
Seeing is better than believing: visualization of
membrane transport in plants
Markus Geisler

Recently, the plant transport field has shifted their research

focus toward a more integrative investigation of transport

networks thought to provide the basis for long-range transport

routes. Substantial progress was provided by of a series of

elegant techniques that allow for a visualization or prediction of

substrate movements in plant tissues in contrast to established

quantitative methods offering low spatial resolution. These

methods are critically evaluated in respect to their spatio-

temporal resolution, invasiveness, dynamics and overall

quality. Current limitations of transport route predictions-based

on transporter locations and transport modeling are

addressed. Finally, the potential of new tools that have not yet

been fully implemented into plant research is indicated.
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Introduction

Because you have seen me, you have believed;
blessed are those who have not seen and yet have believed.1

John 20: 29

The catalyzed movement of substrates across membranes,

commonly referred to as transmembrane transport, has

always been a hotspot in plant biology [1]. Throughout

the 80s and 90s, the plant transport community concen-

trated mainly on biochemical characterization of single

transporter isoforms with a focus on a kinetic level (the

‘queen of transport experiments’ [2]). In the last two

decades, deep insights into transporter expression, traffick-

ing, regulation and their role in plant physiology were

provided. Recently, plant scientists have shifted their inter-

est toward a more integrative investigation of long-range

transport routes or transport networks [3–5] that is of water,

nutrients or some hormones (for an overview, see Figure 1).

Transport was classically quantified on a whole organ or

plant level using radiotracers, external microelectrodes or

cell-type specific analyses of transport substrates (for

reviews on these methods, see Ref. [6]). While these

techniques allow for a high level of temporal resolution,

they are limited in the spatial aspect. Therefore, direct

and indirect techniques have been developed in order to

image either local substrate concentrations or intra and

intercellular transport in planta. Here, we present current

methods that allow for a quantitative visualization of

transmembrane transport and compare them with classi-

cal transport measurements and in silico techniques.

Inference of transport routes by transporter
imaging
For several substrates, putative transport routes have

been deduced from polar transporter localizations

[3,5,7–10]. These cell-biological approaches have been

partially backed up by analyses of reporter expression and

transport modeling (see below).

The best-understood example is probably the polar trans-

port of the auxin, indole-3-acetic acid (IAA), in the

Arabidopsis root tip provided by a network of plasma

membrane localized im- and exporters of the ABCB,

AUX1/LAX and PIN-FORMED (PIN) families [3,11].

Different degrees of tissue-specific and polar locations of

members of these families have been established by

immunolocalization and fluorescent protein fusions (see

Figure 3) that are in line with current models of a reversed

fountain auxin flux pattern (see Figure 1; [8]). Similarly,

the boric acid channel, NIP5;1, and the boron exporter,

BOR1, have been localized in a polar fashion in the

plasma membranes facing toward soil and stele, respec-

tively, and are therefore suspected to function in the

uptake and translocation of boron to support growth of

various plant species (see Figure 1; [7]). Likewise, the

ABCG-type SL transporter, PDR1, exhibits an asymmet-

rical localization in the plasma membrane of petunia root

1 Please note that this bible citation is not at all meant as a religious

statement but a stylistic element acknowledging the effort of the

transport field to promote techniques allowing for a quantitative visuali-

zation of transport, which is the content of this review.

1

ht
tp
://
do
c.
re
ro
.c
h

Published in "Current Opinion in Plant Biology 46: 104–112, 2018"
which should be cited to refer to this work.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/185315523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tips indicating a directional cell-to-cell transport process

at least in this region of the root (see Figure 1; [5]).

However, presence of a transporter on a cellular subdo-

main does not automatically reflect local activity levels.

Moreover, this approach failed so far in the prediction of

transport routes for non-polar transporters known to be

involved in long-distance transport [12].

Quantification of transporter activity or
regulation
A better proxy might be the recently developed transport
activity sensors, such as AmTrac and MepTrac [13,14],

NiTrac1 and PepTrac [15]. Although these transport

activity sensors do not strictly monitor transport, and have

not yet been tested in planta, they will most likely

become valuable, especially in the context of analytes

for which no tracers exist.

An alternative approach might be imaging transporter

regulation, such as by protein phosphorylation [16].

AGC kinases were shown to phosphorylate and thus alter

transport activities of auxin transporters of the PIN and

ABCB families [16–20], but have not yet been imaged in
planta. A future alternative might be offered by novel

GFP-based kinase reporters, called SPARK (Separation

of Phases-based Activity Reporter of Kinase). SPARK

Figure 1
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Illustration of trans-membrane, long-range transport routes in plants.

Exemplary long-range transport routes of indicated phytohormones, boron and calcium are indicated by arrows. Note that only long-distance

signaling of Ca2+ where it acts as a second messenger but not as a nutrient is indicated. In contrast, boron paths are indicating nutrition routes.

Overall figure outline is based on [5]; usage of Arabidopsis model was granted by Mary Lou Guerinot.
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offers imaging of fast kinase kinetics and is reversible

[21��] but has not yet been adapted to plant systems.

Visualization of transporter substrates: in vivo
biochemistry
While some transporter substrates (like some secondary

metabolites) are by nature fluorescent and can be fol-

lowed directly, most are not and thus need either be

applied as a radiolabeled or fluorescent version (see

below) or require an indicating tool [22]. In vivo biochem-

istry [23] has provided us with a series of cell-biological

techniques that allow for an imaging of either local

substrate concentrations or intra and intercellular trans-

port in planta (see Figure 2). However, it is important to

keep in mind that most of these techniques indicate local

substrate concentrations that are then used as a proxy for

transport.

Chemical indicators

Chemical indicators are fluorescent molecules that

respond to the binding of substrates by changing their

fluorescence properties ([24]; see Figure 2). They exist for

different metal cations (such as zinc, potassium, sodium,

magnesium, calcium), protons and chloride and their

loading and membrane targeting has been optimized

by generating hydrophobic versions that are cytoplasmi-

cally cleaved and activated. In plants, the most commonly

used pH-indicator and calcium-indicator are BCECF

(20,70-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein)

[25] and Fura-2/Calcium Green variants, respectively

[24]. The latter can be either non-ratiometric (such as

Calcium Green) or ratiometric (Fura-2), allowing one to

correct for unequal dye loading, photo-bleaching or focal

plane shifts. However, a common problem with chemical

indicators in plant cells is that dye loading is hindered by

the cell wall or compartmentalization in organelles

(mainly vacuoles) avoiding an equal distribution [22,26].

Therefore, genetically encoded (GE) indicators, reporters
and sensors [27–30] have been developed that indirectly or

directly indicate local substrate concentrations, respec-

tively (Figure 2). They allow for selective targeting to

subcellular compartments (by insertion of signal

sequences) or to cell types (by choice of promoters) [31].

Reporters

Expression-based (or signaling) reporters consist of natu-

ral or synthetic promoters fused to a reporter gene. Many

but not all plant hormones, including auxin, ABA, cyto-

kinin (CK), ethylen, jasmonic acid (JA) and salicylic acid

can be visualized in this manner (for reviews, see Refs.

[23,27,30–32]). Since publication of the prototype artifi-

cial auxin-responsive element, DR5 [33], several variants

have been developed (for a review, see Ref. [22]). DR5

activation is slow (ca. 2 hour) and reflects an auxin

Figure 2
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Comparison of methods used to derive transmembrane, long-range transport in plants.

Indicated approaches are evaluated with respect to their readout type and dynamic range, their invasiveness, their offered subcellular resolution

and their correlation between the amount of detected target molecule and readout (calibration). Target molecules are in blue; fluorescent proteins

are depicted as rounded rectangles. Note that principles are illustrative examples and might be not complete; brackets indicate limitations of

methods. Figure outline is inspired by Ref. [27]. 1 Dynamic range and calibration varies between reporter types; 2 Reporter and sensors require

genetic access and are thus not suitable for non-model plants (for details, see text).
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response maximum, and is thus mainly suitable for the

root tip [22,34��,35].

Reporters-based on the principle of SCF-mediated pro-

teasomal degradation of transcriptional repressors in the

signaling pathway of several hormones were developed

increasing the temporal (but also spatial) resolution of

expression-based reporters. The blueprint consisted of

the DII degron sequence of Aux/IAA repressor proteins of

auxin signaling, which was fused to a nuclear targeted

VENUS [36]. This module provides a decrease of DII-

VENUS reporter fluorescence in tens of minutes upon

auxin perception and is therefore suitable to image

unequal auxin distribution in bending roots [36]. Com-

bining the degron motive fusion with an auxin-insensitive

reporter gene resulted in ratiometric reporters. For exam-

ple, R2D2, now offers semi-quantitative auxin imaging at

very reasonable spatio-temporal resolution [37�,38,39��].
Degradation-based reporters have also been developed

for GA (GFP-RGA; [40]), JA (Jas9-VENUS; [41]) and SL

(StrigoQuant; [42]).

Despite tremendous improvements in expression and

degradation-based reporters with respect to speed and

sensitivity, their indirect mode of action allows only for —

at best — semi-quantitative in vivo imaging of local

substrate concentrations. Further, reporters display final

outputs that integrate over transport, biosynthesis and

metabolism. An even more limiting aspect is that their

sensitivity is primarily determined by the expression of

the employed signaling machinery and thus cell and

tissue-specific [34��].

Sensors

A series of genetically encoded activity sensors that are able

to report directly and within seconds changes in calcium,

proton, energy metabolite, heavy metal or macronutrient

concentrationshavebeenestablished[27,31].Likereporters,

sensor are used to assess resident substrate concentrations

that are then often equalized as transport activities [27,43].

The photoprotein aequorin, from jellyfish has been

widely used in plants for more than two decades in order

to study calcium dynamics by means of emitted biolumi-

nescence [44]. However, due to its low cellular sensitivity,

aequorin was slowly replaced by FRET-based sensors

(Figure 2; [45]), such as Cameleon [24]. Versions of

Cameleon with improved calcium binding affinity and

dynamic range [23,27,28] (YC3-60, [46] and YC-nano),

were recently used for demonstrating long-range calcium

signaling in the root and between shoot and root, respec-

tively [47–49]. The intensiometric calcium sensor, R-

GECO1, exhibits an increased (>10�) sensitivity com-

pared with YC3.6 in response to elicitors of the innate

immune response to pathogens, flagelin22 and chitin

[50��], and R- was used to image auxin-induced calcium

Figure 3
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Comparison of imaged, modeled and measured auxin transport in the root tip.

Measured DII-VENUS signals and transporter locations (here: PINs) were extracted from confocal images and are compared with modeled DII-

VENUS distribution and predicted auxin fluxes (all taken from Ref. [89�]). As reference, imaged auxin (transporter) distributions are compared with

heat map presentation of IAA influx profiles measured using an IAA-specific microelectrode [97] or of high-resolution IAA contents measured by

MS after cell-type sorting [97,98]. Note that the latter two quantitative transport techniques are not described in this review. Cell types labeled on

the schematics of wild-type root geometry (left and right) are given; for identity refer to Refs. [89�] and [97]. Note that the alignment of schematics

is based on position of root tips, columella initials (ci) and end of lateral root caps (lrc).
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gradients in root-hair tips and long-distance calcium

waves between root cells [51��].

For local pH measurements, single fluorescent protein

sensors, such as pHluorins [52], using the pH sensitivity

of EGFP are mainly employed [53�]. The pH sensor,

pHusion, allows for a ratiometric quantification of cyto-

plasmic and apoplastic pH [28]. Recently, a pHusion

variant allowed measuring pH in and outside of the

TGN/early endosome network demonstrated the role

of the V-ATPase for protein secretion [54��].

The Frommer group was driving forward the develop-

ment of FRET sensors for of a wide range of sugars

[23,27,31]. Beside a quantification of intracellular con-

centrations, these sensors also permitted the kinetic

characterization of individual sugar transporters [1] and

the identification of novel transporters [55]. Sensors for

transport of ATP; [56,57], ROS, heavy metals (eCALWY)

(for references, see Refs. [27,31]) and different macro-

nutrients have been developed (for a review, see Ref.

[58]). Very recently, ATP sensing in living plant cells

using the FRET-based sensor, ATeam1.03-nD/nA [56],

revealed concentration gradients in plant tissues and

stress-related dynamics of energy physiology [57].

Hormone imaging by sensors has been achieved first for

ABA: two independent groups have developed sensors

consisting of a FRET pair that is linked by an ABA-

responsive sensory module, called ABACUS [59�] and

ABAleon [60�], respectively. Both sensors have proven to

be useful in demonstrating kinetics of ABA transport and

dynamics upon application of external ABA, [30,32,59�].
The nuclear localized GA sensor, GIBBERELLIN PER-

CEPTION SENSOR 1 (GPS1), allowed sensing of nano-

molar concentrations in Arabidopsis [61].

The intensiometric calcium sensor, R-GECO1, was

shown to exhibit an increased (>10�) sensitivity com-

pared with classical YC3.6 in response to elicitors of the

innate immune response to pathogens, flagelin22 and

chitin [50��]. R-GECO1 was used to image auxin-induced

calcium gradients in root-hair tips but also long-distance

calcium waves between root cells [51��].

Fluorescently labelled substrates

Fluorescently labeled substrates have only recently been

used in plants (Figure 2). The fluorescent BR analog,

Alexa Fluor 647-castasterone (AFCS) [62], GA-fluores-

cein [63] and different fluorescent auxins [34��,35,64]
have been developed. Moreover, a quantum dot-based

fluorescent probe, CdTe-JA, was employed to label JA

binding sites in tissue sections of mung bean and Arabi-

dopsis seedlings [65]. Recently, different fluorescent SL

analogs were successfully designed: while EGO10A-BP

and CISA-1 [66] are constitutively fluorescent variant

making it first choice for transport studies,

Yoshimulactone Green or GC242 were constructed to

exhibit only fluorescent after cleavage by the SL receptor

[67].

Bioactive auxin derivates tagged with fluorescein (IAA-

FITC) or rhodamine (IAA-RITC) are distributed sym-

plasticly and apoplasticly, respectively [35]. Hayashi et al.
designed fluorescent auxin analogs to be actively trans-

ported but to be inactive for auxin signaling [34��], while

very recently new fluorescently labeled auxins exhibit an

anti-auxin activity [64]. The former is important because

auxin signaling is known to influence auxin transporter

expression and location [34��]. NBD-IAA (7-nitro-2,1,3-

benzoxadiazole-IAA) revealed a similar auxin distribution

as found with DII-based reporters [34��] but lacked

signals in the quiescent center known to be mainly

produced by auxin biosynthesis and not transport. A

limitation of NBD-auxins is that they are for unknown

reasons only working in root and not in shoots [34��].
Recently, NBD-NAA, whose nuclear import is restricted,

was used as a tool to dissect cytoplasmic and ER delivery

of nuclear auxin concentrations [39��]. This indicates

their usefulness in analyzing intracellular transport, which

is usually hard to uncover using classical tools.

Click-chemistry of transport substrates

In animal models, the problem of bulky fluorescent tags

interfering with binding to transporter (or receptor) pro-

teins has been partially solved by ‘click chemistry’ [68].

This technique triggers the selective, covalent connec-

tion between a molecule of interest and a detection tag in
situ (Figure 2). A variety of labeling tags can be used then

for microscopy or analytics.

To our knowledge only one study reported on the distri-

bution of a mobile substrate using this technology in

plants: the azido derivative of indole-3-propionic acid

(IPA, an active auxin), IPA-N3, was used as an auxin

tracer and provided some evidence of the presence of

auxin binding sites in the apoplast of elongating cells

[69��]. IPA-N3 was detected mainly in the outer cell

layers of the root tip and does thus not fully reflect the

auxin accumulation sites. This seems to be less a pene-

tration but a fixation problem [69��]. However, these

technical issues will be overcome and as such ‘click

chemistry’ might soon be the method of choice despite

the fact that it requires a fixation step preventing in vivo
imaging.

Imaging of radiolabeled substrates

Radio-autographic analysis of the distribution of transport

has a long tradition in plants (e.g. [70]). Recently, polar

auxin transport of Arabidopsis stem segments was visual-

ized by detecting 14C-IAA with a double-sided silicon

strip detector [71]. In recent years, the micro-autoradi-

ography method (MAR) has been established to visualize

the distribution of 109Cd and 33P within sections of rice
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tissues [72]. Currently, only fixed material can be used,

preventing any dynamic information about substrate dis-

tributions. As 14C (and 3H) emit beta particles at very low

energy, most transport substrates could be labelled with

suitable isotopes for autoradiography, which would

expand the application properties of MAR (Figure 2;

[72]).

Immunolocalization of transport substrates

ABA [73,74], IAA [22] and CK [75] have been visualized

in different plant species by whole-mount immunoloca-

lization using polyclonal and monoclonal antisera (Fig-

ure 2; [76]). Despite requiring of fixation, some of these

antisera have become successful tools for the in situ
localization of local maxima [75,77] or the translocation

of hormones in plants [78–82]. Anti-IAA antibody signals

were reported to recapitulate signals found with the DR5
reporter in the mature and lateral root [77,79]. However, a

part of these publications have been heavily debated with

respect to their interpretation and technical quality [83].

Modeling of transmembrane transport over
tissues
Early auxin transport models, called flux-based models,

were inspired by Tsvi Sachs in the late 1960s and hypoth-

esized that the flux of auxin through cell membranes

reinforces itself [84,85]. The integration of experimen-

tally determined patterns of transporter localization into

simulations confirmed this in Arabidopsis [86–88,89�].
Gradient-based models were introduced [90,91], pro-

vided support for the assumed roles of auxin maxima

in shoot development (for an excellent review, see Ref.

[92]).

The primary motivation of most of these studies was to

predict the movement of a transported substrate (here:

auxin; Figure 3) within a developing tissue. In this regard,

the development of the OnGuard platform for modeling

transport processes in stomata has proven successful in

uncovering previously unexpected features of guard cell

physiology [93]. However, today’s interest lies more in

testing if a hypothesized role for a substrate can be

supported by in silico data [94]. A recent study employing

data-driven modeling of intracellular auxin fluxes

between the ER or cytoplasm and the nucleus, respec-

tively, indicated that the ER has a dominant role in

controlling nuclear auxin uptake [39��]. This and other

approaches argue that computer models can provide (or

even go beyond) a ‘proof of principle’. However, any

conclusions-based on human-made, and as such subjec-

tive, algorithms will always require an experimental

validation.

Conclusions and perspectives
Recently, the plant transport field has made a major

conceptual shift away from a single transporter analysis

toward a more integrative transporter approach, aimed at

exploring transporter networks in order to understand

their interplay and their incorporation into plant physiol-

ogy. This progress has been made possible by the devel-

opment of a series of techniques that allow visualization

of local concentrations and movements of substrates in

plant tissues. While early quantitative methods (like

radiolabeled substrates, micro-electrodes and cell-type

specific analyses of transport substrates) provide temporal

resolution, visualization of transport by means of chemical

indicators, fluorescent analogs and especially reporters

and sensors provides good spatial information with rea-

sonable resolution for many substrates. In that respect,

doubting Thomas was right: seeing is better than

believing.

Most tools have their individual advantages and limita-

tions (see Figure 2). Some allow only for (semi)-quanti-

tative analyses with high spatial but only low temporal

resolution (such as reporters and sensors), while some

indicators, sensors or fluorescent analogs were found to

interfere with plant physiology by high substrate binding

affinities or by competing with endogenous signaling

[24,32,57]. However, these kinds of problems may to a

certain degree be overcome by using non-plant substrate

binding domains [95].

As usual, new technology and insight provides us with

new challenges. For example, the transfer of sensors

from single cell approaches to the plant level has been

difficult due to the wide affinity/sensitivity range (nM-

mM) that is required for some substrates. A solution

might be the co-expression of spectrally non-overlap-

ping, intensiometric sensors with different affinity

ranges. Further, in contrast to intercellular transport,

transmembrane transport between subcellular compart-

ments has proven difficult to measure directly. In that

respect, a directed targeting of sensors to individual

subdomains of interest as shown recently [54��] and

design of selective permeable fluorescent dyes [39��]
will be helpful.

Another issue is the inadequate separation of transport

from signaling/biosynthesis by some imaging tools, like

reporters or sensors. In that respect it appears as if we

have not yet fully used the potential of fluorescent

transport substrates or click chemistry. In the future,

structure-activity design will allow us to predict fluor-

ophore positions and linker length [63,64] in order to

direct uptake, stability and distribution of fluorescent

substrates [96].
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