Apple iBeacon offer an abstraction layer and can provide a solution to some of

the problems past studies had to cope with.

This thesis has multiple objectives; in the first instance, we will explain and give an overview

of the solutions offered by the different actors of this sector. Some technologies unused during the

implementation will be analyzed as well, for example Apple iBeacon or the fifth generation of

wireless systems (5G).

After this research stage, we will implement an application capable of exchanging messages in

ad hoc mode. The original idea was to implement a vehicular service such as traffic warning

notification. However, the use case is flexible and can deviate from the initial concept.

At last, we will detail the actual limitations of the technologies we found during the

implementation. On top of that, we will provide some recommendations that could help the future

development of opportunistic communications. Those guidelines will provide advice on which

technology to choose depending on the needs of the project.

ii

ACKNOWLEDGMENT

We would like to sincerely thank all the people who have enabled us to carry out this

bachelor’s work under the best conditions. Special thanks to:

Mr. Yann Bocchi, our teacher in charge, for having supervised and followed us throughout this

work. We are very grateful for his advice and precious feedback.

Mr. Gianluca Rizzo for providing valuable technical advice through his expertise and for his

feedback on the different documents made in the thesis.

Finally, thanks to all the people who reviewed and corrected this work.

iii

Table of Contents

INTRODUCTION..1

1. What Is an Ad Hoc Network...2

1.1. Ad Hoc and Traditional Networks..2

1.2. Multi-Hop Communication..3

1.3. Advantages and Drawbacks of Ad Hoc Networks..3

1.4. Application of Ad Hoc Networks...4

1.5. Type of Routing Protocols...7

2. Ad Hoc Networks in Smartphones..10

2.1. Google Android..10

2.2. Apple iOS...17

2.3. Other Implementations..18

3. Use Case Analysis..28

3.1. Disaster Assistance Use Case..29

3.2. Comparison of the Existing Solutions..43

4. Use Case Implementation Reflection..44

4.1. Challenges — Application Back End..44

4.2. Challenges — User Experience..48

4.3. Challenges — User Interface..50

5. General Implementation...56

5.1. Technology Choice..56

5.2. Programming Language..56

5.3. Project Architecture...57

5.4. Gradle Dependencies..57

5.5. Constant of the Application...58

5.6. Google Nearby Configuration...61

5.7. Messages Object..62

5.8. Endpoint Object..66

6. Details of the Implementation..67

6.1. Application Back End...67

6.2. Application User Experience..74

6.3. Application User Interface..76

7. Discussion...79

7.1. Application Back End...79

7.2. Application Front End..83

iv

7.3. Google Nearby..84

7.4. Future Improvements..85

8. Product Backlog...87

8.1. Implementation Feedback..87

9. Management of the Project...88

9.1. Planning of the Project..88

9.2. Tools Used...91

CONCLUSION..93

Personal Experience feedback...94

REFERENCES..95

APPENDICES...98

APPENDICES I – SPECIFICATION SHEET..98

APPENDICES II – USE CASE DEFINITION..108

APPENDICES III – PRODUCT BACKLOG..123

APPENDICES IV – LOGBOOK..129

APPENDICES V – VANETS TECHNOLOGIES..137

AUTHOR DECLARATION..139

v

Illustration Index

1. Illustration: Divergences between ad hoc and traditional networks. From the authors..............2

2. Illustration: Multi-hop demonstration. From the authors..3

3. Illustration: Sorting of routing protocols (Deepshikha and Durga Prasad, 2016)........................7

4. Illustration: Floating content representation..9

5. Illustration: P2P_CLUSTER strategy. From the authors..16

6. Illustration: P2P_START strategy. From the authors...17

7. Illustration: Bluetooth 5 support of the Samsung Galaxy S8 (Sims Gary, 2017).......................20

8. Illustration: Comparing 4G and 5G (Qorvo, 2017)...21

9. Illustration: Cloud to mesh (Open Garden 2018)...24

10. Illustration: Mesh to cloud (Open Gaden, 2018)..24

11. Illustration: Peer to peer (Open Garden, 2018)..24

12. Illustration: Peer to peer connection (Open Garden, 2018)..25

13. Illustration: goTenna Logo (goTenna, n.d.)..31

14. Illustration: goTenna Mesh (goTenna, n.d.)...31

15. Illustration: goTenna Pro (goTenna, n.d.)..31

16. Illustration: goTenna Pro size (goTenna, n.d.)..33

17. Illustration: goTenna deployment kit (goTenna, n.d.)...34

18. Illustration: goTenna Plus features (goTenna, n.d.)..34

19. Illustration: FireChat logo (Open Garden, 2018)...37

20. Illustration: Nearby Chat icon (Swain Daniel, 2017)...39

21. Illustration: Zello logo (Zello, 2018)...40

22. Illustration: Mock-up bottom navigation menu...50

23. Illustration: Mock-up message list..50

24. Illustration: Mock-up detail of one message..51

25. Illustration: Mock-up messages details...51

26. Illustration: Mock-up messages map...52

27. Illustration: Victim icon..54

28. Illustration: Danger icon...54

29. Illustration: Resource icon...54

30. Illustration: Caretaker icon..54

31. Illustration: Default application icon..55

32. Illustration: Round application icon..55

33. Illustration: Google nearby connection procedure (Android Developers, 2017).....................61

34. Illustration: Message flow—Sending..63

35. Illustration: Message flow—Receiving..64

vi

36. Illustration: Message flow — Propagation..65

37. Illustration: Dynamic expiration date implementation..67

38. Illustration: Progress bar in message list..67

39. Illustration: Restore deprecated messages..68

40. Illustration: Floating content configured at 50 meters..69

41. Illustration: Illustration: Floating content configured at 400 meters.................................69

42. Illustration: Detail of a message in the map..69

43. Illustration: Potential duplicate message dialog...70

44. Illustration: Radius settings..73

45. Illustration: Pull to refresh..74

46. Illustration: Message creation...74

47. Illustration: Message confirmation...74

48. Illustration: Recipient count in message details..75

49. Illustration: Initial bottom navigation menu..76

50. Illustration: Final bottom navigation menu...76

51. Illustration: New settings menu location..76

52. Illustration: Tabs present in the home screen..77

53. Illustration: Initial message in the message list..77

54. Illustration: New message in the message list..77

55. Illustration: Requesting mandatory permission...78

56. Illustration: Asking for username...78

57. Illustration: Payload flow..82

58. Illustration: Initial planning...88

59. Illustration: Intermediate planning...89

Index of Tables

1. Table: Difference Bluetooth 4 and 5 (Collotta Mario, Pau Giovanni, Talty Timothy & Tonguz Ozan

K., n.d.)...19

2. Table: Comparison of Available Technologies...30

3. Table: Comparison of goTenna Mesh and Pro (goTenna, n.d.)..32

4. Table: Comparison of our use case with the existing solutions..43

5. Table: Application Primary Colors..53

6. Table: Application secondary colors...53

7. Table: Message categories color..54

8. Table: Application utility colors..54

9. Table: Product backlog implemented features summary...87

10. Table: Tasks planning...89

vii

LIST OF ABBREVIATIONS

AODV Ad hoc On-Demand Distance Vector

APK Android Package Kit

CDMA Code Division Multiple Access

CRC Cyclic Redundancy Check

DC-DC Direct D2D communication with device controlled link establishment

DC-OC Direct D2D communication with operator controlled link establishment

DR Device Relaying

DR-DC Device relaying with device controlled link establishment

DR-OC Device relaying with operator controlled link establishment

DSDV Destination Distance Vector

DSR Dynamic Source Routing

DSRC Dedicated Short Range Communication

EPFL École Polytechnique fédérale de Lausanne

EVDO Evolution-Data Optimized

FEC Forward Error Correction

GPS Global Positioning System

GSM Global System for Mobile Communication

GUID Globally Unique Identifier

HSPA High-Speed Packet Access

IMT International Mobile Telecommunication

IoT Internet of Things

ITS Intelligent Transportation Systems

ITS JPO Intelligent Transportation System Joint Program Office

ITU International Telecommunication Union

L2CAP Logical link control and adaptation protocol

LAN Local Area Network

LAR Location-Aided Routing

LE Low Energy

LTE Long-Term Evolution

LTE Long Term Evolution

viii

MANETs Mobile ad hoc networks

MCU Micro-controller Unit

MIMO Multiple-Input Multiple-Output

MMDA The Metro Manila Development Authority

NFC Near-Field Communication

NGO Non-governmental organization

OLSR Optimal Link State Routine

PAN Personal Area Network

RFCOMM Radio frequency communication

SDK Software Development Kit

SDP Service Discovery Protocol

SIG Bluetooth Special Interest Group

SoC System on a chip

SPANs Smartphone ad hoc networks

TCP Transmission Control Protocol

UHF Ultra High Frequencies

UUID Universally unique identifier

V2I Vehicles to infrastructures

V2V Vehicles to Vehicles

VANETs Vehicular ad hoc networks

VHF Very High Frequencies

WARP Wireless Ad Hoc Routing Protocol

Wi-Fi Wireless fidelity

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

ZRP Zone Routing Protocol

ix

INTRODUCTION

During a disaster, victims are left to themselves until rescue teams arrive. These first hours or

days are vital and can save lives if those affected had a way to communicate efficiently. Mobile

phones are an option; unfortunately, in many cases, the network infrastructure is also destroyed,

making these devices useless.

This is why an application that allows communication without using the traditional telephone

network, based on technologies such as Bluetooth or Wi-Fi, is justified.

The objective of this work is, therefore, to know if such an application can see the light of day

with existing technologies. That is the reason why an Android application is developed. However,

the compatibility with Apple’s ecosystem must be taken into account.

In the first part of the work, we will analyze the different types of existing ad hoc networks as

well as the underlying technologies. This analysis will provide us with a better understanding of the

issues involved in such networks. After that, the definitions of the objectives that our application

must meet will be established. This will allow us to know if similar solutions already exist on the

market.

In a second phase, we will develop the application and we will detail the reflections made

during this last part. The reflections will relate as much to the functioning of this type of network

as to the interface of the application. These are points on which we have reflected and for which

we have analyzed several options to select the best.

Finally, an analysis of the results obtained by the application will be carried out to determine if

current technologies allow the implementation of this type of communication. Possible future

developments will also be mentioned in this chapter.

1

1. What Is an Ad Hoc Network
The Cambridge Dictionary defines ad hoc as something that is made or happens only for a

particular purpose or need, not planned before it occurs (Cambridge Dictionary, n.d.). Ad hoc is

used on multiple occasions, such as ad hoc organizations which are created especially for a given

task or project. Ad hoc is also utilized in the military where an ad hoc unit is quickly deployed to

help other units or regroup survivors into one entity.

In this work, we will focus on ad hoc networks and the technologies surrounding them. Those

types of networks are infrastructure less, meaning that they can be operated without any central

control. Ad hoc networks can be set anywhere, whenever, due to their dynamic and self-configuring

nature.

Because no network specific hardware is needed, data travel through the network from device

to device called “nodes”. Each of those nodes forward packets onward until it reaches its

destination. This type of exchange is called multi-hop networking; this involves two or more hops to

send information from the source to the destination.

1.1. Ad Hoc and Traditional Networks

1. Illustration: Divergences between ad hoc and traditional networks. From the authors

The illustration above shows the differences between ad hoc on the left and traditional

networks on the right. As shown in the illustration, no central hardware is needed in ad hoc mode,

each device connects one to another regardless the type of machine, assuming they both implement

the same protocol and network radio, creating one large grid. On the other side, the more classic

approach needs routers to establish a connection between the two networks; the example can be

two Local Area Networks (LAN) connected.

2

1.2. Multi-Hop Communication

The following illustration demonstrates what a multi-hop communication is. The path data will

take change depending on the routing protocol used and on the routing table established by the

network. In our example, there are seven smartphones constituting a smartphone ad hoc network

(SPANs).

The source of the message is transmitted from the green phone, passes through three other

phones and reaches the destination in blue.

1.3. Advantages and Drawbacks of Ad Hoc Networks

What ad hoc networks offer is overwhelming and can change the way information is exchanged.

However, this involves many technologies and challenges. We tried to establish a brief list of what

the benefits are:

• Works where no service is available. In case of a war or a catastrophic event where existing

infrastructure is destructed or disabled, ad hoc communication still works and can help

people in this area to communicate.

• Setting up and transferring information are swift because of its absence of infrastructure to

configure.

• Since there is no hardware to install (no antenna, relay, router) the costs are minimal and

can be a significant advantage in developing areas.

• Communication is still possible in case of the unavailability or the destruction of a node in

an ad hoc network as long as the devices remain connected by one link.

3

2. Illustration: Multi-hop demonstration. From the authors

As said before, there are numerous challenges to face when we want to implement ad hoc

networks, here are some:

• Each device is a router; this means that data has to transit frequently. This results in a

higher battery drain than normal usage.

• Devices cannot be switched off depending on the number of nodes in a network. This can

cause the whole network to collapse and make communications unusable.

• The dynamic nature of such networks makes the routing rough. Routing tables have to be

continuously updated to ensure that each device is still present in the grid.

• If devices are moving, a wide bit rate variation can be expected.

1.4. Application of Ad Hoc Networks

All types of network we will analyze can be regrouped as Mobile ad hoc network (MANET)

because they all consist of devices that can move such as smartphones or vehicles. We will not

explain what a MANET is but instead focus on details of the specific types of networks such as

SPANs, vehicular ad hoc networks (VANETs) and Disaster rescue ad hoc networks. We will not

describe all types of ad hoc networks, only those studied while we were defining the use case we

implemented. More information about use cases can be found later in this document, chapter 3 –

Use Case Analysis (p. 28).

The following part is a quick overview of what are those types of networks and what kinds of

technologies they use. Technical details can be found later in this document, chapter 2 – Ad hoc

Networks in Smartphones (p. 10).

1.4.1. Smartphone Ad Hoc Networks (SPANs)

Smartphones are portable devices with network capabilities using both licensed frequencies

operated by cellular carriers and unlicensed ones used by Bluetooth and Wireless Fidelity (Wi-Fi).

Those use the unlicensed ISM band ranging from 2.4 GHz to 2.5 GHz (Shoemake Matthew, 2001,

p. 4).

Usage of These Types of Networks

Several usages of these types of networks have already been made during protestations where

government entities either monitored or disabled the existing network infrastructure. This was the

case during the Tunisian’s Arab spring (Hern Alex, 2014), where 40,000 Iraqis downloaded the

application called FireChat allowing them to communicate. The same application was used at two

other occasions, during the Hong Kong Protest in 2014 (Cohen Noam, 2014) and the same year in

4

Russia when anti-government leaders recommended their followers to install the application (Milian

Mark, 2014).

1.4.2. Vehicular Ad Hoc Networks (VANETs)

Vehicles are becoming smarter generation after generation; they are loaded with numerous

sensors and probes which make them aware of their environment. In the current state, data is

processed and kept in the car but is not shared among other vehicles.

VANETs objective is to address this issue by allowing Vehicles to Vehicles (V2V) and Vehicles to

Infrastructures (V2I) communications; it will provide a safer and more efficient driving experience.

They are part of the Intelligent Transportation Systems (ITS) framework.

Intelligent Transportation System

ITS goal is to provide drivers a safer, more coordinate use of transport networks. Governments

are developing a range of tools that will help them to achieve their objectives, V2V and V2I are a

crucial element of it. Both European and American governments created special commissions

dedicated to the development of ITS. They provide both financial and legislative help to support

innovative ITS projects (European Commission, n.d.).

The American administration created the Intelligent Transportation System Joint Program Office

(ITS JPO). In their latest report they established a strategic plan to contain multiple categories

(Barbaresso Jim et al., 2014, p. V) such as:

• Connected vehicles: research and implementation on V2V and V2I solutions.

• Automation: research on automated V2I systems that will transfer some control from the

driver to the vehicle.

• Interoperability: ensure that data will be compatible from one system to another.

Applications of VANETs

There are several applications that could make the traffic safer and more efficient.

• Car platooning: reducing the inter-vehicular distance, down to a few centimeters, this saves

fuel for the following vehicles and allows a faster and safer highway driving. Acceleration

and breaking will be synchronized across vehicles.

• Intelligent traffic system: reducing the time vehicles spend stopped, at traffic lights or

crossroads, can significantly reduce pollution noise and help relieve traffic congestion.

5

• On the road services: marketing opportunities such as shop discovery and gas station

advertising can be created with VANETs.

Technologies Used

Short-range radio technologies are an obvious requirement for VANETs; a paper from University

of Reading in England covered the existing technologies. They presented 14 different existing

wireless standards, and they discussed the limitation and support of safety and non-safety

applications for each of them.

During the paper, they defined two types of applications. Safety applications where data is

processed in real time and is aimed at minimizing road accidents. Non-Safety applications that

enable the passenger to access to a service such as the Internet or Voice over IP (VoIP) (Anwer

Shahid & Guy Chris, 2014, p. 661). The summary of their research is in the appendix of this paper.

They came up with the conclusion that Dedicated Short Range Communication (DSRC) is the

protocol that might suit most of these applications. It works on the 5.9 GHz frequency bands and

can provide service for V2V and V2I (Anwer Shahid & Guy Chris, 2014, p. 667). However, they only

analyzed existing technologies, some advancement promised by the incoming 5G network might be

suited for V2V and V2I communications.

 Well-known technologies such as Wi-Fi and Bluetooth have been reviewed by the authors of the

study but are not recommended for VANETs.

Wi-Fi has many different standards such as 802.11 a, 802.11 ac, 802.11 b, 802.11 e, 802.11 g,

and 802.11 n. The most appealing standard for VANETs is 802.11 ac because of its high data rate, up

to 1Gbps, and its high-operating frequency, 5 GHz. However, it is not recommended by the authors

of the paper because of the decrease of performance as the number of vehicles in the network

increases. Other Wi-Fi standards are prone to interference because they operate on the unlicensed

2.4 GHz band and are therefore not recommended.

Bluetooth is used to create Personal Area Network (PAN) and can be used for V2V and V2I

applications. Moreover, it cannot be used for safety applications because of its short range, slow

transfer rate and air interference vulnerability (Anwer Shahid & Guy Chris, 2014, p. 665).

1.4.3. Disaster Rescue Ad Hoc Networks

When a catastrophic event occurs, like a flood, an earthquake or a fire, communication can

save many lives. Frequently, radio towers are either destroyed by the event or congested; meaning

6

that civilians touched by the accident are left alone and cannot ask for help because no service is

available.

Rescue teams use radios and can quickly deploy antennas to communicate in the affected

areas. Unfortunately, this does not mean for civilians that the service is back, since they do not

operate on the same frequencies as the one used by smartphones. In addition, those types of

infrastructure are set up only when the catastrophe occurs, which, in the meantime, leaves people

alone. Disaster rescue ad hoc networks want to empower the victims of those events during the first

crucial days.

Existing Technologies

We have analyzed many existing technologies for those types of ad hoc networks, they are

detailed in the chapter 3.1 – Disaster Assistance Use Cases (p. 29).

1.5. Type of Routing Protocols

Routing data from one device to another in an ad hoc network is laborious because of its highly

dynamic nature. Three types of routing protocols are used. We are not going to detail exactly how

each of the following protocols work, the objective is to show the differences between proactive,

reactive, on-demand and position-based protocols.

7

3. Illustration: Sorting of routing protocols (Deepshikha and Durga Prasad, 2016)

1.5.1. Proactive – Table Driven

Table-driven protocols maintain a routing table of the whole network; this table is periodically

updated and thus generate additional traffic on the grid. Speed is an advantage of this type of

protocol because each route is known before data is transmitted. There is no discovery time as it

can be the case with reactive protocols. However, if data comes and the route is unknown, the

message is put in a queue until the route is discovered. These types of protocols are not power

efficient and are hard to recommend for IoT devices that want to be in a sleep state as much as

possible.

The two most popular protocols are Optimal Link State Routing (OLSR) and Destination Distance

Vector (DSDV) (Deepshikha Bhatia, 2016, p. 3387).

1.5.2. Reactive – On demand

Reactive protocols create routes on demand when an unknown route is required. If this is the

case, the entire network is flooded by route request. All nodes on the network initiate a discovery

process until a working route has been found.

If the transmission is a critical factor, on-demand protocols are not recommended. The route

discovery can take time and increases with the number of nodes in the network.

Specific reactive protocols are ad hoc On-Demand Distance Vector (AODV) and Dynamic Source

Routing (DSR) (Deepshikha Bhatia, 2016, p. 3388). AODV is one of the protocols used in ZigBee.

1.5.3. Hybrid

Hybrid protocols combine both proactive and reactive methods. Usually, those protocols start

by creating a routing table (proactive) and then serve an unknown destination with a reactive

protocol. Zone Routing Protocol (ZRP) for example, creates zones around a device, where all

possible routes inside that zone are known. If data has to exit the area, the protocol will query

other zones to find the correct destination and send the data.

Hybrids are ZRP or Wireless Ad Hoc Routing Protocol (WARP) (Moltchanov Dimitri, n.d.).

8

1.5.4. Position-based Protocols

Because a lot of portable devices have a GPS, it is possible to use it to determine what route a

data packet should take. Location-Aided Routing (LAR) is one of those types of protocols.

Floating Content

Floating content is a concept of data sharing in a restricted area and are a type of position-

based protocols. Messages inside this area are exchanged to every peer. Once a peer exits the zone,

it loses its access to the message, which are either destroyed or hidden. When a peer enters the

sector, it will receive all the information contained in the sub-mentioned area.

This kind of content delivery system is challenging. Since they rely on the presence of peers

inside an area, it is hard to ensure the persistence of information. Indeed, if every peer leaves a

zone, the message will be lost permanently. However, a base station inside the zone can be a

solution to that problem; it will secure data on a stationary device.

The following illustration shows how floating content works. The yellow area is the sector

where messages are exchanged. All peers inside, represented as circles, hold the information,

whereas those outside do not.

9

4. Illustration: Floating content representation

2. Ad Hoc Networks in Smartphones
We will focus now on the technologies embedded in smartphones as we will explore ad hoc

networks through an Android application. However, we will not only focus on the Google platform

but will also analyze what other companies are developing. Lastly, we will make a quick overview of

future technologies that might help the development of ad hoc applications such as the latest

Bluetooth iteration or the 5G mobile network.

2.1. Google Android

Google offers multiple ways to implement ad hoc networks; developers can either use directly

the interface they want to use, Bluetooth or Wi-Fi, with the API provided by the company or use an

abstraction layer that takes care of everything in the background called Google Nearby. In the

following part, we will focus on each of those technologies.

2.1.1. Bluetooth API

Two classes are needed to create a peer-to-peer Bluetooth connection:

• “BluetoothDevice”: represents a remote Bluetooth device. It lets the developer create a

connection with the respective device or query information. This class will be used to

create the peer-to-peer connection.

• “BluetoothAdapter”: represents the local Bluetooth adapter. It lets the developer perform

fundamental Bluetooth tasks. This class will be used in our case to listen to an available

connection.

The peer-to-peer connection methods developed by Google uses the Radio Frequency

Communication (RFCOMM) protocol.

RFCOMM Protocol

The RFCOMM protocol is a transport layer protocol that emulates an RS-232 serial port. It is

made on top of the Logical Link Control and Adaptation Protocol (L2CAP). This protocol is used

across a broad set of devices because it helps manufacturers to implement Bluetooth capabilities on

devices having a serial port. Because of its reliability, this protocol can be compared to the

Transmission Control Protocol (TCP). One significant difference is the number of supported ports,

TCP handles up to 65,535 and RFCOMM only 30 ("Choosing a transport protocol", 2008).

10

Google developed two different ways to create peer-to-peer Bluetooth connections, one is

secure, and the other is not. If confidential information is exchanged, the secure connection is

recommended because the other is prone to man-in-the-middle attacks.

Secure Method

To create a secure connection, two methods are used:

createRfcommSocketToServiceRecord() //from the BluetoothDevice class
listenUsingRfcommWithServiceRecord() //from the BluetoothAdapter class

This method was implemented at API Level 5; it uses the Service Discovery Protocol (SDP) and

lookup Universally Unique Identifier (UUID). Explanation of both SDP and UUID can be found below.

When connecting to another Android device, generating a UUID for the application is recommended.

Insecure Method

To create an insecure connection, two methods are used:

createInsecureRfcommSocketToServiceRecord() //from the BluetoothDevice class
listenUsingInsecureRfcommWithServiceRecord() //from the BluetoothAdapter class.

This method was implemented later on the Android development, at API Level 10, it is very

similar to the one explained above. However, the data exchanged are not secured, and it is not

recommended in scenarios where data are sensitive.

SDP and UUID

SDP allows one device to know what services are supported by the devices it tries to connect

to. Those services are identified using a UUID. Every Bluetooth device implements this protocol

(Poole, n.d.).

UUID, also called Globally Unique Identifier (GUID) is a unique 128 bit identifier; they are used

to identify services and information. They do not rely on a central database to ensure their

uniqueness; it implies that it is possible to have two similar UUIDs, but the probability is nearly zero

and thereby making it negligible. They are displayed in 5 groups formatted as follows 8-4-4-4-12

making a total of 32 hexadecimal digits. Here is one randomly generated UUID:

9763b1fc-befb-4c22-9979-cdad9a4b4375

11

Range of Connection

There are two major classes of Bluetooth devices, other exist but are not used as much:

• Class 1: maximum permitted power 20dBm (100 mW), range up to 100 meters.

• Class 2: maximum permitted power 4dBm (2.5 mW), range up to 30 meters.

Smartphones are class 2 devices and can only be paired with devices closer than 30 meters in

the ideal condition. However, manufacturers advertise a more conservative 5 to 10 meters range

(Bluair, n.d.).

The Bluetooth Special Interest Group (SIG) states that a 350 meters Bluetooth 4 connection is

possible. However, the test was made between a standard smartphone, and a Bluetooth Low Energy

(LE) Microcontroller Unit (MCU). Only a notification was exchanged and no information about bit

rate or stability was given in the article (Bluetooth SIG, 2016, p. 11).

2.1.2. Wi-Fi Direct API

The Wi-Fi peer-to-peer is available on Android since API Level 14 (Android 4.0). The API is fully

compliant with the Wi-Fi Alliance’s Wi-Fi Direct specifications. The main advantage of Wi-Fi over

Bluetooth is a more extended range.

Wi-Fi Direct

Wi-Fi Direct is a standard developed from the Wi-Fi Alliance, a nonprofit organization that

promotes and maintains Wi-Fi standards, which allows devices to connect one to another without

the need for a central access point and an Internet connection.

The objective of Wi-Fi Direct is to straighten some problems that Bluetooth has, such as slow

transfer rates and lengthy pairing processes. On top of that, since Wi-Fi Direct uses the same

technologies used by classic Wi-Fi, only one device needs to be Wi-Fi Direct compliant, not every

machine in the network.

Wi-Fi Direct Support on Android

Several classes handle Wi-Fi Direct, they are all part of “android.net.wifi.p2p”. They allow to

discover and connect to other devices. Contrary to the Wi-Fi Direct specification, each device on

Android needs to support the protocol (Android Developers, 2018).

We will explain the classes needed to implement Wi-Fi Direct in an application. Nevertheless,

we will not give full technical details about them.

12

The most important class is called “WifiP2pManager” with this class it is possible to:

• Initialize connection

• Discover nearby devices

• Start P2P connection

Sockets handle data transfer. Two classes are required to send data correctly:

• “ServerSocket”, that will wait for a client connection in the background.

• “Socket” that will use the IP address and port of the “ServerSocket”.

Range of Connection

The Wi-Fi Alliance states that a 200-meter Wi-Fi Direct connection is possible (Wi-Fi Alliance,

n.d.). However, they do not mention what devices are used or the transmission power of the latter.

Furthermore, we found many different regulations in the world concerning the maximum power

emitted by Wi-Fi appliances. Nonetheless, we were not able to find maximal output power for home

devices such as a router. In addition, no information was found regarding the emitting power of

smartphones.

We concluded that smartphone manufacturers have some leeway in the implementation of the

protocol leading to a wide disparity between devices, making it difficult to provide range numbers.

2.1.3. Google Nearby

As explained earlier, Google Nearby offers an abstraction layer allowing the programmer to

focus on the coding of the application instead of spending time on network interface study.

Everything is managed in the background by the operating system depending on the needs, network

availability or the strength of the signal.

The API is available for both Google Android and Apple iOS. Because Google Nearby is

integrated into the Google Play Service, it is available for all Android devices running Android 2.3 or

higher. We consecrated a chapter later in this document on Google Nearby on iOS devices,

chapter 2.2 – Apple iOS (p. 17).

13

To facilitate development, Google Nearby is divided into three different APIs:

• Message API: allows the exchange of small binary payload between devices. They need to

have an Internet connection but do not necessarily need to be on the same network. The API

uses Bluetooth, Bluetooth LE, and near-ultrasonic audio to communicate a pairing code

between devices. Google Nearby Message is recommended for multiplayer gaming, sharing

content or broadcasting a resource (Google Developers, 2018). More information about this

API can be found in the following part of this paper.

• Connection API: creates a fast, reliable, secure connection between two or more devices in

an entirely offline manner. A combination of Bluetooth, Bluetooth LE and Wi-Fi hotspots is

idealized. Uses cases for this type of API are a collaborative whiteboard, create a multi-

screen gaming experience where a smartphone becomes remote, and the game is displayed

on a TV (Google Developers, 2018). More information about this API can be found in the

following part of this paper.

• Notification API: allows the developer to create an interactive notification with nearby

devices. Actions such as opening an HTTPS URL or trigger an application intent are possible.

This API is developed for Bluetooth LE beacons. There are several usages for this API, but

they all rely on the same principle of creating a notification on nearby devices.

All the code and methods are within the same class Google developed, called “Nearby”. In the

following part, we will give more details about the Message and Connection API. We will not explain

the Notification API because it does not suit our need for the application we will develop.

Message API in Detail

As said before, Nearby Message is used for the exchange of a pairing code between devices;

this means that the service is not meant to exchange large data such as images or videos, it is a

means of connection instead. An active Internet connection is needed because the pairing code

received is sent to a Google Nearby Message server for validation.

The typical steps involved in the connection are the following (Google Developers, 2018):

1. The publisher application requests a message and a pairing code (token). The Nearby

Message server makes an association between the payload and the token.

2. When the application is launched, the device will use Bluetooth, Bluetooth LE, Wi-Fi and

ultrasounds to broadcast the message and make it detectable by other smartphones.

3. The subscribing device uses the same technologies. The device will send its token to the

publisher and detect the publisher’s token.

14

4. Once both devices detect themselves, they send a report to the server. It will validate the

tokens.

5. After the report, the server will handle the message exchange between devices.

We are not going to detail all the methods and how to implement this API in an application. We

will show the basic methods that allow the publishing and listening of pairing codes. Because Nearby

Message is a publish-subscribe API, there is a dedicated method for both of those actions:

Nearby.getMessageClient(activity).publish(message);
Nearby.getMessageClient(activity).subscribe(messageListener);

The message that will be broadcast can weigh up to 100 KB, but Google does not recommend

anything bigger than 3 KB to ensure fast transfers (Google Developers, 2018).

Battery Usage

Because of the heavy use of radios and sensors, the battery consumption is increased by a 2.5

to a 3.5 rate with Google Nearby activated. To reduce the battery drain when using Communication

API, Google made some recommendations:

Nearby.getMessagesClient(Activity).unpublish();
Nearby.getMessagesClient(Activity).unsubscribe();

Connection API in Detail

Connection API enables a true peer-to-peer communication between multiple devices. This API

was created to help developers with the implementation of such networks. Since there is a wide

range of different hardware and Android versions, it is hard to create a reliable, fast, and efficient

ad hoc network using the Bluetooth or Wi-Fi API of Google. The connection API makes advertising,

discovering and connecting between many devices fast and straightforward.

Only two phases are involved with the API:

1. Pre-connection where publishers will advertise themselves and discoverers will scan

surroundings and send a connection request to any publisher it will encounter.

2. Post-connection when devices are connected, data can be exchanged in this phase.

Once devices are connected, there are no differences between publishers and subscribers; all

the devices can send data. There are three different types of payload (Google Developers, 2018):

15

• BYTES, byte array limited to 32k.

• FILE, file of any type is supported.

• STREAM can be used for files that we do not know the size beforehand, this can be recorded

audio, for example.

Nearby Connection API supports two types of strategies; there is no strategy better than the

other, their use depends on the use case. The topology is set during the creation of the advertising

object:

Nearby.getConnectionsClient(this)
 .startAdvertising(
 mConnectionLifecycleCallback,

 new AdvertisingOptions.Builder().setStrategy(Strategy.P2P_STAR).build());

Connection API Strategy P2P_CLUSTER

The P2P_CLUSTER strategy creates a mesh network; it is the default strategy used by the API.

Devices up to 100 meters apart can be connected by using this strategy. This topology is flexible.

However, the P2P_START topology offers a larger bandwidth.

This is an M-to-N topology; this means that any device in the network can initiate an outgoing

connection to M other devices, they can also accept incoming connections from N other devices

(Google Developers, 2018).

16

5. Illustration: P2P_CLUSTER strategy. From the authors

Connection API Strategy P2P_STAR

This star-shaped topology works well in situations where one device is the master of the

network. Fewer devices transmit data simultaneously, this results in a better bandwidth and would

allow, for example, video sharing across a group of smartphones. This topology is stricter than the

P2P_CLUSTER topology.

2.2. Apple iOS

2.2.1. MultipeerConnectivity

Apple developed a proprietary framework that allows devices running iOS, macOS, and tvOS to

share files, messages, and streams. The portable devices, iPhone, iPad, and iPod, use a combination

of infrastructure such as Wi-Fi, peer-to-peer Wi-Fi, and Bluetooth; on the other hand, laptops and

computers use infrastructure Wi-Fi, peer-to-peer Wi-Fi and Ethernet (Apple Developers, 2018).

The framework can work on both infrastructure and ad hoc mode making it versatile. As it is

the case for Google Nearby, Apple does not allow developers to choose the interface they want to

use. Everything is handled by the operating system depending on an algorithm developed by the

company.

There are two phases involved with this framework: discovery and session. In the discovery

phase, the application will scan nearby devices and advertises itself as a new available device. The

application advertises itself to allow other users to send a session invitation.

A session invitation is sent to the selected devices and users can accept or decline it. Once the

invitation is accepted, applications can share data. A callback is fired when a peer joins or leaves

the session.

17

6. Illustration: P2P_START strategy. From the authors

Once the application moves into the background, any open sessions will close, and the

application will stop advertising and browsing. If the application is reopened, browsing and

advertising automatically restart but closed sessions need to be handled by the developer.

2.2.2. Google Nearby

Google made Google Nearby available on iOS; this makes Google Nearby and MeshKit from Open

Garden the universal solutions since they are available on Apple’s iOS and Google’s Android.

To add Google Nearby to any iOS application, Google used the open source dependency

manager CocoaPods. Developers have to create a file called “Podfile” in the project directory and

insert the following code.

source 'https://github.com/CocoaPods/Specs.git'
platform: ios, '7.0'
pod 'NearbyMessages'

2.3. Other Implementations

2.3.1. Bluetooth 5

The newest Bluetooth 5 promises twice the speed and four times the range depending on the

mode. In reality, the Bluetooth SIG created two new physical layer variants: LE2M, which provide

twice the speed and LE Coded, who provide four times the range at the expense of the speed

(Woolley Martin, 2017). It is not possible to have both speed and range at the same time.

Bluetooth 5 Range Increase

By using the Bluetooth 5 LE Coded the range is significantly improved. The Bluetooth SIG

defined that the maximal Bit Error Rate (BER) to 0.1%. With Bluetooth 5 the SIG wanted to increase

the range without increasing the transmitting power while keeping the BER at 0.1%. Bluetooth 5

uses two technologies to deal with errors (Bluetooth SIG, 2016, p. 12):

• Error detection: already used in Bluetooth 4.x, the Bluetooth protocol uses a Cyclic

Redundancy Check (CRC) to ensure that the packet received is correct. If there is an error,

it will not acknowledge it, and the transmitter will send the packet again.

• Error correction: this is a new addition to Bluetooth 5. On top of error detection, the

protocol will try to correct errors up to a certain extent. Bluetooth 5 uses Forward Error

Correction (FEC), no further details will be given in this document.

18

As for the Bluetooth 4 tests, a company, Nordic Semiconductor, tested a connection between

two Bluetooth 5 MCU. They used the nRF52840 System on a chip (SoC), it has an 8dBm maximum

output power (Nordic Semiconductor, 2018, p. 326). They were able to achieve a distance of 750

meters (Nordic Semiconductors, 2016). However, the test was only a connection test; no bit rate

was given.

Summary Table of Bluetooth 5 Changes

The following part summarizes some of the differences between Bluetooth 4 and Bluetooth 5.

Feature Bluetooth 4.x Bluetooth 5

Radio Frequency (MHz) 2400 to 2483.5 2400 to 2483.5

Distance/Range (m) Up to 100 Up to 200

Nominal Data Rate (Mbps) 1 2

Latency (ms) <6 <3

Network topology Star-bus, Mesh Star-bus, Mesh

Multi-hop Solution Yes Yes

Message size (byte) 31 255

1. Table: Difference Bluetooth 4 and 5 (Collotta Mario, Pau Giovanni, Talty Timothy & Tonguz Ozan

K., n.d.)

Bluetooth 5 Ad Hoc Improvements

There is no improvement for ad hoc networks implemented in the new Bluetooth 5 standard.

The Bluetooth SIG made no statement regarding significant development in this field.

With the development of Google Nearby and MultipeerConnectivity by Apple, Bluetooth is

becoming an underlying technology. This means that these services proposed by Google and Apple

will benefit from the improvement made by the new Bluetooth standard. Both speed and range will

be increased as a result of this new version.

An application that would implement the Bluetooth API from Google will also gain both range

and speed depending on the mode used. Android supports this new standard since the Oreo version

released in February 2018.

19

Regretfully, manufacturers are free to choose the features that are supported by the device

they produce. The Samsung Galaxy S8 officially supports the last iteration of the Bluetooth, yet the

Bluetooth LE Coded PHY is not (Sims Gary, 2017). This means that the device will be able to have

twice the speed but not four times the range.

20

7. Illustration: Bluetooth 5 support of the Samsung Galaxy S8 (Sims Gary, 2017)

2.3.2. Fifth Generation Mobile Network

Still in a development stage, the 5G promises some considerable improvement over the actual

cellular networks. In the coming years, the number of mobile devices connected to the Internet will

skyrocket (Cisco, 2017) making the current infrastructure obsolete. The following illustration

compares the differences between what is currently supported by the 4G and what the 5G needs to

implement.

Even if the standard is not established yet, it is part of the International Telecommunication

Union (ITU) International Mobile Telecommunication (IMT)-2020 standards, the ITU IMT-2020. In their

2017 article, Nordrum Amy, Clark Kristen, and IEEE Spectrum Staff listed technologies that will be

part of the new standard.

Millimeter Wave

Mobile operators have been using the same frequencies for a long time; this result in crammed

frequencies were adding traffic became complicated. The frequency band spectrum used by the 4G

(700 MHz to 2600 MHz) remains, however, higher and less used frequencies are going to be added.

Those high frequencies also called millimeter waves because of their sub-centimeter size,

range from 30 to 300 GHz (Rogerson James, n.d.). Not the whole millimeter wave spectrum will be

used, Ofcom, the office of communication of the United Kingdom, and the European spectrum

regulators identify three key bands, 700 MHz, 3.4-3.8 GHz and 24.25-27.5 GHz.

21

8. Illustration: Comparing 4G and 5G (Qorvo, 2017)

Smart Cells

Adding new frequencies to the cellular network will not be sufficient to achieve 5G

requirements. This is why smart cells are necessary: instead of creating a massive cell tower

providing a cellular network for a large area, carriers will develop smaller and less powerful

antennas that will be installed throughout cities.

One objective of this antenna increase is to take advantage of the massive Multiple-Input

Multiple-Output (MIMO) another critical feature of the 5G.

Massive MIMO

MIMO is already used in many wireless technologies such as Wi-Fi (IEEE 802.11n, IEEE

802.11 ac), 3G (HSPA+), 4G with Worldwide Interoperability for Microwave Access (WiMAX) and 4G

Long Term Evolution (LTE). The technology uses multiple reviving and emitting antennas for the

same base station.

Until now, a base station might rely on fewer than ten antennas, whereas a massive MIMO will

use dozens of antenna that will allow better data. This much increase of antenna will increase

interferences; this is why beam forming is another base technology of the 5G

Beam Forming

With the addition of cells and the massive MIMO interference will become a problem. Beam

forming wants to address this issue by directing the signal to the user thereby reducing interference

for nearby users.

Millimeter waves can transmit much more data than the actual spectrum used because of the

higher frequency. Nonetheless, they cannot penetrate building, cars, trees as easily. This problem

can be minimized with beams forming the signal in one direction.

Full Duplex

Actual technologies use two different frequency bands for receiving and sending data. With full

duplex, it will be possible to use the same frequency for transmitting and receive information. This

will theoretically double the capacity of a frequency band.

Full duplex generates more interference when an antenna transmits and emits at the same

time on the same frequency. Also, an echo can be heard. An excellent echo-canceling protocol is

required to make the full-duplex possible.

22

5G Ad Hoc Improvements

With the multiplication of mobile devices such as smartphones, laptops, tablets and the rise of

new appliances like autonomous cars, beacons, and IoT devices, the need to have device-to-device

(D2D) communication has become crucial. In their paper, Tehrani Mohsen Nader, Uysa Murat, and

Yanikomeroglu Halim (2014) identified two different types of D2D communication.

Device relaying (DR) is a system where devices with weak signal coverage relay their

information through another device to communicate to the base station of the operator. Direct D2D,

consists of two devices or more communicating one to another without sending data to the base

station.

With that in mind, they dressed a list of four different types of device-tier communications

(Tehrani Mohsen Nader, Uysa Murat, & Yanikomeroglu Halim, 2014):

• Device relaying with operator controlled link establishment (DR-OC): D2D communication

with the help of the operator to establish the link between devices.

• Direct D2D communication with operator controlled link establishment (DC-OC): devices

communicate one to another without the need of a base station. However, the link

establishment is handled by the operator.

• Device relaying with device controlled link establishment (DR-DC): devices themselves

handle the link establishment procedure.

• Direct D2D communication with device controlled link establishment (DC-DC): everything

handled by the devices, no operator control.

Those types communication help to reduce the network congestion that might appear.

Nonetheless, interference can be caused by this type of communication. In the case of DR-OC and

DC-OC, this can be handled by the base station that will allocate resources depending on the

availability. In DR-DC and DC-DC, this will be handled by devices and great smart interference

management is mandatory.

Final Words About the 5G

The 5G wants to improve cellular networks in many fields, and there is a real need for ad hoc

communication as the number of devices increases. However, it is still difficult to see how it will be

implemented because of the non-existing standardization yet.

Many fields would benefit from ad hoc communication with the 5G network. Autonomous cars

require fast, reliable ways to communicate one to another, the <1 ms latency and 20 Gb/s data peak

23

promised by the future standard is precisely what is needed. Location-aware beacons or IoT will

become more and more present in the future. By using ad hoc communication, they will not

overload the network.

In this paper, we presented alternative technologies to a cellular network such as Wi-Fi and

Bluetooth. However, all of them operate in unlicensed frequencies; this means that interferences

are uncontrolled. If an excellent interference management software is developed with the 5G

network, ad hoc communication should greatly benefit from this technology.

2.3.3. MeshKit

When Open Garden developed FireChat, Google Nearby was not released. The Californian

company had to create its framework. The software is called MeshKit and is compatible with both

Google’s Android and Apple’s iOS.

The MeshKit Software Development Kit (SDK) allows users to share content without the Internet

(Open Garden, 2018). The API uses a combination of Bluetooth, Bluetooth LE, Wi-Fi Direct, ANT and

other wireless protocols. The result is a complete infrastructure-less communication mean, as

explained below, the framework is split in three different parts:

• Cloud to mesh: phones that are connected to the Internet share news and content to the

disconnected one.

• Mesh to cloud: nodes without an Internet connection can send data to the Internet through

other nodes

• Peer to peer: offline data sharing among peers. The report can be sent back to a server if

needed.

24

9. Illustration: Cloud to
mesh (Open Garden 2018)

10. Illustration: Mesh to
cloud (Open Gaden, 2018)

11. Illustration: Peer to
peer (Open Garden, 2018)

MeshKit Implementation

Metro Manila, one of the densest urban areas in the world, simulated a 7.2 magnitude

earthquake. The drill test was conducted by The Metro Manila Development Authority (MMDA), in

collaboration with non-governmental organizations (NGO), private and public organizations. They

chose MeshKit to broadcast information because cell towers were either destructed or congested by

traffic. A map of the network created during the drill showed that the mesh imitated by FireChat

covered the vast majority of the city. The company states that 80 percent of the population were

able to receive the messages delivered by the local authorities (Open Garden, 2016).

We were not able to find the content of the messages exchanged during this event, neither

were we able to know if the population used FireChat during the drill.

MeshKit Availability

MeshKit is not publicly available, we tried to contact the company to know what the conditions

are and if it was possible to test the technology. Unfortunately, we did not receive any answer, nor

do we know how much MeshKit costs.

Final Words About MeshKit

Open Garden has developed a complete framework that can create mesh in multiple ways

depending on the use case. The solution is different from Google Nearby. As it does not provide the

same services, the Google Nearby Notification API is similar to the Peer to Peer part of MeshKit.

25

12. Illustration: Peer to peer connection (Open Garden, 2018)

MeshKit stores messages when connection is lost and will forward them as soon as connectivity

is back. This is particularly interesting in scenarios where only a few peers are close to the device,

or in case the mesh would be defective.

One of the major problems we had with the framework is the lack of documentation offered by

Open Garden. Everything we found was summarized in a single web page and we were not able to

have technical information such as code snippets, best practices or references. We concluded that

Open Garden sells the framework and those pieces of information are then available.

2.3.4. The Serval Project

The Serval Project is an Australian project that wants to create an alternative to infrastructure-

based communications. The main benefits are the following (The Serval Project, 2017):

• Communication anytime: when infrastructure fails information exchanges are not possible,

the Several Mesh allows nearby phones to communicate.

• Communication anywhere: not all countries are well covered with the cellular network. In

Australia, for example, around 75% of does not have access to any connection. Ad hoc nets

developed by Serval can help phones communicate directly with each other.

• Communication privately: end-to-end encryption (256-bit ECC) is activated by default on all

exchanges using the Serval app.

• Communication with people: Several wants to connect everyone on earth regardless of the

circumstances.

They developed an open-source Android application called “Serval Mesh”. It allows phone to

calls, send messages and share files. The current version of the application is the 0.93 and was

released in May 2016.

The wiki page of the application is confusing, and it is hard to understand how it works. They

state that the application does not require any infrastructure. However, they suggest three ways of

connecting and exchanging information (The Serval Project, 2015):

• Using an access point and exchanging data over the Internet. This is not infrastructure less

since an access point is required.

• Creating a portable hotspot, one device create a hotspot (from the Android settings), and

other devices connect to it.

26

• Using ad hoc mode, they do not give many details on how this works and which technologies

are used. However, we concluded that it was not Google Nearby or any other classic API

developed by Google as it requires root access.

We tested the application and its features. Let aside the old and tough to understand user

interface; we were not convinced by the product. We were able to exchange files and messages, but

it always needed either an access point or a portable hotspot created by one of the phones. This is

not an ad hoc communication as a central appliance is needed.

We were not able to test the most interesting feature as we do not have root access to any of

the phones we used. There are no explanations on how the ad hoc mode works and what

technologies are used

Mesh Extender

The Serval Project team developed a hardware device called the Mesh Extender. It creates a

Wi-Fi network that allows people nearby to connect and use the Serval Mesh application.

Final Words About the Serval Project

In the end, we found only a few information about the project; we are not able to know the

team behind it, the date of creation or other crucial information. The wiki they created is complete

but confusing. It seems that they are working on a lot of different projects such as mobile

applications, hardware devices or protocols, but none of them seems to be finished.

27

3. Use Case Analysis
This thesis has several objectives; one of them is the implementation of an application that

would present the current possibilities offered by ad hoc networks. Moreover, the application must

demonstrate that ad hoc networks are a viable means of communication. For those reasons did we

established the following list of requirements:

• Implementation of offline ad hoc communications exclusively

• Respond to a real-world problem and provide an answer to it

• Uniqueness in the way it implements the solution

• Presentable in a salon where there is not much room

Following those requirements, we suggested the following potential use cases:

• Peer reviewing: aimed at orators who want to improve their presentation. This application

can provide a platform that allows the evaluation of a speech by the peers present in the

audience. A dynamic list of criteria is established beforehand, and people can give their

feedback once the presentation is finished. This use case is justified in scenarios where Wi-

Fi infrastructure are mediocre and where people have trouble connecting to the Internet.

Despite this, it was not retained because most of the time the available networks are

sufficient making ad hoc communications not legitimate.

• Offline decentralized chat: targeted to the public of music festivals where some people do

not have unlimited cellular data plan and have trouble communicating with friends because

of non-existent or lousy Wi-Fi networks. The application has implemented private and public

chatrooms. It has not been selected because some other application, like FireChat, provide

the same services.

• Inter-vehicular communications: an experiment that would test the feasibility of

communication between vehicles using smartphones. Ad hoc communications are mandatory

in those types of scenarios because they can reduce the latency created by infrastructure

architecture. Data do not need to go back and forth between the vehicle and the access

point. It is a research implementation of ad hoc communications. Because of its complexity

and its difficulty to be presented in a salon, this use cases have been rejected.

In the next part we will explain the application we decided to implement and analyze the

alternatives currently existing on the market. In the final part, we will summarize what the

competition offers and where our use case is different.

28

3.1. Disaster Assistance Use Case

In case of a disaster such as an earthquake, a tsunami, an avalanche or even a war,

infrastructure base communications are difficult or impossible to maintain. The population is then

left alone in an emergency state until the rescue teams arrive. During those first crucial hours or

even days, communication is more than mandatory, this can save lives.

This is for those reasons that we decided to implement an application that can be used in such

type of situation. The application will be developed on Android and will neither require an account

nor an Internet connection. All communication will be handled in ad hoc mode and a mesh network

of peers will be dynamically created as they join the area.

We identified two distinct roles in our application, victims and helpers. Victims send messages

asking for help. Helpers send messages and consult other people’s messages.

A message, composed of a title, a description, a category and the position, will be sent to

nearby devices and users can read them. Since not all messages will be received, users will have to

set a radius around them in order to receive messages inside this area, a predefined radius will be

set in the application.

Users in the area will be able to validate a message, this ensures the freshness of information.

We also imagined an automatic message deletion once a message has been confirmed three to five

times as wrong.

As explained before, several features will be implemented. The following list is not exhaustive

but here are the most important features sorted by priority:

• Send messages with a title, category and position

• Receive every message in a configured zone

• Ask for confirmation about a message

• Filter the messages by categories, distance, date. The filter may vary during the

implementation.

• See the messages on a map, each message will have a marker

• See deleted messages that are in a bin

• Adding images to a message to provide a better understanding of it

Other functionalities might be implemented. The full detail of them can be found in the

product backlog of the implementation.

29

There will be several requirements. Because we do not know what technology will be used, we

established the following table that summarizes the requirements of the technologies analyzed

before. All of the technologies support basic unicast but no information was found about multicast

and broadcast support.

Feature Bluetooth API Wi-Fi Direct API Google Nearby MeshKit

Minimal Android
Version

2.0 4.0 2.3 —

Network interfaces Bluetooth Wi-Fi Bluetooth — Wi-Fi —
Ultrasounds Bluetooth – Wi-Fi

Need infrastructure No No No No

iOS compatible No No Yes Yes

2. Table: Comparison of Available Technologies

The application will provide a quick and easy service to use for people in desperate need. It

can help people organize themselves when rescue teams did not arrive, which can save lives or aid

people share vital resources. Using ad hoc networks allows the exchange of messages, we analyzed

similar solutions in the following part of this document but none of them respond to this particular

problem.

However, the application will be only be developed on Android, there is no Apple iOS support

yet. Despite the fact that it is important to keep in mind that an iOS application might be a future

evolution and the technology choice need to take that in account. On top of that, this type of

network heavily relies on people nearby: if there are not enough people using the application in a

given area it will be impossible to exchange information.

In the following parts, we will explore what solutions exist on the market and how our

application differs in terms of functionalities and requirements. After that, we will summarize the

key differences of all the previous mentioned solutions.

30

3.1.1. goTenna

goTenna is a relatively new company, founded in New York, whose startup wants to create

decentralized communications. The idea came after the hurricane Sandy that hit the United States

in 2012. Daniela Perdomo saw the flaws of a centralized network when cell towers went down

leaving millions of people alone (Rhodes Margaret, 2014).

At that time, cell phones were not able to establish a Bluetooth connection with other devices

that were more than 10 meters away. An external contraption was required, and one week later

Daniela already drew a prototype (Rhodes Margaret, 2014).

Since then, the company launched two portable devices, one aimed at professionals, the

goTenna Pro and one simpler for the mass market, the goTenna Mesh. They both provide the same

service; the professional model has some additional functionalities that are not relevant to the

public. The mesh and the Pro are both simple Ultra High Frequencies (UHF) radios; however, the pro

can emit on the Very High Frequencies (VHF) spectrum.

31

13. Illustration: goTenna Logo (goTenna, n.d.)

15. Illustration: goTenna Pro (goTenna, n.d.)14. Illustration: goTenna Mesh (goTenna, n.d.)

Difference Between goTenna Mesh and goTenna Pro

As said before, the two products are not aimed for the same public. They share many

similarities but are technically very different. The following chart will highlight the main variations.

goTenna Mesh goTenna Pro

Output power 1W 5W

Frequencies UHF 142–175 MHz (VHF)
445–480 MHz (UHF)

Battery life 24 hours 40 hours

Antenna Non-removable Removable, SMA connector

Protection No protection IP68 + MIL SPEC

Range 6.4 km in open area
0.8 km in a congested area

—

Encryption End-to-end 384-bit elliptic
curve encryption

End-to-end 384-bit elliptic
curve encryption

3. Table: Comparison of goTenna Mesh and Pro (goTenna, n.d.)

How It Works

In this section we are going to see the default feature that the Mesh and the Pro have in

common, where another chapter will be dedicated to the goTenna Pro additional features. By

default, the Mesh and Pro are just antennas, to use them a connection with a smartphone is

needed. The device automatically broadcasts information and creates a decentralized mesh

network. Once the device is online, users can send a message and share their position in either a

private conversation or a group chat. All communications are encrypted and cannot be tempered.

The goTenna Mesh and Pro have an excellent point-to-point communication range but can be

widely increased by hopping through other goTenna units in the area. Even if not paired with a

phone, a goTenna device will act as a relay node when switched on.

32

What Else Does the goTenna Pro Offer

There are several additional features in the goTenna Pro, such as a higher emission power, 5 W

instead of 1 W, sturdier build quality with an IP68, dust tight and protected against longtime

immersion, and MIL-SPEC certification. On top of those elements, the goTenna Pro offer

professionals more flexibility. The device can be programmed and can work on both VHF 142–

175 MHz and UHF 445–480 MHz spectrum. This allows a goTenna device to join an existing

infrastructure if needed. goTenna advertises its goTenna Pro as ten times lighter and ten times

smaller than legacy radio. The device weighs only 80 grams and has a volume of only 67 cubic

centimeters without an antenna. On the illustration above, goTenna compares its Pro model with

everyday objects.

goTenna also offers a deployment kit that stores up to 30 goTenna Pro. The deployment kit

offers a wide range of features such as a local Ubuntu server or even the charge, transport and

updates of the Pro models stored inside. The case is rugged and weights only 11 kilos making it

easily transportable.

33

16. Illustration: goTenna Pro size (goTenna, n.d.)

goTenna plus is another service they provide. It is a subscription-based application designed for

people that need more functionalities. The additional features users get with the goTenna plus are

the following:

34

17. Illustration: goTenna deployment kit (goTenna, n.d.)

18. Illustration: goTenna Plus features (goTenna, n.d.)

Online Reviews of goTenna Products

We did not order goTenna products to test them; it was not useful for our use case. We

searched online to see what the general opinion of those devices is. Because the goTenna Mesh is

the commercial product, we mainly found reviews of this model and none about the Pro exemplary.

Here are the main advantages:

• The device is easy to use, and the setup is a breeze. Once the smartphone and the Mesh are

paired there is nothing else to do.

• It is an excellent price to service ratio; there are other more expensive solutions, yet they,

that do not offer all the functionalities the goTenna Mesh offers.

• Some people adhere to the decentralized and free network the Mesh creates. This ideology

is found in multiple reviews or article.

Even if there are many things to love about the products, some review highlighted the

following flaws:

• Some people had problems with the Android version of the application; the device would

keep disconnecting. This issue might come from the Android platform

• Some customers outside the United States had problems with the country code of their

phone number, and had to make configuration changes in the application.

• The value added by goTenna plus was not sufficient for some reviewers either. The

topographic maps were not as functional as expected.

We went on multiple websites to found different reviews. We took Amazon product review

(Amazon, n.d.), a review from More Than Survival (Xavier Thomas, 2017) and the website of Jen Eric

Ramblings (Ramblings Eric, 2017).

Pricing of the Products

The price is taken from the official website and ordered from the United States to avoid

custom and delivery charges; a goTenna Mesh pair costs $179 and a goTenna pro $499 per unit. The

goTenna deployment kit costs $20,000 and is delivered with 20 goTenna Pro.

There were little to no complaints about the price of the products. goTenna advertises its Pro

model as 20 to 40 times cheaper than a legacy radio system, but they give no details on how they

achieve such a difference and what they include in the price calculation.

35

Advantages of goTenna Products

Even if we did not order goTenna products to test them, we were able to identify what is right

about goTenna products:

• The service they provide is well implemented and works flawlessly for most of their

customers. The application is user-friendly and is regularly updated (Ramblings Eric, 2017).

• The Mesh, as well as the Pro model, is well designed, the look and the form factor is

appealing

• We think that the price is correctly balanced for both models.

• The devices not only work in point-to-point mode but can also create a mesh network that

will tremendously increase the range.

Drawbacks of goTenna Products

• Because of its lower price, the Mesh is not waterproof; which is shameful for a device aimed

at hikers.

• Even if the application is great, users can only share text messages. There are no

possibilities to call someone. This is not a concern for the Mesh, but it might be one for the

Pro: goTenna advertises its products as a replacement for legacy radio. However, they do

not offer voice communication which is mandatory in some situations.

• The devices are excellent and well built. However, this is a hardware device. Information

sends from a Mesh can only be received by others if they use a goTenna product.

• We found online that some customers had problems with the Android application, random

disconnections and country code issues. However, this might have been corrected with an

update of both the Mesh and the application.

Difference With Our Use Case

Even if we want to develop an application, we share some features with goTenna’s products.

Where we stand out is in the ease of access and the target audience.

Downloading a new application is swift: a simple Internet connection is needed. This makes our

solution more comfortable to use. Many people have a smartphone and an installing an application

is a common task.

We do not target our application to hikers, it is not the audience we want to reach. As said

before, our application is meant to be used in case of a catastrophic event, when there is no other

communication mean left, and it is hard to find survivors. Our application will not rely on an

external hardware device, everything is contained in the smartphone of the user.

36

3.1.2. FireChat

FireChat is a proprietary mobile application developed by Open Garden, a San Francisco-Based

company. It was created in 2015 and use MeshKit a proprietary framework that adds peer-to-peer

mesh connectivity to any application, chapter 2.3.3 – MeshKit (p. 24). The application was used

many times in the past.

How It Works

We already covered the details of MeshKit and how it works. In this chapter, we will focus on

how the application works, what are the steps needed to make it work. There will be no technical

explanation; they can be found in chapter 2.3.3 – MeshKit (p. 24).

An account is needed to use the application. FireChat does not need anything other than an

email address to connect since it sends an email with a code. If privacy is a concern, FireChat needs

a valid email; it is the only way to reconnect to an account.

Once the account is created the user has several methods of communication:

• Public chatrooms: those chatrooms can be accessed by anybody in the world, regardless of

the network availability.

• Private messages: fully encrypted classic messages, which are sent to only to users in the

chatroom. Those chatrooms can have up to 50 people.

On top of those two types of chatrooms, users can follow other users, block users, send a photo

that only the following users can see and have a favorite chatroom.

37

19. Illustration: FireChat logo (Open Garden, 2018)

Pricing of FireChat

FireChat is free; there is no paid tier. We could not find in the privacy policy if FireChat and

Open Garden reserved the right of selling data to third parties.

Advantages of FireChat

FireChat is, without a doubt the best-known mesh networking application; it has been quoted

in the press on numerous occasions. Here are some advantages we found:

• The setup is quick; only an email is required to allow users to exchange messages.

• The public chatroom is a great way to exchange about a subject. They are easily created

and can host an unlimited number of people.

• The application looks nice and is not cluttered with settings.

Flaws of FireChat

• In case of a catastrophic event with no Internet connection available, users will not be able

to validate an email. We do not understand why the application needs a valid email address

to connect.

• The only information that can be exchanged by the application is text and pictures/videos.

There is no possibility way to attach a location to a message, this makes it hard to use in

case of a disaster other than simply broadcasting information across an area.

• Even if the application looks nice, it can be confusing sometimes; there are four tab and no

explanation related to their purpose. We had to look at the online documentation to

understand how the application works.

• The application is not privacy-friendly oriented and the fact that the company does not

clearly state its privacy policy has raised doubts.

Difference with Our Use Case

Even if we share many similarities with FireChat, our application is not addressed to the same

public and does not solve the same problem.

We will focus our application on catastrophic events, FireChat has been used in those kinds of

scenarios, but it is not its main purpose. Because of our direction, some social features will not be

implemented. On top of that there is no possibility to send a position to a chat or a private

conversation. Meaning that floating content is not an option with FireChat.

Since we will focus on disaster rescue help, we want to attach the position to every message.

There will also be some categories for a message. Ideally, a map will be implemented in the

38

application and all the message in the area will be displayed on top of it. All those functionalities

are not implemented in FireChat which set the two applications apart.

Furthermore, our application will not require an account creation; users will exchange

messages as soon as the application is installed on the phone. We will ask for a name at the first

application launch, as this is a vital information when searching for survivors in a devastated area.

The creation of private conversation is useful, but it is not the essential functionality we want

to have. Public chatrooms might be implemented in the application, but are not the priority.

Because we had problems finding some information on the application we want to make it as

simple as possible. We can easily imagine that people in a distress situation will not be able to

understand a complex application, so the simpler the better. There will also be a user’s guide

available in the application.

3.1.3. Nearby Chat

Nearby Chat is a beta application showcasing the Google Nearby API. No technical

documentation is available on this application; we believe that Google Nearby Message API is used

because the application does not work without the Internet. The application is a side project of a

single developer who wanted to experiment with Nearby.

How It Works

The application is effortless, a pseudonym is the only information to enter, and users can

exchange messages with people nearby (within 30 meters). The messages are ephemeral as they are

deleted as soon as the user closes the application or is out of range.

Pricing of Nearby Chat

The application is free.

39

20. Illustration: Nearby Chat icon (Swain Daniel, 2017)

Advantages of Nearby Chat

There is not a lot to say about the application. The advantages are the swiftness of use,

nothing is required apart for a name.

Flaws of Nearby Chat

We cannot consider the usage of Google Nearby Message API as a flaw. It is an experiment from

where the developer wanted to explore the API. For our use case, it would be a disadvantage

because users would not have access to the Internet.

Differences With Our Use Case

Our application will be very similar to Nearby Chat; we want a quick process that allows the

user to be connected within seconds. However, we need to use an API that does not require the

Internet, otherwise our application will become quickly useless.

Private messages might also be a future evolution of our application; Nearby Chat does not

support this.

3.1.4. Zello

Zello is an application available on Google Android, Apple iOS, and Microsoft Windows. It

simulates a walkies-talkies push to talk experience. People can communicate by voice all around the

world using the cellular network.

Even if the application is infrastructure based, we decided to insert it in this paper since it has

been used during disasters.

The application hit the news multiple times because it allowed people to communicate in a

challenging environment. It was the case during the Turkish protest of 2013 (Arthur Charles, 2013).

During the anti-government protest of 2014 in Venezuela, Zello was also used by protesters to

organize demonstrations (Zhang Sarah, 2014). Another usage of the application was during the

hurricane Irma that hit the United States between August and September 2017 where rescue teams

used the app to save people trapped by the flood (Holley Peter, 2017).

40

21. Illustration: Zello logo (Zello, 2018)

How It Works

Zello simulates two-way radios; this allows users from all over the world to talk one to another.

Once an account is created, which is mandatory, it is possible to send a voice message to either one

person or to a channel where people can freely join; there are no user limits.

Channels are not necessarily open, the application offers multiple options:

• Open: anybody can talk

• Zelect: channel owner, moderators and authorized users can talk

• Zelect+: channel owner, moderators and authorized users can talk and listen

• Zellocast: channel owner and moderators can talk

Two other options are available; password protection for the channel and paid access. In case

of paid access, Zello will take a part of the access cost and send the channel’s owner what is left

monthly via PayPal.

Pricing of Zello

Personal usage of Zello is free; anyone can access to channels and talk without limits. Zello

developed a solution aimed at companies called ZelloWork. Because it is not aimed at our target

audience, we will not detail the conditions of ZelloWork in this paper.

Advantages of Zello

• No limits are set to public channels, up to 450,000 people joined the same channel during

the Venezuelan protests (Zhang Sarah, 2014). No other solution on the market offers such an

easy way to connect that many people together.

• The fact that Zello has been used in disaster-stricken area proves that it is suited for those

scenarios. It shows that it is capable of providing the help people need at that time.

• There are several ways to join channels making it easy for users to search for help.

Flaws of Zello

• Voice is the only ways to communicate inside Zello. Users cannot send a text on channels,

making the work for rescue teams harder if the person does not talk the local language or

has a strong accent.

• Zello cannot be used without the Internet. If no active connection is available, the users

will not be able to connect and ask for help.

• An account is mandatory: this is not a problem if people have the time to prepare

themselves for a disaster, but if they are surprised they might not be able to set the

41

application up. During the hurricane Irma, the heat map of account creation followed the

forecast of the hurricane path (Holley Peter, 2017).

Difference With Our Use Case

Because it has been used during a real disaster, Zello proved that walkie-talkie like

communication could help both rescue team and victims. We did not think of voice as an option

within our application, but we might consider adding this feature if the technology we used allows

it.

The main difference between Zello and our use case other than the means of communication

used is the required Internet access. Our application will not require the Internet to work; this will

make our application suited for an area that is profoundly affected by a catastrophe or a war.

We also want to develop an app that does not require the creation of an account. The only

information it will require is a name, which is, in our opinion, mandatory to help the rescue team

identify survivors.

42

3.2. Comparison of the Existing Solutions

We have analyzed four competing alternatives to our application, each of them provides an

excellent service in their category. They all address a specific problem, but none of them are

suitable as support during a disaster. The main functionality they lack is the position management.

None of them support floating content, except goTenna that allows users to share their position.

One significant difference between our application and the competitors is the way messages

are treated; they have all an instant message solution whereas our does not. The messages are

displayed on every phone in an area, but users cannot comment or react to them. The only

interaction possible with messages is the confirmation or invalidation of the information.

We do not discard the option of an instant messaging part for our application. This can be

useful in some scenarios such as search organization or updates on resources available at a specific

place. However, this is not the main functionality of the application.

This concept also involves that our application will only work in broadcast mode because no

one-to-one or one-to-many communications are planned. This can also be as excellent features to

implement but it is not a priority for us.

The following table summarizes the fundamental differences between our implementation and

the existing solutions on the market.

Feature Our app goTenna FireChat Nearby
chat Zello

Instant message based

Require specific hardware

Infrastructure-based

Require the Internet

M
es

sa
ge

su
pp

or
te

d Text

Voice

Position

Images ~

Require an account

Ro
ut

in
g

ty
pe

Unicast

Multicast

Broadcast

4. Table: Comparison of our use case with the existing solutions

43

4. Use Case Implementation Reflection
Because we developed an application that will be used during a disaster, we had to project

ourselves in this kind of situation to see the problems might occur. Once they had been found,

multiple solutions were searched and analyzed. The resolution which seemed to us the most

relevant was then selected.

We will detail in the following part all our reflections and explain the reasons why we chose

one solution over another. This part is separated into three distinct chapters; the first one is

devoted to the network management, and the problems related to the application back end. The

second is dedicated to the user experience challenges, where problems such as error handling are

discussed. Finally, the last chapter will discuss the user interface challenges we faced. In this last

part, we will present the mock-ups we designed during this reflection phase.

This chapter focus on the reflections made before the development phase of the project. All

the technical details and the methods used in the development can be found in the chapter 5 -

General Implementation (p. 56) and 6 – Details of the Implementation (p. 67).

4.1. Challenges — Application Back End

4.1.1. Information Freshness

During a catastrophic event, situations can evolve rapidly. Therefore we need to keep the

messages as updated as possible and since information might be wrong, it has to be handled by the

system. We found two ways of handling this issue.

Creating a Fixed Expiration Date for Messages

This is the most basic implementation. Messages will be automatically deleted after a

programmed time ensuring that all messages are fresh and up to date. However, this comes with its

limitations. Some messages need to be kept longer than others, for example, a gas leak in the street

is crucial information that cannot be deleted.

People will be under pressure, and we do not want them to change a critical aspect of the

application, this is why this setting will be hard-coded and not modifiable. More information on this

choice in the chapter 4.1.7 Application Settings (p. 47).

Asking for Updates About Uncertain Messages

A dynamic expiration date is a better alternative; nearby users need to give feedback on

messages. A positive confirmation will postpone the expiration date whereas negative will reduce it.

44

This is a better choice because urgent messages will be kept. However, this relies on user

participation and it raises two problems: the most obvious is user participation; if people are busy,

messages will be deleted and lost. The other issue may occur in a situation where there are many

messages in the same area, confirming them can become time-consuming and users might stop

doing it.

Selected Solution

We decided for our application to develop a simple dynamic expiration date because it provides

the best solution to the information freshness in our opinion.

4.1.2. Information Trustfulness

A wrong message can lead to severe time and resources loss. Therefore, two separate options

were evaluated to guarantee the accuracy of the information.

Scoring Users

One of the first ideas we had was to create a score for every user: their score will be increased

at each positive confirmation of their message and reduced if someone reports it as wrong. If a user

has too many wrong reports, he will not be able to send new messages, or his messages will not be

considered trustworthy.

Rely on People’s Honesty

According to the situation, it is unlikely that people would intentionally create fake messages.

In this case, no trust system will be implemented, and all messages will be considered reliable.

Errors are still possible and they are handled differently; we detail the way we take care of them in

the point 4.2.1 – Error Handling (p. 49).

Selected Solution

We decided, for ease of implementation, to rely on people’s honesty. This choice has been

motivated by the fact that people in a distress situation are less likely to deceive others.

4.1.3. Floating Content or Geo-Fencing

Floating content is an essential part of our application; it allows the exchange of messages in a

restricted area configurable by the user to avoid information overflow. We imagined two different

strategies for the implementation of this feature.

45

Ignore Strategy

This strategy is the strictest. Each message received is tested: if it is within the area of the

user, its configured radius, the message is saved and displayed to the user. This design is easier to

implement because it only requires a simple test during the reception.

The potential data loss is the biggest problem with this handling method. If there are only a

handful of peers connected in an area and one of them leaves, all the messages saved will be

deleted as soon as the device exits the zone. We already discussed this problem in the chapter 1.5.4

– Position-Based Protocols (p. 9).

Save and Hide Strategy

A safer strategy would be to save all received messages and to display only the one that are

inside the user’s proximity. This would correct the problem of potential data loss but at the same

time it would result in a more significant quantity of data.

Selected Solution

We decided to opt for the save and hide strategy as it provides a safer and more consistent

experience for the users. The quantity of data increase will not be a problem in our opinion because

the application only exchanges text messages.

4.1.4. Duplicate Data

Duplicate messages can appear in areas with much activity. This situation can create problems

in some case. To avoid issues, it has to be handled automatically by the system. We did not find

multiple strategies to implement this kind of functionality in the application.

The system we established uses the user’s positions to check if a message with the same

category already exists in the vicinity of the latter. If that is the case, a popup message will ask the

user if the message he wants to send is the same as the one nearby.

4.1.5. New Peer Connection

When a new peer connects, he needs to receive all the exchanged messages of the area.

However, a user cannot receive a message he already has, because this would create duplicate data.

This type of situation occurs when a user leaves the zone or switches his phone off. Indeed, all the

messages already received are stored in the phone memory, and they need to be ignored at the

reception. We did not find multiple ways to solve this problem other than having a strict data check

when new messages appear.

46

4.1.6. Message Saving

When using the application, exchanged messages are saved on the application’s cache. Once

the application is closed, the cache is flushed, and at the next launch, no message will appear. This

is why permanent storage is required. Two compatible options with our need are available on

Android: shared preferences and internal file storage. We do not need to create an SQLite database

as we only store messages and the creation of a database is not justified.

Shared Preferences

Shared preferences are a key-value association. They are saved across sessions and they can

store any primitive types such as Boolean, float, long, string. They are recommended in scenarios

where not many data are saved. For more massive data sets, the internal storage is recommended.

Internal File Storage

Each Android application has a private folder that is not accessible for users unless they have

root access. It can store all types of files and it does not have a space limitation.

Selected Solution

We decided to use a different shared preferences file for each type of messages as it provides

enough functionalities for our needs. In the future, if storage becomes an issue, it would be wise to

create internal files. However, after the tests we conducted, shared preferences are enough.

4.1.7. Application Settings

We want to let users have some control over the application by allowing the change of some

parameters such as the username and the radius for the floating content. However, the user should

not, in our opinion, be able to change fundamental settings such as the ones related to the network

management. According to our thinking, the critical settings are related to the application back

end. They can be, for example, the expiration time for messages or advertising, and discovery

settings. When changing those settings, the operation of the application changes and it can lead to

information loss.

4.1.8. Offline Challenges

Google Nearby Connection API does not require any Internet connection. This means that our

application can be used regardless of the network availability. However, this does not mean that our

application does not require the Internet at all. Several points can block the use of the application

if they are not handled.

47

Installation of the Application

Users need to have the application installed before the disaster occurs. If that is not the case,

they will not be able to communicate. To address this issue, we imagined a sharing feature in the

application where users can send the installer one to another. This would allow unprepared users to

access the mesh network created and exchange information.

However, this type of communication is hard to implement since an application needs to act as

a server. To make the exchange easier, we imagined a workaround: during the installation, the

installer, an Android Package Kit (APK), will be placed in the download folder of the device. To

transfer the APK to other devices, users only need to send it via Bluetooth. Although this provides a

solution, it requires absolute mastery of the phone, and we do not believe it is within everyone’s

reach.

This best solution would be, as explained above, a button to click on the device that would

send the APK to anyone nearby.

Maps

Floating contents requires a map when an Internet connection is available the application will

download the Google Map required. However, if there is no connection, it will not be possible to see

the map unless it has been downloaded previously.

Google Maps does not provide this kind of feature by default outside the official application. It

is possible, however, to generate URL depending on the position of the user to get the image of the

map. Once this link is generated, we can download the images and display them instead of the one

from the Internet.

Alternatives, such as Open Street Map are more flexible with the offline use of their map.

4.2. Challenges — User Experience

4.2.1. Errors handling

Users might make mistakes while sending a message because of the pressure they will be under.

This is entirely normal, but error handling feature needs to be implemented.

Delay Before the Actual Transmission of the Message

A small delay, around 10 to 30 seconds, between the press of the send button and the real

transmission of the message can help prevent some mistakes. After the sent button has been

48

pressed, the message is placed in a queue, where it is still editable. It is sent to all connected peers

once the delay has been reached.

Update a Message

Another approach of the problem would be to immediately send the message but it would allow

users to update their messages afterward. However, this strategy will create additional traffic for

every modification made by the user as a message will be sent another time.

Summary of the Message Before the Transmission

Proofreading a message is also a feasible option; once the sent button has been pressed, a new

view containing a summary of the message will be displayed. The user will then confirm that no

error is present. Once the confirmation is given, the missive will be transmitted to nearby peers.

Selected Solution

We concluded that message reviewing was the best solution because it is easier to implement

than a delay and it does not generate additional traffic. We still want users to be able to update

messages in the application; if there are still errors, there will be an option to correct them.

4.2.2. Reassure the Victims

Because victims can be in a situation of extreme distress, they need to be reassured by the

application. We will display the number of peers that received the message. This information is

displayed in all the messages, which is, at the same time, an excellent indicator of the network’s

health.

4.2.3. Messages Identification

Since our application relies on message exchange, a message identification system is

compulsory. This system will allow nearby users to differentiate messages and enable quick

identification of the message type. Naturally, each category needs a name; we approved, therefore,

the following classification: “Victim”, “Danger”, “Resources” and “Caretaker”, they represent the

type of data users are likely to exchange.

However, we assumed that text categories are not enough. We need to improve the category

distinguishing even further. Color-coded categories were our first thought, which would vastly help

the recognition but it may not be enough for some people. This is why, in a second reflection, we

decided to use icons and colors for each category. Details about the colors and the icons used can be

found in the chapter 4.3.2 – Colors (p. 54) and 4.3.3 – Iconography (p. 54).

49

4.3. Challenges — User Interface

4.3.1. Application Layout

Before starting the application implementation, we decided to make mock-ups of the future

user interface; this helped us find vital components of the application. The following screenshots

come from the mock-ups previously mentioned. There are color and design differences between the

picture presented below and the final application design.

Colors have been changed soon after the creation of the mock-up because they did not provide

enough contrast between elements present on the screen. Explanations and the presentation of the

color palette are in section 4.3.2 – Colors (p. 54). Details regarding the design change can be found

in 6.3 – Application User Interface (p. 76).

Bottom Navigation Menu

As previously mentioned, the application will be used in a stressful environment and needs,

therefore, to be as simple as possible; we decided to use a bottom menu that will contain all the

different menus required. It will contain the three fundamental views of the application. The first

one contains a list of messages, the second one the map where all messages are displayed and lastly

the application settings.

22. Illustration: Mock-up bottom navigation menu

Message List

The message list will contain all the messages near the user. It needs to have as much

information as possible so that users can have all the information related to a message in a fraction

of a second.

23. Illustration: Mock-up message list

50

Users can see for each message present on the list, its title, description, category name, and

distance. On top of that, the color band on the left shows the category’s color and the icon on the

right shows how reliable the message is.

We placed this icon to inform users if the message is still up to date or not; the icon becomes a

red exclamation point once the information might be outdated.

Message Details

When a message has been selected, a view containing all the details is presented. Two buttons

are present at the bottom of the screen; they are used to confirm or reject the message state. This

is used for the dynamic expiration date.

25. Illustration: Mock-up messages details

51

24. Illustration: Mock-up detail of one message

Map

We decided to display the information of the messages on a map, this is more visual and it

provides an overview of the situation of an area. In the beginning, we did not think of icons to

represent the various categories of a message, which is why there are only colored pins on the

following picture.

26. Illustration: Mock-up messages map

4.3.2. Colors

Our application color changed between the initial mock-up and the final implementation. This

was due to difficulties to identify the different elements on the screen. To help us find the correct

color palette, we divided them into two main categories. One part is related to the design of the

application, and another is for the different categories a message can have. A third category with

less critical colors have been established too; we call this group utility colors.

Application Colors

We wanted to have sober colors for the user interface. By doing so, users will have less trouble

to find relevant information on the screen as they will have brighter colors and they will, therefore,

be more visible. With the material design used on the Android platform, applications have two types

of colors at their disposal.

52

• Primary colors: which are the most prominent as they will be present in many elements on

the screen, such as the action bar on the top or the buttons.

• Secondary colors: which help users identify selected parts of the user interface. This is also

called the accent color.

Each color type can have light and dark variations; this provides a contrast between on-screen

elements. Lastly, text color is also selected for both categories and will be used throughout the

application to ensure consistency.

The following table shows what the primary colors and its variants are. We chose a tuna color

as it will not interfere with any other element. Tuna is a sober color and message category colors

will be readily identifiable as they are brighter.

Primary color Primary light Primary dark Primary text

#33333d #5d5c67 #0c0c17 #ffffff

5. Table: Application Primary Colors

To avoid confusion between the user interface element and the categories color, we chose an

accent color that is not present anywhere else. This is why this light blue and its variations were

selected.

Secondary color Secondary light Secondary dark Secondary text

#80deea #b4ffff #4bacb8 #000000

6. Table: Application secondary colors

Message Category Colors

Category colors are crucial for our application; they must be easy to differentiate and provide

information of the message type as soon as seen. As said before, we approved four different

categories type “Victim”, “Danger”, “Resource”, and “Caretaker”. The first two types were related

to a hazard and they needed to have a reddish color. The other two are concerning help and they

must have a color in green tones.

53

The tint selected is bright and easily differentiate from any other color present in the user

interface.

Category victim Category danger Category Resource Category Caretaker

#e3170a #f26419 #9bc53d #60992d

7. Table: Message categories color

Utility Colors

The last two colors present on the application provide a visual feedback for users, as they are

used to show the status of elements. The selected tones are easy to differentiate from the colors

selected for the categories, which is our goal as we do not want to confuse the users.

Error color OK color

#b00020 #20b000

8. Table: Application utility colors

4.3.3. Iconography

Icons were also required in our application since they provide a better message category

recognition. They need to be unique and easy to distinguish. The selected icons for each category in

their corresponding colors are the following.

54

30. Illustration:
Caretaker icon

29. Illustration:
Resource icon

28. Illustration:
Danger icon

27. Illustration:
Victim icon

4.3.4. Application Icon

We wanted to create a simple, yet effective application icon. The objective was to have a

bright background and a simple illustration on top. The final design is the following:

The illustration represents several aspects of the application. The outer circle symbolizes the

mesh network connecting all peers together as well as four people holding their hands. The inner

part shows a smartphone sending information to the network. Moreover, the round version looks like

a lifebuoy to us.

55

32. Illustration: Round
application icon

31. Illustration: Default
application icon

5. General Implementation
We decided to split the implementation into two parts. The first one will cover the general

implementation; it includes the technology and the programming language choice, for example.

The second will detail some of the aspects evoked during the use case reflection; we will

demonstrate how fundamental elements of the application have been handled. The result of those

implementations will be analyzed in the “Discussion” chapter (p. 79).

5.1. Technology Choice

Because an Android application will showcase the use case we chose, we have to select a

technology available on Google’s operating system. However, we saw a portage on the Apple’s

ecosystem as a potential future evolution. This is why we want to select a technology that is already

well supported and available on both platforms.

During our initial research, we analyzed many different technologies. Some of them were

quickly dismissed because of their lack of support by the major operating systems and their

insufficient functionalities; this is the case of the Serval Project and the Bluetooth 5.

Using directly the Bluetooth and Wi-Fi direct API developed by Google might be an option, this

provides a greater flexibility than tools like Google Nearby or MeshKit. However, this choice is made

at the expense of ease of development because everything needs to be implemented by the

developers. Besides, this would have made the application hard or even impossible to develop for

iOS devices since Apple does not give the same accesses as Google does.

Google Nearby Connection API is therefore the best option for our use case. The API is a secure

choice for the future because Google has a dedicated team devoted to the development and

support of it. On top of that, using Google Nearby ensures an easier maintainability of the

application over time because new technologies can be added to the one already supported by the

framework.

5.2. Programming Language

Android supports both Java and Kotlin, the latter have been supported since the release of

Android Studio 3.0 and is inter-operable with Java. Although Kotlin brings some improvement such

as less code, about 20% less, to achieve the same result, more readable code and performance

improvement (Sommerhoff Peter, 2018). Because we had no experience with it, we decided to

develop our application with the more traditional Java.

56

If in the future, if a conversion is necessary, it can be done with Android Studio which provides

a Java to Kotlin translation; some adjustment might be required to make the application work as

intended. However, since both languages can be executed at the same time, the conversion can be

divided into multiple steps.

5.3. Project Architecture

The project is split into several packages to support the work of the developer. It is divided as

follows:

• Adapter: contains the custom adapters created for the several lists present in the

application.

• Model: the model of objects used in the application, contains the Message and Endpoint

class.

• Utils: mostly consisted of abstract methods. This is where the configuration of Google

Nearby or the communication is handled, for example.

• View: all the codes related to the views present in the application. We created sub-

packages to help the organization of the numerous files.

5.4. Gradle Dependencies

All the dependencies present in the project are from Google, we did not want to use an

external framework as they might be unsupported in the future.

The following dependencies are required for the implementation of the user interface.

implementation 'com.android.support:appcompat-v7:27.1.1'
implementation 'com.android.support:design:27.1.1'
implementation 'com.android.support:cardview-v7:27.1.1'
implementation 'com.android.support.constraint:constraint-layout:1.1.2'

The ones below are related to the application back end. They enable the usage of Google

Nearby and GPS. The GSON dependency is used to translate any object into a JSON string; this is

used for transferring data across devices.

implementation 'com.google.android.gms:play-services-nearby:15.0.1'
implementation 'com.google.android.gms:play-services-maps:15.0.1'
implementation 'com.google.android.gms:play-services-location:15.0.1'
implementation 'com.google.code.gson:gson:2.8.5'

57

5.5. Constant of the Application

Many variables are required in multiple locations, this is why we created a file containing all

those constants. In the following part, we will cover the most important constants created and the

reason for their presence in this file.

5.5.1. Permission Related Constants

Some permissions are mandatory for the application to run. Without them, some functionalities

might not work, which would make the application useless. This is for that reason that a string array

of permission was created.

Because it is required by the Android system, we also created the code for the mandatory

permission.

public static final String[] MANDATORY_PERMISSION =
 new String[]{
 Manifest.permission.BLUETOOTH,
 Manifest.permission.BLUETOOTH_ADMIN,
 Manifest.permission.ACCESS_WIFI_STATE,
 Manifest.permission.CHANGE_WIFI_STATE,
 Manifest.permission.ACCESS_FINE_LOCATION

 };
public static final int CODE_MANDATORY_PERMISSIONS = 1;

5.5.2. Message Related Constants

All the messages present in the application are stored in a distinct ArrayList depending on their

origin. Because those lists are used in different views and in some of the utils classes, we must store

them in an easily accessible place.

public static ArrayList<Message> MESSAGES_RECEIVED;
public static ArrayList<Message> MESSAGE_SENT;
public static ArrayList<Message> MESSAGE_QUEUE;
public static ArrayList<Message> MESSAGE_QUEUE_DELETED;
public static ArrayList<Message> MESSAGE_QUEUE_LOCATION;

public static ArrayList<Message> MESSAGES_DISPLAYED;

We created the following list of messages:

• Messages received: all the messages the device received

• Message sent: all the messages sent from the device

58

• Message queue: messages waiting for a peer to connect to be sent. This is used when the

user wants to send a message, but there is nobody around.

• Message queue deletion: messages waiting for a peer to connect to be sent. This list is used

when a user wants to delete a message he wrote, but nobody was around at the moment he

clicked the delete button.

• Message queue location: messages awaiting a location to be sent. If a user wants to send a

message, but the application did not retrieve a location yet, the message is stored until the

GPS gets a location. Once it is done the message is sent to all connected peers.

Because the messages exchanged can be new, deleted or updated, we needed a way to

differentiate those states. This is why we created constants that guarantee that no error is made

during the development.

The string is used before the message is sent, the status is added as a field of the message and

is checked at the message reception. More information about the process of receiving a message

can be found in the chapter 5.7.2 – Message Flow (p. 63).

public static final string MESSAGE_STATUS_NEW = “new”;
public static final String MESSAGE_STATUS_DELETE = “delete”;
public static final String MESSAGE_STATUS_UPDATE = “update”;

5.5.3. Google Nearby Related Constants

Because peers connect and disconnect automatically, we need to keep track of them. HashMaps

are used to allow an easier search and management of these previously mentioned peers. As for the

message list, those maps are accessed from multiple locations, this is why they are in the constant

file. Details about the “Endpoint” object can be found in the chapter 5.8 – Endpoint Object (p. 66).

The “NearbyManagement” object is the instance used throughout the application to access the

abstract class stored in the utils package. This class handles all the configuration, connection, and

transmission of data across devices.

public static NearbyManagement NEARBY_MANAGEMENT;

public static final Map<String, Endpoint> DISCOVERED_ENDPOINTS = new HashMap<>();
public static final Map<String, Endpoint> CONNECTING_ENDPOINTS = new HashMap<>();
public static final Map<String, Endpoint> ESTABLISHED_ENDPOINTS = new HashMap<>();

59

We keep track of the following devices:

• Discovered endpoints: all the endpoints the device discovered.

• Connecting endpoints: all endpoints the device is currently trying to connect. This was used

to avoid duplicate connection attempts at the same time.

• Established endpoints: all the endpoints the device is connected to. Because Google Nearby

is built that way, device will always try to connect one to another, this map avoids this

behavior.

5.5.4. Preference Related Constants

Shared preferences are files containing key-value pairs; they also require a name. An

application can have several preferences files. This is what we decided to use to store application

settings, and the messages exchanged. Each message list explained above have its shared

preference file and the corresponding key.

We could have created one file containing all messages and differentiate them with the key

only, but for clarity reason, we decided to separate them. The implementation details of the saving

and retrieving of those preferences are in the chapter 6.1.6 – Shared Preferences Message Use

(p. 72).

public static final String PREF_NAME_MESSAGE_RECEIVED =
“ch.hevs.fbonvin.message.received”;

public static final String PREF_NAME_MESSAGE_SENT =
“ch.hevs.fbonvin.message.sent”;

public static final String PREF_NAME_MESSAGE_QUEUE =
“ch.hevs.fbonvin.message.queue”;

public static final String PREF_NAME_MESSAGE_QUEUE_DELETED =
“ch.hevs.fbonvin.message.queue.deleted”;

public static final String PREF_NAME_MESSAGE_QUEUE_LOCATION =
“ch.hevs.fbonvin.message.queue.location”;

public static final String PREF_KEY_MESSAGE_RECEIVED =
“message_received”;

public static final String PREF_KEY_MESSAGE_SENT =
“message_sent”;

public static final String PREF_KEY_MESSAGE_QUEUE =
“message_queue”;

public static final String PREF_KEY_MESSAGE_QUEUE_DELETED =
“message_queue_deleted”;

public static final String PREF_KEY_MESSAGE_QUEUE_LOCATION =
“message_queue_location”;

60

The application requires other preferences. The value of those variables is saved in the

constant file. They are the following:

• App ID: stores the UUID generated during the installation of the application, this is used to

identify devices.

• Username: the user can change its username, it is mandatory as it serves as an identifier for

peers around.

• Radius Geo fencing: define the area of message reception. The default value is 100 meters.

public static string VALUE_PREF_APPID;
public static String VALUE_PREF_USERNAME;
public static String VALUE_PREF_RADIUS_GEO_FENCING;

5.6. Google Nearby Configuration

5.6.1. Connection Procedure

The connection procedure of Google Nearby consists of two distinct roles. The advertisers

advertise themselves and the discoverers search for advertisers. Once one is found they will try to

establish a connection.

The following chart demonstrates all the methods, colored rectangles, required during the

entire process from the beginning of the advertising to the disconnection of the devices. All the

arrows are callbacks that are used to handle different events during the procedure.

61

33. Illustration: Google nearby connection procedure (Android Developers, 2017)

5.6.2. Implementation

Because it is the spinal cord of our project, we spent extra time developing and testing the

“NearbyManagement” class. In the following chapter, we will explain the overall operation of

Google Nearby. However, not every aspect of the class will be detailed.

Both methods “StartDiscovery” and “StartAdvertising” are called as soon as the application has

started. To let the user know when everything is running, we created an interface,

“InearbyActivity”, that displays a message on the application.

Several callbacks are required to make the application work:

• “ConnectionLifecycle”: used throughout the procedure, from the initialization of the

connection to the handling of peer disconnection. It will accept incoming connection and

handle the result of it.

• “EndpointDiscovery”: exclusively used to handle the discovery of a new endpoint. As soon as

an advertiser has been found, this callback will request a connection by sending the name

of the device and an ID we created. This ID ensures that only applications with the same

identifier can connect one to another, avoiding unwanted third-party peers.

• “Payload”: this callback is fired when a new payload is received. At this point, our

“CommunicationManagement” class takes control of the handling of new data. We did not

take advantage of the transfer update callback since only small text messages are

exchanged.

5.7. Messages Object

Messages are the only piece of information shared between phones, which is why they must

contain all the mandatory data. In the following part we will explain how the messages are

constructed and what kinds of variables and field they contain. After that, we will describe what

flow the message will take when being sent and received. Lastly, details will be given on how the

propagation of messages is handled by the application and how we avoid duplicate data.

5.7.1. Message Class Structure

There are two distinct types of variables stored in a message: some are related to the message

itself, others to the network information. All messages contain all those fields because of the

decentralized nature of the network. Without the use of a central device handling the exchange and

routing of information, messages need to keep track of where they have been or of their expiration

time, for example.

62

A typical message is constituted of the following fields. On the left, there are the message

related variables and on the right, the network related one.

private String dateCreatedMillis;
private String dateCreatedString;
private String creatorAppId;
private String senderAppID;
private String creatorUserName;
private String title;
private String category;
private String description;
private Double messageLatitude;
private Double messageLongitude;

private String dateExpirationMillis;
private int progress;

private String messageStatus;

private ArrayList<String>
 mMessageSentTo;

5.7.2. Message Flow

There are three main paths a message can take: one when sent, another when received, and

lastly one when propagated, this occurs when we send all the messages saved to a new peer. We will

explain each of them with the help of a flow diagram. All those methods are in the

“CommunicationManagement” class which acts like a router in a traditional network.

Sending

63

34. Illustration: Message flow—Sending

The process of sending a message is pretty straightforward. Once a user has clicked the send

button present in the confirmation screen, the message will be sent only if the two following

conditions are satisfied:

• There are connected devices, but if that is not the case, the message will be placed in a

queue (“MESSAGE_QUEUE”) until a new device is connected.

• The device has an up-to-date location, but if that is not the case, the message will be

placed in a queue (“MESSAGE_QUEUE_LOCATION”) until the GPS receives a new location and

there are connected peers.

To each message that is about the be sent, there is a header attached to it. This information, a

simple string, allows the distinction between all types of data we are sending. This was required

because we often send payloads as bytes. To differentiate a new message to a message update, for

example, this header was required. They are saved in the constant file to ensure a smooth

implementation.

String[] content = new String[]{HEADER_MESSAGE, message.toString()};
NEARBY_MANAGEMENT.sendDataAsByteListRecipient(sendTo, gson.toJson(content));

Receiving

64

35. Illustration: Message flow—Receiving

The receiving procedure seems more complicated since the application needs to control more

conditions to process a message. We designed the reception of the payload this way to make the

addition of a new type of data easier because everything is modular. If we receive a message, the

following conditions will be controlled:

• The type of payload: test of the type of payload is received. It can be a BYTE, a FILE or a

STREAM. In the case of a message, the type is a BYTE.

• The type of header: as explained above, we use headers to differentiate BYTE payloads. The

header for a message is “message”.

• The type of status: once we have received a message, we will test what are the actions to

do. According to its status, which can either be “new”, “delete”, or “upgrade”, it will be

redirected to the corresponding method.

Propagation

The messages need to be shared among all the devices nearby. If a device disconnects from the

network and connects back later, all new messages sent, in the meantime, will be transmitted. To

ensure that a device does not receive information twice, we store in every message the list of the

devices which received it; the device ID is used as a unique identifier.

65

36. Illustration: Message flow — Propagation

As soon as a peer connected, the device already connected will check if it already received the

information. The message from the “MESSAGE_RECEIVED”, “MESSAGE_QUEUE”, and

“MESSAGE_SENT” will be tested.

5.8. Endpoint Object

The endpoint is used to store information about the peers we connect to. It contains two fields,

both save a different identifier.

• ID: this Google Nearby generates this ID at the connection, which is a four-letter string.

• Name: the application ID of the device; it generated during the first installation of the

application. This identifier is a standard UUID.

We created this object because the “endpointID” generated by Google Nearby is not sufficient

to identify a device. At each connection, a new ID will be created making the identification of a

particular device impossible. We added therefore the UUID of the device since it does not change

unless the user deletes all the data and caches of the application.

66

6. Details of the Implementation

6.1. Application Back End

6.1.1. Dynamic Expiration Date

User interface Addition

To ensure the information freshness, we decided to create a dynamic expiration date where

each message has a time limit. Once this limit has been reached, the message will automatically be

placed in a separated list where user can retrieve them. To avoid message deletion, nearby users

should check it. Two buttons are present on the bottom of the message details view as shown below.

A progress bar has also been added to the message list to see more clearly the time left for

every message. This progress bar will reduce until the message has reached its time limit. The

details of the display update are explained in the chapter 6.1.8 – Display Update (p. 73). The

following screenshot shows how this progress bar is displayed to users.

Once the time limit has been reached, the message is placed in the deprecated list. All those

messages are listed in the third tab present on the home screen. When clicking any of the messages

present in this list the following dialog will ask the user if he wants to retrieve it.

67

38. Illustration: Progress bar in message list

37. Illustration: Dynamic expiration date implementation

If the user wants to retrieve the message, the standard message creation screen is open with

all the fields filled with the information of the message. The user can then edit some text and send

it back to every connected peer.

Back End of the Dynamic Expiration Date

We created a variable in the constant file that represents the expiration time, which is

expressed in milliseconds and is used when the message is created. At the creation, we get the

current timestamp and we add the delay defined in the constants. Once it is done, we save both of

these values.

long timeMillis = System.currentTimeMillis();
long dateExpiration = timeMillis + MESSAGE_EXPIRATION_DELAY;

dateCreatedMillis = String.valueOf(timeMillis);
dateExpirationMillis = String.valueOf(dateExpiration);

Every time the display updates, we recalculate the remaining time for the messages. This

progress, expressed in percentage, is decreasing until zero is reached. After research, we

established that the buttons have the following effects on the remaining time:

• When a message is confirmed ad up to date, the current expiration time is extended by the

delay defined in the constant file.

• When the message is not up to date, the remaining time, this is the expiration time minus

the current time, is divided by two.

Those methods are implemented in the message class to make it readily available.

68

39. Illustration: Restore deprecated messages

6.1.2. Floating Content

To avoid information overflow, we decided to implement the concept of floating content in the

application. This means that users can only see messages sent by devices that are near them. This

distance is configurable in the settings. Details about settings are in chapter 6.1.7 – Application

Settings (p. 73).

User Interface Addition

Not many additions were required to implement floating contents. We simply added a circle

around the user’s position. This provides a quick and easy overview of messages in the respective

area of the user. The following pictures were taken in the application and at the same location yet

with different radius settings.

69

40. Illustration: Floating
content configured at 50
meters

41. Illustration: Illustration:
Floating content configured at 400
meters

42. Illustration: Detail of a message in the map

Each marker presented on the map has a custom-made icon; it represents the category of the

message. On click, a panel containing the most essential information related to the message

appears. The button “More Info” redirects the user to the detail page of the message.

Back End Modifications

We created a class called “LocationManagement” that handles all the methods related to the

floating content. Android integrates a method which calculates the distance between two points.

Since we store the message and user location, it is easy for us to determine if a message is inside

the area or not. When the display is updated, all the distances are recalculated.

Since the display updates involve several aspects of the application, they are detailed in the

chapter 6.1.8 – Display Update (p. 73).

6.1.3. Avoid Duplicate Message Creation

We added a verification step when sending a message to avoid the creation of duplicate

information. During this step, all the messages contained in the “MESSAGE_RECEIVE”,

“MESSAGE_SENT” and “MESSAGE_QUEUE” will be tested.

To be considered as duplicate, two conditions must be met. The message must be closer than a

minimal distance configured in the constant file, by default 10 meters, and have the same category.

If this is the case, a popup will alert the user that his or her message might already exist.

The user has the choice to ignore the dialog by clicking “This is not duplicate”, which will send

the message, or delete the message and go back to the list of messages.

6.1.4. Detect Duplicate Messages at Reception

The lack of a central unit that manages the network means that there is no way to know if a

device has already received a message. We created therefore the “mMessageSentTo” ArrayList in

the Message class. The list keeps track of all the application ID the message was sent to.

70

43. Illustration: Potential duplicate message dialog

This is why at each message reception, we check if the “MESSAGES_RECEIVED” list already

contains the message. It will also check that the message was not created by the device, because

created messages are saved in the “MESSAGE_CREATED” list.

private static void handleNewMessages(Message m){

 boolean flagAlreadyReceived = true;

 if(!MESSAGES_RECEIVED.contains(m) && !
m.getCreatorAppId().equals(VALUE_PREF_APPID)){

flagAlreadyReceived = false;

 m.getMessageSentTo().add(VALUE_PREF_APPID);
 }

 if(!flagAlreadyReceived){
 FRAG_MESSAGE_LIST.updateDisplay(m);
 }
}

If the message has not been received, the application ID of the device is added to the message,

and the display is updated.

6.1.5. Message Propagation

The transmission of messages to a freshly connected peer is mandatory. Without this system,

only peers connected at the moment of the broadcast would receive the message and any peer

connecting after that would not see them.

The procedure requires the creation of a list of messages that the new peer did not receive.

The recipient list “mMessageSentTo” is checked for each message; if it does not contain the new

device’s application ID, the message will be transmitted. Otherwise it will be ignored. All the

messages of the “MESSAGE_RECEIVED”, “MESSAGE_QUEUE”, and “MESSAGE_SENT” are checked.

Once the list is completed, we order the messages by distance so that the nearest messages will be

sent first. This ensures that, even if the connection time is short, closest messages will be

exchanged.

public static void sendAllMessagesNewPeer(Endpoint endpoint){

 ArrayList<Message> listMessage = new ArrayList<>();

 listMessage.addAll(checkRecipientMessages(MESSAGES_RECEIVED, endpoint));
 listMessage.addAll(checkRecipientMessages(MESSAGE_QUEUE, endpoint));
 listMessage.addAll(checkRecipientMessages(MESSAGE_SENT, endpoint));

71

 listMessage.addAll(MESSAGE_QUEUE_DELETED);

 MessageManagement.OrderByDistance(listMessage);

 for (Message m : listMessage){
 if(MESSAGE_QUEUE.contains(m)){

 MESSAGE_QUEUE.remove(m);
 FRAG_MESSAGES_SENT.updateDisplay(m);
 }
 if(MESSAGE_QUEUE_DELETED.contains(m)){

 MESSAGE_QUEUE_DELETED.remove(m);
 }
 sendMessageUniqueRecipient(endpoint.getId(), m);
 }
}

6.1.6. Shared Preferences Message Usage

As explained before, we decided to use shared preferences to permanently store messages. The

procedure used to store the messages is the same as for any other application. Since we are storing

ArrayList of messages, we used the GSON library, developed by Google, to translate the list into a

format that the preference can write. The following snippet shows the operations required to save

one message list.

public static void saveMessages(Activity activity){

SharedPreferences prefsReceived =
activity.getSharedPreferences(PREF_NAME_MESSAGE_RECEIVED,

Context.MODE_PRIVATE);

 Gson gson = new Gson();

 String json = gson.toJson(MESSAGES_RECEIVED);
 prefsReceived.edit().putString(PREF_KEY_MESSAGE_RECEIVED, json).apply();
}

To retrieve messages from the preferences file, we created the following code. The GSON

library object is used to translate the string saved back to an ArrayList of messages. After the

translation, we control that the list of messages is not empty and we save the retrieved messages in

the corresponding constant.

public static void retrieveMessages(Activity activity){
 SharedPreferences prefsReceived =

activity.getSharedPreferences(PREF_NAME_MESSAGE_RECEIVED,
Context.MODE_PRIVATE);

 Gson gson = new Gson();

72

 String json = prefsReceived.getString(PREF_KEY_MESSAGE_RECEIVED, "");
 Type typeReceived = new TypeToken<ArrayList<Message>>(){}.getType();

 ArrayList<Message> tempReceived = gson.fromJson(json, typeReceived);

 if(tempReceived != null && tempReceived.size() > 0) {
 MESSAGES_RECEIVED.addAll(tempReceived);
 }
}

6.1.7. Application Settings

Two variables are saved to the settings: the username and the floating content radius. We did

not create settings that might change some functionalities of the application or reduce network

performances.

The floating content radius has five possible distances, 50, 100, 200, 300 and 400 meters. We

limited the distance to 400 meters as more length was not necessary in our opinion. Moreover, we

did not want to let users have an unlimited distance too, as it makes floating content useless.

6.1.8. Display Update

As explained before, display updates change several elements of the application. During those

updates, the following components are modified:

• The distance between the device and all messages are recalculated.

• All displayed messages are deleted, the messages that are in the range of the zone radius

and that did not expire are added back in the list.

• All messages with progress lower than zero are deleted placed in the deprecated list.

Updates can occur at two different times; when a new location is received or when the user

pulls the message list up.

73

44. Illustration: Radius settings

6.2. Application User Experience

6.2.1. Error Handling

The confirmation screen was added to avoid some errors the user might make. The pictures

below show how the message is handled.

First, the user enters the title, category and the description. After that, the user press the send

button and the summary of what was entered is displayed. If an error is present, the user can come

back and correct it.

6.2.2. Recipient Count

Reassuring victims is important; this can support them in stressful situations. To count the

number of persons that received a message, we need to count the unique entries contained in the

“mMessageSentTo” list. This information is displayed in the message details.

74

45. Illustration: Pull to refresh

46. Illustration: Message creation 47. Illustration: Message confirmation

The method used to count the number of recipients is in the “Message” class.

public int retrieveMessageRecipient(){

 ArrayList<String> uniqueValues = new ArrayList<>();

 for (String s : mMessageSentTo){
 if(!uniqueValues.contains(s) && !s.equals(creatorAppId)){
 uniqueValues.add(s);
 }
 }

 return uniqueValues.size();
}

75

48. Illustration: Recipient count in message details

6.3. Application User Interface

In this chapter, we will discuss the changes operated between the initial mock-ups and the final

application implementation and the reasons for these changes. We will only cover the elements of

the user interface that were modified or added.

6.3.1. Bottom Navigation

The bottom navigation slightly changed as the setting option was removed from it. We made

this choice facilitate the use of the application. Indeed, having only the message list and the map

makes navigation more natural. On top of that, default settings do not need to be changed.

Therefore, we did not want to make them as accessible as there were in the initial mock-up.

To access the settings, users must click the top button present in the message list and map

view.

76

50. Illustration: Final bottom navigation menu

51. Illustration: New settings menu location

49. Illustration: Initial bottom navigation menu

6.3.2. Message List

The message list is split in three separated tabs all containing a specific type of message:

• Received, all the message the device received.

• Sent, all the messages sent from the device

• Deprecated, all the messages that reached the expiration date are placed there, users can

then retrieve messages from this place and send them back.

The message list had some change because of the way messages are handled. In the beginning,

we imagined a scoring mechanic where users would vote a message up or down. Since the dynamic

expiration date was chosen, the user interface needed modification to accommodate with this

implementation.

Apart from some position change for elements present in the message list, the most significant

change is the replacement of the status icon with a progress bar. The latter representing the time

remaining before the message deletion.

77

54. Illustration: New message in the message list

53. Illustration: Initial message in the message list

52. Illustration: Tabs present in the home screen

6.3.3. Application Tutorial

A tutorial at the first application start was not planned at the beginning of the development

and was only added to the product backlog later on. This is why we did not create mock ups of it.

This tutorial provides some basic explanation on how the application works. In the meantime,

we ask for the location permission required by Google nearby and explain why it is mandatory. We

also prompt the user to choose a username.

78

56. Illustration: Asking for username55. Illustration: Requesting mandatory
permission

7. Discussion
During the development, we made some choices that were justified at the time, but that might

have to be improved. In the following chapter, we will discuss those points and detail how they can

be improved in our opinion.

We will also take some time to analyze the implementation of Google Nearby and how the

process to integrate it into the application went.

Lastly, we will discuss the future improvement of the application. There are features we

planned, but time was too short to implement them or new improvement that are not in the

product backlog.

7.1. Application Back End

We spent more time on the application back end than on the front since we wanted to make

our application as stable as possible. This time was required because we created a basic routing

protocol and we wanted to cover most of the potential scenarios. Some of the planned features

were not developed because of time restriction; we will discuss them in the chapter 7.4 – Future

Improvements (p. 85).

The reflection made before the implementation of the application highlights some of the

significant aspects to handle when implementing ad hoc networks. Those characteristics are

fundamental and they need to be managed in the most feasible way since the whole application

relies on those features.

We believe that the back end we developed is sufficient enough for our application since we

covered most of the scenarios where problems could arise.

In the following part, we will analyze the crucial parts of the application back end, and we will

evaluate their success or limitation. We will not discuss Google Nearby in this chapter since we have

a section dedicated to this technology below

7.1.1. Dynamic Expiration Date

Avoiding outdated and possibly wrong information is mandatory. We therefore developed a

simple system of peer validation: when a user confirms a message as valid, we add the delay set in

the constant file to the expiration time. On the contrary, if a user judges a message as invalid, we

divide the remaining time by two. This is a simple implementation that can be vastly improved.

79

Possible Improvements

There are several aspects of the dynamic expiration date that can be improved. Firstly, we do

not think that the method of the dynamic expiration date explained above is sufficient. A better

approach would be to count both valid and invalid votes, log the time of the feedback and establish

a strategy of delay increase or reduction.

Another problem with our implementation is voting limitations. No system prevents a user to

validate a message more than once. Since we rely on people’s honesty, we did not think that was an

issue during the implementation. However, on second thought, we concluded that this is an

important feature.

Lastly, the delay we used during our testing was only two minutes; we were not able to find

what the correct timing would be in a real-world application. We left this delay for the deployment

of the application in the Google Play Store.

7.1.2. Duplicate Data and Propagation Handling

Duplication of data must be avoided at all costs and it can occur on two occasions:

• If a user writes an already existing message

• When a new peer connects and receives the messages exchanged in an area

Both of those cases have been handled by the application and it does now provide sufficient

protection in our opinion.

To avoid duplicate data at creation, we control that no message with the same category has

been created near the user. The distance is set in the constant file and cannot be changed in the

application. By default, this distance is 10 meters. This is a straightforward implementation and it

can be improved, more information in the following chapter.

The whole procedure involved when new peers connect is robust and avoids unnecessary

transmission.

80

Possible Improvements

As said before, our duplicate message detection system only relies on distance and category.

We do not think that this is sufficient in an area with more activity. To further improve the

detection, title and description should be checked to control if the message already exists.

7.1.3. Isolated Device

The application must handle cases when a device is not connected to any peer. If that is not

the case, some users might have a frustrating experience, which is something we want to avoid.

Hence, we created several lists of messages regarding this issue. Those lists are the following:

• Message queue, messages waiting until a peer connects to the network to be received.

• Message queue delete: saves all the messages a user wanted to delete, even though no

other device was connected.

Both lists are used as soon as a peer connects. Indeed, the messages contained are transmitted

in the background without any user interaction. These lists are also saved when the application is

closed.

Another message waiting list has been created for scenarios where the application does not

know the device’s location. This list stores messages until the GPS update the device’s position.

Once it is done, all the messages are transmitted with the new location.

Possible Improvements

Not all types of communication are saved in a queue. This is the case, for example, for dynamic

updates. In scenarios where a device is isolated, this is something that should be improved to ensure

that each communication is saved.

7.1.4. Application Distribution and Offline Maps

As discussed during our reflection, we need to handle offline application distribution and maps

download when the Internet is available. However, because of the time limitation, we were not able

to implement any of those features.

We did some research on the best practice to download an offline map and even developed a

small code snippet that converts a GPS location to corresponding tiles used by Google Map. This

code can be found in the “OfflineMapManager” class. However, the code only generates the correct

URL.

81

Regarding the offline application, we did not have enough the time to research the solution for

this problem. We decided that offline map downloading was a priority.

7.1.5. Communication Handling

The system of tests we developed when receiving data is excellent. It provides solid routing

mechanics and allows the addition of a new type of data in a matter of minutes.

We wanted to allow future improvement from the beginning of the development. Therefore,

the “CommunicationManagement” class has been developed this way. By using conditional routing,

it is possible to redirect incoming payloads to the corresponding methods. This is already explained

in the chapter 5.7.2 – Message Flow (p. 63), but the following illustration shows the tests realized

for every incoming payload.

We can see that adding anything new is as simple as adding a condition to any of those tests.

Possible Improvements

We do not think that any improvement can be made concerning this part of the development.

The solution implemented is flexible and can support new data. The way how incoming data is

82

57. Illustration: Payload flow

managed, however, depends on the future development. We only provided a solid conditional

routing mechanic.

Fortunately, the protocol we created can be improved. What we developed is minimal and

might limit the application in an area with more activity. Indeed, we send every message that the

new peer did not receive regardless of their age or category. We only order the message send by the

distance to ensure that the nearest messages are sent first. This might not be sufficient in some

scenarios and ordering the messages by date and distance should be a better solution.

On top of that, we send to the peer every message it did not receive. This can represent many

messages in a scenario where the area covered by the application is several square kilometers large.

A maximal distance should also be set during the propagation process.

7.2. Application Front End

7.2.1. Confirmation Screen

Errors must be avoided at all costs since they provoke time and energy loss. During our

reflection, we decided to implement a confirmation screen before the transmission of a message.

This view summarizes the content of the message allowing users to correct inevitable mistakes.

Possible Improvement

We think that our implementation is a step in the right direction but it might not be enough in

real-world use. The confirmation screen must be present, but a way to update a message would be

a nice addition. Because there is currently no way to provide adjustment to a piece of information,

this feature would be useful to change the number of remaining resources or the status of a victim,

for example.

7.2.2. User Interface

We wanted to develop an application with a layout as simple as possible to avoid confusion and

make the experience as smooth as possible. We decided to move the settings menu from the bottom

navigation menu to the top action bar because it was not a core functionality of the application.

Our goal was to focus on the message exchange system by making less visible everything else.

Possible Improvement

There are, however, some potential improvements in the user interface. We did not conduct a

user survey where they give feedback about on the application. Without that info, it is hard to

improve the application.

83

7.3. Google Nearby

7.3.1. Ease of Implementation

The implementation of Google Nearby was challenging: the fundamental concepts were easy to

understand, but the details of the connection process were more complex. We had to take extra

time at the beginning of the implementation to master the API.

The documentation provided by Google is barely sufficient to truly understand the connection

process and the online examples are not up to date. Since we used the version 2.0 of the API, we

were not able to find any up-to-date examples, most of them use the previous version of the

Connection API which does not support offline peer-to-peer connections or is only experimentation.

Fortunately, Google created a GitHub containing an up-to-date example of the Google Nearby

Connection API.

Once the basic connection process was implemented, everything else was easy to add and

manage, only the beginning took extra time.

7.3.2. Service Quality

As said before, we had some problems implement basic elements. However, the quality of the

service provided by Google Nearby surprised us. The connection process and transfers are fast on

modern devices, and the stability is on point.

7.3.3. Test of Multiple Devices

Since we had access to a limited number of devices, four Motorola G second generation and one

OnePlus 5t, we are not able to ensure the quality of service across all Android devices. However,

Google Nearby is part of the Play Services, and we assume that the compatibility is efficient with

most of the high end to mid-range phones.

7.3.4. Motorola Bug

The application had strange bugs with the Motorola devices we used. Once in a while, the

devices asked to pair one to another like it is the case with classic Bluetooth. This bug is known and

will be corrected in the future update of Google Nearby (StackOverFlow, 2018).

7.3.5. Possible Improvement

Google Nearby works great in our application, exchanges are swift and the whole connection

handling is stable. However, we did not test the battery impact of the API, which would be

interesting. If the application is energy-intensive, some changes are required. Indeed, as mentioned

84

by the response of “Xylthe” (StackOverflow, 2018) the discovery process requires more energy, it

suggests limiting the discovery to small burst.

On top of that, we have no logic of connection. Some intelligent connection management can

be a better implementation. For example, the creation of a small cluster of devices where only one

of the smartphones of the cluster will communicate to another cluster can vastly improve the

performances.

7.4. Future Improvements

7.4.1. Download Map Offline

One of the most important features to add is the possibility to download a map offline. Without

this element, an essential functionality of the application would be missing. As explained in the

chapter 4.1.8 Offline Challenges (p. 47) we developed one small code that can retrieve the URL

required to download the image.

On top of that, sharing maps feature would be great. Users could send the map to other peers

around.

7.4.2. Offline Application Share

We did not have enough time to investigate a proper way to share the application installer to

other devices nearby. This is a crucial feature to add since not everybody will have the application

installed before the disaster.

7.4.3. Instant Messaging Support

One feature we placed in the product backlog was the ability to send instant messages to

nearby devices. We knew that we would not have the time to implement it, but it was essential for

us to add it to the backlog.

The use of instant messaging can help reassure the victims since they will be able to discuss

directly with someone else. This can also improve the organization of resources, for example. We

think that one public chatroom can be enough for a small disaster. However, if many peers are

connected in the same area, the creation of groups might be relevant.

7.4.4. Test With Multiple Devices

85

Since we tested the application with a limited number of devices and peers, it is mandatory to

conduct the testing of the application further. A test with more users can also be a great indicator

of the potential flaws of the communication protocol we developed.

7.4.5. Create Notification

We did not implement any notification for the application; users are not able to know if a new

message is received unless they open the application. Two types of notifications can be

implemented in the application:

• New message notification, each new message will create a notification informing users of

new activity on the network.

• User participation notification, when a user is near a message, a notification could prompt

him to validate the state of the message. This can help improve the overall freshness of the

networks.

86

8. Product Backlog
To help with the development of the application, we established a product backlog containing

all the features that might be implemented. In the end, we created 32 different functionalities, 17

must, nine should, five could and one would.

All those features add up to a total of 127 story points, not all those components have been

developed. The total story points made is 79, the total of story point rejected is 2. The following

table summarizes what is the total of features and story points implemented for each feature

priority.

Feature priority Total features Done Rejected SP total SP Made

Must 17 16 1 58 56

Should 9 5 0 34 12

Could 5 3 0 27 11

Would 1 0 0 8 0

9. Table: Product backlog implemented features summary

8.1. Implementation Feedback

We are satisfied with the current state of the application; it provides a solid and robust

experience for the users. We knew since the beginning that not every user story would be

implemented due to time restriction. Instead of excluding some user stories in the backlog, we

decided to add all the features we think of to show how we imagined the perfect implementation.

Despite the lack of some features, all the user stories prioritized as “must” have been

developed. One was, however, rejected, but this is because of an element’s design. On top of that,

most of the “should” and “could” functionalities have been developed as well.

87

9. Management of the Project
This part will be consecrated to the administrative part of the thesis. We will explain our

planning throughout the project and provide an analysis of potential time differences between the

planned and the executed time. At the end of this chapter, a list of the tools used will be dressed.

9.1. Planning of the Project

We established the following tasks during the creation of the initial planning:

• Specification sheet writing

• Use case definition

• State of the art

• Technology study

• Test of the technologies

• Implementation of the use case

• Thesis writing/updating

• Technical documentation writing/updating

• Report correction

9.1.1. Initial Planning

The initial planning was dressed during the first weeks of the thesis. We did not know what the

use case would be or the different technologies existing.

88

58. Illustration: Initial planning

9.1.2. Intermediate Planning

To adjust the planning, we decided to create an intermediate planning in the middle of the

thesis. We will detail those changes in the next part of this chapter.

9.1.3. Planning Change

Task name Initial planning
(hours)

Intermediate
planning (hours)

Delta
(hours)

Specification sheet 20 17 -3

Use case definition 10 5 -5

Technology study 35 8 -27

State of the art 60 100 +40

Test of the technologies 35 0 -35

Implementation of the use case 120 120 0

Thesis writing/updating 40 60 +20

Technical doc. writing/updating 20 30 +10

Report correction 20 20 0

Total 360 360 0

10. Table: Tasks planning

Some of the tasks were already done during the realization of the intermediate planning, which

is the case for “Specification sheet”, “Use case definition” and “Technology study”. We simply

entered the executed hours of those tasks.

There is a major time difference between the initial and the intermediate planning. The

following tasks have the biggest delta.

89

59. Illustration: Intermediate planning

Technology Study

We overestimated the time required to study technologies during the initial planning. We did

not know at that time that only a few of technologies offered ad hoc functionalities. Indeed, we

needed only 8 hours to study the different technologies.

State of the Art

The time we planned was utterly underestimated. We thought that 60 hours were sufficient,

but we were wrong. We estimated that 40 more hours were required to complete the state of the

art. The following factors can explain this massive time difference:

• We did not know how broad ad hoc networks were. This resulted in many times spent

studying the different fields and possible applications of those networks although they are

not related to the implemented application.

• On top of that, there are many theoretical papers exist, they are excellent but aimed at a

formed audience. Moreover, there is not as much documentation for the beginners. This lack

of easy-to-assimilate documentation resulted in time loss at the beginning of the work.

• Another reason is the time we took to define a use case. Because we did not know what the

topic of the application was, we researched solutions in fields that were not related to the

final implementation.

• We were in the army for two weeks at the beginning of the thesis. This disconnected us

from the work although we had spent some time during these two weeks to work on the

state of the art. This disconnection resulted in a loss of hours, required to resume the work

where it was left.

Test of the Technologies

When realizing the intermediate planning, we already knew what technology we were going to

use; making the test of other technologies irrelevant. We decided therefore to delete this task.

Thesis Writing/Updating

We decided to increase the time required to write the thesis because of the time needed to

complete the state of the art. We did not want to run out of time at the end of the work; this is why

we increased it by 20 hours.

90

9.1.4. Executed Hours

Task name Intermediate
planned hours Executed hours Delta

hours

Specification sheet 17 17 0

Use case definition 5 5 0

Technology study 8 8 0

State of the art 100 111 +11

Test of the technologies 0 0 0

Implementation of the use case 120 122 +2

Thesis writing/updating 60 56 -4

Technical doc. writing/updating 30 8 -22

Report correction 20 22 +2

Total 360 349 -11

The actual time spent on each task is very close to the planned hours from the intermediate

planning. We are quite satisfied with the correctness of the intermediate planning. However, some

points need to be mentioned.

• The state of the art took longer than planned. Initially, we planned 60 hours and nearly the

double was required, which is a vast difference. We completely underestimated the time

required for this task.

• The technical report did not take as much time as planned. We saved a few hours because

some of the text that is found in the technical documentation is already in this document.

In the end, we spent 11 hours less than planned. This is the cause of several factors. Indeed,

two weeks of unexpected military service is the principal cause. Since we were not able to work as

much as planned during those two weeks, we could only compensate during the weekend. We

worked only 11 hours instead of the 50 planned during this time.

Since we did not have to test different technologies, we saw ourselves saving a certain number

of hours. We reserved, in the initial planning, 35 hours for those tests.

9.2. Tools Used

9.2.1. Technical Tools

Development tools used are the standard in the industry, the code was written on Android

Studio and the integrated Android emulator was used when needed. All the code was hosted on

GitHub on two separate branches. The master was used to push improvement once they were

91

sufficient enough and all the intermediate changes were pushed on a dev branch. This is not

necessarily justified as only one person was developing it, but this is the way the developer usually

works.

Marvel app was used to create the different mock-ups presented before the implementation of

the application. The developer chose this website as an Android application allows the interaction

with the created mock-ups and, for that reason, it makes it easier to evaluate them.

All the illustrations found in these documents were made on a website called draw.io. The

service is totally free and the result can be saved in either PNG or XML files. The XML files contain

all the information related to the illustrations, meaning that they can be re-uploaded on the

website.

9.2.2. Administrative Tools

All the documentation, the backlog and the logbook were written on the LibreOffice suite.

LibreOffice Writer was used as a word processor and LibreOffice Calc for spreadsheets. These

programs were used because we worded on Linux and they are installed by default on our

distribution. We will provide PDF files for every document we created, however, if modifications are

made, we recommend using those program to avoid layout problems.

The planning was created on Teamgantt, the website was used only to create them, we did not

use other features provided by the website. Our goal was to make a visually appealing planning, not

to track precisely the tasks we had to do and their advancement.

Finally, we used a task manager called TickTick that helped us to track remaining tasks.

92

CONCLUSION

The purpose of the developed application in this work was to provide a fast, effective and

reliable mean of communication to people affected by a disaster. However, this application should

not rely on existing network infrastructure such as the cellular network or the Internet, which is

often destroyed during these events.

Following an initial phase of analysis of the various types of ad hoc networks, their implications

and limitations, we focused our research on technologies embedded on smartphones. This allowed

us to discover Google Nearby Connection API which is the technology we decided to use.

This choice, although difficult to implement in the first time, proved its worth throughout the

implementation. As a result of our development, we can confidently state that Google Nearby can

be used in a crisis such as an earthquake. The technology has proven its robustness and reliability

during our tests and in the implementation.

However, the work provided cannot be considered ready for production. Many points remain to

be clarified to make this application ready for the public. This is particularly true for tests that can

be carried out on a larger scale and with a greater diversity of equipment. This will allow to know

the possible limits of Google Nearby which were not discovered during this development.

Besides, some features essential to the proper functioning of the application have not been

implemented due to lack of time. This is notably the case of downloading offline maps and sharing

the application with close users who would not have downloaded the tool before the disaster.

Despite these improvements, we have demonstrated that ad hoc networks can be used during

disasters to provide the necessary support to victims left unprepared for the arrival of relief.

93

PERSONAL EXPERIENCE FEEDBACK

I enjoyed working on this project which allowed me to go deeper into a subject as I had never

done before. The research phase, although going beyond the planned time, pleased me because I

was able to deepen my knowledge of specific subjects that I did not know at all. I was able to

choose Google Nearby with confidence because I could prove that the other technologies were not

up to the task.

I also really appreciate the Android development I learned during my studies at the HES. Being

able to make an Android application for a bachelor’s degree made me realize that I wanted to work

in this sector in the future.

Moreover, I have been using Linux for about a year. I challenged myself at the beginning of the

project to only use this system exclusively during all the work, and it was successful. In addition to

everything I learned about ad hoc networks and Android development this work allowed me to get

acquainted with that I did not know such as LibreOffice or Gimp.

It is, therefore, an incredibly enriching experience that I lived through this bachelor and I am

delighted with the work done.

94

REFERENCES

Amazon (n.d.). goTenna Mesh SMS & GPS Smartphone Booster Device (Blue/Green) goTenna Mesh SMS & GPS
Smartphone Booster Device (Blue/Green). Retrieved June 13, 2018, from
https://www.amazon.com/goTenna-Phone-Through-Others-Extend/product-reviews/B0721B8M3J/
ref=cm_cr_arp_d_hist_3?
ie=UTF8&filterByStar=three_star&reviewerType=all_reviews&pageNumber=1#reviews-filter-bar

Android Developers. (2017, May 19). How to Enable Contextual App Experiences (Google I/O '17) [Video file].
Retrieved July 28, 2018, from https://www.youtube.com/watch?v=1a0wII96cpE

Android Developers. (2018). android.net.wifi.p2p. Retrieved June 23, 2018, from
https://developer.android.com/reference/android/net/wifi/p2p/package-summary

Anwer Shahid, A. S., & Guy Chris, G. C. (2014). A Survey of VANET Technologie (ISSN 2079 - 8407). Retrieved
from http://www.cisjournal.org/journalofcomputing/archive/vol5no9/vol5no9_1.pdf

Apple Developers. (2018). MultipeerConnectivity. Retrieved June 26, 2018, from https://developer.apple.com/
documentation/multipeerconnectivity

Arthur Charles, A. C. (2013, June 4). Turkish protesters using encryption software to evade censors. The
Guardian. Retrieved from https://www.theguardian.com/technology/2013/jun/04/turkish-protestors-
encryption-software-evade-censors

Barbaresso Jim, B. J., Cordahi Gustave, C. G., Garcia Dominie, G. D., Hill Christopher, H. C., Wrigh Karissa, W.
K., & Jendzejec Alex, J. A. (2014). ITS 2015 –2019 STRATEGIC PLAN (FHWA-JPO-14-145). Retrieved
from https://www.its.dot.gov/strategicplan.pdf

Bluair. (n.d.). Bluetooth Range. Retrieved May 29, 2018, from http://www.bluair.pl/bluetooth-range

Bluetooth SIG. (2016). Bluetooth 5 Go Faster. Go Further.. Retrieved May 29, 2018, from
https://www.bluetooth.com/bluetooth-technology/bluetooth5/bluetooth5-paper

Cambridge Dictonnary. (n.d.). ad hoc. Retrieved June 3, 2018, from
https://dictionary.cambridge.org/dictionary/english/ad-hoc

Choosing a transport protocol. (2008). Retrieved May 28, 2018, from
https://people.csail.mit.edu/albert/bluez-intro/x95.html#rfcomm-and-tcp

Cisco. (2017). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White
Paper (1454457600805266). Retrieved from
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html

Cohen Noam, C. N. (2014, October 5). Hong Kong Protests Propel FireChat Phone-to-Phone App. The New York
Times. Retrieved from https://www.nytimes.com/2014/10/06/technology/hong-kong-protests-propel-
a-phone-to-phone-app-.html

Collotta Mario, C. M., Pau Giovanni, P. G., Talty Timothy, T. T., & Tonguz Ozan K., T. O. K. (n.d.). Bluetooth 5: a
concrete step forward towards the IoT. Retrieved from https://arxiv.org/pdf/1711.00257.pdf

Deepshikha Bhatia, D. B. (2016). A Comparative Analysis of Proactive, Reactive and Hybrid Routing Protocols
over open Source Network Simulator in Mobile Ad Hoc Network. Retrieved from
https://www.ripublication.com/ijaer16/ijaerv11n6_22.pdf

European Commission. (n.d.). Intelligent transport systems. Retrieved June 7, 2018, from
https://ec.europa.eu/transport/themes/its_en

Google Developers. (2018). Nearby. Retrieved June 23, 2018, from https://developers.google.com/nearby/

Google Developers. (2018). Nearby Connection API Overview. Retrieved June 23, 2018, from
https://developers.google.com/nearby/connections/overview

95

Google Developers. (2018). Nearby Message API Overview. Retrieved June 23, 2018, from
https://developers.google.com/nearby/messages/overview

Google Developers. (2018). Nearby Message API Publish and Subscribe. Retrieved June 23, 2018, from
https://developers.google.com/nearby/messages/android/pub-sub

Google Developers. (2018). Nearby Connection API Strategies. Retrieved June 23, 2018, from
https://developers.google.com/nearby/connections/strategies

GoTenna. (n.d.). goTenna. Retrieved June 8, 2018, from https://www.gotenna.com/

Hern Alex, H. A. (2014, June 24). Firechat updates as 40,000 Iraqis download 'mesh' chat app in censored
Baghdad. The Guardian. Retrieved from
https://www.theguardian.com/technology/2014/jun/24/firechat-updates-as-40000-iraqis-download-
mesh-chat-app-to-get-online-in-censored-baghdad

Holley Peter, H. P. (2017, November 7). Hurricane Irma just made a digital walkie-talkie the No. 1 app online.
The Washington Post. Retrieved from
https://www.washingtonpost.com/news/innovations/wp/2017/09/06/hurricane-irma-just-made-a-
digital-walkie-talkie-the-no-1-app-online/?noredirect=on&utm_term=.3e393acaa59c

Milian Mark, M. M. (2014, December 30). Russians Are Organizing Against Putin Using FireChat Messaging App.
Bloomberg. Retrieved from https://www.bloomberg.com/news/2014-12-30/russians-are-organizing-
against-putin-using-firechat-messaging-app.html

Moltchanov Dimitri, M. D. (n.d.). Routing protocols for ad hoc networks. Retrieved July 28, 2018, from
http://www.cs.tut.fi/courses/TLT-2756/lect05.pdf

Nordic Semiconductor. (2016, December 22). Nordic Semiconductor – Bluetooth 5 Long Range Test with
nRF52840 [Video file]. Retrieved May 22, 2018, from https://www.youtube.com/watch?
v=w4PbxVwg83M

Nordic Semiconductor. (2018). nRF52840 Product Specification. Retrieved from
http://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.0.pdf

Nordrum Amy, N. A., Clark Kristen, C. K., & IEEE Spectrum Staff. (2017, January 27). Everything You Need to
Know About 5G. Retrieved June 27, 2018, from
https://spectrum.ieee.org/video/telecom/wireless/everything-you-need-to-know-about-5g

Open Garden. (2016, June). Metro Manila Development Authority - Shake Drill, Philippines. Retrieved June 26,
2018, from https://www.opengarden.com/case-studies.html?lang=en

Open Garden. (2018). FireChat. Retrieved June 16, 2018, from https://www.opengarden.com/firechat.html

Open Garden. (2018). MeshKit SDK. Retrieved June 25, 2018, from https://www.opengarden.com/meshkit.html

Poole Ian, P. I. (n.d.). Bluetooth Host - L2CAP, SDP & GAP. Retrieved May 29, 2018, from https://www.radio-
electronics.com/info/wireless/bluetooth/l2cap-sdp-gap-host.php

Qorvo. (2017, November 7). Getting to 5G: Comparing 4G and 5G System Requirements. Retrieved June 27,
2018, from https://www.qorvo.com/design-hub/blog/getting-to-5g-comparing-4g-and-5g-system-
requirements

Ramblings Eric, R. E. (2017, December 7). GoTenna Mesh Hands-On review [Blog post]. Retrieved June 12, 2018,
from http://www.jenericramblings.com/2017/12/07/gotenna-mesh-hands-on-review/

Rhodes Margaret, R. M. (2014, July 17). A Pocket-Sized Antenna That Lets You Text Even in a Disaster Like Sandy
[Blog post]. Retrieved June 12, 2018, from https://www.wired.com/2014/07/a-brilliant-antennae-
that-lets-you-text-even-during-a-catastrophe-like-sandy/

Rogerson James, R. J. (n.d.). What frequency bands will be used for 5G in the UK? [Blog post]. Retrieved June
27, 2018, from https://5g.co.uk/guides/5g-frequencies-in-the-uk-what-you-need-to-know/

96

Shoemake Matthew, S. M. (2001). Wi-Fi (IEEE 802.11b) and Bluetooth Coexistence Issues and Solutions for the
2.4 GHz ISM Band. Retrieved from http://www.ti.com/pdfs/vf/bband/coexistence.pdf

Sims Gary, S. G. (2017, May 26). Why you won’t be using Bluetooth 5 on your Galaxy S8 just yet – Gary explains
[Blog post]. Retrieved June 26, 2018, from https://www.androidauthority.com/bluetooth-5-samsung-
galaxy-s8-774560/

Sommerhoff Peter, S. P. (2018, January 30). Kotlin vs. Java: 9 Benefits of Kotlin for Your Business [Blog post].
Retrieved July 29, 2018, from https://business.udemy.com/blog/kotlin-vs-java-9-benefits-of-kotlin-
for-your-business/

StackOverflow. (2018, July 4). Multi peer connection using Google Nearby Connection [Forum post]. Retrieved
July 27, 2018, from https://stackoverflow.com/questions/51177985/multi-peer-connection-using-
google-nearby-connection

Swain Daniel, S. D. (2017). Nearby Chat - Beta [Mobile App]. Retrieved June 16, 2018, from
https://play.google.com/store/apps/details?id=com.danielcswain.nearbychat

Tehrani Mohsen Nader, T. M. N., Uysa Murat, U. M., & Yanikomeroglu Halim, Y. H. (2014, May). Device-to-Device
Communication in 5G Cellular Networks: Challenges, Solutions, and Future Directions. IEEE
Communications Magazine, -(5/14), 86-92. Retrieved from
http://sce.carleton.ca/faculty/yanikomeroglu/Pub/ComMag-May2014-mntmuhy.pdf

The Serval Project. (2015, January 7). Serval Mesh. Retrieved July 28, 2018, from
http://developer.servalproject.org/dokuwiki/doku.php?id=content:servalmesh:main_page

The Serval Project. (2017). The Serval Project. Retrieved June 14, 2018, from http://www.servalproject.org/

Wi-Fi Alliance. (n.d.). How far does a Wi-Fi Direct connection travel? Retrieved June 25, 2018, from
https://www.wi-fi.org/knowledge-center/faq/how-far-does-a-wi-fi-direct-connection-travel

Woolley Martin, W. M. (2017, February 13). Exploring Bluetooth 5 - Going the Distance [Blog post]. Retrieved
May 29, 2018, from https://blog.bluetooth.com/exploring-bluetooth-5-going-the-distance

Xavier Thomas, X. T. (2017, August 11). goTenna Mesh Off-Grid Communication Device Review [Blog post].
Retrieved June 13, 2018, from https://morethanjustsurviving.com/gotenna-mesh-off-grid-
communication-device-review/

Zello. (2018). Best free push-to-talk (PTT) app, walkie-talkie PoC, and Wi-Fi voice app - Zello. Retrieved June
16, 2018, from https://zello.com/home/

Zhang Sarah, Z. S. (2014, February 25). The Mobile App Driving Venezuela's Anti-Government Protests [Blog
post]. Retrieved June 16, 2018, from https://gizmodo.com/the-mobile-app-driving-venezuelas-anti-
government-prot-1530045950

97

APPENDICES

APPENDICES I – SPECIFICATION SHEET

Analysis, design, and implementation

of an infrastructure-less situation

awareness application

Specification sheet

Business Information Technology

Bachelor Thesis

Written by: Flavien BONVIN

Professor in charge: Yann BOCCHI

Work submitted the 30.07.2018

98

Table of Contents

CONTEXT...101

1. Work description...102

2. Goals...103

3. Work packages..104

3.1. State of art...104

3.2. Technologies study..104

3.3. Test and choice of technologies...104

3.4. Implementation of the use case..105

3.5. Report writing...105

3.6. Technical report...105

4. Planning...106

4.1. Tasks detail...106

4.2. Holidays..107

4.3. Oral defense...107

99

Illustration Index

1. Illustration: Gantt Diagram..106

LIST OF ABBREVIATIONS

5G 5th generation wireless systems

100

CONTEXT

This work has been done in the context of the bachelor in Business Information Technology at

the his-SO Valais. It was proposed by the professor Yann Bocchi and Gianluca Rizzo. The student

received the task to develop a tool that will explore the potential of opportunistic communication

offered by the Android system.

Theoretical research on ad hoc communications has been conducted in the past but because of

software and hardware limitations, it was difficult to implement them. New technologies like

Google Nearby and Apple iBeacon offers an abstraction layer and can provide a solution to some of

the problems past studies coped.

This thesis has multiple objectives, in the first instance, the student will explain and give an

overview of the solutions offered by the different actors of this sector. Some technologies that

won’t be used during the implementation will be analyzed as well (e.g. Apple iBeacon, 5th

generation wireless systems (5G)).

After this research stage, the student will implement an application capable of exchanging

messages in ad hoc mode. The original idea was to implement a vehicular service such as traffic

warning notification. However, the use case is flexible and can deviate from the initial concept.

At last, the student will detail the actual limitations of the technologies he took during the

implementation. On top of that he will provide a recommendation guide that could help future

development of opportunistic communications. Those guidelines will provide advice on which

technology to choose depending on the needs of the project.

101

1. Work Description
The world of cars is moving towards automation and electricity, new services will be needed to

allow cars to spare fuel, shorten travel time and provide a safer driving experience. To make this

change possible vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications are

mandatory.

Use case of those type of exchanges are multiple, the first that come to mind are related to

road safety. By creating a vehicular network, cars would be able to exchange information about

incoming hazards (bad road conditions, obstacles, accidents, …), create a more secure way to

change line, warn other vehicles in an intersection, …

Because cars would communicate one to another, traffic could be more efficient, smart

intersections (with automatic traffic lights) that adapts to the incoming traffic would become a

reality. Traffic routing in a city allows the reduction of the amount of traffic jam during spike hours.

To avoid unnecessary network exchange, potential delay increase and poor service quality in

rural places all communications will be made ad hoc (from one car to another, no network

infrastructure needed). This involves the creation of a meshed network that allows automobile to

join and left it freely.

The goal of this work isn’t to create the protocol of communication between but rather to see

if Android can handle this type of exchange in a secure and reliable way by implementing a real

world prototype. The expected result is an instrument using opportunistic communication, this tool

will help understand the implication of such type of data transmission both on a system and

architectural level.

102

2. Goals
In this bachelor thesis the objectives are the following:

 Design of a vehicular service, such as traffic warning notification (the application may vary

depending on the input from the student).

 Design and implementation of an android app capable of exchanging messages in ad hoc

mode using various network interfaces, and implementing the given vehicular service.

 Evaluation of the proposed solution, critical review of the main implementation choices

made, and documentation of the main lessons learned.

 Give advice regarding the way to implement an application using Google Nearby (or any

other technologies) depending on the use case.

103

3. Work Packages

3.1 State of Art

Before starting the implementation of the use case or any programming, it is critical to know if

any solution exists on the market. So far theoretical studies have been made, but they have seen

relatively little implementation. The student will take a special care to see what are the obstacles

that holds the development of those communications.

The goal of this phase for the student is to be able to know what are the potential problems he

will encounter during the development of the application.

3.2 Technologies Study

Because the student has to create an Android application, he has to know what are the

different API provided by Google.

The Google I/O occurs from the 8th to the 10th of may. It is usual for Google to announce new

technologies during this event, the student will follow what is unveiled during those days to know if

something new can be used in this thesis.

The technology choice should comply with a set of requirements, speed (bandwidth, latency,

…) and security will be a priority.

At the end of the study, the student will be able to know what technologies can or can’t be

used. All technologies that do not respond to the security and speed criteria can be discarded and

won’t be tested.

3.3 Test and Choice of Technologies

To be able to see what technology suits the project the most, the student will implement an

application that allows him to familiarize himself with the different technologies provided by

Android and Google. The student will implement a latency test to know how fast communications

can be in a controlled environment. On top of the test of latency, a reliability test will be

performed to see if a connection can be maintained between two cars in a highway. The latest test

the student will implement is a connection time test, to see how long it takes for a connection to be

established, the student will also try to see if this time can be reduced with some parameters

change.

104

Once the tests finished, the student will be able to choose a technology and have data to

motivate his choice. A comparison chart will be established by the student to allow a quick overview

of the differences.

3.4 Implementation of the Use Case

Based on the result of the test the student will implement the use case, the subject of the use

case can vary depending on the ideas of the student and professor. The goal of this implementation

is to create a showcase app that can be used as a demonstration of Google Nearby.

3.5 Report Writing

During the whole project, the student will create, update the report he has to handle back.

This document contains all the choice he made, the test results, the problem he had.

Some points (related to the thesis but not used) need to be addressed by the student:

• The state of the 5G network and the possibilities this new technology offers. The legal

position this in Switzerland will be discussed too.

• The technologies proposed by Apple for its ecosystem.

3.6 Technical Report

To allow further exploration of Google Nearby a full technical documentation is needed, this

paper will facilitate an eventual future student to understand what the student did for this bachelor

thesis, to have access to the different accounts that were created for this project, …

105

4. Planning
The following planning has been established by the student. He will document his work and any

eventual change of the scheduling during his e execution of his thesis. All modifications (decrease or

increase of time on a task) will be explained. references

60. Illustration: Gantt Diagram

4.1 Tasks Detail

Name Start End Hours

Specification sheet 30 April 11 May 20h

Use case definition 11 May 16 May 10h

State of the art 11 May 8 June 60h

Technologies study 4 June 15 June 35h

Test of the technologies 11 June 22 June 35h

Implementation of the use case 20 June 27 July 120h

Thesis writing/updating 16 May 27 July 40h

Technical documentation writing/updating 22 June 27 July 20h

Report correction 23 July 27 July 20h

TOTAL 360h

106

4.2 Holidays

The student won’t be able to work on his thesis for 2 weeks. He has to make a military service

from the 22nd of May to the 2nd of June.

Mr. Yann Bocchi has a conference in Bilbao from the 4 th to the 7th of June. He will be on holiday

from the 9th to the 23rd of July. Project delivery.

All papers related to the project (documentation, code, …) will be delivered by the student on

the 30th of July at 12 o’clock.

4.3 Oral Defense

The oral defense of the project will take place the _____________________

Flavien BONVIN

107

APPENDICES II – USE CASE DEFINITION

Analysis, design, and implementation

of an infrastructure-less situation

awareness application

Use Case Definition

Business Information Technology

Bachelor Thesis

Written by: Flavien BONVIN

Professor in charge: Yann BOCCHI

Work submitted the 30.07.2018

108

Table of Contents

INTRODUCTION..110

1. Car Communication Experimentation..110

1.1. Personal Note..110

2. Peer Reviewing...111

2.1. Personal Note..111

3. Disaster assistance..112

3.1. Personal Note..112

4. Messaging App for a Music Festival...113

4.1. Personal Note..113

5. Use Case analysis—Peer reviewing...114

5.1. Similar Solutions—Peergrade..114

5.1.1. How It Works...115

5.1.2. Pricing...116

5.1.3. Mobile Friendly..117

5.1.4. Advantages of Peergrade...117

5.1.5. Flaws of Peergrade..117

5.1.6. Difference With Our Use Case...118

5.2. Similar solution—SpeakUp..118

5.2.1. How It Works...119

5.2.2. Another Service Offered by SpeakUp...120

5.2.3. Pricing of SpeakUp..120

5.2.4. Advantages of SpeakUp...120

5.2.5. Flaws of SpeakUp..120

5.2.6. Difference with our use case..121

REFERENCES...122

109

INTRODUCTION

In this document, we will detail the potential use cases we came up with during our research

phase. The goal of this file is to give several choices of application implementation that might be

chosen.

We analyzed two different use cases during our research phase. However, only one was

selected, and we decided to keep all the research made and place them in this document, chapter 5

—Use Case analysis—Peer reviewing (p. 5)

1. Car Communication Experimentation
This idea is the closest to the one explained in the original document of the thesis. The

objective is to create an experimental tool to see if Android and Google Nearby can provide a safe

and reliable way for vehicles to communicate.

The aim is to test the feasibility of this type of communication and to be able to say whether

the technology used allows the vehicle to exchange information or not. Some aspects are

fundamental (connection time, latency, reliability) and will be extensively tested. A real-world test

is planned.

A mesh network would be dynamically created with the car’s surroundings. One challenge of

the application is the transmission of data, not all the cars have to receive the messages; it would

be useless for a car 2 kilometers ahead to revive information about slowdowns behind it. The data

have to go up the traffic.

1.1 Personal Note

One downside of this use case is the research orientation it has. It might be hard to have

something easy to demonstrate in a salon.

Another problem that might come is the distance of connection. In the technical

documentation range of up to 100 meters (Google Developers, 2017) is given, and this might make

the demonstration harder in a confined space.

110

2. Peer Reviewing
It is always hard to know what other people in a classroom, a conference thought of a

presentation. An application that provides a reliable way to vote for a given set of criteria could

help the orator to know what is right and what needs to be improved in his speech and idea.

The concept relies on the start strategy, the person who creates the room would be the center

of the star. Other people could join a room and see what the criteria are. He could then vote and

send the results to the administrator (the person who created the room).

2.1 Personal Note

This application is inspired by a project we had to do this year, we had to implement something

similar but on a website and it requires a lot of infrastructure (a server, a computer) With a solution

like this one, users can in less than 3 minutes create a simple room where people can join and vote.

Because we would use the Connection API of Google Nearby, we do not need any internet access

(Google Developers, 2017), which is a bonus.

App like this is way easier to demonstrate in a salon than the other use cases.

111

3. Disaster assistance
When there is a disaster (earthquake, tsunami, avalanche or even war), wireless

communication is hard or impossible to maintain. That is why an application that will provide offline

wireless message exchange could be useful.

The application would allow anyone in a given area to send a message with the position of the

sender attached to it (as precise as possible). This message would be available to anyone who has

the app. A list of messages that are in a given range (up to 100 meters [Google Developers, 2017])

will be displayed, helping the rescue team to go where help is needed.

Another feature of the app could be a channel reserved for the rescue team where they could

ask for help, supply or even transport. This would be separated to avoid confusion and help the

organization of the people.

3.1 Personal Note

This use case is by far the most technically challenging, in our opinion. It involves many

technologies that are not included in the Google Nearby API like floating content. This is also the

application with the most “useful” use case.

112

4. Messaging App for a Music Festival
Sometimes it is hard to communicate or find friends at a music festival, some people do not

have internet access with their mobile phone contract, and there is no Wi-Fi network available. An

application using Google Nearby Connection API can solve this.

The possible features in this application are nearly endless, we can think of private groups of

friends, groups related to a group playing at the festival or by music genres. This can become quite

complex, but it is relatively easy to use it as a demo in a salon.

This application involves floating content, this is not supported by default and might need

much work. This means we will have to experiment with floating content to see how it works and

how easy it is to use it. Depending on the results, we can change the scope of the application.

4.1 Personal Note

This application can be quite lovely to implement because it responds to a real-life problem.

On top of that, the HES SO has a booth at the Paléo Festival; it could be an excellent way to

promote the application. One problem is that the Paléo Festival takes place from the 17th to the 22nd

of July, the app might not be ready in time (regarding the planning I established).

This is also a nice research use cases because it will try to implement floating content.

113

5. Use Case analysis—Peer reviewing
It is always hard to know what other people in a classroom, a conference thought of a

presentation. An application that provides a reliable way to vote for a given set of criteria could

help the orator to know what is right and what needs to be improved in his speech and idea.

The application uses a star topology, the person who creates the room would be the center of

the star. Other people could join a room and see what the criteria are. Visitants could then give

feedback and send the results to the administrator (the person who created the room).

5.1 Similar Solutions—Peergrade

61. Illustration: Peergrade logo (Nordicmakers.vc, n.d.)
Peergrade is the fruit of Davide Kofoed Wind; he was teaching Master course in the Technical

University of Denmark and view his lesson attendance grow from 20 to 130 students. He did not

have the time to evaluate and give sufficient feedback to every student. He had to find a way that

will allow students to submit homework or paper and get decent feedback in return.

This was when he started developing Peergrade, a simple tool that allows students to give and

get the feedback they deserve. In six simple steps, it is possible to create a platform where students

can interact and exchange ideas (Peergrade, 2018).

114

62. Illustration: Steps needed to evaluate peers Peergrade (Peergrade, 2018)

5.1.1 How It Works

Peergrade allows teachers to create two types of rooms, “Live Session” this is recommended

for in-class work and “Class” that are more features packed and can be used during a whole

semester. In both cases a Peergrade account is needed, this is not possible to connect and evaluate

other people’s work without an account.

The main difference between “Live Session” and “Class” is the deadline. In “Live Session”

students start giving feedback as soon as files are submitted. Unlike “Live Session”, “Class” are time

planned, a submission and evaluation deadline are set, and the student cannot evaluate before the

beginning of the evaluation phase. Also, the two blocks cannot overlap.

63. Illustration: Type of assignments (Peergrade, 2018)

 A typical evaluation, regardless of the type of room the teacher created, takes place in the

following way:

1. The teacher creates the room, if it chooses a “Live Session”, a code will be generated and is

needed for the student to join the room. If the room is “Class” an invite email is sent to

every participant, the professor added.

2. Criteria can be set in a menu called “Feedback Rubric”, multiple choices of answers are

available. “Text” allows students to write some words about a given question. “Scale” give

the possibilities to create multiple-choice questions. Finally “Yes/No” is a binary question,

it can either be true or false, completed or not.

3. Once the criteria are defined, the teacher will, if he created a “Class” define a deadline for

submissions and another for the evaluation.

4. Now that the room is entirely created and customized to the need of the professor, students

will be able to access it and submit their work. They can deposit a file, give an external

URL, send a Google Drive file or have a text area where they can write.

5. Once the evaluation phase is reached, students can evaluate other student work. They have

to fill the criteria defined by the teacher in the “Feedback rubric”.

115

6. At this point the student can see the feedback established by his peers, before a summary

of all the criteria, it has to give a “Feedback critic”. This section allows the student to give

a critic the feedback they received; the evaluator will receive the critic. If someone is

biased and give bad feedback, the teacher can be notified.

7. Finally, the student can see a summary of all the feedback he received. On top of that, he

can see each feedback. Those results are anonymous to avoid conflicts between users.

5.1.2 Pricing

There are three tiers of pricing for Peergrade, one free account that let users get familiar with

the website and see if it suits their need. The free account is valid for one month only. Other

accounts are Basic and Pro. They decided to base the cost of the subscription based on the number

of students that will join the class. For a basic account, 30 students will cost $55, and the same

amount of student will cost $137 for a pro-subscription.

116

64. Illustration: Pricing of Peergrade (Peergrade, 2018)

5.1.3 Mobile Friendly

During our research, we tested the website on both mobile and web browser, and the

experience is the same on both devices. The website is very responsive, and even if some tasks are

more accessible to achieve on a larger screen, like uploading a document to an assignment, it still

works on the mobile.

Peergrade did not develop an Android or iOS application. We do not find it problematic,

because the majority of the work will be done on a computer. However, everything can be done

from the mobile version of the website if the student or teacher do not have access to a computer.

5.1.4 Advantages of Peergrade

There is much area where Peergrade shines. We enjoyed the website that is nice looking and

fast.

• The design of the website is simple yet perfect. All the information are where users can

expect them; there is no hidden settings and features. We were able to create and

customize a “Class” without any help.

• This is quick and easy to set up; the website is well thought. No help was needed to

configure the “Class”. Even the “Feedback Rubric” was easy to understand, we were able to

change the existing question, add new ones.

• Everything works automatically; this is particularly visible with “Live Session” for the

students. As soon as a step is completed, the next one load automatically. Evaluating work is

a breeze, the web page is split in half, one is for the paper to evaluate, and the other is for

the criteria.

5.1.5 Flaws of Peergrade

Peergrade is an excellent website but works perfectly with school work only. Here are the

points that were limiting for the use case we developed.

• An account is required to submit and evaluate other people’s works; this made the first

evaluation longer.

• There are no guest accounts; visitors cannot evaluate other people’s work if they do not

submit a work. This is understandable because it is aimed at students and classrooms, but

an external person who would vote for a school project will not be able to give its feedback.

• The product is excellent but works correctly only with school work. Features are limited as

soon as it is used outside school. Because a work needs to be uploaded, it is hard to

recommend it for evaluating an orator in a conference, for example.

117

5.1.6 Difference With Our Use Case

There are several differences between our use case and Peergrade. Firstly, our application will

not evaluate work or papers but presentations, this means that no document will be uploaded to the

platform and that some people will vote without presenting something, as it is the case in

conferences.

We do not want to make the account creation mandatory; this has two advantages, ease of

access and respect for privacy. Ease of access because anybody can launch the application and vote

for a nearby presentation. Privacy because a user might want to keep his personal information

private.

Everything is centralized with Peergrade; we decided to make our application decentralized by

implementing ad hoc networking. There is multiple motivation to make our application this way,

poor quality or unavailable networks, no need for us to implement a server back end, allow only

people near the presentation to vote.

Lastly, we will not implement a website but an Android application, this is not important, but it

needs to be specified.

5.2 Similar solution—SpeakUp

Developed by the Ecole Polytechnique fédérale de Lausanne (EPFL), SpeakUp is an application

that let the audience share and rate each other’s questions. SpeakUp wants to address the issues

there is with the questions at the end of a presentation. There is either nobody that can remember

or wants to share or a lot of questions and not enough time to answer them all letting people

disappointed.

118

65. Illustration: SpeakUp logo (SpeakUp, 2018)

5.2.1 How It Works

SpeakUp wants to improve interaction in conferences, brainstorming sessions and even

classroom through anonymous comments. Users can create and vote for multiple-choice questions,

ask and vote for a question.

The service is available in any web browser and on both Google Android and Apple iOS making

the service highly available.

We can see in the above illustration a typical question on SpeakUp. The concept of the

application is pretty straightforward, here are the steps it will take to use SpeakUp correctly:

1. Creation of the room by someone in the organization, nothing to set except the name and

two options. “Nickname” that will ask people for a nickname when they connect and “Here

& Now” that will create a room for 24 hours and make it visible by nearby people. We will

detail the “Here & Now” option later on this chapter.

2. Participants can join the room, either by entering a number generated by the website at the

creation or by browsing nearby rooms.

3. As soon as they join, users can ask questions and vote for existing one. If there is a multiple

choice question, they can also vote. If a question is not clear, it is possible to comment on it

to add information.

4. At the end of the presentation, the orator can merely see what questions have the higher

score and answer them.

As shown above, only four steps are needed to use SpeakUp fully. The process is quick and easy

to master. We have two points to clarify concerning the operation of the application:

• “Here & Now” option will create a room that is visible by anybody, no code is needed to join

the room. After 24 hours the room is automatically deleted.

• Only room administrators can create multiple choice questions; they can choose to show the

answer directly or not.

119

66. Illustration: Example of questions on SpeakUp. From the author

5.2.2 Another Service Offered by SpeakUp

If there is no internet connection where SpeakUp is used, the team developed a portable

device called SpeakUpBox that creates a local Wi-Fi network. The device does not need the internet

either the service is hosted on the device making possible to create SpeakUp room anywhere.

5.2.3 Pricing of SpeakUp

Apart from the SpeakUpBox, the service is free. We had to contact the company to know the

price of the device; nothing is indicated on the website. However, they never responded to our

request, we do not know the price of the SpekaUpBox.

5.2.4 Advantages of SpeakUp

Speak up address an interesting issue, and we found no competitors, the main advantages are

the following:

• The service is fast and easy to understand. There are not many settings, and both

administrators and users understand how the application works instantly.

• Commenting on the question is vital to add missing information. This is well implemented.

• The website and the application stick to its functionalities; the design is uncluttered and

well thought.

5.2.5 Flaws of SpeakUp

There is not a lot to criticize about SpeakUp the biggest problem we found is the SpeakUpBox;

they allow anybody in the world in any condition to use the service which is excellent. However, ad

hoc solutions exist and can also run a decentralized version of SpeakUp without the need of the box.

We understand that they did it because ad hoc solutions such as Google Nearby or Apple

MultipeerConnectivity works on smartphones only, their box make the service available for laptops,

computers, and smartphones but it is quite bulky.

120

67. Illustration: SpeakUpBox (SpeakUp, 2018)

5.2.6 Difference with our use case

SpeakUp is an excellent solution, it works great and is fast. The focus is on interaction and

question during a presentation. Our service will not cover those use case but wants to give feedback

to an orator on a set of defined criteria. Because the criteria as manually established, they can

target anything, from the quality of the presentation to the evaluation of the product presented.

We will not implement a website, only an application. This choice is made to have an

application that can work without infrastructure without the need for external hardware as it is the

case with the SpeakUpBox.

121

REFERENCES

Google Developers. (2018). Nearby Message API Overview. Retrieved June 23, 2018, from
https://developers.google.com/nearby/messages/overview

Google Developers. (2018). Nearby Connection API Strategies. Retrieved June 23, 2018, from
https://developers.google.com/nearby/connections/strategies

122

APPENDICES III – PRODUCT BACKLOG

Analysis, design, and implementation

of an infrastructure-less situation

awareness application

Product Backlog

Business Information Technology

Bachelor Thesis

Written by: Flavien BONVIN

Professor in charge: Yann BOCCHI

Work submitted the 30.07.2018

123

1. Product Backlog

N°
Day

Added Role Functionality Goal Acceptance criteria Priority
Story
Point

Done
Done MoSCoW

1 29.06 Dev Prepare the work
environment

Share code across computer GitHub created 10000 1 01.07 Must

2 29.06 Dev Create the message structure Know how messages will be
sent

Know how messages will be sent and
read 9500 2 07.07 Must

3 29.06 Victim
Send a message to nearby
devices Ask for help

Have a view where message can be
sent
Choose a category of message
Have a button to send the message

9000 8 07.07 Must

30 03.07 Both Have an automatically
generated name

To identify the message I
created

The generated name is visible in the
application

8950 1 05.07 Must

31 03.07 Both Change the automatically
generate name

Be able to give my name to
help

There is a button allowing the name
change
The name is kept in the preferences
of the application

8940 2 07.07 Must

4 29.06 Victim Delete a message if it is not
relevant Avoid information overflow

Have a button where the user can
delete a message
Only the creator of a message can
delete it

8900 5 13.07 Must

5 29.06 Helper Send information about
resources

Inform nearby people where
resources are

Have a view where message can be
sent
Choose a category of message
Have a button to send the message

8700 2 07.07 Must

6 29.06 Helper See messages nearby Give help to people in need
See a list of nearby messages
Have the distance to the message
Easily see the message category

8500 5 09.07 Must

8 29.06 Helper Confirm that an information
is still relevant

Maintain up to date
information

Receive a notification when
someone ask for update
Confirm if an information is still
correct or not

7500 3 19.07 Must

124

Have a list of choice of possible
choice

9 29.06 Helper Confirm that information are
not up to date

Avoid wrong information on
the application

Have a button to say that the
information is not up to date
The message is still displayed on
other phones
Other users can confirm that this is
not up to date
Other users see that the message
might be outdated

7000 2 19.07 Must

10 29.06 Helper Filter messages by category Manage the type of
information I see

Have a filter button on top of the
list of message
See the different categories
Message of the correct category
displayed
Have a way to reset the filter

6800 3 Should

11 29.06 Helper Define the radius of the zone Know message for a zone of a
given time

Have a setting or a textview where
distance can be set
Have a button to confirm the
change
Have a toast that confirm the
change

6500 5 18.07 Must

12 29.06 Helper Have a map of the nearby
messages

Easily see where are the
nearby messages

Have a tab with a map
See the map if available 6300 8 16.07 Must

19 29.06 Helper Dynamic expiration time Delete the messages that are
old

Once a message is confirmed wrong
3 to 5 times it is deleted
The message is deleted
automatically but is placed in bin

6200 5 19.07 Could

13 29.06 Helper Different color and icon for
every category

Make easier to see the
different messages

Each category type have a distinct
color
This can also be a different type of
icon instead

6000 2 07.07 Must

14 29.06 Helper Order message by date Know the latest messages
Have a a button to filter message by
date
Filter ascending or descending

5500 3 19.07 Should

15 29.06 Helper Order the message by
distance

Know where are the closest
messages

Have a button to filter message by
distance

5000 3 19.07 Should

125

Filter ascending and descending

16 29.06 Helper Give feedback about
information

Simple confirm if a message is
true or not

Have two buttons in the detail of a
message
One confirm that the information is
correct
One is to say that the information is
not up to date
Information are linked to the
message and other can see

4900 2 19.07 Should

17 29.06 Helper
Download the map offline for
future use

Have the map ready for an
eventual disaster

Have a message asking if the user
wants to download
The map of an area is downloaded

4800 8 Should

18 29.06 Helper Share the map to other users

If the map is not downloaded
on another
Phone, it will be shared by
other users

Have an automatic message that ask
user if he wants
To download a map
The map will be get from nearby
peers

4700 8 Could

20 29.06 Helper
See deleted messages on a
bin

See what are the messages
that has been deleted

Have a way to access the bin
Have a list of all deleted messages
by other users

4500 3 25.07 Could

21 29.06 Helper Retrieve message from the
bin

Get message back if they are
correct

When in bin a button allow to
retrieve the message
A confirmation message ask if it is
sure to retrieve it
Once confirmed it is taken out the
bin

4400 3 25.07 Could

22 02.07 Helper Send the APK of the
application

Other people will access the
application

There is a sharing button in the
setting
Other users will be prompted to
accept the incoming file
Installation of the app start as soon
as the file is received

4300 8 Could

23 02.07 Both Have a tutorial for the first
launch of the app

Understand how the
application works

At the first app launch, tutorial
launch

4200 5 17.07 Must

24 02.07 Both Launch the tutorial again See the tutorial again, if
something is unclear

In the setting there is a button to
allow that
When the button is pressed, the
tutorial play again

4100 2 17.07 Should

126

25 02.07 Both
There is the number of
people that
Received the message

Reassure people in need for
help

There is in the list of message the
number of readers
This number automatically update
itself

4000 3 13.07 Must

26 02.07 Both Not see outdated messages Avoid wrong information on
the application

The outdated messages are
automatically deleted
The exact protocol established is in
documentation

3900 2 19.07 Should

27 02.07 Both
See the creation date of a
message Know if it is recent of not

On the message list there is the
time of creation
This can be the date or the xx times
ago
This is also shown on the map

3800 2 09.07 Must

28 02.07 Both
Update message the user
created

Make modification to an old
message

There is a button to edit messages
The message is updated for
everybody
The way this is handled is detailed
in the documentation

3700 8 Should

29 02.07 Both Have a help on how to use
the app

Make sure that people can
have offline help

A button in either the settings or
main menu will launch help
The help might have text or image,
the better

3600 3 Should

32 3.07 Both Have a chat
Exchange direct message to
other person

A new tab is available on the
application
Incoming messages are displayed

3500 8 Would

7 29.06 Helper Ask for confirmation about a
message

Confirm that an information is
still relevant

Have a button to ask for the
confirmation of a message
See in the message list that need
confirmation

0 2 19.07 Must

Total SP 127

SP done 79

SP rejected 2

127

APPENDICES IV – LOGBOOK

Analysis, design, and implementation

of an infrastructure-less situation

awareness application

Logbook

Business Information Technology

Bachelor Thesis

Written by: Flavien BONVIN

Professor in charge: Yann BOCCHI

Work submitted the 30.07.2018

128

1. Logbook

Week Day Task Detail Hours done Week total Note about the week

Week 1

07.05

Technologies study First researches about the existing technologies 3

Specification sheet Beginning of the writing of the specification sheet 3

Use case definition Wrote in the specification sheet the use case I
thought of 1

08.05
Specification sheet Writing of the specification sheet 2

Technologies study Further research on the technologies 2

09.05

Specification sheet End of the writing of the first draft of the
specification sheet 4

Technologies study Further research on the technologies 2

Meeting 1st meeting with Yann BOCCHI and Gianluca RIZZO 1 18

Week 2

14.05

Specification sheet Correction of the specification sheet, remarks made
during the 2nd meeting 2

State of the art Beginning of the research about the state of the art,
focus on the Android APIs 3

Technologies study At the same time of the state of the art, studying of
the technologies 1

15.05
Specification sheet Correction of the style and errors of the

specification sheet 1

State of the art Research about the state of the art, focus on the
Android APIs 3

16.05
State of the art Research about the Google API, focus on WiFi and

Bluetooth 6

Meeting 2nd meeting with Yann BOCCHI and Gianluca RIZZO 1

17.05 Specification sheet Final correction of the document after last meeting 3

18.05 Specification sheet Final proofreading of the document 2 22

Week 3 27.05
Use case definition Writing of the file 3

Army
State of the art Starting to write the document 1 5

129

Week 4

28.05 State of the art Documentation writing, focus on Google’s Bluetooth
API

2

Army29.05 State of the art Documentation writing, focus on Google’s Bluetooth
API

2

30.05 State of the art Documentation writing, focus on Bluetooth 5G 2 6

Week 5

04.06 State of the art Writing the beginning of the file, chapter one 6

05.06 State of the art Step back of the project and took time to organize
the work, end of part 1

6

06.06
State of the art End of the first part of the state of the art (chapter

1.1 to 1.4)
5

Meeting 3rd meeting with Yann BOCCHI and Gianluca RIZZO 1

07.06 State of the art Correction and rereading of what have been done
Working on other part of the state of the art 4

08.06 State of the art Writing of the routing protocols part 6 28

Week 6

11.06 State of the art Analysis of the existing – Peer reviewing use case 5

12.06 State of the art Analysis of the existing – Peer reviewing use case 3

13.06
State of the art Analysis of the existing – Disaster assistance use case 5

Meeting 4th meeting with Yann BOCCHI and Gianluca RIZZO 1

15.06 State of the art
Correction of document after feedback from Yann
BOCCHI
Analysis of the existing – Disaster assistance use case

3

16.06 State of the art Correction and proofreading of the use case analysis 5 22

Week 7

19.06 State of the art Technology study (update of the Bluetooth part) 3

Exam session20.06 State of the art Proofreading of the bluetooth part
Writing of the WiFi Direct part 3

23.06 State of the art Writing of the existing technologies, end of Google
and of MeshKit 6 12

130

Week 8

25.06

Meeting 5th meeting with Yann BOCCHI and Gianluca RIZZO 1

Administration Converted the transcripts to digital format 2

State of the art Correction of some remarks made by Mr BOCCHI and
RIZZO

5

26.07 State of the art Existing technologies – Apple, End of MeshKit, Start
of Several Project

7

27.06 State of the art Existing technologies – End of Several Project, Start
of 5G

6

28.06 State of the art Existing technologies – End of 5G 5

29.06
State of the art Use case analysis – Improvement of the explanation

of the use case 4

Implementation of the use
case Creation of the backlog 3

30.06 Implementation of the use
case Designing of the mockups 6 39

131

Week 9

02.07

Meeting 6th meeting with Yann BOCCHI and Gianluca RIZZO 1

Implementation is slower than
expected

due to nearby problems.

Lack of documentation about it
Is the cause

After question asked on
Stackoverflow

Everything quicker and works fine

Implementation of the use
case Update of the backlog 3

Administration Creation of the intermediate planning 1

State of the art Correction of some feedback Mr.BOCCHI and RIZZO
gave me

4

03.07 Implementation of the use
case

Beginning of the implementation of the application,
Nearby tests

7

04.07 Implementation of the use
case

Further testing of Google Nearby, problems with the
connection process

8

05.07 Implementation of the use
case

Fixing some Google Nearby problems, further testing 8

06.07 Implementation of the use
case

Design of the application, fixing some google nearby
problems, overall improvement

9

07.07

Administration Updating of the logbook, add intermediate planning
and task hour count

1

Use case definition End of the document, final correction and title
change

1

State of the art Correction of abbreviation, self references and title
change

1

Implementation of the use
case

Change use name, send messages, see nearby
messages

6 50

132

Week 10

09.07

Implementation of the use
case

Display of the message implemented correctly 4

Implementation of the use
case

Save of the message sent, received and to send on
the phone

4

Implementation of the use
case

Save messages when no peers available and send
them automatically when peer

3

Implementation of the use
case

General improvement (string extraction,
commenting, correcting errors)

3

10.07 Implementation of the use
case

Message forwarding when new peers are connected 6

11.07

Implementation of the use
case

Improve message handling, testing of message
transmission (lot of bugfix)

4

Thesis writing / updating Writing of the designing of the application (start of
challenging part)

5

Technical documentation
writing

Start of the technical documentation 2

13.07 Implementation of the use
case

Deletion of message handled, improve UI (add sent
tab)

6

14.07 Thesis writing / updating Writing chapter about use case implementation
reflection

7

15.07 Thesis writing / updating Writing chapter about general implementation 8 52

133

Week 11

16.07

Implementation of the use
case

Display distance for each messages 3

Implementation of the use
case

Add confirmation screen before sending message 2

Implementation of the use
case

Add map and show custom marker 4

17.07

Implementation of the use
case

Add on boarding 4

Implementation of the use
case

Add settings activity 3

18.07

Implementation of the use
case

Add floating content 6

Implementation of the use
case

More on boarding screen 2

19.07

Implementation of the use
case

Add dynamic expiration time 5

Implementation of the use
case

Add about page 2

Implementation of the use
case

Add network status view 3

20.07

Report correction Proofreading of the document 4

Thesis writing / updating Beginning of the details implementation, back end
challenges done 4

Technical documentation
writing Updating of the technical documentation 2

21.07 Thesis writing / updating Writing of the details implementation, user
experience and interface done 7

22.07
Report correction Proofreading of the document 2

Thesis writing / updating Writing of the management part 3 56

134

Week 12

23.07
Thesis writing / updating Writing forewords, abstract, introduction 5

Report correction Proofreading the state of the art and the
specification sheet 3

24.07

Meeting 7th meeting with Yann BOCCHI and Gianluca RIZZO 1

Thesis writing / updating Writing of the product backlog chapter 2

Report correction Merging of the correction made by my sister and
girlfriend 4

25.07 Implementation of the use
case Correction of the feedback made yesterday 6

26.07
Thesis writing / updating Writing of the discussion 4

Report correction Correction of some of the first chapter 2

27.07
Thesis writing / updating End of the discussion, writing of the conclustion 6

Report correction Proofreading of the State of the art 2

28.07
Thesis writing / updating Preparation of the annexes 3

Report correction Proofreading of the thesis 5

29.07

Technical documentation
writing Writing of the technical documentation 4

Implementation of the use
case Commenting and polishing code 2 49

Week 13 30.07 Thesis writing / updating Final preparation of the report 2 2

Total 349

135

APPENDICES V – VANETS TECHNOLOGIES

Analysis, design, and implementation

of an infrastructure-less situation

awareness application

VANETs Technologies

Business Information Technology

Bachelor Thesis

Written by: Flavien BONVIN

Professor in charge: Yann BOCCHI

Work submitted the 30.07.2018

136

W
ir

el
es

s
St

an
da

rd

F
 i
n

G
H

z

D
at

a
Tr

an
sm

is
si

on

R
at

e

M
ax

 S
ig

n
al

C
ov

er
ag

e
≈

Si
gn

al
In

te
rf

er
en

ce

M
ai

n
te

n
an

ce

A
cc

es
si

b
il
it

y

U
pf

ro
n
t

C
os

t

Se
cu

ri
ty

M
ob

il
it

y
su

p
p
ro

t
in

 ≈

km
/h

Su
it

ab
le

 f
or

Sa
fe

ty
A

pp
li
ca

ti
on

Su
it

ab
e

fo
r

N
on

-S
af

et
y

A
p
pl

ic
at

io
n

Cellular
System

Operator
Dependent

≈ 384 Kbps -
129 Mbps

50 km Low Difficult Contention
Based

High High 100-250 No Yes

WiMAX
802.16m 2.3/2.5/3.5

≈ 75 - 300
Mbps 50 km High Difficult

Schedule
based High High 60-250 No Yes

MBWA 802.20 3.5 ≈ 4.5 Mbps 15 km High Easy Schedule
based

High High 100-250 No Yes

Microwave 1-3 ≈ 16 Gbps 30 km High Difficult
Contention

based High Low -- No No

Wi-Fi 802.11a 5.1/5.8 ≈ 54 Mbps 100 m Low Easy Contention
based

High Low 40-120 No No

Wi-Fi 802.11b 2.4 ≈ 11 Mbps 100 m High Easy
Contention

based Moderate Low 40-150 No No

Wi-Fi 802.11g 2.4 ≈ 54 Mbps 140 m High Easy Contention
based

Moderate Low 40-120 No No

Wi-Fi 802.11n 2.4/5 ≈100 Mbps 250 m High Easy
Contention

based High High 40-120 No No

DSRC 802.11p 5.8/5.9 ≈ 27 Mbps 1 km Low Easy Contention
based

Moderate High 40-150 Yes Yes

CALM M5 5 ≈ 6 Mbps 10 km High Difficult
Contention

based High High 40-150 No Yes

Infrared 300 GHz – 400
THz

≈ 115 Kbps-
4 Mbps

100 m Low Easy Contention
based

Low High 250 No No

Bluetooth
802.15.1 2.4 GHz ≈ 1-24 Mbps 100 m High Easy

Contention
based Low High 20-30 No No

ZigBee
802.15.2

868/915
MHz / 2.4

GHz
≈ 250 Kbps 100 m High Easy

Contention
based Low High 10-20 No No

UWB 802.15.3 3.1-10.6GHz < 100 Mbps 10 m Low Easy
Contention

based Low High 10-20 No No

Table comparing different existing technologies for VANETs (Anwer and Guy, 2014, p. 661)

137

AUTHOR DECLARATION

I declare, by this document, that I have carried out the attached bachelor’s work alone,

without any assistance other than those duly indicated in the references, and that I only used the

sources expressly mentioned. I will not give any copy of this report to any third party without the

joint authorization of the head of the business information technology and the professor in charge

of the bachelor’s work, including the applied research partner with whom I have collaborated, with

the exception of individuals who have provided the primary information necessary for the drafting

of this work, which I quote below: Yann Bocchi, Gianluca Rizzo.

Sierre, on the 30th of July

Flavien Bonvin

138

	Introduction
	1. What Is an Ad Hoc Network
	1.1. Ad Hoc and Traditional Networks
	1.2. Multi-Hop Communication
	1.3. Advantages and Drawbacks of Ad Hoc Networks
	1.4. Application of Ad Hoc Networks
	1.4.1. Smartphone Ad Hoc Networks (SPANs)
	Usage of These Types of Networks

	1.4.2. Vehicular Ad Hoc Networks (VANETs)
	Intelligent Transportation System
	Applications of VANETs
	Technologies Used

	1.4.3. Disaster Rescue Ad Hoc Networks
	Existing Technologies

	1.5. Type of Routing Protocols
	1.5.1. Proactive – Table Driven
	1.5.2. Reactive – On demand
	1.5.3. Hybrid
	1.5.4. Position-based Protocols
	Floating Content

	2. Ad Hoc Networks in Smartphones
	2.1. Google Android
	2.1.1. Bluetooth API
	RFCOMM Protocol
	Secure Method
	Insecure Method
	SDP and UUID
	Range of Connection

	2.1.2. Wi-Fi Direct API
	Wi-Fi Direct
	Wi-Fi Direct Support on Android
	Range of Connection

	2.1.3. Google Nearby
	Message API in Detail
	Battery Usage
	Connection API in Detail
	Connection API Strategy P2P_CLUSTER
	Connection API Strategy P2P_STAR

	2.2. Apple iOS
	2.2.1. MultipeerConnectivity
	2.2.2. Google Nearby

	2.3. Other Implementations
	2.3.1. Bluetooth 5
	Bluetooth 5 Range Increase
	Summary Table of Bluetooth 5 Changes
	Bluetooth 5 Ad Hoc Improvements

	2.3.2. Fifth Generation Mobile Network
	Millimeter Wave
	Smart Cells
	Massive MIMO
	Beam Forming
	Full Duplex
	5G Ad Hoc Improvements
	Final Words About the 5G

	2.3.3. MeshKit
	MeshKit Implementation
	MeshKit Availability
	Final Words About MeshKit

	2.3.4. The Serval Project
	Mesh Extender
	Final Words About the Serval Project

	3. Use Case Analysis
	3.1. Disaster Assistance Use Case
	3.1.1. goTenna
	Difference Between goTenna Mesh and goTenna Pro
	How It Works
	What Else Does the goTenna Pro Offer
	Online Reviews of goTenna Products
	Pricing of the Products
	Advantages of goTenna Products
	Drawbacks of goTenna Products
	Difference With Our Use Case

	3.1.2. FireChat
	How It Works
	Pricing of FireChat
	Advantages of FireChat
	Flaws of FireChat
	Difference with Our Use Case

	3.1.3. Nearby Chat
	How It Works
	Pricing of Nearby Chat
	Advantages of Nearby Chat
	Flaws of Nearby Chat
	Differences With Our Use Case

	3.1.4. Zello
	How It Works
	Pricing of Zello
	Advantages of Zello
	Flaws of Zello
	Difference With Our Use Case

	3.2. Comparison of the Existing Solutions

	4. Use Case Implementation Reflection
	4.1. Challenges — Application Back End
	4.1.1. Information Freshness
	Creating a Fixed Expiration Date for Messages
	Asking for Updates About Uncertain Messages
	Selected Solution

	4.1.2. Information Trustfulness
	Scoring Users
	Rely on People’s Honesty
	Selected Solution

	4.1.3. Floating Content or Geo-Fencing
	Ignore Strategy
	Save and Hide Strategy
	Selected Solution

	4.1.4. Duplicate Data
	4.1.5. New Peer Connection
	4.1.6. Message Saving
	Shared Preferences
	Internal File Storage
	Selected Solution

	4.1.7. Application Settings
	4.1.8. Offline Challenges
	Installation of the Application
	Maps

	4.2. Challenges — User Experience
	4.2.1. Errors handling
	Delay Before the Actual Transmission of the Message
	Update a Message
	Summary of the Message Before the Transmission
	Selected Solution

	4.2.2. Reassure the Victims
	4.2.3. Messages Identification

	4.3. Challenges — User Interface
	4.3.1. Application Layout
	Bottom Navigation Menu
	Message List
	Message Details
	Map

	4.3.2. Colors
	Application Colors
	Message Category Colors
	Utility Colors

	4.3.3. Iconography
	4.3.4. Application Icon

	5. General Implementation
	5.1. Technology Choice
	5.2. Programming Language
	5.3. Project Architecture
	5.4. Gradle Dependencies
	5.5. Constant of the Application
	5.5.1. Permission Related Constants
	5.5.2. Message Related Constants
	5.5.3. Google Nearby Related Constants
	5.5.4. Preference Related Constants

	5.6. Google Nearby Configuration
	5.6.1. Connection Procedure
	5.6.2. Implementation

	5.7. Messages Object
	5.7.1. Message Class Structure
	5.7.2. Message Flow
	Sending
	Receiving
	Propagation

	5.8. Endpoint Object

	6. Details of the Implementation
	6.1. Application Back End
	6.1.1. Dynamic Expiration Date
	User interface Addition
	Back End of the Dynamic Expiration Date

	6.1.2. Floating Content
	User Interface Addition
	Back End Modifications

	6.1.3. Avoid Duplicate Message Creation
	6.1.4. Detect Duplicate Messages at Reception
	6.1.5. Message Propagation
	6.1.6. Shared Preferences Message Usage
	6.1.7. Application Settings
	6.1.8. Display Update

	6.2. Application User Experience
	6.2.1. Error Handling
	6.2.2. Recipient Count

	6.3. Application User Interface
	6.3.1. Bottom Navigation
	6.3.2. Message List
	6.3.3. Application Tutorial

	7. Discussion
	7.1. Application Back End
	7.1.1. Dynamic Expiration Date
	Possible Improvements

	7.1.2. Duplicate Data and Propagation Handling
	Possible Improvements

	7.1.3. Isolated Device
	Possible Improvements

	7.1.4. Application Distribution and Offline Maps
	7.1.5. Communication Handling
	Possible Improvements

	7.2. Application Front End
	7.2.1. Confirmation Screen
	Possible Improvement

	7.2.2. User Interface
	Possible Improvement

	7.3. Google Nearby
	7.3.1. Ease of Implementation
	7.3.2. Service Quality
	7.3.3. Test of Multiple Devices
	7.3.4. Motorola Bug
	7.3.5. Possible Improvement

	7.4. Future Improvements
	7.4.1. Download Map Offline
	7.4.2. Offline Application Share
	7.4.3. Instant Messaging Support
	7.4.4. Test With Multiple Devices
	7.4.5. Create Notification

	8. Product Backlog
	8.1. Implementation Feedback

	9. Management of the Project
	9.1. Planning of the Project
	9.1.1. Initial Planning
	9.1.2. Intermediate Planning
	9.1.3. Planning Change
	Technology Study
	State of the Art
	Test of the Technologies
	Thesis Writing/Updating

	9.1.4. Executed Hours

	9.2. Tools Used
	9.2.1. Technical Tools
	9.2.2. Administrative Tools

	Conclusion
	Personal Experience feedback

	References
	APPENDICES
	APPENDICES I – SPECIFICATION SHEET
	APPENDICES II – USE CASE DEFINITION
	APPENDICES III – PRODUCT BACKLOG
	APPENDICES IV – LOGBOOK
	APPENDICES V – VANETS TECHNOLOGIES

	Author Declaration

