Supplementary material for Temperature-driven Topological Phase Transition and Intermediate Dirac Semimetal Phase in ZrTe₅

B. Xu,^{1, *} L. X. Zhao,² P. Marsik,¹ E. Sheveleva,¹ F. Lyzwa,¹ Y. M. Dai,³ G. F. Chen,² X. G. Qiu,² and C. Bernhard¹

¹University of Fribourg, Department of Physics and Fribourg Center for Nanomaterials,

Chemin du Musée 3, CH-1700 Fribourg, Switzerland

²Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,

Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China

³Center for Superconducting Physics and Materials,

National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China

Reflectivity measurements

The polarized reflectivity $R(\omega)$ with $\mathbf{E} || a$ -axis and $\mathbf{E} || c$ -axis was measured at a near-normal angle of incidence using a Bruker VERTEX 70v FTIR spectrometer. In order to accurately measure the absolute $R(\omega)$ of the sample, an *in situ* gold overcoating technique [1] was employed. Data from 20 to 8000 cm⁻¹ were collected at 14 different temperatures from 300 down to 10 K on a shiny surface of ZrTe₅ in an ARS-Helitran crysostat. Since a Kramers-Kronig analysis requires a broad spectral range, the room temperature $R(\omega)$ in the near-infrared to ultraviolet range (4 000 – 50 000 cm⁻¹) was measured with a commercial ellipsometer (Woollam VASE).

Kramers-Kronig analysis

The real part of the optical conductivity $\sigma_1(\omega)$, which provides direct information about the charge dynamics, has been determined via a Kramers-Kronig analysis of $R(\omega)$ [2]. Below the lowest measured frequency, we used a Hagen-Rubens function $(R = 1 - A\sqrt{\omega})$ for the lowfrequency extrapolation. For the extrapolation on the high frequency side, we used the room temperature ellipsometry data and extended them assuming a constant reflectivity up to 12.5 eV that is followed by a free-electron (ω^{-4}) response.

* bing.xu@unifr.ch

- C. C. Homes, M. Reedyk, D. A. Cradles, and T. Timusk, Appl. Opt. **32**, 2976 (1993).
- [2] M. Dressel and G. Grüner, *Electrodynamics of Solids* (Cambridge University press, 2002).