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INTRODUCTION 

Cell growth and proliferation require a high amount of en-

ergy for biosynthetic pathways. Cells take energy from nu-

trient intake and both unicellular and multicellular eukary-

otes have evolved systems that allow dynamic sensing of en-

ergy sources, mainly sugars. The class of Snf1/AMPK (Su-

crose non-fermenting/AMP-activated protein kinase) plays 

a key role as a guardian of cellular energy [1]. They are highly 

conserved serine/threonine kinases and their primary role 

is the integration of signals regarding nutrient availability 

and environmental stress, ensuring the adaptation to those 

conditions and cell survival [2]. 

Here we discuss the mechanisms of action of Snf1, a 

member of the Snf1/AMPK family in Saccharomyces cere-

visiae and its conventional roles in the regulation of metab-

olism, stress response and aging. In addition, we also focus 

on recent advances showing emerging functions of Snf1 on 

the modulation of key processes such as endocytosis and 

cellular trafficking as well as cell cycle, proliferation and me-

tabolism. 

 

 

SNF1 COMPLEX COMPOSITION  

Protein kinase Snf1 in yeast is a heterotrimeric complex 

made by the catalytic α subunit Snf1, a regulatory β subunit 

(alternatively Gal83, Sip1 and Sip2) and the γ subunit Snf4 

[3]. 

The catalytic α subunit (encoded by the SNF1 gene) was 

identified in a screening of mutants unable to grow in pres-

ence of sucrose as carbon source [4]. The Snf1 subunit is 

constitutively expressed and constituted by a catalytic N-

terminal domain and a C-terminal regulatory region. The 

regulatory region presents a short autoinhibitory sequence 

(AIS) (380 - 415 aa) and a domain which mediates the inter-

actions with the β subunits of the complex. The autoinhibi-

tory domain interacts with both the regulatory subunit Snf4 

and the kinase domain of Snf1. The interaction with Snf4 re-

lieves the inhibition of the AIS allowing the phosphorylation 

of Thr210 residue of Snf1 that determines its activation  

[5, 6]. 

In S. cerevisiae, three β subunits (Gal83, Sip1 and Sip2) 

are present. They share partially redundant functions,  

since only the triple mutant sip1Δsip2Δgal83Δ strain shows  
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growth defects when glycerol or ethanol are added as car-

bon sources [7, 8]. The β subunits contain a conserved C-

terminal sequence in which two domains are present: the 

KIS domain (Kinase Interacting Sequence) that mediates the 

interaction with the α-subunit Snf1 [9] and the ASC domain 

(Association with SNF1 kinase Complex) that allows the  

interaction with Snf4 [10]. Differently, the N-terminal se-

quence is specific for each β subunit and confers a different 

subcellular localization pattern to each protein. All three 

proteins are mainly cytoplasmic in presence of high glucose 

concentrations. Upon glucose depletion, Sip1 relocalizes to 

the vacuolar membrane, Gal83 relocalizes to the nucleus, 

while Sip2 remains cytoplasmic [11]. Thus, the role of the β 

subunits is to interact with Snf1 and to modulate its subcel-

lular localization [11, 12]. The particular localization of the 

kinase complexes with different β subunits confers special-

ized functions. For example, Sip1 alone is not able to sustain 

growth on ethanol or glycerol and determines a very low ki-

nase activity of the complex [13], Sip2 function seems to be 

involved in the mechanism of cellular aging [14], while Gal83 

plays its main role in the Snf1-dependent transcriptional 

regulation, since in low glucose it determines the nuclear lo-

calization of the Snf1 complex thank to its NLS (Nuclear  

Localization Signal). On the contrary, NES (Nuclear Export 

Signal), present on the sequence of Gal83, allows the exit 

from the nucleus of the complex when high glucose concen-

trations are available [15]. In addition, Gal83 mediates the 

interaction of Snf1 with some substrates, such as the tran-

scription activator Sip4 [16] and the transcriptional appa-

ratus [17]. It has also been shown that deletion of the glyco-

gen binding domain (GBD) of Gal83 leads to a constitutive 

activation of Snf1, which results able to modulate the ex-

pression of some Snf1-regulated genes also in high glucose 

concentrations [18]. The GBD domain of Gal83 also interacts 

with the Reg1/Glc7 phosphatase complex, responsible for 

Snf1 inactivation [18]. Taken together those data suggest 

that Gal83 plays a dual role regulating nuclear localization 

of Snf1 in low glucose and guaranteeing its inactivation in 

high glucose. 

Similarly to SNF1, the gene encoding the γ subunit, SNF4, 

was identified by isolation of a sucrose non fermenting mu-

tant [4]. Snf4 is a constitutively expressed protein that binds 

both the α and β subunits of the Snf1 complex [10, 19]. The 

role of Snf4 is to relieve the inhibition of Snf1 interacting 

with its AIS domain, stabilizing the Snf1 complex in the ac-

tive conformation [20]. In fact, SNF4 deletion causes a  

decreased kinase activity of Snf1, whereas deletion of the 

AIS domain of Snf1 fully complement the phenotype of a 

snf4Δ strain [19, 20]. Remarkably, the activating phosphor-

ylation of Thr210 residue of Snf1 is still detectable in a snf4Δ 

strain [21] and in high glucose Snf4 seems to be required for 

the proper inactivation of Snf1 mediated by the phospha-

tase complex Reg1/Glc7 [18]. Thus, these findings indicate 

that Snf4 plays a complex role in the regulation of Snf1. 

 

REGULATION OF SNF1 ACTIVITY 

Snf1 complex is activated through phosphorylation of the 

Thr210 of the α subunit by one of the three constitutively 

active upstream kinases Sak1, Tos3 and Elm1 [22, 23] (Fig. 

1). This phosphorylation is essential for Snf1 activity, since 

the sak1Δtos3Δelm1Δ strain shows the same phenotype of 

a snf1Δ strain, such as growth defects in presence of limiting 

glucose or alternative carbon sources like glycerol or  

ethanol [22].  

Although Snf1 phosphorylation is a key step for its activa-

tion, a non-phosphorylatable Snf1 mutant (Snf1-T210A) re-

tains a low catalytic activity, originating intermediate  

phenotypes [24, 25]. Also, the mutation of the lysine which 

constitutes the ATP binding site in the kinase domain (Snf1-

K84R), which for many aspects mimics the loss of Snf1  

protein, still confers a slight catalytic activity [26-29]. 

On the other side, in response to high glucose concentra-

tions Snf1 is inactivated through dephosphorylation of 

Thr210 by the Gcl7 protein phosphatase (also known as 

 

FIGURE 1: Schematization of the activa-

tion of Snf1 and its main conventional 

functions. Snf1 complex is composed by 

the α subunit Snf1, the ƴ subunit Snf4 and 

one of three alternative β subunits Gal83, 

Sip1 or Sip2. Snf1 is phosphorylated on 

T210 by the upstream kinases Sak1, Tos3 

and Elm1, while it is de-phosphorylated by 

the phosphatase complex Glc7/Reg1. 

When active, Snf1 phosphorylates 

transcription factors which regulate the ex-

pression of genes involved in glucose 

transport, stress response and glucose re-

pression. In addition, Snf1 directly phos-

phorylates some metabolic enzymes. See 

text for details. 
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PP1), which is targeted to Snf1 by the adaptor subunit Reg1 

[30, 31]. Reg1 interacts both with Glc7 and Snf1 when glu-

cose is largely available in the culture medium and loss of 

Reg1 leads to the constitutive activation of Snf1 [32-34]. It 

has been reported that in high glucose concentration, Hxk2 

(Hexokinase 2) regulates the activity of PP1 and conse-

quently the activation of Snf1 kinase [31]. 

Active Snf1 phosphorylates serine and threonine residues 

contained in the consensus pattern Φ-x-R-x-x-S/T-x-x-x-Φ, 

where Φ is a hydrophobic residue [35].  

Differently from its mammalian homolog AMPK, yeast 

protein kinase Snf1 is not allosterically activated by AMP 

[36]. However, it was demonstrated that ADP molecules are 

able to bind the γ subunit Snf4, preventing Snf1 

dephosphorylation mediated by Glc7 [37, 38]. 

The structure of the kinase domain of Snf1 showed that 

it is a dimer, which represents an inactive form of the kinase, 

since Thr210 is inaccessible for phosphorylation by the acti-

vating kinases [39]. Although these results suggest the exist-

ence of another layer of regulation of Snf1 activity, further 

investigation is required to better elucidate its physiological 

relevance. 

Interestingly, some recent evidence indicates additional 

mechanisms that regulate Snf1 activity: (i) phosphorylation 

of Ser214, inside the activation loop, downregulates Snf1 

function [40]; (ii) SUMOylation of the catalytic α subunit 

Snf1 inhibits its activity, possibly by attenuating its levels in 

the cell and/or favoring the inactive conformation of the ki-

nase [41]; (iii) the SAGA acetyl transferase complex deubiq-

uitylates Snf1 affecting the stability of the complex and its 

kinase activity [42]; (iv) the ubiquitin-associated motif (UBA) 

of the α subunit Snf1 indirectly regulates SNF1 gene expres-

sion and Snf1 interaction with the γ subunit Snf4 [43]. 

 

NETWORK OF SNF1 PHYSICAL INTERACTORS 

A total of 216 proteins physically interacting with Snf1 are 

annotated in SGD (Saccharomyces Genome Database, 

http://www.yeastgenome.org), 92 of which are also Snf1 

substrates (identified by high throughput or low throughput 

assays). In Figure 2 we clustered them on the base of their 

function. Apart from the most known interactors involved in 

Snf1 complex regulation, transcription, histone modifica-

tion, signaling and metabolism, there are many proteins 

which regulate translation, ribosome function, intracellular 

transport/trafficking and cell cycle. In addition, some of 

them are also proteins of the ubiquitin/proteasome machin-

ery, chaperones and Fe/S cluster proteins (Fig. 2). Remarka-

bly, only a few of them have been extensively investigated 

for the physiological relevance of Snf1-dependent phos-

phorylations, suggesting that many functions of Snf1 are still 

to be discovered. 

 

CONVENTIONAL ROLES OF SNF1 

Snf1 and the regulation of transcription 

The most studied function of Snf1 is the regulation of tran-

scription, involving more than 400 genes [46]. Snf1 acts both  

 

 

on transcription factors and on chromatin remodeling [47-

50], as also highlighted by the number of its interactors be-

longing to these two classes of proteins (Fig. 2). 

Mig1 is the most important glucose-regulated transcrip-

tional repressor [51]. Mig1 is phosphorylated by Snf1 on 

four sites when glucose is scarce, causing the activation of a 

NES (Nuclear Export Signal) sequence that causes its trans-

location from the nucleus to the cytoplasm through the ex-

portin Msn5 [48, 52, 53]. Important in the regulation of Mig1 

is hexokinase Hxk2, which interacts with the transcriptional 

repressor directly in the nucleus to avoid its phosphoryla-

tion by Snf1, thus providing a link between glucose metabo-

lism and transcription of glucose-repressed genes [54]. Mig1 

represses about 90 genes, including those coding for en-

zymes required for the metabolism of sucrose (SUC2), malt-

ose (the MAL regulon) and galactose (GAL4) [55]. Further-

more, Mig1 controls the expression of high-affinity glucose 

transporters, required when glucose is scarce (HXT2, HXT4) 

[56], represses TPS1, essential for the metabolism of treha-

lose [57] and genes coding for enzymes of the TCA cycle 

[58].  

Besides Mig1, Snf1 regulates the activity of other tran-

scription factors. Cat8 and Sip4, which bind Carbon Source 

Responsive Elements (CSRE), regulate the expression of glu-

coneogenic genes [59] and are activated by Snf1 phosphor-

ylation [49, 60]. Cat8 activates the expression of glucose-re-

pressed genes alongside transcription factor Adr1, which is 

itself a target of Snf1 [61, 62]. Moreover, in a fine mecha-

nism of positive feedback, the CAT8 gene is activated by 

Snf1 through inhibition of Mig1 [47]. In addition, Gcn4, the 

transcription factor responsible for the expression of genes 

involved in amino acid biosynthesis, is also regulated by Snf1 

when in complex with the β subunit Gal83 or Sip1, but not 

Sip2 [63].  

Snf1 has been reported to phosphorylate Ser10 of his-

tone H3 and to promote the acetylation on Lys14 of histone 

H3 by Gcn5, a component of the SAGA complex [50]. Snf1-

mediated regulation of histone H3 is involved in the expres-

sion of ADY2 gene. In fact, Snf1 stimulates the binding of 

Gcn5 and the acetylation of histone H3 at ADY2 promoter, 

promoting the transcription of this gene [64]. 

 

Snf1 and the regulation of metabolism 

Besides its role in regulating the transcription of several 

genes involved in metabolism, Snf1 directly regulates, 

through phosphorylation, important metabolic enzymes. In 

fact, together with the class of transcription factors and reg-

ulators, proteins linked to metabolism are the most  

abundant among Snf1 interactors (Fig. 2). Probably the most 

impactful function exerted by Snf1 as a direct regulator of 

metabolism is the regulation of the acetyl-CoA carboxylase 

Acc1 [65]. In yeast, loss of Snf1 causes a dramatic accumu-

lation of fatty acids and the carbon overflow into the  

fatty acid biosynthetic pathway has been shown to cause in-

ositol auxotrophy mediated by the impairment of INO1  

expression    [65,   66].   Moreover,    the   excessive   alloca- 
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tion of carbon into fatty acids causes a depletion of the  

intracellular acetyl-CoA pool, and thus a global reduction of 

acetylation of histones, of Swi4, the DNA-binding protein of 

the transcription factor SBF [67], and of the β-subunit Sip2 

[68].  

Snf1 was also shown to phosphorylate Pfk27, the second 

isoform of 6-phosphofructo-2-kinase [69]. Upon glucose re-

moval, Snf1 phosphorylates Pfk27 in its N-terminal domain, 

leading to the SCFGrr1-dependent degradation of Pfk27 [69]. 

In particular, Snf1-dependent phosphorylation is required 

to promote Pfk27 association with the F-box protein Grr1 

[69], thus leading to Pfk27 turnover and consequently to a 

reduction of fructose-2,6-bisphosphate. The importance of 

Pfk27 turnover is highlighted by the fact that expression of 

a non-phosphorylatable and non-degradable Pfk27 protein 

inhibits growth on glycerol [69]. 

Moreover, Snf1 phosphorylates Gpd2, the glycerol-3-

phosphate dehydrogenase required for anaerobic growth, 

thus inhibiting glycerol synthesis during the diauxic shift. In 

fact, it was reported that Snf1 phosphorylates Gpd2 on 

Ser72 priming Gpd2 for subsequent phosphorylation on 

Ser75, probably by Yck1 [70]. 

FIGURE 2: Network of Snf1 physical interactors. The network reports the known physical associations obtained from SGD (Saccharomyces Genome 

Database, http://www.yeastgenome.org). Interactors are clustered according to their function and colored differently. When the interactor is also a 

substrate of Snf1 according to the Yeast Kinase Interaction Database (KID, http://www.moseslab.csb.utoronto.ca/KID/; [44]), the edge is colored in red 

if phosphorylation was analyzed by low throughput assays (LTP in vitro kinase assays; in vitro phosphorylation site mapping; in vivo phosphorylation site 

mapping; phosphorylation reduced or absent in kinase mutant) or in blue if phosphorylation was assayed only by high throughput analysis (protein chip 

data for in vitro phosphorylated substrate; HTP in vitro phosphorylation). Data visualization and analysis was performed with Cytoscape [45]. 
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Snf1 and PKA crosstalk 

In yeast, the main pathway activated by glucose is the PKA 

pathway, involved in metabolism, growth and proliferation 

[71-73]. Targets of PKA include glycolytic and gluconeoge-

netic enzymes, proteins involved in the metabolism of  

storage carbohydrates, transcription factors regulating 

stress response, ribosomal biogenesis, and carbohydrate 

metabolism. Active PKA directly stimulates glycolysis, cell 

growth and cell cycle progression, at the same time gluco-

neogenesis, stress resistance and mobilization of glycogen 

and trehalose are down-regulated [71, 74]. Several exam-

ples of cross-talk between Snf1 and PKA pathways have 

been reported [75]. Indeed, both kinases regulate the activ-

ity of the same transcription factors. Adr1, the transcrip-

tional activator of glucose-repressed genes, is inactivated by 

PKA and activated by Snf1 which promotes its phosphoryla-

tion [76, 77]. Msn2, the stress-responsive transcriptional  

activator, which is a well-known target of PKA, is phosphor-

ylated also by Snf1 in glucose starvation [78]. PKA indirectly 

controls the localization of the β subunit Sip1 and, as a con-

sequence, of the Snf1-Sip1 complex [12]. In addition, PKA 

contributes to regulate Sak1, one of the Snf1-activating  

kinases [79]. 

Notably, recent data nicely complement observations of 

a cross-talk between Snf1 and PKA. Indeed, the adenylate 

cyclase Cyr1 and Snf1 interact in a nutrient-independent 

manner [29]. Active Snf1 phosphorylates Cyr1 and  

negatively regulates cAMP content and PKA-dependent 

transcription [29]. Moreover, loss of Snf1 causes an altera-

tion in the phosphorylation pattern of adenylate cyclase 

[29], suggesting that the crosstalk between Snf1 and PKA is 

more complex than actually reported and needs to be  

further investigated. 

 

Snf1 and the regulation of TORC1 

The Target Of Rapamycin Complex I (TORC1) is a highly con-

served nutrient-responsive regulator of cell growth and  

metabolism in all eukaryotes [80-82]. Contrary to AMPK, 

which is active under nutrient-poor conditions, TORC1 is ac-

tive under nutrient-rich conditions in budding yeast and also 

in the presence of growth factors in higher eukaryotes [83, 

84]. In yeast, TORC1 is composed of Tor1, Kog1/Raptor, Lst8 

and Tco89 [81, 85, 86]. Kog1/Raptor is known to recruit sub-

strates such as 4EBP1 and ribosomal S6 kinase (S6K) to the 

TORC1 complex [87, 88] and is required for the regulation of 

its activity [80, 89].  

Kog1 is phosphorylated by Snf1 under glucose depriva-

tion, as AMPK does on the ortholog Raptor [90], confirming 

a conserved regulatory function of Snf1/AMPK on TORC1 

complex. Nevertheless, the role of Snf1-dependent phos-

phorylation on Kog1 is somehow different, since Snf1 phos-

phorylation stimulates the dissociation of the Kog1-Tor1 

complex and the formation of Kog1-bodies by limiting the 

level of active TORC1 complex in the cell [90]. Thus, alt-

hough the final result of Snf1 phosphorylation is the inacti-

vation of TORC1 activity, this is reached by increasing the 

activation threshold of TORC1 to guarantee a cellular com-

mitment to a quiescent state and then survival in  

starvation condition [90].  

In the presence of nutrients, TORC1 phosphorylates and 

activates Sch9, the ortholog of S6K in yeast which, together 

with other substrates, drives ribosome biosynthesis [91-93]. 

Through an in vitro kinase assay and epistasis analysis, Sch9 

has been shown to be also a target of Snf1, indeed total Sch9 

phosphorylation is reduced in snf1Δ mutant [94]. On the 

other hand, Snf1-hyperactive cells display a dramatic de-

crease of TORC1 activity [95]. Moreover, Snf1 activity is  

required for the downregulation of TORC1-dependent phos-

phorylation on Sch9 also in glucose deprivation [96].  

Interestingly, Orlova and coworkers showed that rapamy-

cin treatment results in a significant increase of Thr210 

phosphorylation on Snf1 [97], suggesting a reciprocal regu-

lation of Snf1 by TORC1 and a more complex crosstalk  

between the two signaling pathways. 

TORC1 activity is involved in the regulation of autophagy, 

a cellular recycling system that degrades proteins and orga-

nelles by delivery to the vacuole in response to nutrient dep-

rivation [98, 99]. In yeast, nitrogen starvation, which induces 

TORC1 inhibition, Atg13 dephosphorylation as well as Atg1 

phosphorylation, results in activation of autophagy [100]. 

Remarkably, although Snf1 has been proposed as a positive 

regulator of nitrogen-induced autophagy probably because 

of its phosphorylation on Atg1 [101], in snf1Δ cells, the 

translocation of GFP-Atg8 to the vacuole is reduced by 50% 

compared to the wild type [102]. Moreover, Snf1 activity is 

essential for glucose starvation-induced autophagy, and mi-

tochondrial respiration is a required feature for this energy 

deprivation condition [102]. These interesting results indi-

cate that further investigations are required to better eluci-

date the different mechanisms which regulate nitrogen- and 

glucose-induced autophagy, as well as how Snf1 is involved 

in such a regulation. 

 

Snf1 and the regulation of stress response 

Besides nutritional deprivation, Snf1 is also involved in the 

response to other cellular stresses. Snf1 activity protects 

against toxicity caused by cadmium [103], hygromycin B 

[26], hydroxyurea [24], selenite [104], and iron [105]. Snf1 

also regulates HSF (Heat Shock transcription Factor) ensur-

ing the cellular resistance to high temperature, oxidative 

stress [106, 107] and counteracts the activity of the tran-

scriptional inhibitor Nrg1, promoting the expression of 

ENA1, responsible for Na+ ions detoxification [108]. 

In addition, protein kinase Snf1 regulates the Unfolded 

Protein Response (UPR), the evolutionary conserved  

pathway activated when improperly folded proteins accu-

mulate and induce endoplasmic reticulum (ER) stress [109, 

110]. ER misfunction causes severe disease conditions [110], 

thus the elucidation of the molecular mechanism by which 

AMPK regulates UPR signaling attracts the increasing inter-

est of cell biologists. Nevertheless, the role of Snf1 in this 

pathway is still not clear, since partially discrepant data 

were published on yeast [111, 112]. Mizumo and coworkers 

support a negative role of Snf1 in such a regulation, showing 

that the deletion of SNF1 gene and Snf1 activation cause in-

creased and decreased resistance to ER stress, respectively 

[112]. On the contrary, although results from Casamayor’s 

laboratory highlight that Snf1 activation induces 
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hypersensitivity to ER-stress-inducer agents [111], they also 

reported that snf1Δ cells are more sensitive to tunicamycin, 

a known inducer of ER stress [113]. 

Thus, even though these data indicate an interesting role 

for Snf1 in the regulation of ER stress response, more work 

is needed to understand the underlying molecular  

mechanism.  

 

Snf1 and the regulation of DNA damage 

Interesting results from Simpson-Lavy and collaborators re-

cently show cross-talk between Snf1 and protein kinases  

involved in DNA damage (Mec1/ATR and Tel1/ATM) [114]. 

Phosphorylation of the SUMO E3 ligase Mms21 by Mec1 and 

Tel1 induces SUMOylation and inactivation of Snf1, in re-

sponse to DNA damage. Thus, fermentation increases while 

respiration is switched off. Remarkably, inactivation of Snf1 

activity by SUMOylation does not affects its phosphoryla-

tion at Thr210, indicating that SUMOylation and phosphor-

ylation of Snf1 are independently regulated. The authors 

suggest that this metabolic switch may protect yeast cells 

from oxidative stress and propose interesting parallelisms 

with Warburg effect in cancer cells [114]. 

 

Snf1 and the regulation of aging 

Given the role of AMPK kinase in the regulation of energy 

homeostasis, it is not surprising the existence of a strong re-

lationship between aging and the AMPK pathway [115-119]. 

Indeed, hallmarks of the aging process such as mitochon-

drial dysfunction [120], autophagy [121], endoplasmic retic-

ulum stress [122] and DNA damage repair [123] are  

regulated by AMPK. Importantly, both pharmacological 

stimulation and exercise increase AMPK activity in skeletal 

muscle of young rats but not in old ones [124]. Moreover, 

AMPK-dependent acetyl-CoA carboxylase and mitochon-

drial biogenesis are impaired with aging [124]. These and 

other results suggest that the basal activity of AMPK de-

clines with aging, contributing to the dysregulation of  

intracellular metabolism. 

The first evidence of the involvement of Snf1/AMPK in 

the aging process in yeast occurred several years ago when 

Asharafhi and co-workers discovered that Snf1 activity in-

creased in replicative aging even in the presence of abun-

dant glucose in the environment [14]. Moreover, loss of the 

β-subunit Sip2 accelerates aging [14] and Sip2 acetylation 

enhances its interaction with Snf1, decreases the kinase ac-

tivity of the complex and extends Replicative Life Span (RLS, 

an aging model of mitotically active cells) [94]. Thus, in a 

yeast model of replicative aging, these results indicate that 

Snf1 inactivation promotes longevity [94].  

On the contrary, in a yeast model of Chronological Life 

Span (CLS, a model of aging in post-mitotic mammalian 

cells), Snf1 activity is critical for the extension of CLS in ca-

loric restriction condition and cells deleted for SNF1 gene 

have a very short CLS [125, 126]. Accordingly, the upregula 

 

 

 

 

 

tion of Snf1 activity extends the life span [127] and drugs like 

metformin (which activates AMPK) are being proposed for 

the treatment of age-associated disorders [128].  

Taken together these data indicate that Snf1 activity pro-

motes longevity in CLS while accelerates RLS, showing dis-

tinct and opposite mechanisms in the regulation of aging, as 

also reported for other proteins in yeast [129, 130]. 

 

NON CONVENTIONAL ROLES OF SNF1 

Snf1 and the regulation of endocytosis 

Recent data suggest that Snf1 function is not limited to con-

ditions of carbon limitation. One of such functions is the reg-

ulation of proteins involved in endocytosis and cellular traf-

ficking, indeed several interactors and substrates of Snf1 are 

in this cluster (Fig. 2). Snf1 interacts with and phosphory-

lates the α-arrestin Rod1 [27, 131, 132], which regulates en-

docytosis of the lactate transporter Jen1 and of the hexose 

transporters Hxt1, Hxt3 and Hxt6, in response to glucose. 

Remarkably, Snf1 phosphorylation on Rod1 occurs not only 

in glucose limitation, but also in the presence of glucose. In 

this condition, Snf1 phosphorylation inhibits Rod1-medi-

ated trafficking of Hxt1 and Hxt3, thus maintaining a high 

glucose transporter activity [133]. Therefore, Snf1-mediated 

phosphorylation has both an inhibitory and activatory func-

tion on the trafficking of hexose transporters, depending on 

the level of Snf1-mediated phosphorylation on Rod1 [133]. 

According to the proposed model, when Snf1 activity is high, 

Rod1 is hyper-phosphorylated and the endocytosis of hex-

ose transporters is active. On the other hand, in glucose 

growing cells, Snf1 activity is low, Rod1 is hypo-phosphory-

lated and thus its trafficking function is inhibited, indicating 

that Snf1 retains physiologically important function also un-

der high-glucose conditions, probably to direct its activity to 

specific targets [133]. 

Snf1 also regulates Arf3 [134], one of the ADP-ribosyla-

tion factors (Arfs), involved in vesicle transport and actin re-

organization. Yeast Arf3 is required for invasive growth and 

its activity is stimulated upon glucose-depletion in a Snf1-

dependent manner. The regulation of invasive growth in nu-

trient depletion is actually a conventional role of Snf1 [135, 

136]. However, the peculiarity of the activation of Arf3 is 

that it does not depend on Snf1 kinase activity, but rather 

on its absolutely new role as a GEF (Guanine Nucleotide Ex-

change Factor). In fact, it was shown that the C-terminal hy-

drophobic α-helix core of Snf1 is a non-canonical GEF for 

Arf3 activation [134]. 

 

Snf1 and the regulation of cell proliferation, cell cycle and 

metabolism 

Several reports indicate that Snf1 could be active  

in the presence of high glucose [54, 133, 137, 138],  

indicating regulatory roles for Snf1 under  

glucose repression. In facts, cells lacking Snf1 (both  

snf1Δ and snf1as mutant, whose activity can be  

chemically  inhibited)  show  a  slow growth phenotype and  
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an increased fraction of cells in G1 phase, in synthetic  

medium supplemented with 2% glucose [25, 139]. Never-

theless, no perturbations of growth occur in complete (YPD, 

with 2% glucose) and in synthetic media with 5% glucose 

[25, 139], as well as in complete synthetic medium (our  

unpublished results), indicating that the nutritional compo-

sition of the media may influence the cellular requirement 

for Snf1 function. 

The relevant role of the catalytic activity of Snf1 in regu-

lating proliferation in glucose-repressed condition is further 

supported by the fact that Snf1 loss reduces the expression 

of G1-specific genes [139]. The G1/S transition is regulated 

by the expression of about 150 genes (the G1 regulon) [140], 

controlled by the transcription factors SBF (Swi4-Swi6) and 

MBF (Mbp1-Swi6) [67]. Snf1 directs the expression of both 

SBF and MBF-regulated genes [25, 139], by modulating the 

recruitment of both the co-activator Swi6 and the RNA pol-

ymerase II to the promoters of G1-genes [139] (Fig. 3).  

Snf1-T210 is weakly phosphorylated in 2% glucose, con-

firming that it is partially active in that growth condition [21, 

139, 141]. Consistently, the non phosphorylatable SNF1-

T210A mutant shows a slow growth phenotype and a  

delayed G1/S transition. [25, 139].  

Snf1 exerts its function in mitosis too and active Snf1 is 

localized at the division site from the time of bud emergence 

to cytokinesis [142]. Both septins and protein kinase Elm1 

are required for proper Snf1 localization to the bud neck, in-

dicating that the presence of an accurate scaffold is neces-

sary for this process (Fig. 3). Loss of Snf1 activity causes a 

defect in the correct alignment of the mitotic spindle, that 

in turn induces a delay of the metaphase-to-anaphase tran-

sition, thus clearly indicating Snf1 function for proper spin-

dle orientation. Two major pathways are responsible for the 

spindle alignment along the mother-bud axis in budding 

yeast: the Kar9-pathway and the Dyn1-pathway [143]. Re-

cent results show that Snf1 acts in parallel to Dyn1 and in 

concert with Kar9 to promote spindle positioning, probably 

phosphorylating components of the Kar9-dependent path-

way [142]. In support of these data, several key regulators 

of cell cycle are known interactors of Snf1, mainly involved 

in the network of spindle orientation, mitotic exit and cyto-

kinesis (Fig. 2).  

It is amazing that cells lacking Snf1 and growing in  

synthetic media containing 2% glucose, show an extensive 

transcriptional reprogramming, being the most upregulated 

genes mainly involved in transmembrane transport and  

 

FIGURE 3: A model of the regulatory role of Snf1 during the cell cycle. At the G1/S phase transition, Snf1 promotes the binding of Swi4, Mbp1 and 

Swi6 proteins to G1 promoters and favors the proper recruitment of the RNA Polymerase II. From bud emergence, active Snf1 is localized to the bud 

neck, in a septin-dependent manner. At the metaphase-to-anaphase transition, Snf1, as part of the Kar9-dependent pathway, promotes spindle align-

ment along the mother-bud axis and guarantees proper nuclei segregation during mitosis. See text for details. 



P. Coccetti at al. (2018)  New roles of Snf1/AMPK 

 
 

OPEN ACCESS | www.microbialcell.com 489 Microbial Cell | NOVEMBER 2018 | Vol. 5 No. 11 

metabolic processes such as aminoacid biosynthesis, iron 

homeostasis and redox metabolism [144]. Moreover, an in-

crease of cellular dependence on mitochondrial function in 

glucose repression condition is clearly noticeable in snf1Δ 

cells, further supporting the emerging roles of Snf1 in non-

limiting nutrient condition too [144]. 

 

PERSPECTIVES AND CONCLUDING REMARKS  

Many studies have reported that AMPK activity is altered in 

several diseases, such as inflammation, diabetes and cancer 

[145, 146]. Moreover, the number of pharmacological 

agents that activate AMPK has continued to increase and 

some of them are promise hypoglycemic agents. Im-

portantly, although AMPK is considered a key target for can-

cer treatment, emerging data indicate that AMPK performs 

both anti- and pro-tumorigenic roles depending on the com-

position of AMPK complex, signaling networks and environ-

mental conditions [147, 148]. The pro-tumorigenic role of 

AMPK involves promotion of metabolic adaptation for can-

cer cell survival by regulating fatty acid metabolism and 

maintaining the ability to growth in stressful conditions 

[145, 149].  

Therefore, the expansion of the repertoire of AMPK sub-

strates, as well as more in-depth studies of the molecular 

mechanisms by which AMPK is activated, will help to better 

understand the roles of this kinase in the regulation of  

human pathologies. In this context, the yeast unicellular 

organism Saccharomyces cerevisiae is a powerful model for 

studying fundamental aspects of eukaryotic cell biology and 

to validate the increasing downstream targets of the class of 

Snf1/AMPK protein kinases which control the complexity of 

cellular physiology. 
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