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Abstract. Reasoning about termination is a key issue in logic program develop-
ment. One classic technique for proving termination is to construct a well-founded
order on goals that decreases between successive goals in a derivation. In practise,
this is achieved with the aid of a level mapping that maps atoms to natural numbers.
This paper examines why it can be difficult to base termination proofs on natural
level mappings that directly relate to the recursive structure of the program. The
notions of bounded-recurrency and bounded-acceptability are introduced to allevi-
ate these problems. These concepts are equivalent to the classic notions of recur-
rency and acceptability respectively, yet provide practical criteria for constructing
termination proofs in terms of natural level mappings for definite logic programs.
Moreover, the construction is entirely modular in that termination conditions are
derived in a bottom-up fashion by considering, in turn, each the strongly connected
components of the program.

1 Introduction

The classes of recurrent and acceptable programs are, arguably, two of the
most influential classes of logic program that occur in the termination lit-
erature. Acceptable programs are precisely those which, for ground input,
terminate under the left-to-right selection rule of Prolog [2]. Programs which,
for ground input, terminate under any selection rule are classified as being
recurrent [5].

Whilst the notions of recurrency and acceptability provide a sound theo-
retical basis for studying termination, they do not provide much insight into
the practicalities of deriving the level mappings which are needed to prove
that a logic program is terminating or left-terminating. Instead, intuition has
served as the guide in the development of automatic techniques. In partic-
ular, there has been a desire to derive natural level mappings based on the
recursive structure of the program at hand. For example, given the program

P([HIT]) « p(T).

it is natural to define a level mapping |.| to prove termination by |p(z)| =
|17\1ength where \.\bngth is the list-length norm because the predicate is induc-
tively defined over the length of its argument which is a list. Other definitions,
such as |p(z)| = |Z|iength + 1 and |p(z)| = 2| |iengen do not possess the same
natural correspondence with the termination behaviour of the program.
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This paper examines the reasons why termination proofs based on recur-
rency and acceptability are often difficult to obtain. The observations are not
new in themselves [3,6,12,18] and, by way of a solution, Apt and Pedreschi [3]
define alternative characterisations of terminating and left-terminating pro-
grams which they call semi-recurrency and semi-acceptability respectively.
This paper argues that these concepts do not, in fact, form an ideal basis for
automatic termination analyses (though this approach has been followed by
others [25,28]); some difficulties complicate the construction of the level map-
ping that arises in the termination proof. To alleviate these problems, this
paper introduces notions of bounded-recurrency and bounded-acceptability
for definite logic programs and shows that these concepts are equivalent to
recurrency and acceptability respectively. These new characterisations of the
two classes provide practical criteria for constructing termination proofs in
terms of natural level mappings. The construction is entirely modular: termi-
nation conditions are derived in a bottom-up fashion by considering, in turn,
each the strongly connected components of the predicate dependency graph.
A bottom-up approach is more in tune with program specialisation, and par-
tial deduction in particular [10,24], since the overall computation is unlikely to
be terminating but some sub-computations probably will be. More exactly, it
is more useful to derive sufficient termination conditions for individual pred-
icates rather than proving that a given top-level goal will terminate. The
notion of bounded-acceptability lends itself naturally to this process. More-
over, there has been much recent interest in the inference of level mappings
[9,15,19,20,23,27] in order to fully automate termination analysis. Thus the
desire for natural level mappings is much more than an aesthetic predilection.

The paper is structured as follows. Section 2 introduces the concepts
necessary for discussing termination, and in particular reviews the notions
of recurrency and acceptability. Section 3 argues that level mappings have
traditionally been overloaded in that they address two different termination
issues. Sections 4 and 5 reviews the concepts of semi-recurrency and semi-
acceptability, arguing that these notions also lead to artificial level map-
pings. Sections 6 and 7 explain how the concepts of bounded-recurrency and
bounded-acceptability permit simpler, more natural level mappings to be
used within termination proofs. Section 8 presents the concluding discussion,
reflecting on other approaches to modularity [6,18].

2 Preliminaries: the nuts and bolts of termination

2.1 Level mappings, norms and boundedness

The fundamental idea underlying all termination proofs is to define an order
on the goals that can occur within a derivation. Given a program P and goal
Gy, the finiteness of derivation Gy, G1,Ga, ... is in principle straightforward
to demonstrate: it is sufficient to construct a well-founded order < such that
Gi+1 < G; for all i > 0. The problem is to find such an order. To simplify
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the problem, it is convenient to define the order on abstractions of goals
rather than on the goals themselves. Thus the order < is defined such that
G’ < G holds iff A(G') < A(G) holds where A is an abstraction function.
For example, A might be defined to map each goal G to a multiset of natural
numbers; where each atom in G maps to a single number in the multiset. The
idea of abstracting goals by mapping atoms to natural numbers leads to the
concept of a level mapping.

Definition 1 (level mapping [11]). Let P be a program. A level mapping
for P is a function |.| : Bp — N from the Herbrand base of P to the set of
natural numbers N. For an atom A € Bp, |A| denotes the level of A. d

Ezample 1. Let P be the program

p(a, X) < p(b, X).

p(b, a).

p(b, b).

The function |.| : {p(a, a), p(a, b), p(b, a), p(b, b)} — N defined by |p(a, a)| =
34, Ip(a, b)| =12, |p(b, a)| = 0 and |p(b, b)| = 27 is a level mapping for P. O

Since a level mapping is defined over the Herbrand base it is not defined
for non-ground atoms. (The reader is referred to Lloyd [21] for the standard
definitions of the Herbrand base, Herbrand interpretations, Herbrand models,
etc.) The lifting of the mapping to non-ground atoms was proposed in [4].

Definition 2 (bounded atom [4]). An atom A is bounded wrt a level map-
ping |.| if |.| is bounded on the set [A] of variable free instances of A. If A is
bounded then |[A]| denotes the maximum that |.| takes on [A]. O

The importance of the notion of boundedness cannot be over stressed.
Since goals which are ground cannot be used to compute values, they are the
exception rather than the norm in logic programming. Thus practical termi-
nation proofs must be able to deal with non-ground goals and boundedness
provides the basis for this.

Ezample 2. Let P be the program and |.| the level mapping of example 1.
The atom p(a, X) is bounded since |.| is bounded on the set [p(a, X)] =

{p(a, a),p(a, b)}. Moreover, |[p(a, X)]| = max({|p(a, a)|,|p(a, b)|}) and in
particular |[p(a, X)]| = max({34,12}) = 34. O

Level mappings are usually defined in terms of norms. Basically, a norm
is a mapping from terms to natural numbers which provides some measure
of the size of a term.

Ezample 3. The list-length norm |.|iength : Up — N from the Herbrand uni-
verse to the natural numbers can be defined by

|t‘ _ 1+ |t2|length ift = [t1|t2]
fength 7 0 otherwise

Then, for example, |[[X,Y,Z]|iength = 3. O
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Ezample 4. The term-size norm |.|sje : Up — N is defined by
n
|f(t17 .. 7tn)|size =n+ Z |ti|size
i=1

Thus, for example, |f(a,g(b))|size =2+ 1= 3. O
The next two lemmas follow easily from definition 2.

Lemma 1. Let |.| be a level mapping and A a bounded atom. Then for every
substitution 6, the atom A@ is also bounded and moreover |[A]| > |[A6]|. O

Proof. Recall that [A] = {A¢ | ¢ is a grounding substitution for A}. Then
[A] 2 [Af], so [[A]| = |[Af]]. .

Lemma 2. Let H be a bounded atom, B an atom and |.| a level mapping.
If for every grounding substitution 6 for H and B, |H6| > |Bf|, then B is
also bounded and moreover |[H]| > |[B]|- O

Proof. Recall that [B] = {Bf | 6 is a grounding substitution for B}. But
|H8| > |B0)| for every grounding substitution 6 for H and B, so |.| is bounded
on [B]. Let 6 be any grounding substitution for H and B such that |Bf| =
1B Then, by lemma 1, |[H]| > |[H6]| = |H6] > |B6| = [|B]| 0

2.2 Recurrency
In [4,5], level mappings are used to define a class of terminating programs.

Definition 3 (recurrency [4,5]). Let P be a definite logic program and |.| a
level mapping for P. A clause H < By,..., B, is recurrent (wrt |.|) iff for
every grounding substitution 6 and for all i € [1,n] it follows that |H6| >
|B;8|. P is recurrent (wrt |.|) iff every clause in P is recurrent (wrt |.[). O

Henceforth all logic programs are assumed to be definite, that is, each clause
contains precisely one atom in its consequent (its head).

Ezxample 5. Consider the append program below

app; append([], X, X).
app, append([U|X], Y, [U|Z]) <+ append(X, Y, Z).

The clause app, is recurrent wrt to the level mapping |append(t1,ta,t3))1 =
|t1]1engtn since for every grounding substitution 6 for app,,

lappend([U[X], Y, [U|Z])6]1 = |[U|X]0iengtn
=1+ ‘Xe‘length
> |X6|1ength
= |append(X, Y, Z)6|:
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Similarly, it can be shown that the program is recurrent wrt |.|; for all ¢ € [2, 4]
where |.|2, |-|3 and |.|4 are defined by

lappend(t1,t2,t3)|2 = 3|t1length + 1
|append(t1,t2,t3)[3 = |t3length
|append(t1a t2a t3)|4 = min(|t1|lengtha ‘t3|length)

Moreover, the clause app; is trivially recurrent wrt to any level mapping. U
Bezem formalised the concept of termination relating it to recurrency.

Definition 4 (termination [4]). Let P be a logic program and G a goal.
Then G is terminating wrt P iff every SLD-derivation for P U {G} is finite.
P is terminating iff every variable-free goal is terminating wrt P. O

Theorem 1 (recurrency [4]). Every recurrent program is terminating.

The same result was also obtained independently by Cavedon [11] in the
more general context of recurrent programs with negation (called locally w-
hierarchical programs in [11] and later renamed acyclic programs in [1]). The
proof in [4] relies on the following definition.

Definition 5 (bounded goal [4]). A goal G =< Aj,..., A, is bounded wrt
a level mapping |.| iff every A; is bounded wrt |.|. If G is bounded then |[G]|
denotes the finite multiset of natural numbers {|[A1],. .., |[4:]|[}- O

The proof of theorem 1 applies the abstraction function A = |[.]| and as
a result a well-founded order < is defined over the set of bounded goals
by taking G' < G iff |[G']] <mw |[G]| where <, is the multiset ordering
over the natural numbers. Recall that this ordering is defined by s1 <ui s2
iff there exists ny,...,n, € s; and n € sy such that s; = (so/{nf}) U
{In1,...,nwft and n; < n for all i € [1,m] [26]. The proof is completed by
showing for every SLD-resolvent G’ of a bounded goal G, that G’ is bounded
and G’ < G. In fact, this proof suggests a stronger corollary (bounded goals
are not necessarily variable-free, that is, ground).

Corollary 1 (recurrency [4]). Let P be a logic program, G a goal and |.| a
level mapping. If P is recurrent wrt |.| and G is bounded wrt |.| then G is
terminating wrt P.

Ezxample 6. Reconsider append and the level mappings of example 5. Then

+ append([U, V, W], Y, Z) is bounded wrt |.|1,]|.|2 and |.|4,
< append(X, Y, [U, V, W]) is bounded wrt |.|3 and |.|4

Hence these goals are terminating wrt append. Also, for a goal G observe
that G is bounded wrt |.|; iff G is bounded wrt |.|2. Moreover, G is bounded
wrt |.|4 if (not iff) G is bounded wrt |.|; or G is bounded wrt |.|3. Thus by
proving recurrency of append wrt |.|4 a larger class of goals can be proven
terminating than by proving recurrency wrt |.|1, |.|]2 or |.|3. This illustrates
that the choice of the level mapping effects the set of goals which can be
shown to be terminating. O
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As a final remark, Bezem also proved the converse of theorem 1.

Theorem 2 (recurrency [4]). A logic program is recurrent iff it is terminat-
ing.

2.3 Acceptability

The notion of recurrency is a theoretical one and is not of much use in proving
termination of Prolog programs. Many Prolog programs only terminate under
a left-to-right selection rule. This observation led Apt and Pedreschi [3] to
refine the notion of termination as follows.

Definition 6 (left-termination [3]). Let P be a logic program and G a goal.
Then G is left-terminating wrt P iff every LD-derivation for PU{G?} is finite.
P is left-terminating iff every variable-free goal is left-terminating wrt P. OJ

Ezxample 7. Consider the permute program below

perm, permute([], [])-
perm, permute([H|T], [A|P]) + delete(A, [H|T], L), permute(L, P).

dely  delete(X, [X]Y], Y).
dely delete(X, [Y|Z], [Y|W]) < delete(X, Z, W).

The goal < permute([1], [1]) is terminating wrt permute and as a consequence
is left-terminating also. The goal < permute([1, 2], [1, 2]) is left-terminating
but not terminating, since there exists a computation rule which results in
the following infinite derivation

< permute([1, 2], [1,2]),

< delete(1, [1,2], L), permute(L, [2]),

< delete(1,[1,2],L), delete(2, L, L"), permute(L’, []),
+ delete(1,[1,2],L), delete(2, Z, W), permute(L’, []),
+ delete(1,[1,2],L), delete(2, Z’ , W), permute(L’, []),
— ...

By theorem 2, it follows that the program is not recurrent. However, the
program can be proven to be left-terminating. (Il

The class of recurrent programs was extended in [3] to the class of accept-
able programs in order to provide a theoretical basis for proving termination
of left-terminating programs.

Definition 7 (acceptability [3]). Let |.| be a level mapping and I an inter-
pretation for a logic program P. A clause ¢: H «+ By,..., B, is acceptable
wrt |.| and I iff

1. I is a model for ¢ and
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2. for all i € [1,n] and for every grounding substitution 6 for ¢ such that
I ': {Bl, . ,Bi,]_}a it follows that |H9| > |Bz9|

P is acceptable (wrt [.| and I) iff every clause in P is acceptable
(wrt |.| and I). O

Analogous results to those for recurrent programs (theorem 1, corollary 1
and theorem 2) have been proven for acceptable programs. The abstraction
function used, however, is rather more complicated than that which is applied
in the proof of recurrency. First, observe that if a goal G =« A,,..., A,
terminates under a left-to-right computation rule, then each atom A; is not
necessarily bounded, but should be once the atoms to its left have been
resolved. This idea forms the basis of the following definitions.

Definition 8 (maximum function). The maximum function max : p(N) —
N U {oo} is defined as

0 ifS=0
max S = { n elseif S is finite and n is the maximum of S
oo otherwise
Then max S # oo iff the set S is finite. (]

Definition 9 (left-bounded goal [3]). Let |.| be a level mapping, I an inter-
pretation and G =« A,,..., A, a goal. Then G is left-bounded wrt |.| and
I iff the set

i o |0 is a grounding substitution for G
LIRS (et wmwrvie j

is finite for each ¢ € [1,n]. If G is left-bounded wrt |.| and I then |[G]/]
denotes the finite multiset {f max |[G]}], ..., max |[G]?|[} O

Note that the term left-bounded is introduced here to avoid confusion with
definition 5.

Using the abstraction function A = |[.];| allows one to prove that for
a goal G which is left-bounded wrt |.|, any SLD-resolvent G’ of G is left-
bounded and furthermore |[G'];| < |[G]1]- The result is the analogue of
corollary 1.

Corollary 2 (acceptability [3]). Let P be a logic program, G a goal, |.| a
level mapping and I an interpretation for P. If P is acceptable wrt |.| and I
and G is left-bounded wrt |.| and I then G is left-terminating wrt P. O

Sufficient and necessary conditions for left-termination are characterised
by the following theorem.

Theorem 3 (acceptability). A logic program is acceptable iff it is left-
terminating.
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Ezample 8. Considering the permute program again, let |.| be the level map-
ping defined by

|permute(t1,t2)| = [t1]iength + 1
|delete(ty, t2,t3)| = |t2iength

and I be the interpretation

{delete(ty,t2,t3) | |t2]length = |t3]lengtn + 1} U
{permute(t1,t2) | |t1]iength = |t2|iength }

Now I is a model for the program and, in particular, for the clause perm,,
and for every grounding substitution 6 for perms,

[permute([H|T], [AIP])O] = |[H|T10|iengsn + 1
> |[H|T]0|iengtn
= |delete(A, [H|T], L)9]

and for every grounding substitution 6 for perm, with I |= delete(a, [H|T], L)8,

[permute([H|T], [A[P])6] = |[H[T]0]iengen + 1
(|L0|length + ]-) + 1
|L0|length + 1
|permute(L, P)|

vl

Hence perm., is acceptable wrt |.| and I. The clauses perm; and del; are
trivially acceptable wrt |.| and I since I is a model for them, while the clause
dely can easily be shown to be acceptable wrt |.| and I in the same way as
for perm,. This proves the program permute is left-terminating. (Il

3 The recurrent problem

The main problem with recurrency, as noted by [3] and [12], is that it does
not intuitively relate to recursion, the principal cause of non-termination in
a logic program. Definition 3 requires that, for every ground instance of a
clause, the level of its head atom is greater than the level of every body atom
irrespective of the recursive relation between the two. There is a temptation
to address this issue by using a modified definition of recurrency which only
requires a decrease for mutually recursive body atoms. The following example,
from [12], shows that this revision, by itself, is too weak to prove termination.

Ezample 9. Using the weaker form of recurrency suggested above, the follow-
ing program would be classed as recurrent.

p([H|T]) + append(X, Y, Y), p(T).

append([U|X], Y, [U|Z]) < append(X, Y, Z).
append([], X, X).
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Using the left-to-right computation rule and the top-down search rule,
however, the goal < p([1,2]) admits an infinite computation. Of course, the
clause defining the predicate p should not be classified as recurrent. The rea-
son is that, while append is truly recurrent, only bounded goals are guaranteed
to terminate and the predicate p contains an unbounded call to append. [

This example shows that the level mapping decrease between the head
and the non-recursive atoms of a clause implied by definition 3, is required
to ensure that all subcomputations are initiated from a bounded goal. En-
forcing boundedness in this way, however, complicates the derivation of level
mappings. The following example, illustrating this, also comes from [12].

Ezxample 10. Consider the following program

p1 p([])-
p2 P([H[T]) < q([H[T]), p(T).

a1 a([])-
g2 q([H[T]) < q(T).

It is clear that this program is terminating for any goal < p(x) where x is a
rigid list, that is, |Z|iength = |Z0|iength for every grounding substitution 6. To
construct an automatic proof of termination one would like to use the level
mapping |.| defined by

|p(.’E)| = |w|length |Q(fv)| = ‘$|length

The problem is that the clause p2 is not recurrent wrt this level mapping since
it is not the case that |p([H|T])@| > |q([H|T])#] for all grounding substitutions
0. For the inequality to hold, an unnatural offset must be included in the level
mapping definition by taking for example |p(z)| = ||iength + 1. O

These examples show that the strict decrease in level between the head and
body atoms of a recurrent clause is required for two distinct purposes:

1. To ensure that the levels of mutually recursive calls are strictly decreasing.
2. To ensure that subcomputations are initiated from a bounded goal.

4 Semi-recurrency

Apt and Pedreschi observed that, for termination, while it is necessary for
the level mapping to decrease between the head of a clause and each mutually
recursive body atom, a strict decrease is not required for the non-recursive
body atoms. To distinguish between recursive and non-recursive body atoms
the notion of predicate dependency is introduced.
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Definition 10 (predicate dependency). Let p,q € IT where IT is the set of
predicate symbols in a logic program P. Then p directly depends on ¢ iff

p(tl,...,tnp)(—Bl,...,BnEP

and B; = q(s1,...,5p,) for some i € [1,n]. The depends on relation, denoted
-, is defined as the reflexive, transitive closure of the directly depends on
relation. If p J ¢ and ¢ J p then p and ¢ are mutually dependent and this is
denoted by p ~ ¢. Furthermore, let p 1 ¢ iff p 3 ¢ and p % ¢ and finally let
pCqiff g Jp. O

Apt and Pedreschi then introduced the notion of semi-recurrency to ex-
ploit the observation that a strict decrease in level in only required for the
mutually recursive body atoms. In what follows rel(A) denotes the predicate
symbol of the atom A.

Definition 11 (semi-recurrency [3]). Let P be a logic program and |.| a level
mapping for P. A clause H « By,...,B, is semi-recurrent (wrt |.|) iff for
every grounding substitution § and for all ¢ € [1,n] it follows that

1. |HO| > |B;f| if rel(H) ~ rel(B;),
2. |HO|+1> |B;0| if rel(H) # rel(B;).

P is semi-recurrent (wrt |.|) if every clause in P is semi-recurrent (wrt |.|). O

Whilst this definition now admits a simple termination proof of exam-
ple 10 using the level mapping of that example, it is not hard to construct
examples where it is inadequate.

Ezxample 11. Consider the following program

C1 P(H)
ez p([H|T]) « a([H,H[T]), p(T).

ez q([])-
cs q([H|T]) = q(T).

To prove that the above program is semi-recurrent requires the following
unnatural level mapping: |p(z)| = |Ziength + 1 and q(x)| = |Z|iength- O

It seems that very little has actually been gained from this revised defi-
nition of recurrency which still insists that there is not an increase from the
level of the head to the level of all body atoms. In fact, it does not matter if
the level of a non-recursive atom is greater than the level of the head provided
that such an atom is bounded whenever it is selected.

To be fair, the notion of semi-recurrency was introduced to facilitate mod-
ular termination proofs and does indeed, in some cases, allow proofs to be
based on simpler level mappings than those used in proofs of recurrency. In
the above example, however, this is not the case.
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Ezxample 12. Reconsider the program of example 11. According to the method-
ology of [3] a modular termination proof can be constructed in a bottom-up
fashion on the recursive cliques of the predicate dependency graph. First q is
proven to be (semi) recurrent wrt |.|; defined by

|q(x)|q = |m‘length

Second, p is proven to be (semi) recurrent wrt |.|, defined by

|p(.’E)|p = |w|length |C|(33)|p =0

The final step in the construction requires the derivation of a level mapping
|.|" such that

p([talt])] = la(ftr, taft2])lg  and  |p([t1[t2])]" > [p(t2)['

for all ground terms ¢; and ¢2. Providing the level mapping |.|” exists, theorem
4.9 of [3] can be used to conclude that the program is semi-recurrent and
hence terminating. In terms of automation, this existence proof is achieved
through defining |.| so that the above inequalities are satisfied. However, the
most likely choice of a definition for |.|" is

|p(w)|l = ‘$|length +1

which, of course, this is no easier to derive than the original mapping |.| of
example 11. O

What is most conspicuous about the definition of semi-recurrency, is that
the difference in levels between a non-recursive body atom and the head atom
of a clause is limited to be at most zero, whereas it could be arbitrarily large,
though still finite. Indeed, a simple termination proof for the program of
example 11 can be obtained using a more natural level mapping if condition
2 of definition 11 is replaced by |HO| + k > |B;0| if rel(H) # rel(B;), where
k is some large constant. It is easy to prove that this revised definition of
semi-recurrency is equivalent to recurrency. In addition, theorems 4.6, 4.8
and 4.9 of [3], which are used for constructing modular termination proofs,
all still hold with this alternative definition.

Note that the problem with the termination proofs above arises because
the atoms in the body of a clause contain extra function symbols which raise
the levels of those atoms to the level of the head. Since it is fairly unlikely
that such a body atom will contain, say, a million function symbols or more,
by taking k£ = 1000000 the vast majority of recurrent programs which occur
in practise could be proven terminating by focusing solely on their recursive
structure and employing the appropriately weakened forms of the theorems
of Apt and Pedreschi.
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5 Semi-acceptability

Similar remarks to those of section 3 can be made about the definition of ac-
ceptability. The notion of semi-acceptability was introduced as an analogous
concept to semi-recurrency for left-terminating programs.

Definition 12 (semi-acceptability [3]). Let |.| be a level mapping and I an
interpretation for a logic program P. A clause ¢ : H + By,..., B, is semi-
acceptable wrt |.| and I iff

1. I is a model for c and

2. for all i € [1,n] and for every grounding substitution 6 for ¢ such that
I E{B,...,B; 1} it follows that
(a) |HO| > |B;0| if rel(H) ~ rel(B;),
(b) |HO|+ 1> |B;0] if rel(H) % rel(B;).

P is semi-acceptable (wrt |.| and I) iff every clause in P is semi-acceptable
(wrt |.| and I). O

Not surprisingly, termination proofs based on semi-acceptability suffer
from similar problems to those encountered in examples 11 and 12. The defi-
nition could be adjusted in the manner prescribed above for semi-recurrency,
but the result is not as satisfactory as the following example shows.

Ezxample 13. Consider the following program

doubleSquare(0, []).
doubleSquare(s(X), [D|Ds]) «
square(X,0,Y), doublePlus(Y, 0,D), doubleSquare(X, Ds).

square(0,Y,Y).
square(s(X), Acc,Y) «
doublePlus(X, s(Acc), Accl), square(X, Accl,Y).

doublePlus(0, X, X).
doublePlus(s(X),Y,s(s(Z))) «
doublePlus(X,Y, Z).

The function symbol s is interpreted as the successor function. Let |0]; = 0
and |s(z)|s = 1+ |z|s and I be the interpretation

{dOUb'ePlUS(tl,tQ,tg) | |t3|s = 2|t1‘5 + ‘t2|5} U
{square(ty, t2,t3) | |ts|s = [t1]2 + |t2s} U
{doubleSquare(t, [t1,t2,...,0]) | |t:|s = 2(|t]s — )%}

Thus, for example, the goal < doubleSquare(s(s(s(0))), L) will succeed with
L = [s(s(s(s(s(s(s(s(0)))))))).s(s(0)),0]. Observe that I is a model for the pro-
gram. Now let the level mapping |.| be defined by

|doubleSquare(z, y)| = |square(z, y, z)| = |doublePlus(z, y, 2)| = |z|s
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The predicates square and doublePlus are both semi-recurrent (and hence
semi-acceptable) wrt |.| and I. Now consider doubleSquare and in particular
the inequality |doubleSquare(s(X), [D|Ds])0|+k > |doublePlus(Y, 0, D)6| where
0 is any grounding substitution. Since I = square(X,0,Y)d it follows that
[Y6|s = |X6|?, hence there exists no k for which 1+ |X6|s + k > |Y6|, always
holds. Therefore the inequality |doubleSquare(s(X), [D|Ds])0|+k = 1+ |X8|s+
k > |YO|s = |doublePlus(Y,0,D)f| cannot always hold. Hence the predicate
doubleSquare is not semi-acceptable wrt |.| and I under the revised definition
suggested above even though the level mapping is natural.

It is easy to prove semi-acceptability of the program, however, wrt the
level mapping |.|" where |.|" is defined exactly as for |.| except that

|doubleSquare(z,y)| = |z|?

Note that a goal is bounded wrt |.| iff it is bounded wrt |.|" and all such goals
are left-terminating. It seems reasonable then to base a proof of termination
on the former level mapping since it more closely relates to the recursion and
as a result is easier to derive automatically. However, no automatic termi-
nation analysis has yet been devised which can manipulate quadratic level
mappings such as |.|2. O

Observe that the k above acts as an upper bound on the difference between
the level of any body atom and the level of the head atom. Of course, this
ad hoc approach falls down when there is no upper bound as in example 13.

In summary, although semi-recurrency and semi-acceptability are more
flexible notions than their predecessors, they still enforce a dependence be-
tween the level of a head atom and the levels of non-recursive body atoms.
This dependence is counter intuitive and forces one to use artificial level
mappings to obtain termination proofs.

6 Bounded-recurrency

Recall from section 3 that there are two conditions which must be fulfilled to
ensure that a program is terminating.

1. The levels of mutually recursive calls are strictly decreasing.
2. All subcomputations are initiated from a bounded goal.

It is possible to define what constitutes a terminating program directly from
these two requirements.

Definition 13 (bounded-recurrency). Let |.| be a level mapping for a logic
program P. A clause ¢ : H + By, ..., B, is bounded-recurrent (wrt |.|) iff
for every substitution @ for ¢ such that H6 is bounded and for all ¢ € [1,n] it
follows that

1. B;0 is bounded and
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2. |[H6]| > |[B;b]| whenever rel(H) ~ rel(B;).

P is bounded-recurrent (wrt |.|) iff every clause in P is bounded-recurrent
(wrt |.]). O

Observe that no decrease is enforced between the level of the head of a clause
and the levels of the non-recursive body atoms. All that is required is that
each atom is bounded whenever the head is bounded. While this is more
intuitively appealing, observe that boundedness of non-recursive atoms still
influences the definition of the level mapping in a non-modular way.

Ezample 14. Consider the following program for Curry’s type assignment
taken from [3].

typ; type(E, var(X), T) < in(E, X, T).
typ, type(E, apply(M, N), T) < type(E, M, arrow(S, T)), type(E, N, S).
typs type(E, lambda(X, M), arrow(S, T)) «+ type([(X, S) | E], M, T).

ing in([(X, T) | E], X, T).
ing in([(Y, S) | E], X, T) « X # Y, in(E, X, T).

One may observe that the predicate in is inductively defined over the
length of its first argument which is a list. The predicate type is inductively
defined on the size of its second argument which is a A-term. As a result, one
would hope to base a termination proof on the level mapping |.| defined by

lin(z,y,2)| = [Z|iength  [tyPe(z,y, 2)| = |Ylsize

The problem, of course, is that any call type(E, var(X), t) which is bounded
wrt |.| can give rise to a call in(E, X, T) which is not bounded wrt |.|. Clearly
this can lead to non-termination. Definition 13, therefore, insists that for
the clause typ, the body atom in(E, X, T) is bounded whenever the head is.
Unfortunately this entails that the level mapping must now be modified to
take the first argument of type into account. This in turn leads to problems
with the clause typ; since the first argument is increasing in the recursive
call. Eventually, one arrives at a level mapping definition such as

|in(may7 Z)|1 = |$‘length |type(a:, yaz)‘l = |$|1ength + 2|y|size

which bears no immediate relation to the program structure. As a result such
a mapping is likely to be difficult to derive automatically. O

Clearly there is an interdependence between ensuring non-recursive atoms
are bounded wrt |.| and ensuring that the levels of recursive calls are decreas-
ing wrt |.|. This plainly arises out of the use of the one level mapping. It seems
therefore that the obvious way to break the dependence is to use two level
mappings. One holds the responsibility for ensuring the recursive decrease in
levels, while the other assures that non-recursive atoms are bounded. This
idea is captured in the following definition.
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Definition 14 (bounded-recurrency). Let |.|; and |.|2 be level mappings for
a logic program P. A clause ¢ : H < Bjy,..., B, is bounded-recurrent (wrt
||+ and [.|2) iff for every substitution 6 for ¢ such that HO is bounded wrt
|.|1 and |.|]2 and for all ¢ € [1,n] it follows that

1. B;6 is bounded wrt |.|; and |.|]2 and
2. |[HO]|1 > |[Bif]|1 whenever rel(H) ~ rel(B;).

P is bounded-recurrent (wrt |.|; and |.|2) iff every clause in P is bounded-
recurrent (wrt |.|; and |.|3). O

It is informally understood that a goal G is bounded wrt |.|; and |.|2 iff G
is bounded wrt |.|; and G is bounded wrt |.|2. Note that, when the two level
mappings coincide, that is when |.|; = |.|2, then definition 14 is equivalent to
definition 13.

Ezxample 15. Returning to the program of example 14, recall that the stum-
bling block in the derivation of a natural level mapping arose because any call
type(E, var(X), T) which is bounded wrt |.| can give rise to a call in(E, X, T)
which is not bounded wrt |.|. At this point, one intuitively reasons that if
the first argument of a call to type is a rigid list then the first argument of
all subsequent calls to type will also be a rigid list. So define a second level
mapping |.|" by

lin(@,y,2)|" = [@hengin ~ [type(@, ¥, 2)|" = |z]engin

The program is bounded-recurrent wrt |.| and |.|". Indeed, any call to type
or in which is bounded wrt |.| and |.|" only gives rise to calls which are
bounded wrt |.| and |.|. Combine this with the fact that recursive calls are
decreasing wrt |.| and termination can be proven in a very intuitive manner.
Furthermore, the level mappings |.| and |.|" follow directly from the structure
of the program, facilitating their automatic derivation. O

Lemma 3 and corollary 3 below establish that bounded-recurrent pro-
grams are indeed terminating. Proof of this relies on orderings which not
only take into account the levels of atoms but also their relation to each
other in the predicate dependency graph. For a level mapping |.| and goal
G =+ Ai,...,A,, if G is bounded wrt |.| then let |[G]| denote the finite
multiset of pairs {|(rel(Az1), [[41]]), -- -, (rel(An), |[An]])[}- Let < be the lexi-
cographical ordering on IT(C) x N(<) and let <, be the multiset ordering
induced from <. Observe that <,,,; is well founded.

Lemma 3. Let |.|; and |.|2 be level mappings for a logic program P. Let P
be bounded-recurrent wrt |.|; and |.|2 and let G be a goal which is bounded
wrt |.]1 and |.|]2. Let G’ be an SLD-resolvent of G from P. Then

1. G is bounded wrt |.|; and |.|2,
2. &'l <mut [[G]]1, and
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3. every SLD-derivation of P U {«+ G} is finite.

Proof. Assume A; is the selected literal in G =<« Ay,..., A,, and the used
clauseisc: H < By,..., B, (n > 0). Then G’ =« (A4,...,Aj_1, B1,..., By,
Ajt1,...,Ap)0 where 6 € mgu(A;, H).

1. Since G is bounded wrt |.|; and |.|2, it follows that Ay and Aif are
bounded wrt |.|; and |.|; for all £ € [1,m]. In particular, A;60 = HE is
bounded wrt |.|; and |.|2. It follows, by definition 14, that B;6 is bounded
wrt |.|1 and |.|2 for all ¢ € [1,n] and hence G’ is bounded wrt |.|; and |.|2.

2. Moreover, |[Ak]l1 > |[[AxB]|1 for all k € [1,m] by lemma 1. Finally, for all
1€ (l,n
(a) H[Aj]ﬂ]h > |[Bif]|1 if rel(A;) = rel(H) ~ rel(B;), by definition 14,

and
(b) rel(B;0) C rel(Aj) otherwise.
Hence (rel(B;0),|[B;0]1) < (rel(A;),|[A;]/1) for all ¢ € [1,n] and also
(rel(Ag9), |[Ak0]|1) < (rel(Ag), |[Ak]|1) for all k € [1,m] thereby proving
[G'][1 <maut |[G]]1-
3. Since <y is well-founded the result follows immediately.

Corollary 3. Every bounded-recurrent program is terminating,.

Theorem 4. Let |.|; and |.|3 be level mappings for a logic program P. The
following hold.

1. If P is recurrent wrt |.|; then P is bounded-recurrent wrt |.|; and |.|;.

2. If P is bounded-recurrent wrt |.|; and |.|2, then there exists a level map-
ping |.|3 such that P is recurrent wrt |.|3. Moreover, for any atom A, A
is bounded wrt |.|3 if A is bounded wrt |.|; and |.|2.

Proof. Let ¢: H < By,..., B, be a clause in P. Suppose P is recurrent wrt
|.|1. Let 6 be a substitution such that H6 is bounded wrt |.|;. Then B;0 is
bounded and |[HO]|; > |[B:f]|1 for all i € [1,n] by recurrency. The second
part follows by lemma 3 and theorem 2.2 and corollary 2.2 of [5].

7 Bounded-acceptability

The definition of bounded-recurrency is easily adapted to obtain a character-
isation of left-terminating programs.

Definition 15 (bounded-acceptability). Let |.|; and |.|]2 be level mappings
and I an interpretation for a logic program P. A clause ¢: H + By,...,B,.
is bounded-acceptable (wrt |.|1, |.|2 and I) iff

1. I is a model for ¢ and

2. for all 7 € [1,n] and for every substitution 6 such that H is bounded
wrt |.]y and |.|2, {B1,...,Bi_1}0 is ground and I | {Bj,...,B;_1}0 it
follows that
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(a) B;0 is bounded wrt |.|; and |.|» and
(b) |[H6]|1 > |[B:if]|1 whenever rel(H) ~ rel(B;).

P is bounded-acceptable (wrt |.|q, |.|2 and I) iff every clause in P is bounded-
acceptable (wrt |.|1, ||z and T). O

Lemma 4 asserts that every bounded-acceptable program is left-terminating.
The proof of this follows along the same lines as that for acceptable programs.

Lemma 4. Let |.|; and |.|2 be level mappings and I an interpretation for a
program P. Let P be bounded-acceptable wrt |.|1, |.]2 and I, and let G be
a goal which is left-bounded wrt |.|; and I and wrt |.|]2 and I. Let G’ be an
LD-resolvent of G from P. Then

1. G' is left-bounded wrt |.|; and I and wrt |.| and I,
2. [[G"]11 <mawt |[G]1]1 and
3. every LD-derivation of P U {+— G} is finite.

Proof. Let G =« Ao, A1,..., Ay (m > 0) and assume c: H < By,...,B

(n > 0) is the program clause used. Then G’ =+ (By,...,Bp, A1,...,4,)0
where 6 € mgu(Ay, H).

1. It is necessary to show for all j € [1,2], i € [1,n+m] that |[G']}]; is finite.
Firstly, for all j € [1,2], 7 € [1,n]

HG/]HJ’ = |[<_ (Bh'"7BmA1""7Am)9]§|j

¢ grounds G’ }
B;0¢|;
{| | 1 FA{Bi,...,Bi-1}0¢
¢ gI‘OllIldS {Bl, . Bi,1}9
|Bi9¢0'|j 1 ': {Bl, ey Bi_1}0¢7
o grounds B;0¢

Now by definition 15, for all i € [1,n], for every substitution ¢ such
that HO¢ is bounded wrt |.|; and |.|2, {Bi,...,Bi—1}0¢ is ground and
I ': {Bla e aBi—1}0¢

(a) B;0¢ is bounded wrt |.|; and |.|2 and

(b) |[H8¢]|1 > |[Bif¢]|1 whenever rel(H) ~ rel(B;).

Hence, |[G']}]; is finite for all ¢ € [1,n], j € [1,2]. Now for all j € [1, 2],
ke [1,m]

1G5

|[<_ Bla Bn;Ala aAm)e]}thb
Ardo); go grounds G’ }
J {Bla { BzaAla A714}k6—1}050
(]5 grounds H,Ay,...,An
‘AkG‘P‘J ={H,Ay,... Ak,_1}0§0 }
= AO,Al,...,Am)H]’}“|j
g AO,Ala"'aAm)],Ichl‘j

Since G is left-bounded wrt |.|; and I, and wrt |.|2 and I, then |[G']7%|;
is finite for all k € [1,m], j € [1, 2].

IN
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2. Tt follows directly that for all k& € [1,m], j € [1,2], max|[G']7T]; <
max |[G]5T!|; and for all i € [1, n], whenever rel(Ap) = rel(H) ~ rel(B;)

max |[G']%]; < max{|HO¢|, | ¢ grounds HH}
= max{|A¢f¢|1 | ¢ grounds Ay0}
= max H(— Aoe]}‘l
< max H(— AO]HI
= max [[G]]]:

Hence <7‘el(Bi9),maX|[G']Z|1> < (rel(Ap), max|[G]}|1) for all i € [1,n]
and (rel(A), max |[G']7TF],) < (rel(Ay), max |[G]¥T],) forall k € [1,m)]
thereby proving |[G']1]1 <muw [[G]1]1-

3. Since <y is well-founded the result follows immediately.

Corollary 4. Every bounded-acceptable program is left-terminating.

Theorem 5. Let |.|; and |.|2 be level mappings and I an interpretation for
a program P. The following hold.

1. If P is acceptable wrt |.|; then P is bounded-acceptable wrt |.|; and |.|;.
2. If P is bounded-acceptable wrt |.|; and |.|2, then there exists a level
mapping |.|3 such that P is acceptable wrt |.|3. Moreover, for any atom
A, A is bounded wrt |.|3 if A is bounded wrt |.|; and |.|2. O

Proof. Let ¢ : H < By,...,B, be a clause in P. Suppose P is acceptable
wrt |.]1. Then I is a model for c. Let § be a substitution such that H6 is
bounded wrt |.|1, {B1,...,B;—1}0 is ground and I = {By,...,B;_1}0. Then
B;6 is bounded wrt |.|; and |[H8]|; > |[B;8]|1 by acceptability and lemma 2.
The second part follows by lemma 4 and theorem 4.18 of [2]. O

Note that the proof of theorem 5, like that for theorem 4, does not need to
directly specify the relationship between |.|1, |.|2 and |.|3 (though it would be
interestingly to understand this connection).

8 Discussion

The concept of bounded-acceptability proposed here is quite similar to that
of rigid-acceptability defined by [13,16]. This latter notion forms the basis of a
practical, demand-driven termination analysis. The analysis is essentially top-
down, attempting to prove termination for a set of queries S. An important
step in the analysis is the calculation of the call set Call(P, S), the set of all
calls which may occur during the derivation of an atom in S. The analysis
focuses on the recursive components to derive a level mapping |.|, enforcing
boundedness of sub-computations by imposing a rigidity constraint on the
call set. That is, during the derivation of |.|, every atom in Call(P,S) is
required to be rigid wrt |.|.
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For program specialisation, and partial deduction in particular, it is more
useful to derive sufficient termination conditions for individual predicates
rather than proving that a given top-level goal will terminate [10]. The reason
is that the overall computation is unlikely to be left-terminating but some
sub-computations probably will be. The required conditions can be derived in
a bottom-up manner on the strongly connected components of the predicate
dependency graph. The notion of bounded-acceptability lends itself naturally
to this process.

In [14], the analysis of [13] is adapted to obtain the above mentioned
conditions. It attempts to derive for each predicate a maximal set S of left-
terminating queries. Essentially, this amounts to deriving a level mapping |.|
which defines S, in that an atom A is in S if and only if A is bounded wrt |.|.
However, an important step is omitted from the paper, and the set S may con-
tain queries which are not left-terminating. The level mapping |.| is derived
by only considering the recursive components of the program and thus cor-
responds to the level mapping |.|; in the definition of bounded-acceptability.
Sub-computations are no longer guaranteed to start from bounded goals since
no rigidity constraint is placed on the level mapping during its derivation as
in [13]: specifically, this is because the set Call(P,S) is unknown since S is
unknown (the idea after all being to derive S), and as a result no rigidity
constraint can be imposed on Call(P,S). Hence, in relation to the current
work, the missing step is the derivation of the second level mapping |.|2. The
maximal set S’ C S of left-terminating queries then, contains only those
atoms which are bounded wrt |.|; and |.|5. Note that |.| can be derived en-
tirely independently of |.|1, in the sense that there is never any need to alter
the definition of |.|; in order to obtain a definition of |.|; which can be used
to prove bounded-acceptability. Thus the notion of bounded-acceptability al-
lows the set S’ to be easily constructed from S without requiring any change
to the method of [14].

Recently, Bossi et al [6] have developed an entirely modular approach to
termination in which acceptability is proven on a module-by-module basis
by choosing a natural level mapping that focuses solely on the predicates
defined within the module. The key concept is strong boundedness. A query
to a program that is defined over n modules Ry, ..., R, is said to be strongly
bounded if each call to a predicate that is defined in module R; is bounded
with respect to the level mapping for that module |.|;. A sufficient condition
for left-termination of a strongly bounded query is for each module R; to
be acceptable with respect to its own level mapping |.|; and a model of the
whole program. Observe, however, that strong boundedness is a property
of derivations rather than a model. The authors, however, argue that the
approach is still attractive because strong boundedness can be verified by
approximating call-patterns by goal-dependent abstract interpretation [8].
Moreover, well-moded [17] and well-typed logic programs [7] are in some
sense well-behaved with respect to strong boundedness and thereby provide
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another route for asserting strong boundedness. This work is applicable to
general logic programs and therefore generalises the modular termination
proofs for well-moded definite programs originally proposed in [18]. By way
of contrast, the concept of bounded-acceptability paper does rely on either
call-pattern approximation or the program being well-moded or well-typed.
In summary, the notions of bounded-recurrency and bounded-acceptability
enable a more mechanistic approach to be taken to the construction of level
mappings since these concepts finesse some of the complications that arise
in the construction of classic termination proofs. Level mappings that di-
rectly relate to the recursive structure of the program, as well as being more
intuitive for a human, are bound to be easier to synthesise for a machine.
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