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Abstract Loop leaping is the colloquial name given to a form of program
analysis in which summaries are derived for nested loops starting from the
innermost loop and proceeding in a bottom-up fashion considering one more
loop at a time. Loop leaping contrasts with classical approaches to finding
loop invariants that are iterative; loop leaping is compositional requiring each
stratum in the nest of loops to be considered exactly once. The approach is
attractive in predicate abstraction where disjunctive domains are increasingly
used that present long ascending chains. This paper proposes a simple and
an efficient approach for loop leaping for these domains based on viewing
loops as closure operators.
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1 Introduction

Abstract interpretation [9] provides a compelling theory for modelling a
program with descriptions of concrete data values. Not only does it show how
domains can be defined, refined and related to their concrete counterparts,
but it provides a methodology for constructing transformers that simulate
the behaviour of the primitive operations that arise in a program. Best
transformers can, at least in principle, always be automatically constructed
for domains of finite height [30] which, notably, includes the abstract domain
of conjunctions of predicates [4] that has proved so popular in verification [14].
Techniques for deriving transformers for whole blocks of code have recently
emerged due, in part, to the development of robust decision procedures [6,
21, 25] and efficient quantifier elimination techniques [7, 24, 27]. The step
beyond blocks is the automatic synthesis of transformers for loops.

Calculational techniques for deriving transformers for loops are colloqui-
ally referred to loop leaping [2] or loop frogging [22, 23]. These evocative
terms capture the central idea of jumping over the computational obstacle
presented by repeatedly reaching, iterating and stabilising on each loop in a
nest of loops. Instead, the whole loop nest is summarised in a straight-line
block, ideally with the summary computed in a compositional fashion, start-
ing with the innermost and ending with the outermost loop. The case for
loop summarisation becomes more convincing for domains with long chains
such as those admitted by Boolean formulae over large numbers of predicates
[28]. Boolean formulae can be widened, even in ways that are sensitive to
the underlying Boolean function rather than merely its representation [20],
yet it is our contention that the rich structure of formulae aids rather than
impedes loop analysis when loop leaping is applied.

Ideally one would derive a best transformer that summarises the execution
of a loop, or loop nest, to the limits of what is expressible in the abstract
domain. A best transformer is exactly that: a mapping from the set of input
descriptions to the set of output descriptions where the output description
given by the transformer is the most precise characterisation of the set of
all the output states that are reachable from all the input states described
by the input description. This immediately presents a problem for Boolean
formulae: the number of input descriptions. Even for the sub-class of
monotonic Boolean formulae, the simplest domain that can express both
conjunctive and disjunctive properties, the number of formulae grows rapidly
with the number of predicates: 2, 3, 6, 20, 168, 7581, 7828354, 2414682040998,
56130437228687557907788 [37]. It is therefore not surprising that previous
work has sought to curtail the representation, for instance, by bounding
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the number of disjuncts [28]. Without exploiting common structure in and
between the input and output formulae, the only realistic prospective is to
design a transformer whose representation is suitably compact and whose
summary is sufficiently precise: the former can be ensured through design
but the latter can only be tested empirically.

The contribution of this paper is simple. It is to show how loop trans-
formers can be computed from maps of the form ↑f : Σ → ℘(℘(Σ)) where
Σ = {σ1, . . . , σn} is the finite set of predicates under consideration. If σi ∈ Σ
then ∆i = ↑f(σi) is interpreted as a monotonic formula in DNF. For exam-
ple {{σ1, σ2}, {σ1, σ3}} represents the formula θ = (σ1 ∧ σ2) ∨ (σ1 ∧ σ3) =
σ1∧(σ2∨σ3). Crucially the map ↑f is defined by just n formulae ∆1 = ↑f(σ1),
. . . , ∆n = ↑f(σn). The map ↑f does not constitute a loop transformer itself
since it only specifies how to map an input formula, which is one of the
predicates, to an output formula. Yet ↑f is designed so that logical combi-
nators can be applied to ∆1, . . . ,∆n to compute an output formula for an
arbitrary input formula. To illustrate, if the input formula is θ then the
output formula is ∆1∧ (∆2∨∆3), where here the distinction between a mono-
tonic Boolean function and its representation is blurred. The construction
rests on ↑f : Σ→ ℘(℘(Σ)), or rather its extension ↑f : ℘(℘(Σ))→ ℘(℘(Σ)),
being a closure operator, that is, a map which is monotonic, idempotent and
extensive (extensivity means that the operator relaxes a formula whenever
it is applied). The centrality of these three concepts explains the title of
the paper and the (mysterious) ↑ symbol that indicates closure. These three
properties square with the way a loop transformer maps an input formula to
an output formula which describes the final state of a loop. This fit leads to
a loop summarisation method that is both simple and effective.

Expositionally this paper is laid out as follows: First, Sect. 2 explains
the key ingredients of our method for both, unnested and nested loops, by
means of an example, followed by a formalisation and correctness arguments
in Sect. 3. Then, Sect. 4 presents experimental evidence which compares the
precision of our techniques to related ones based on predicate abstraction.
Finally the paper concludes with a survey of related work in Sect. 5 and a
discussion in Sect. 6.

2 Worked Examples

The ethos of our method is to summarise a loop with a closure operator
on the domain of monotonic Boolean formulae, D, where the predicates
are drawn from a given finite set of predicates, Σ, that is defined up-front.
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(1) assume i = 0;
(2) assume n > 0;
(3) while i < n do
(4) b := nondet();
(5) if b 6= 0 then
(6) i := i+ 1;
(7) else
(8) skip;
(9) endif
(10) endwhile

if i < n then
b := nondet();
if b 6= 0 then

i := i+ 1;
else

skip;
endif

else
skip

endif

(1) if i < n then
(2) b′ := nondet();
(3) if b′ 6= 0 then
(4) i′ := i+ 1;
(5) else
(6) i′ := i;
(7) endif
(8) else
(9) i′ := i;
(10) endif
(11) n′ := n

Figure 1: Single loop example: (a) code; (b) loop block; (c) loop block in a
SSA-form

Monotonic Boolean formulae are a class of propositional functions which
take the following syntactic form: if σ ∈ Σ then σ ∈ D and if f1, f2 ∈ D
then it follows f1 ∧ f2 ∈ D and f1 ∨ f2 ∈ D [31]. The domain D is ordered
by entailment |= and with appropriate factoring (the details of which are
postponed to the sequel) a finite lattice 〈D, |=,∨,∧〉 can be obtained.

To illustrate how a loop can be summarised using closures over D consider
the program that is listed to the leftmost column of Figure 1. Observe that
the loop transforms the state that the program has when the loop is first
encountered into the state that is obtained by repeated applications of the
loop body. A loop summary expresses this transformation. Since state is
described in terms of monotonic formulae, the summary is itself a mapping
from an input formula to an output formula. The input formula describes
the initial state at the head of the loop: the state of the program when the
loop is first encountered. The output formula describes all the states that
are reachable at the head of the loop, by repeatedly applying the loop body,
from any of the initial states. Since the number of monotonic formulae grows
rapidly with |Σ| [37], the challenge is to find a way to summarise a loop
that is both descriptive and yet can be represented compactly and derived
straightforwardly.

Observe that the while loop is equivalent to repeated applications of the
block of statements in the middle column that will collectively be referred to
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as S. Suppose too that the set of predicates is defined as Σ = Σ0 ∪ Σ1 ∪ Σ2

where:
Σ0 = { (n < 0) , (n = 0) , (n > 0)}
Σ1 = { (i < 0) , (i = 0) , (i > 0)}
Σ2 = { (i < n), (i = n), (i > n)}

Although Σ is entirely natural given the predicates in the program, observe
that S does not mutate n, hence S does not alter the truth or falsity of the
predicates of Σ0. We shall thus restrict our attention to summaries over the
predicates Σ1 ∪ Σ2; extending the summaries to Σ increases the number of
cases that need to be considered without offering the reader fresh insight.

2.1 Closing the Loop over Σ

Using SMT-based reachability analysis [8, 14], a function f is computed which
maps input formulae, which coincide with each of the predicates σ ∈ Σ1 ∪Σ2,
to their corresponding output formulae. To derive the output formulae, S is
put into a form of single static assignment [10], which gives the block listed
in the rightmost column, denoted S′. The three paths through S′ correspond
to three systems of constraints that are:

c1 = (i < n) ∧ (b′ 6= 0) ∧ (i′ = i+ 1) ∧ (n′ = n)
c2 = (i < n) ∧ ¬(b′ 6= 0) ∧ (i′ = i) ∧ (n′ = n)
c3 = ¬(i < n) ∧ (i′ = i) ∧ (n′ = n)

To illustrate, consider computing the abstract transformer αΣ′
1∪Σ′

2
((i = 0)∧c1)

of (i = 0) ∈ Σ1 subject to path c1, where the abstraction map α is outlined
below and Σ′1 and Σ′2 denote sets of predicates, analogous to Σ1 and Σ2

respectively, but defined over primed output variables. Passing (i = 0) ∧ c1

to an SMT solver gives a model m1, e.g.:

m1 =
{

(i = 0) ∧ (n = 2) ∧ (i′ = 1) ∧ (n′ = 2)
}

Since we can check that a concrete model m satisfies a given predicate σ ∈ Σ,
that is, m ∈ γΣ(σ), then αΣ(m) can be computed thus:

αΣ(m) =
∧
{σ ∈ Σ |m ∈ γΣ(σ)}

Note that α is parametric in the set Σ. By abstracting m1, we obtain
αΣ′(m1) = (i′ > 0) ∧ (i′ < n′). In a second iteration, we add ¬αΣ′(m1) to
the SMT instance as a blocking clause. Then, passing (i = 0)∧c1∧¬αΣ′(m1)
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to a solver yields a different model m2, in which all concrete values described
by αΣ′(m1) are blocked. Suppose m2 is defined as:

m2 =
{

(i = 0) ∧ (n = 1) ∧ (i′ = 1) ∧ (n′ = 1)
}

This model induces an output αΣ′(m2) = (i′ > 0) ∧ (i′ = n′). Then, the
formula (i = 0)∧ c1 ∧¬αΣ′(m1)∧¬αΣ′(m2) becomes unsatisfiable, and thus
(i = 0)∧c1 |= αΣ′(m1)∨αΣ′(m2), which entails f(i = 0∧c1) = (i′ > 0)∧((i <
n′) ∨ (i′ = n′)). Applying this strategy to (i = 0) ∧ c2 and (i = 0) ∧ c3 gives:

f((i = 0) ∧ c1) = (i′ > 0) ∧ ((i′ = n′) ∨ (i′ < n′))
f((i = 0) ∧ c2) = (i′ = 0) ∧ (i′ < n′)
f((i = 0) ∧ c3) = (i′ = 0) ∧ ((i′ = n′) ∨ (i′ > n′))

Combining these three results we derive a formula which describes the
effect of executing S under input that satisfies the predicate σ = (i = 0).
In what follows simplifications have been applied to make the presentation
more accessible:

f(i = 0) =
∨3
j=1 f((i = 0) ∧ cj)

= f((i = 0) ∧ c1) ∨ f((i = 0) ∧ c2) ∨ f((i = 0) ∧ c3)
= (i′ = 0) ∨ ((i′ > 0) ∧ ((i′ < n′) ∨ (i′ = n′)))

Likewise, for the remaining predicates in Σ, we compute:

f(i < 0) = (i′ < 0) ∨ ((i′ = 0) ∧ ((i′ < n′) ∨ (i′ = n′)))
f(i > 0) = (i′ > 0)
f(i < n) = (i′ < n′) ∨ (i′ = n′)
f(i = n) = (i′ = n′)
f(i > n) = (i′ > n′)

The map f characterises one iteration of the block S. To describe many
iterations, f is relaxed to a closure, that is, an operator over D which is
idempotent, monotonic and extensive. Idempotent so as to capture the
effect to repeatedly applying S until the output formula does not change;
monotonic since if the input formula is relaxed then so is the output formula;
and extensive so as to express that the output formula is weaker than in
the input formula. The last point deserves amplification: the input formula
characterises the state that holds when the loop is first encountered whereas
the output summarises that states that hold when the loop head is first and
then subsequently encountered, hence the former entails the latter.
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With renaming applied to eliminate the auxiliary predicates of Σ′1 ∪ Σ′2,
the closure of f(i = 0), denoted ↑f(i = 0), is computed so as to satisfy:

↑f(i = 0) = ↑f(i = 0) ∨ (↑f(i > 0) ∧ ↑f(i < n)) ∨ (↑f(i > 0) ∧ ↑f(i = n))

Likewise, the closures for all predicates in Σ are required such that:

↑f(i < 0) = ↑f(i < 0) ∨ (↑f(i = 0) ∧ ↑f(i < n)) ∨ (↑f(i = 0) ∧ ↑f(i = n))
↑f(i > 0) = ↑f(i > 0)
↑f(i < n) = ↑f(i < n) ∨ ↑f(i = n)
↑f(i = n) = ↑f(i = n)
↑f(i > n) = ↑f(i > n)

This recursive equation system can be solved iteratively until it stabilises,
a property that is guaranteed due to monotonicity and finiteness of the
domain. In fact it is straightforward to see that ↑f(i > 0) = (i > 0),
↑f(i = n) = (i = n), and ↑f(i > n) = (i > n). Using substitution, we then
obtain ↑f(i < n) = (i < n) ∨ (i = n). Likewise, for (i = 0), we compute:

↑f(i = 0) = (i = 0) ∨ ((i > 0) ∧ (i < n)) ∨ ((i > 0) ∧ (i = n))

Also by simplification we obtain:

↑f(i < 0) = (i < 0) ∨ ((i > 0) ∧ ((i < n) ∨ (i = n))) ∨ (↑f(i = 0) ∧ (i = n))
= (i < 0) ∨ (i < n) ∨ (i = n)

which completes the derivation of the closure.

2.2 Applying Closures

Thus far, we have computed a function ↑f that maps each predicate σ ∈ Σ to
a formula that represents the states reachable at the head of the loop from
σ. Yet ↑f can be interpreted as more than a loop transformer over just Σ
since if σ1, σ2 ∈ Σ it follows that:

↑f(σ1 ∧ σ2) |= ↑f(σ1) ∧ ↑f(σ2)

This holds because the closure operator is monotonic. Moreover, due to the
rich structure of our domain, we also have:

↑f(σ1 ∨ σ2) = ↑f(σ1) ∨ ↑f(σ2)

This follows from the way σ1 ∨ σ2 is formally interpreted as set union and
the operator ↑f is defined so as to distribute over union. The force of this is
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that ↑f can be lifted to an arbitrary formula over Σ, thereby prescribing a
loop transformer that is sufficiently general to handle any conceivable input
formula. As an example, suppose that the loop is first reached with state
described by the input formula (i = 0) ∧ (i < n). Then

↑f((i = 0) ∧ (i < n))
v ↑f(i = 0) ∧ ↑f(i < n)
= ((i = 0) ∨ ((i > 0) ∧ (i < n)) ∨ ((i > 0) ∧ (i = n))) ∧ ((i < n) ∨ (i = n))
= ((i = 0) ∨ (i > 0)) ∧ ((i < n) ∨ (i = n))

which, with some simplifications applied, describes all the states that are
reachable at the head of the loop. The complete loop transformer then
amounts to intersecting this formula with the negation of the loop-condition,
that is, (i = n)∨ (i > n), which gives the formula ((i = 0)∨ (i > 0))∧ (i = n)
which characterises the states that hold on exit from the loop as desired.
The importance of this final step cannot be overlooked.

2.3 Leaping Nested Loops

The strength of the construction is that it can be used to compositionally
summarise nested loops. Given an inner loop SI , we first compute a loop
transformer ↑fI , which is then incorporated into the body of the outer loop
SO. Our analysis thus computes loop transformers bottom-up, which is both
attractive for conceptual as well computational reasons. As an example,
consider the program in Fig. 2 (nested.c from [15]) with the sets of predicates
defined as:

Σ1 = {(y < 0), (y = 0), (y > 0)}
Σ4 = {(t < m), (t = m), (t > m)}
Σ2 = {(t < 0), (t = 0), (t > 0)}
Σ5 = {(y < m), (y = m), (y > m)}
Σ3 = {(t < y), (t = y), (t > y)}

Applying our technique to the inner loop on predicates Σ1 ∪ Σ2 ∪ Σ3, we
compute the map fI as follows:

fI(y < 0) = (y < 0)
fI(y = 0) = (y = 0)
fI(y > 0) = (y > 0)

fI(t < 0) = (t < 0) ∨ (t = 0)
fI(t = 0) = (t = 0) ∨ (t > 0)
fI(t > 0) = (t > 0)

fI(t < y) = (t < y) ∨ (t = y)
fI(t = y) = (t = y)
fI(t > y) = (t > y)

7



(1) assume y = 0;
(2) assume m ≥ 0;
(3) assume t = 0;
(4) while y < m do
(5) y := y + 1;
(6) t := 0;
(7) while t < y do
(8) t := t+ 1;
(9) endwhile
(10) endwhile
(11) assert y = m

(1) assume y = 0;
(2) assume m ≥ 0;
(3) assume t = 0;
(4) while y < m do
(5) y′ := y + 1;
(6) t′ := 0;
(7) if y′ < 0 then assume y′′ < 0 endif
(8) if y′ = 0 then assume y′′ = 0 endif
(9) if y′ > 0 then assume y′′ > 0 endif
(10) if t′ = 0 then assume t′′ ≥ 0 endif
(11) if t′ > 0 then assume t′′ > 0 endif
(12) if t′ < y′ then assume t′′ ≤ y′′ endif
(13) if t′ = y′ then assume t′′ = y′′ endif
(14) if t′ > y′′ then assume t′′ > y′′ endif
(15) assume t′′ ≥ y′′
(16) endwhile
(17) assert y = m

Figure 2: Bottom-up derivation of transformer for a nested loop from [15]

Then, as before, we compute the closure of fI to give:

↑fI(y < 0) = (y < 0)
↑fI(y = 0) = (y = 0)
↑fI(y > 0) = (y > 0)
↑fI(t < 0) = ↑fI(t < 0) ∨ ↑fI(t = 0) = (t < 0) ∨ (t = 0) ∨ (t > 0) = true
↑fI(t = 0) = (t = 0) ∨ (t > 0)
↑fI(t > 0) = (t > 0)
↑fI(t < y) = ↑fI(t < y) ∨ ↑fI(t = y) = (t < y) ∨ (t = y)
↑fI(t = y) = (t = y)
↑fI(t > y) = (t > y)

To abstract the outer loop in Fig. 2, we replace the inner loop, defined at
lines (7)–(9) on the left, by its summary. This gives the program on the
right. Here, lines (7)–(14) encode an application of the closure, whereas
line (15) models the loop exit condition of SI . Note that lines 10 and 12
relax strict inequalities to non-strict inequalities to simultaneously express
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two predicates (which is merely for presentational purposes). Even though
the transformed program appears to have multiple paths, it is not treated
as such: lines (7)–(14) rather model auxiliary constraints imposed by the
closure on a single path.

Next a predicate transformer fO for the outer loop SO is computed which
amounts, like before, to reachability analysis over the predicates

⋃5
i=1 Σi.

We obtain a map fO : Σ→ ℘(℘(Σ)) defined as:

fO(y < 0) = ((y < 0) ∨ (y = 0)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(y = 0) = (y > 0) ∧ (t > 0) ∧ (t = y)
fO(y > 0) = (y > 0) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t < 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t = 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t > 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t < y) = (t = y)
fO(t = y) = (t = y)
fO(t > y) = (t > y)
fO(t < m) = (t = y) ∨ (t > y)
fO(t = m) = (t = y) ∨ (t > y)
fO(t > m) = (t = y) ∨ (t > y)
fO(y < m) = ((y < m) ∨ (y = m)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(y = m) = (y = m)
fO(y > m) = (y > m)

Analogous to before, closure computation amounts to substituting the predi-
cates in the image of fO. In case of the predicate (y = 0) ∈ Σ1, for example,
computing the closure of fO(y = 0) = (y > 0) ∧ (t > 0) ∧ (t = y) amounts
to substituting (y > 0), (t > 0) and (t = y) by ↑fO(y > 0), ↑f(t > 0) and
↑f(t = y), respectively. By repeated substitution (with entailment check-
ing), we obtain the following closures for (y = 0) ∈ Σ1, (t = 0) ∈ Σ3 and
(y < m) ∈ Σ5:

↑fO(y = 0) = (y > 0) ∧ (t > 0) ∧ (t = y)
↑fO(t = 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
↑fO(y < m) = ((y < m) ∨ (y = m)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))

Likewise, we close f for the remaining predicates.
To illustrate the precision of this type of transformer for nested loops,

suppose (y = 0) ∧ (y < m) ∧ (t = 0) holds on enter into the outer loop.
The loop transformer for (y = 0) ∧ (y < m) ∧ (t = 0) is computed as
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↑fO(y = 0) ∧ ↑fO(y < m) ∧ ↑fO(t = 0), which simplifies to give:

↑fO(y = 0) ∧ ↑fO(y < m) ∧ ↑fO(t = 0)

=


(y > 0) ∧ (t > 0) ∧ (t = y) ∧
((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y)) ∧
((y < m) ∨ (y = m)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))

= (y > 0) ∧ (t > 0) ∧ (t = y) ∧ ((y < m) ∨ (y = m))

By conjoining this output of the outer loop with the exit-condition (y ≥ m),
we obtain the post-state of the program after the loop:

↑fO((y = 0) ∧ (y < m) ∧ (t = 0))) ∧ (y ≥ m)
= (y > 0) ∧ (t > 0) ∧ (t = y) ∧ ((y < m) ∨ (y = m)) ∧ (y ≥ m)
= (y > 0) ∧ (t > 0) ∧ (t = y) ∧ (y = m)

Clearly, the assertion in line (11) of Fig. 2 follows, as is required.

3 Semantics

In this section we formalise our approach to predicate abstraction and
demonstrate its correctness. The starting is a (countable) finite concrete
domain B that is interpreted as the set of possible program states, for
instance, B = [−231, 231 − 1]2 for a program with just two 32-bit signed
integer variables. For generality the definition of B is left open. To illustrate
the compositional nature of our analysis, the formal study focuses on a
language L of structured statements S defined by

S ::= skip | assume(ρ) | transform(τ) | S;S | if ρ then S else S | while ρ do S

where τ ⊆ B×B is a relation between assignments and ρ ⊆ B is a predicate.
Since τ is a binary relation, rather than a function, the statement transform(τ)
can express non-determinism. If τ = {〈x, y〉 × 〈x′, y′〉 ∈ ([−231, 231 − 1]2)2 |
x′ = x}, for instance, then the statement transform(τ) preserves the value
of x but assigns y to an arbitrary 32-bit value. For brevity of presentation,
we define the composition of a unary relation ρ ⊆ B with a binary relation
τ ⊆ B × B which is defined thus ρ ◦ τ = {b′ ∈ B | b ∈ ρ ∧ 〈b, b′〉 ∈ τ}
(and should not be confused with function composition whose operands are
sometimes written in the reverse order). We also define ¬ρ = B \ρ for ρ ⊆ B.

3.1 Concrete Semantics

Because of the non-deterministic nature of transform(τ) the semantics that
is used as the basis for abstraction operates on sets of values drawn from B.
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The semantics is denotational in nature, associating with each statement in
a program with a mapping ℘(B)→ ℘(B) that expresses its behaviour. The
function space ℘(B)→ ℘(B) is ordered pointwise by f1 v f2 iff f1(ρ) ⊆ f2(ρ)
for all ρ ⊆ B. In fact 〈℘(B)→ ℘(B),u,t, λρ.∅, λρ.B〉 is a complete lattice
where f1 u f2 = λρ.f1(ρ) ∩ f2(ρ) and likewise f1 t f2 = λρ.f1(ρ) ∪ f2(ρ).
The complete lattice L → ℘(B)→ ℘(B) is defined analogously. With this
structure in place a semantics for statements can be defined:

Definition 3.1 The mapping [[·]]C : L → ℘(B)→ ℘(B) is the least solution
to:

[[skip]]C = λσ.σ
[[assume(ρ)]]C = λσ.σ ∩ ρ

[[transform(τ)]]C = λσ.σ ◦ τ
[[S1;S2]]C = λσ.[[S2]]C([[S1]]C(σ))

[[if ρ then S1 else S2]]C = λσ.([[S1]]C(σ ∩ ρ)) ∪ ([[S2]]C(σ ∩ ¬ρ))
[[while ρ do S]]C = λσ.([[while ρ do S]]C([[S]]C(σ ∩ ρ))) ∪ (σ ∩ ¬ρ)

3.2 Abstract Semantics

The correctness of the bottom-up analysis, the so-called closure semantics, is
argued relative a top-down analysis, the abstract semantics, which, in turn,
is proved correct relative to the concrete semantics. The abstract semantics
is parametric in terms of a finite set of predicates Σ = {σ1, . . . , σn} where σ1,
. . . , σn ⊆ B with σi 6= σj if i 6= j are distinct predicates. A set of predicates
δ ∈ ∆ ⊆ ℘(Σ) is interpreted by the following:

Definition 3.2 The concretisation map γ : ℘(℘(Σ))→ ℘(B) is defined:

γ(∆) =
⋃
δ∈∆

γ(δ) where γ(δ) =
⋂
σ∈δ

σ

Example 3.1 Suppose δ0 = ∅, δ1 = {σ1} and δ2 = {σ1, σ2}. Then γ(δ0) =
B, γ(δ1) = σ1 and γ(δ2) = σ1 ∩ σ2.

The concretisation map γ induces an quasi-ordering on ℘(℘(Σ)) by ∆1 v ∆2

iff γ(∆1) ⊆ γ(∆2). To obtain a poset an operator ↓ is introduced to derive a
canonical representation for an arbitrary ∆ ⊆ ℘(Σ) by forming its down-set.
The down-set is defined ↓∆ = {δ′ ⊆ Σ | ∃δ ∈ ∆.γ(δ′) ⊆ γ(δ)} from which
we construct D = {↓∆ | ∆ ⊆ ℘(Σ)}. Observe that if ∆1,∆2 ∈ D then
∆1 ∩ ∆2 ∈ D. To see that ∆1 ∪ ∆2 ∈ D let δ ∈ ∆1 ∪ ∆2 and suppose
δ ∈ ∆i. Then if γ(δ′) ⊆ γ(δ) it follows that δ′ ∈ ∆i ⊆ ∆1 ∪∆2. Moreover
〈D,⊆,∪,∩, ∅, ℘(Σ)〉 is a complete lattice where ∩ is meet and ∪ is join.
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Proposition 3.1 The maps α : ℘(B)→ D and γ : D → ℘(B) form a Galois
connection between 〈℘(B),⊆〉 and 〈D,⊆〉 where α(σ) = ∩{∆ ∈ D | σ ⊆
γ(∆)}

Example 3.2 Suppose Σ = {σ1, σ2} where σ1 = (0 ≤ i ≤ 1) and σ2 =
(1 ≤ i ≤ 2). Let ∆1 = {{σ1} , {σ1, σ2}} and ∆2 = {{σ2} , {σ1, σ2}}. Note
that ↓∆1 = ∆1 and ↓∆2 = ∆2 thus ∆1,∆2 ∈ D. However {{σ1}} 6∈
D and {{σ2}} 6∈ D. Observe γ(∆1) = σ1 and γ(∆2) = σ2. Moreover
∆1 ∩∆2 ∈ D and ∆1 ∪∆2 ∈ D with γ(∆1 ∩∆2) = σ1 ∩ σ2 = (i = 1) and
γ(∆1 ∪∆2) = σ1 ∪ σ2 = (0 ≤ i ≤ 2). Furthermore α(i = 1) = {{σ1, σ2}} and
α(0 ≤ i ≤ 2) = {{σ1}, {σ2}, {σ1, σ2}}.

Example 3.3 Observe that if ∆ = ∅ then ∆ ∈ D and γ(∆) = ∅. But if
δ = ∅, δ ∈ ∆ and ∆ ∈ D then ∆ = ℘(Σ) since γ(δ′) ⊆ B = γ(δ) for all
δ′ ⊆ Σ.

Proposition 3.2 If σ ∈ Σ then α(σ) = ↓{{σ}}.

Both for brevity and for continuity of the exposition, the proofs are relegated
to the appendix.

As before, the abstract semantics is denotational associating each state-
ment with a mapping D → D. The function space D → D is ordered
point-wise by f1 v f2 iff f1(∆) ⊆ f2(∆) for all ∆ ∈ D. Also like be-
fore 〈D → D,u,t, λ∆.∅, λ∆.℘(Σ)〉 is a complete lattice where f1 u f2 =
λ∆.f1(∆) u f2(∆) and likewise f1 t f2 = λ∆.f1(∆) t f2(∆). Moreover,
the point-wise ordering on D → D lifts to define a point-wise ordering on
L → D → D in an analogous manner. Since L → D → D is a complete
lattice the following is well-defined:

Definition 3.3 The mapping [[·]]A : L → D → D is the least solution to:

[[skip]]A = λ∆.∆
[[assume(ρ)]]A = λ∆.∆ ∩ α(ρ)

[[transform(τ)]]A = λ∆.α(γ(∆) ◦ τ)
[[S1;S2]]A = λ∆.[[S2]]A([[S1]]A(∆))

[[if ρ then S1 else S2]]A = λ∆.([[S1]]A(∆ ∩ α(ρ))) ∪ ([[S2]]A(∆ ∩ α(¬ρ)))
[[while ρ do S]]A = λ∆.([[while ρ do S]]A([[S]]A(∆ ∩ α(ρ))) ∪ (∆ ∩ α(¬ρ))

Proposition 3.3 Let S ∈ L. If ρ ∈ γ(∆) then [[S]]C(ρ) ⊆ γ([[S]]A(∆)).
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3.3 Closure Semantics

At the heart of the closure semantics are functions with signature Σ→ D.
Join and meet lift point-wise to the function space Σ→ D since if f1 : Σ→ D
and f2 : Σ→ D then f1tf2 = λσ.f1(σ)∪f2(σ) and f1uf2 = λσ.f1(σ)∩f2(σ).
The key idea is to construct a mapping f : Σ → D whose extension to f :
D → D is a closure, that is, an operation which is monotonic, extensive and
idempotent. A map f : Σ→ D lifts to f : ℘(Σ)→ D and then further lifts
to f : ℘(℘(Σ))→ D by f(δ) = ∩{f(σ) | σ ∈ δ} and f(∆) = ∪{f(δ) | δ ∈ ∆}
respectively. Observe that a lifting f : D → D is monotonic, irrespective of
f , since if ∆1 ⊆ ∆2 then f(∆1) ⊆ f(∆2). It also distributes over union, that
is, f(∆1) ∪ f(∆2) = f(∆1 ∪∆2). We introduce ↑f : Σ → D to denote the
idempotent relaxation of f : Σ→ D which is defined thus:

Definition 3.4 If f : Σ→ D then

↑f = u{f ′ : Σ→ D | f v f ′ ∧ ∀σ ∈ Σ.f ′(σ) = f ′(f ′(σ))}

Note the use of loading within the expression f ′(f ′(σ)): the inner f ′ has
type f ′ : Σ→ D whereas the outer f ′ has type f ′ : Σ→ D. Observe too that
↑f : Σ→ D is extensive if f : Σ→ D is extensive. Although the above
definition is not constructive, the idempotent relaxation can be computed in
an iterative fashion using the following result:

Proposition 3.4 ↑f = ti=0fi where f0 = f and fi+1 = fi t λσ.fi(fi(σ))

With ↑f both defined and computable (by virtue of the finiteness of Σ), an
analysis based on closures can be formulated thus:

Definition 3.5 The mapping [[·]]L : L → D → D is the least solution to:

[[skip]]L = λ∆.∆
[[assume(ρ)]]L = λ∆.∆ ∩ α(ρ)

[[transform(τ)]]L = λ∆.α(γ(∆) ◦ τ)
[[S1;S2]]L = λ∆.[[S2]]L([[S1]]L(∆))

[[if ρ then S1 else S2]]L = λ∆.([[S1]]L(∆ ∩ α(ρ))) ∪ ([[S2]]L(∆ ∩ α(¬ρ)))
[[while ρ do S]]L = λ∆.↑f(∆) ∩ α(¬ρ) where

f = λσ.↓{{σ}} ∪ [[S]]L(↓{{σ}} ∩ α(ρ))

Note that ↑f is a closure since f is extensive by construction. Observe too that
[[while ρ do S]]L is defined with a single call to [[S]]L whereas [[while ρ do S]]A
is defined in terms of possibly many calls to [[S]]A. Thus the closure semantics
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can be realised without auxiliary structures such as memo tables that are
needed to intercept repeated calls.

Conceptually the closure semantics simulates the top-down flow of the
abstract semantics from which it is derived, until a loop is encountered at
which point the loop body is entered. The loop body is then evaluated, again
top-down, for each of the predicates. The closure is then calculated, applied
to the formula that holds on entry to the loop, and the result composed
with the negation of the loop condition, to infer the formula that holds on
exit from the loop. Yet because of the structured nature of the domain, the
loop transformer can be represented as a straight-line block of conditional
assumptions. Thus the transformer has the dual attributes of: closely
mimicking the top-down abstract semantics, which aids in constructing a
convincing correctness argument, whilst being fully compositional which is
the key attribute in the bottom-up approach to loop summarisation.

Proposition 3.5 Let S ∈ L and ∆ ∈ D. Then [[S]]A(∆) ⊆ [[S]]L(∆).

By composing propositions 3.3 and 3.5 the main correctness result is obtained:

Corollary 3.1 Let S ∈ L. If ρ ∈ γ(∆) then [[S]]C(ρ) ⊆ γ([[S]]L(∆)).

4 Experiments

A prototype analyser had been implemented in Ruby [13], with the express
aim of evaluating the precision of our technique on some loops used elsewhere
for benchmarking. The analyser faithfully realises the closure semantics as
set out in Def. 3.5. In addition to the examples outlined in Sect. 2, we applied
our prototype to the programs evaluated in [18] which are available from [15].
These sample programs test and mutate integers with loop structures are
either single loops, nested loops, or sequences of loops.

The results our experiments are presented in Tab. 1. The column |Σ|
denotes the number of predicates used, followed by Time which indicates the
runtime required to evaluate the whole program. The column Input gives
the formula that input to the program (actually an assumption that was
given in the benchmark). Likewise for Σ we chose those predicates which are
listed in a comment in the benchmark itself. The Result column documents
the formula obtained by running the program on this input (in a cleaned
format as is explained below). The runtime for all tests where less than a
second on a 2.6 GHz MacBook Pro equipped with 4 GiB RAM.
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Table 1: Experimental results
Program |Σ| Time Input Result

counter.c 12 0.1 s x = 0 ∧ n ≥ 0 n ≥ 0 ∧ x = n
ex1a.c 12 0.1 s 0 ≤ x ≤ 2 ∧ 0 ≤ y ≤ 2 x ≥ 0 ∧ x ≤ 2
ex1b.c 20 0.1 s m = 0 ∧ x = 0 m ≥ 0 ∧ n > m ∧ x = n ∧ x > 0
ex3.c 25 0.6 s x ≤ y ∧ x = 0 ∧ y = m x ≤ m ∧ x = n ∧ x = y ∧ y ≥ m
lockstep.c 12 0.1 s x ≤ y ∧ x ≥ y x = y ∧ x = n
nested.c 15 1.0 s t = 0 ∧ y = 0 ∧ m ≥ 0 t > 0 ∧ t = y ∧ y = m ∧ y > 0
two-loop.c 20 0.2 s x = 0 ∧ y = 0 x = n ∧ y = n

Interestingly, our implementation seems to outperform the invariant
generation technique presented in [18] for speed in all except one benchmark
(nested.c). This result is rather surprising as our prototype has been
implemented näıvely in Ruby, more as a sanity check on the design rather
than a tool for assessing performance. Considering that Ruby is interpreted,
the runtimes of our proof-of-concept implementation are encouraging. It
should be noted, however, that we generate the transformers for blocks
off-line, prior to applying the analysis, rather than using a SMT solver to
compute block transformers on-the-fly. Nevertheless the dominating time is
the closure calculation since it needs to repeatedly combine formulae; pruning
intermediate formulae should improve this.

In terms of precision, most output formulae are actually disjunctive, but
the table gives conjunctive simplifications to make the presentation accessible.
In case of counter.c, for instance, we write n ≥ 0 ∧ x = n instead of the
disjunctive formula (n = 0 ∧ x = n) ∨ (n > 0 ∧ x = n). Manually we checked
that each of the component cubes (conjunctions) were genuinely reachable
on program exit. (It may not be feasible to infer invariants by hand but if
Σ is small it is possible to manually verify that a cube is irredundant with
a high degree of confidence.) We conclude that these invariants appear to
be optimal even though the closure semantics can, in principle, lead to a
sub-optimal transformer for loops.

5 Related Work

The key idea in predicate abstraction [3, 12, 14] is to describe a large, possibly
infinite, set of states with a finite set of predicates. If the two predicates
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ρi and ρj describe, respectively, the sets of states γ(ρi) and γ(ρj), then all
the transitions between a state in γ(ρi) and a state in γ(ρj) are described
with a single abstract transition from ρi to ρj . The existence of a transition
between γ(ρi) and γ(ρj), and hence an abstract one between ρi and ρj , can be
determined by querying a SAT/SMT solver [8] or a theorem prover [14]. The
domain of conjuncts of predicates is related to the domain of sets of states by
a Galois connection [4], allowing the framework of abstract interpretation [9],
as well as domain refinements such as disjunctive completion [4], to be applied
to systematically derive loop invariants using iterative fixpoint computation.

5.1 Loop Summarisation

Motived by the desire to improve efficiency, a thread of work has emerged
on compositional bottom-up analysis that strives to reorganise iterative
fixed-point computation by applying loop summarisation [34]. The idea is to
substitute a loop with a conservative abstraction of its behaviour, constructing
abstract transformers for nested loops starting from the inner-most loop
[2, 22]. Various approaches have been proposed for loop summarisation, such
as taking cues from the control structure to suggest candidate invariants that
are subsequently checked for soundness [22, Sect. 3.3]. Inference rules have
also been proposed for deriving summaries based on control structures [33].
Increasingly loop summarisation is finding application in termination analysis
[2, 36].

5.2 Quantifier Elimination

Existential quantification has also been applied to characterise inductive loop
invariants. Kapur [19] uses a parameterised first-order formula as a template
and specifies constraints on these parameters using quantification. Quantifiers
are then eliminated to derive the loop invariants [19, Sect. 3] which, though
attractive conceptually, inevitably presents a computational bottleneck [11].
Likewise Monniaux (see [25, Sect. 3.4] and [26, Sect. 3.4]) uses quantification
to specify inductive loop invariants for linear templates [32].

5.3 Disjunctive Invariants

Gulwani et al. [18] derive loop invariants in bounded DNF using SAT by
specifying constraints that model state on entry and exit of a loop as well as
inductive relations. Monniaux and Bodin [28] apply predicate abstraction
to compute automata (with a number of states that is bounded a priori)
which represent the semantics of reactive nodes using predicates and an
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abstract transition relation. Rather than computing abstractions as arbitrary
formulae over predicates, they consider disjunctions of a fixed number of
cubes. The specification of loop invariants itself is not dissimilar to that
in [25, Sect. 3.4]. However, bounding the problem allows for the application
of incremental techniques to improve performance [28, Sect. 2.4]. Similar in
spirit, though based on classical abstract interpretation rather than SMT-
based predicate abstraction, is the work of Balakrishnan et al. [1] on control-
structure refinement for loops in Lustre.

Disjunctive loop invariants have also been studied in other contexts, for
instance, Gulwani et al. [16, 17] apply auxiliary variables in the complexity
analysis of multi-path loops, where disjunctive invariants describe the com-
plexities over counter variables. Recent work by Sharma et al. [35] focusses
on the structure of loops in general. The authors observed that loops, which
require disjunctive invariants, often depend on a single phase-transition.
They provide a technique that soundly detects whether a loop relies on
such, and if so, rewrite the program so that conjunctive techniques can be
applied. Such invariants are easier to handle than disjunctive ones. By way
of contrast, Popeea and Chin [29] compute disjunctions of convex polyhedra
using abstract interpretation. To determine whether a pair of two polyhedra
shall be merged, they apply distance metrics so to balance expressiveness
against computational cost.

6 Conclusions

This paper advocates a technique for leaping loops in predicate abstraction
where the abstract domain is not merely a conjunction of predicates that
simultaneously hold but rather a (possibly disjunctive) monotonic formula
over the set of predicates. Each loop is summarised with a closure that
enables each loop to be treated as if it were a straight-line block. Because the
number of monotonic formulae grows rapidly with the number of predicates,
the method, by design, does not compute a best transformer. Instead closures
are derived solely for the atomic predicates and, as a result, each closure
can be represented by just n monotonic formulae where n is the number
of predicates. Applying the loop transformer then amounts to computing
logical combinations of these n formulae. The compact nature of the loop
transformers, their conceptual simplicity, as well as their accuracy which
is demonstrated empirically, suggests that this notion of closure is a sweet-
point in the design space for loop leaping on this domain. Future work will
investigate adapting these loop leaping techniques to other abstract domains.

17



A Proofs

Proof A.1 (for proposition 3.1) α is well-defined since D is closed under
intersection. To show that α is monotonic let σ1, σ2 ∈ ℘(B), with σ1 ⊆ σ2.
Then

α(σ1) =
⋂
{∆ ∈ D | σ1 ⊆ γ(∆)}

⊆
⋂
{∆ ∈ D | σ1 ⊆ σ2 ⊆ γ(∆)}

=
⋂
{∆ ∈ D | σ2 ⊆ γ(∆)} = α(σ2).

To show that γ is monotonic let ∆1,∆2 ∈ D, with ∆1 ⊆ ∆2. Then

γ(∆1) =
⋃

δ∈∆1⊆∆2

δ ⊆
⋃
δ∈∆2

δ = γ(∆2).

Now let α(σ) ⊆ ∆ for some σ ∈ ℘(B) and ∆ ∈ D. Then

α(σ) ⊆ ∆
=⇒ ∩ {∆′ ∈ D | σ ⊆ γ(∆′)} ⊆ ∆
=⇒ ∃∆′ ∈ D : σ ⊆ γ(∆′) ∧∆′ ⊆ ∆
=⇒ ∃∆′ ∈ D : σ ⊆ γ(∆′) ∧ γ(∆′) ⊆ γ(∆)
=⇒ σ ⊆ γ(∆).

For the other direction, let σ ⊆ γ(∆) for some σ ∈ ℘(B) and ∆ ∈ D. Then

σ ⊆ γ(∆)
=⇒ α(σ) ⊆ α(γ(∆))
=⇒ α(σ) ⊆ ∩

{
∆′ ∈ D | γ(∆) ⊆ γ(∆′)

}
=⇒ α(σ) ⊆ ∩

{
∆′ ∈ D | γ(∆) ⊆ γ(∆′) ∧∆ ⊆ ∆′

}
⊆ ∆.

�

Proof A.2 (for proposition 3.2)

γ(↓{{σ}} = γ({δ ⊆ Σ | γ(δ) ⊆ σ}) = ∪{γ(δ) | δ ⊆ Σ, γ(δ) ⊆ σ} = σ

σ ⊆ γ(↓{{σ}})
=⇒ α(σ) ⊆ ↓{{σ}}
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α(σ) ⊇ α(σ)
=⇒ γ(α(σ)) ⊇ σ
=⇒ γ(α(σ)) ⊇ γ(↓{{σ}})
=⇒ α(σ) ⊇ ↓{{σ}}

�

Proof A.3 (for proposition 3.4) Since ↑f v ti=0fi it remains to show
fi v ↑f for all i ∈ N.

• f0 = f v ↑f

• To show fi+1 v ↑f . Let σ ∈ Σ. Then fi+1(σ) = fi(σ) ∪ fi(fi(σ)). By
the inductive hypothesis fi(σ) ⊆ ↑f(σ). Moreover fi(σ) ⊆ ↑f(σ) for all
σ ∈ Σ. Let ∆ = fi(σ) and δ ∈ ∆. Then fi(δ) ⊆ ↑f(δ). Hence fi(∆) ⊆
↑f(∆) thus fi(fi(σ)) ⊆ ↑f(fi(σ)). But ↑f : D → D is monotonic and
since fi(σ) ⊆ ↑f(σ) it follows ↑f(fi(σ)) ⊆ ↑f(↑f(σ)) = ↑f(σ) hence
fi(fi(σ)) ⊆ ↑f(σ). Therefore fi+1(σ) = fi(σ) ∪ fi(fi(σ)) ⊆ ↑f(σ) as
required. �

Definition A.1 The operator C : (L → ℘(B) → ℘(B)) → (L → ℘(B) →
℘(B)) is defined C(g) = g′ where:

g′[[skip]] = λσ.σ
g′[[assume(ρ)]] = λσ.σ ∩ ρ

g′[[transform(τ)]] = λσ.σ ◦ τ
g′[[S1;S2]] = λσ.g[[S2]](g[[S1]](σ))

g′[[if ρ then S1 else S2]] = λσ.(g[[S1]](σ ∩ ρ)) ∪ (g[[S2]](σ ∩ ¬ρ))
g′[[while ρ do S]] = λσ.(g[[while ρ do S]](g[[S]](σ ∩ ρ))) ∪ (σ ∩ ¬ρ)

Lemma A.1 [[·]]C = lfp(C)

Proof A.4 (for lemma A.1) Observe that C is continuous on the function
space L → ℘(B)→ ℘(B) which is a complete lattice. Thus lfp(C) exists by
the Knaster-Tarski theorem. Moreover C is continuous, hence the equality
holds by the Kleene fixpoint theorem. �

Definition A.2 The operator A : (L → D → D) → (L → D → D) is
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defined A(f) = f ′ where:

f ′[[skip]] = λ∆.∆
f ′[[assume(ρ)]] = λ∆.∆ ∩ α(ρ)

f ′[[transform(τ)]] = λ∆.α(γ(∆) ◦ τ)
f ′[[S1;S2]] = λ∆.f [[S2]](f [[S1]](∆))

f ′[[if ρ then S1 else S2]] = λ∆.(f [[S1]](∆ ∩ α(ρ))) ∪ (f [[S2]](∆ ∩ α(¬ρ)))
f ′[[while ρ do S]] = λ∆.(f [[while ρ do S]](f [[S]](∆ ∩ α(ρ)))) ∪ (∆ ∩ α(¬ρ))

Lemma A.2 [[·]]A = lfp(A)

Proof A.5 (for lemma A.2) Observe that A is continuous on the function
space L → D → D which is a complete lattice. Thus lfp(A) exists by the
Knaster-Tarski theorem. Moreover A is continuous, hence the equality holds
by the Kleene fixpoint theorem. �

Proposition A.1 Let

• g0 = λS.λσ.∅

• f0 = λS.λ∆.∅

• gi+1 = C(gi) for all i ∈ N

• fi+1 = A(fi) for all i ∈ N

If σ ∈ γ(∆) then gi([[S]](ρ)) ⊆ γ(fi([[S]](∆))) for all S ∈ L and i ∈ N.

Proof A.6 Proof by induction on i. Let σ ⊆ γ(∆).

• For the base case since g0([[S]](ρ)) = ∅, f0([[S]](∆)) = ∅ and ∅ ⊆ γ(∅)
the result follows.

• For the inductive case:

– Suppose S = skip. Immediate.

– Suppose S = assume(ρ). Since σ ⊆ γ(∆), σ ∩ ρ ⊆ γ(∆ ∩ α(ρ))
and the result follows.

– Suppose S = transform(τ). Since σ ⊆ γ(∆) σ ◦ τ ⊆ γ(∆) ◦ τ and
γ(∆) ◦ τ ⊆ γ(α(γ(∆) ◦ τ)) thus the result follows.

– Suppose S = S1;S2. Let ∆′ = fi([[S1]](∆)) and ∆′′ = fi([[S2]](∆′)).
Let σ′ = gi([[S1]](σ)) and σ′′ = gi([[S2]](σ′)). By the induction
hypothesis σ′ ⊆ γ(∆′) and σ′′ ⊆ γ(∆′′). Thus gi+1[[S]](σ) = σ′′ ⊆
γ(∆′′) = γ(fi+1[[S]](∆)) as required.
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– Suppose S = if ρ then S1 else S2. Since σ ⊆ γ(∆) it follows σ∩ρ ⊆
γ(∆∩α(ρ)) and σ∩¬ρ ⊆ γ(∆∩α(¬ρ)). Let ∆′ = fi([[S1]](∆∩α(ρ)))
and ∆′′ = fi([[S2]](∆ ∩ α(¬ρ))). Let σ′ = gi([[S1]](σ ∩ ρ)) and
σ′′ = gi([[S2]](σ ∩ ¬ρ)). By the induction hypothesis σ′ ⊆ γ(∆′)
and σ′′ ⊆ γ(∆′′) hence gi+1[[S]](ρ) = σ′ ∪ σ′′ ⊆ γ(∆′ ∪ ∆′′) =
γ(fi+1[[S]](∆)).

– Suppose S = while ρ do S1. Since σ ⊆ γ(∆) it follows σ ∩ ρ ⊆
γ(∆ ∩ α(ρ)) and σ′′′ ⊆ γ(∆′′′) where σ′′′ = σ ∩ ¬ρ and ∆′′′ =
∆ ∩ α(¬ρ). Let ∆′ = fi[[S1]](∆ ∩ α(ρ)) and ∆′′ = fi[[S]](∆′). Let
σ′ = gi[[S1]](σ∩ρ) and σ′′ = gi[[S]](σ′). By the induction hypothesis
σ′ ⊆ γ(∆′) and σ′′ ⊆ γ(∆′′) hence gi+1[[S]](ρ) = σ′′ ∪ σ′′′ ⊆
γ(∆′′ ∪∆′′′) = γ(fi+1[[S]](∆)). �

Definition A.3 Let Lm,n be defined as:

L0,0 = {skip, assume(ρ), transform(τ)}
Lm+1,0 = {while ρ do S1 | S1 ∈ Lm,n} ∪ ∪n∈NLm,n
Lm,n+1 = {if ρ then S1 else S2 | S1, S2 ∈ Lm,n} ∪ Lm,n

Proof A.7 (for proposition 3.5) Proof by induction on Lm,n since L =
∪m,n∈NLm,n.

• Let S ∈ L0,0

– Suppose S = skip. Immediate.

– Suppose S = assume(ρ). Immediate

– Suppose S = transform(τ). Immediate.

• Let S ∈ Ln,m for m > 0 and n > 0.

– Suppose S = S1;S2 where S1, S2 ∈ Lm,n−1. Let ∆′ = [[S1]]A(∆)
and ∆′′ = [[S2]]A(∆′). Let Γ′ = [[S1]]L(∆) and Γ′′ = [[S2]]L(Γ).
By two applications of the induction hypothesis ∆′ ⊆ Γ′ and
∆′′ ⊆ [[S2]]L(∆′). Since ∆′ ⊆ Γ′ then [[S2]]L(∆′) ⊆ [[S2]]L(Γ′) and
the result follows.

– Suppose S = if ρ then S1 else S2 where S1, S2 ∈ Lm,n−1. By
an application of the inductive hypothesis [[S1]]A(∆ ∩ α(ρ)) ⊆
[[S1]]L(∆∩α(ρ)) and likewise [[S2]]A(∆∩α(¬ρ)) ⊆ [[S2]]L(∆∩α(¬ρ))
and the result follows.
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• Let S ∈ Lm,0 for m > 0. Then S = while ρ do S1 where S1 ∈
Lm−1,n and m ≥ 0. Let ∆′ ⊆ ↑f(∆). By the inductive hypothesis
[[S1]]A(∆′ ∩ α(ρ)) ⊆ [[S1]]L(∆′ ∩ α(ρ)) ⊆ ↑f(∆′). By monotonicity
↑f(∆′) ⊆ ↑f(↑f(∆)) and by idempotence ↑f(∆′) ⊆ ↑f(∆). Therefore
[[S1]]A(∆′ ∩α(ρ)) ⊆ ↑f(∆) hence [[S]]A(∆′) ⊆ ↑f(∆)∩α(¬ρ) = [[S]]L(∆).
Since f is extensive it follows that ↑f is extensive hence ∆ ⊆ ↑f(∆)
and the result follows. �
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