
Widening ROBDDs with Prime Implicants

Neil Kettle1, Andy King1, and Tadeusz Strzemecki2

1 University of Kent, Canterbury, CT2 7NF, UK
2 Fordham University, New York, NY 10023, USA

Abstract. Despite the ubiquity of ROBDDs in program analysis, and
extensive literature on ROBDD minimisation, there is a dearth of work
on approximating ROBDDs. The need for approximation arises because
many ROBDD operations result in an ROBDD whose size is quadratic
in the size of the inputs. Furthermore, if ROBDDs are used in abstract
interpretation, the running time of the analysis is related not only to the
complexity of the individual ROBDD operations but also the number of
operations applied. The number of operations is, in turn, constrained by
the number of times a Boolean function can be weakened before stability
is achieved. This paper proposes a widening that can be used to both
constrain the size of an ROBDD and also ensure that the number of times
that it is weakened is bounded by some given constant. The widening
can be used to either systematically approximate from above (i.e. derive
a weaker function) or below (i.e. infer a stronger function).
Keywords: ROBDD, widening, approximation, abstract interpretation.

1 Introduction

Reduced-Ordered Binary Decision Diagrams (ROBDDs) have numerous appli-
cations in model checking [4], program analysis [25] and abstract interpreta-
tion [1]. The popularity of ROBDDs stems from their memory-efficient encoding
of Boolean functions and a canonical representation that supports the memoi-
sation of ROBDD operations. The worst-case complexity of many ROBDD op-
erations is quadratic in the size of the inputs [2], but the inherent intractability
of Boolean function manipulation inevitably manifests itself; even though ROB-
DDs are constructed so as to factor out all replicated sub-ROBDDs, Boolean
functions exist whose size is exponential in the number of variables no matter
what variable ordering is employed [3]. Intractably large ROBDDs can [6] and
do [11] arise in program analysis. In particular, when an analysis associates each
program variable with n attributes and m program variables appear in scope,
then an ROBDD over m!lg(n)" propositional variables are required to encode
the dependencies between the attributes of the program variables. Even with
the use of sophisticated tree-automata techniques to improve the encoding [12],
problematically large ROBDDs still arise even when m ≈ 100 [11].

ROBDDs are not only problematic in terms of space but also in terms of
time. This is not only due to the complexity of individual ROBDD operations,
but because the number of ROBDD operations is itself potentially exponential.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/18531545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the context of abstract interpretation, this has particular relevance as analysis
is typically formulated as a fixpoint. Suppose, for example, that the result of an
analysis is conceived as the least fixpoint of a series of equations:

f1 = F1(f1, . . . , fn)
...

...
...

fn = Fn(f1, . . . , fn)

where each fi is a propositional function over m variables x1, . . . , xm and each Fi

is an operation on f1, . . . , fn obtained by, say, composing monotonic operations
such as disjunction fi ∨ fj , conjunction fi ∧ fj and existential quantification
∃xi(fj). The least fixpoint can be computed by setting fi = false and then
reapplying the n equations until stability is achieved. In the worst-case, each
application of n equations might weaken exactly one fi by adding a single model.
Since each fi can possess 2m models, a chain of n2m iterates are required in the
worst-case which violates the general requirement for a polynomial analysis. (The
reader is referred to [6] for examples that manifest this behaviour).

In program analysis, it is generally better to return an approximate answer
in an acceptable time than an exact answer in an exorbitant time. To this end,
widening operators have been proposed [9] that accelerate convergence on com-
putational domains that possess either infinite or very long chains. This use of
widening trades precision for time. However, widening can also be used to trade
precision for space, for example, replace one ROBDD with another that has more
models yet has a more compact representation [11, 15, 18, 21]. Despite extensive
literature on reducing the size of an ROBDD by selecting a propitious variable
ordering (the reader is referred to citations of the classic paper [19] on variable
reordering and minimisation), the problem of widening ROBDDs has received
relatively scant attention. This paper plugs this gap by proposing a new widen-
ing for ROBDDs based upon the enumeration of prime implicants [8] that has a
number of attractive properties:

– The widening can ensure that each fi is not weakened more than a prescribed
number of times. Previous attempts at bounding the iterations have confined
the analysis to a fixed sub-domain of Boolean formulae [13]. The widening
can support richer classes of dependencies without sacrificing scalability.

– The widening can compute dense approximations of an ROBDD. Moreover,
by constructing the new ROBDD in terms of the progressively longer impli-
cants, the widening can be tuned to achieve the desired degree of precision.

– The widening is not dependent on the variable ordering. State-of-the-art in
ROBDD approximation is represented by heuristic algorithms [18, 21] that
prune branches from an ROBDD by checking whether each branch is sub-
sumed by its sibling. These algorithms are syntactic in that they are informed
only by the structure of the ROBDD. In this paper, widening is formulated
in terms of the prime implicants of the underlying Boolean function. The
advantage of this semantic approach is that the widening is not sensitive to
the variable ordering, hence improving the predictability of the analysis.

– The widening can be realised in a surprisingly straightforward manner by in-
troducing a cardinality constraint into the algorithm of Coudert and Madre [8]
that removes all prime implicants of excessive length. Experimental work
suggests that although this widening produces accurate approximations, the
running time of our implementation is not significantly worse than state-of-
the-art methods [18, 21].

The paper is structured as follows: Section 2 presents the necessary preliminaries.
Section 3 specifies a widening for ROBDDs and Sect. 4 details algorithms for
realising it. Section 5 presents the experimental results. Finally, Sect. 6 surveys
the related work and Sect. 7 concludes.

2 Preliminaries

2.1 Boolean Functions

A Boolean function is a mapping f : Bool n → Bool where Bool = {0, 1} that is
conventionally written as a propositional formula defined over a totally ordered
set of propositional variables X = {x1, . . . , xn}. For instance, x1 ∨ x2 represents
the dyadic function {〈0, 0〉 *→ 0, 〈0, 1〉 *→ 1, 〈1, 0〉 *→ 1, 〈1, 1〉 *→ 1}. The set
of propositional formulae over X is denoted Bool X and henceforth functions
and formulae will be used interchangeably. We define the set of models of a
Boolean function f as the mapping modelX(f) : Bool X → ℘(Bool n) such that
modelX(f) = {〈b1, . . . , bn〉 | f(b1, . . . , bn) = 1} where ℘ denotes the power-
set operator. For example, if X = {x1, x2, x3} then modelX(x1 ∧ (x2 → x3)) =
{〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 1〉}. One Boolean function f1 entails another f2, denoted
f1 |= f2 iff modelX(f1) ⊆ modelX(f2). The structure 〈Bool X , |=,∨,∧, 0, 1〉 is
a finite lattice where 0 and 1 abbreviate the Boolean functions λb.0 and λb.1
respectively and b ∈ Bool n. A chain of Boolean functions C is a set C ⊆ Bool X

such that either f |= f ′ or f ′ |= f for all f, f ′ ∈ C. An anti-chain of Boolean
functions A is a set A ⊆ Bool X such that f -|= f or f = f ′ for all f, f ′ ∈ A. The
Shannon co-factor of a Boolean function f w.r.t. a variable xi and a Boolean
constant b is defined by f|xi←b = f(x1, . . . , xi−1, b, xi+1, . . . , xn). Finally, we
denote existential quantification w.r.t. a variable xi by ∃xi(f) which can be
computed using Schröder elimination, that is, by ∃xi(f) = f|xi←0 ∨ f|xi←1.

A cube p is a Boolean function of the form (∧y∈Y y) ∧ (∧z∈Z¬z) such that
Y ∪Z ⊆ X and Y ∩Z = ∅ where Y, Z are sets of variables; moreover, the length of
p is denoted ‖p‖ and defined by ‖p‖ = ‖Y ‖ + ‖Z‖. An implicant p of a Boolean
function f is a cube p such that p |= f . The Boolean function 1 is the cube
obtained by putting Y = Z = ∅. A prime implicant p of a Boolean function f is
an implicant p of f such that there exists no other implicant p′ of f where p |= p′

and p′ -= p. Let primes(f) denote the set of prime implicants of the Boolean
function f . To illustrate, consider f = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x3 ∨ x4)
and p = (¬x1 ∧ ¬x3). Observe that p |= f and therefore p is a implicant of f .
Further, suppose p |= p′ and p -= p′. Then p′ = ¬x1 or p′ = ¬x3 and, in either
case, p′ -|= f . Hence p is a prime implicant of f . In fact, primes(f) = {¬x1∧¬x3,
¬x2 ∧ ¬x3,¬x1 ∧ x4}. Finally, observe primes(1) = {1} and primes(0) = ∅.

2.2 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [2] is a rooted directed acyclic graph where
each internal node is labelled with a variable xi. Each internal node has one
successor node connected via an edge labelled 0, and another successor connected
via an edge labelled 1. An external (leaf) node is represented by one of two nodes
labelled with the Boolean constants 0 or 1. The Boolean function represented by
a BDD can be evaluated for a given variable assignment by traversing the graph
from the root, taking the 1 edge at a node when the variable is assigned to 1
and the 0 edge when the variable is assigned to 0. The external node reached
in this traversal indicates the value of the Boolean function for the assignment.
Observe that each sub-BDD of a BDD also itself represents a Boolean function.

An ROBDD is a BDD that obeys the following restrictions to obtain a canon-
ical representation and thereby permit constant-time equivalence checks. Firstly,
the label of a node xi is always less than the label xj of any internal node im-
mediately reachable via its successors, that is, i < j. Secondly, there can exist
no sub-ROBDD that is rooted at a node labelled with xi that represents the
function f such that f|xi←0 = f|xi←1. Thirdly, there are no two nodes labelled
with the same variable that have identical successor nodes.

3 Specification of the widening

To decouple the widening from implementation concerns, we first specify how to
widen Boolean functions for both space and time using prime implicants.

3.1 Widening for space

The ROBDD approximation algorithms of Shiple [21] and Ravi et al [18] seek
to improve the density of an ROBDD which is defined as the ratio of minterms
in the represented function to the number of nodes in the representing ROBDD.
Both algorithms identify the non-dense sub-ROBDDs within a ROBDD and
substitute them with other sub-ROBDDs which are denser and yet possess more
models. Ultimately this culminates in a dense upper-approximation. Although
this approach is well-intended, density comparisons and ROBDD restructuring is
limited to those sub-ROBDDs that actually arise in the ROBDD whose presence,
in turn, depends on the variable ordering. Our thesis is that prime implicants
are natural variable order-independent candidates for reasoning about density.
To illustrate this, consider the set of implicants S = {p | p |= f} of a function f .
Any S′ ⊆ S is a sound under-approximation of f in the sense that ∨S′ |= f yet
different S′, even of the same size, can yield better approximations. For instance,
consider an implicant p ∈ S and a prime implicant p′ strictly contained within
it, that is, p |= p′ and p -= p′. Then ‖p′‖ < ‖p‖. Hence p′ contributes 2n−‖p′‖

minterms to f whereas p contributes only 2n−‖p‖. Thus p′ is a better candidate
for inclusion in S′ than p. Moreover, since p′ is shorter than p, it is likely to
contribute a shorter path in an ROBDD that represents ∨S′. The following

family of widening operators draw together these ideas to compute a sound over-
approximation by combining negation with systematic under-approximation.

Definition 1. The family of operators ∇k : Bool X → Bool X where k ∈ N∪{0}
are defined by ∇k(f) =

∧
{¬p | p ∈ primes(¬f) ∧ ‖p‖ ≤ k}

The proposition asserts that ∇k is anti-monotonic in its parameter k and hence
∇k is uniformly more precise than ∇k−1. Furthermore, in the limit, ∇k(f) con-
verges onto f from above. The widening is also monotonic in its argument f .

Proposition 1. Suppose ‖X‖ = n. Then

– If f ∈ Bool X then f = ∇n(f) |= ∇n−1(f) |= . . . |= ∇0(f) = 1
– If f, f ′ ∈ Bool X , f |= f ′ and 0 ≤ k ≤ n then ∇k(f) |= ∇k(f ′).

Proof.

– Since f =
∨

primes(f) (Blake canonical form [10]), f = ∇n(f). Let 0≤ k< n.
Note {¬p | p ∈ primes(¬f)∧‖p‖ ≤ k} ⊆ {¬p | p ∈ primes(¬f)∧‖p‖ ≤ k+1},
hence ∇k+1(f) |= ∇k(f). Finally observe ∇0(f) = ∧∅ = 1 as required.

– Let 0 ≤ k ≤ n, p′ ∈ primes(¬f ′) and ‖p′‖ ≤ k. Then p′ |= ¬f ′ |= ¬f .
There exists p ∈ primes(¬f) such that p′ |= p. Thus ‖p‖ ≤ ‖p′‖ ≤ k. Since
p′ |= p, ¬p |= ¬p′, hence ∇k(f) =

∧
{¬p | p ∈ primes(¬f)∧ ‖p‖ ≤ k} |= ¬p′.

Therefore ∇k(f) |= ∇k(f ′) as required. 45

3.2 Widening for time

To explain the role of implications in widening for time, consider a chain of
functions {f1, f2, . . .} ⊆ Bool X where fi+1 = F (fi) and F : Bool X → Bool X is
a monotonic operator. The problem is to extract an invariant from that chain,
that is, find a function g such that fi |= g for all fi. Such an invariant can be
found, whilst applying F only a bounded number of times, by constructing a set
of m Boolean functions S1 = {g1, . . . , gm} such that f1 |= gi for all gi. This set is
then iteratively pruned until stability is reached. This is realised by constructing
Si+1 = {g ∈ Si | F (∧Si) |= g}. By construction f1 |= ∧S1 and, because F is
monotonic, it follows by induction that fi |= ∧Si. If Sl denotes the limit, that
is Sl = Sl+1, then fi |= ∧Sl for all fi, hence ∧Sl is an invariant. The key point
about this construction is that F is applied at most m iterations rather than
possibly 2‖X‖ times. This gives a performance guarantee and a parameter m
that can be increased (if necessary) to improve precision. This merely leaves the
problem of constructing S1.

An uninformed approach to computing S1 is to extract m arbitrary implicants
of ¬f1, that is, p |= ¬f1. Then each ¬p is a clause of f1. However, consider a prime
implicant p′ of ¬f1 such that p |= p′. Then ¬p′ |= ¬p, therefore substituting a
prime implicant p′ for p we obtain a more accurate initial ∧S1, without increasing
its size. This motivates constructing S1 from prime implicants. Furthermore,
consider two prime implicants p and p′ such that ‖p′‖ < ‖p‖. Then p′ is a more
propitious candidate for inclusion in S1 since the clause ¬p′ possesses fewer

minterms than ¬p which motivates a greedy approach to constructing S1 in
terms of prime implicants of minimal length.

One may wonder whether a bound k on the length of prime implicants, in-
duces a bound on the number m of primes, and hence a bound on the number of
iterates. A straightforward relationship between k and m follows from the obser-
vation that there are nC121, nC222, . . . , nCk2k different cubes of length 1, 2, . . . , k
respectively where iCj = i!

(i−j)!j! . Hence a bound on m is min({2n,
∑k

i=1
nCk2k})

where n = ‖X‖. However, by adapting an argument relating to anti-chains of
implicants [5, proof of Theorem 2.2], the following tighter bound can be obtained:

Proposition 2. ‖{p ∈ primes(f) | ‖p‖ ≤ k}‖ ≤ max({nC121, . . . , nCk2k})

Proof. Let f ∈ Bool X , X = {x1, . . . , xn}, C denote the set of cubes over X and
P = {p ∈ primes(f) | ‖p‖ ≤ k}. P is anti-chain of Bool X and also C. It has
been shown [14] that in a poset such as 〈C, |=〉, there exists a maximal anti-chain
which is invariant under any isomorphism of C. Let A be such an anti-chain.
Now let c, c′ ∈ A such that ‖c‖ = ‖c′‖ and consider a mapping F : Y → Y
where Y = {x1,¬x1, . . . , xn,¬xn} such that F (xi) = ¬F (¬xi). Suppose that
F (c) = c′ where F is extended from Y to C in the natural way. Since F is an
automorphism, it follows that c′ ∈ A, hence {c′′ ∈ C | |c| = |c′′|} ⊆ A. Since A
is an anti-chain, then if p ∈ C and ‖p‖ < ‖c‖ then there exists c′′ ∈ A such that
p |= c′′ and p -= c′′. Hence p -∈ A. Similarly, if ‖p‖ > ‖c‖ then p -∈ A. Therefore
‖A‖ = nC‖c‖2‖c‖ and, since ‖P‖ ≤ ‖A‖, the result follows. 45

Whenever 3k ≤ 2(n+1) the above bound on m collapses to nCk2k. This follows
since nC121 ≤ . . . ≤ nCk−12k−1 ≤ nCk2k iff 1

(n−k+1) ≤ 2
k iff 3k ≤ 2(n + 1).

Because this bound is so conservative, a more pragmatic tactic is needed for
generating the shortest m prime implicants. One such tactic is to compute all
prime implicants of length 1 for f1, then all primes whose length does not exceed
2, then all primes whose length does not exceed 3 etc, until m prime implicants
are discovered. The following section presents new algorithm that is designed for
solving this specific form of the prime implicant enumeration problem.

4 Implementation of the widening

The complexity of finding the shortest prime implicant given a DNF formula
over n variables is in GC(log2 n, coNP)-complete [24], hence at least as hard as
coNP , and therefore one would expect the widening to be completely intractable.
However, Coudert and Madre [8] give an elegant algorithm for computing all the
prime implicants of a Boolean function presented as an ROBDD. The primes
are, in turn, represented in an ROBDD and hence the complexity of prime
enumeration is not necessarily reliant on the number of implicants but the size
of the ROBDD. Alas, a detailed analysis of the complexity of this algorithm has
not been forthcoming and it is unknown whether the algorithm is polynomial
in the size of the input ROBDD [7]. Furthermore, it remains unclear how the
results of Umans [24] relate to the complexity of this algorithm.

This section proposes a refinement to the algorithm of Coudert and Madre [8]
that enumerates all primes implicants whose length does not exceed k. This re-
fined algorithm can be applied iteratively to find a shortest prime implicant and
thus is unlikely to be polynomial. The essence of the Coudert and Madre [8]
scheme is a transformation that maps an ROBDD representing f over the vari-
ables X to another representing a function f ′ over the variables o1, s1, . . . , on, sn

where n = ‖X‖. The idea is that any implicant p′ of f ′ can be reinterpreted as
a prime implicant of f in the sense that p is a prime implicant of f whenever:

p = (∧{xi | p′ |= oi ∧ p′ |= si}) ∧ (∧{¬xi | p′ |= oi ∧ p′ |= ¬si})

The intuition is that oi indicates whether the variable xi occurs within a prime
and si encodes the polarity of that occurrence. Coudert and Madre [8] present
an ROBDD transformation that recursively builds f ′ from f . Our new insight is
that it is possible to build f ′ from f whilst enforcing the cardinality constraint∑n

i=1 oi ≤ k. The following algorithm builds toward the refined algorithm by
generating an ROBDD which expresses the cardinality constraint. The constraint
is realised as a cascade of n full-adders that together output the sum that is
expressed in !lg(n)" bits. These bits are then constrained so as to not exceed k.

Algorithm 1 CONSTRAIN(k)
for i← 1 to "lg n# do

sum[i]← 0
for i← 1 to n do

c← oi

for j ← 1 to "lg n# do
c′ ← c ∧ sum[j]
sum[j]← sum[j]⊕ c
c← c′

f ← 0
for i← 1 to n do

f ← (¬sum[i] ∧ k[i]) ∨ ((sum[i]↔ k[i]) ∧ f)
return f

In the above algorithm, the bound k is represented as an array of !lg n" bits k[i]
such that k = k[1] + 2k[2] + . . . + 2&lg n'k[!lg n"]. The first loop initialises the
elements of the temporary array sum[i] to false. The second loop iteratively
calculates o1 + . . . + on and stores the result in the temporary array sum. The
ith iteration of the loop initialises the carry c to be oi and then proceeds to add
the carry into the sum that has accumulated thus far. The formula sum[j] ⊕ c
merely denotes the exclusive-or of the jth bit of sum with the carry c. The third
loop constrains the array sum to not exceed the k vector. Algorithm 2 details
how this constraint can be integrated in the algorithm of Coudert and Madre [8].
Because of reasons of space, those readers who wish to follow the structure of
the algorithm and the underlying meta-product construct are referred to [8].

Algorithm 2 PRIMESLEQ(f, k)
xi ← var(f)
g ←PRIMESLEQ(f|xi←0 ∧ f|xi←1, k)
g′ ←PRIMESLEQ(f|xi←1, k) ∧ ¬g
g′′ ←PRIMESLEQ(f|xi←0, k) ∧ ¬g
return ((¬oi ∧ g) ∨ (oi ∧ si ∧ g′) ∨ (oi ∧ ¬si ∧ g′′)) ∧ CONSTRAIN(k)

Algorithm 2 repeatedly imposes the cardinality constraint which trims the size
of all intermediate ROBDDs. The astute reader will notice that each call to
PRIMESLEQ operates on a sub-ROBDD that is only defined over {xj , . . . , xn}.
However, CONSTRAIN(k) imposes a constraint over {x1, . . . , xn}. This is no error
since

∑n
i=1 oi ≤ k entails

∑n
i=j oi ≤ k and therefore it is not necessary to

manufacture a different cardinality constraint for each level in the ROBDD.
When widening for time, it is necessary to extract m primes from the trans-

formed ROBDD. This can be accomplished by a partial, depth-first traversal
that sweeps the ROBDD until m primes have been retrieved. When widening
for space, an ROBDD over-approximation is required. The following algorithm
details how this can be constructed by applying existential quantification:

Algorithm 3 PRIMES2BDD(f)
for i← 0 to n do

f ′ ← ∃si(∃oi(f ∧ (oi → (xi ↔ si))))
f ← f ′

return f

5 Experimental Results

To assess the precision and tractability of the widening, it was implemented
within the CUDD [22] Decision Diagram package. This package supports the
algorithms of Shiple [21] and Ravi et al. [18] which, following the CUDD naming
scheme, will henceforth be referred to as bddOverApprox and remapOverApprox
respectively. Table 1 presents details of the Boolean functions, drawn from the
MCNC and ISCAS benchmark circuits, used to assess the widening. For ease of
reference, all Boolean functions are labelled with a numeric identifier. The second
and third columns give the circuit name and specific output number taken from
the circuits; outputs were selected so as to evaluate the widening on ROBDDs
with varying size. The fourth, fifth, sixth and seventh columns respectively give
the number of variables, number of ROBDD nodes, the number of minterms of
the Boolean function represented by the ROBDD and the density of the ROBDD.
All experiments were performed on an UltraSPARC IIIi 900MHz based system,
equipped with 16GB RAM, running the Solaris 9 Operating System, and using
getrusage to calibrate CPU usage in seconds.

Table 1. Benchmark formulae

ID Circuit # ‖X‖ size minterms density

1. pair 177 51 26253 1.86× 1014 7.08× 109

2. 182 53 33190 8.12× 1014 2.45× 1010

3. mm9b 420 31 94328 1.61× 109 1.71× 104

4. 421 31 96875 1.62× 109 1.67× 104

5. s9234 288 76 655192 3.59× 1022 5.48× 1016

6. 488 75 1304371 1.95× 1022 1.49× 1016

7. rot 149 53 1315 5.18× 1015 3.94× 1012

8. 172 55 1700 1.08× 1016 6.35× 1012

5.1 Our Method

The topmost graph of Fig. 1 presents the time required to apply Algorithm 2 and
then Algorithm 3 to the benchmarks for various k. (Note that this time is dom-
inated by the cost of applying Algorithm 2 and therefore the times reported
in the table closely tally with the times required to apply Algorithm 2 and
then walk the ROBDD to extract a bounded number of primes). Interestingly,
Coudert and Madre [8] suggest that “[their] procedures have costs that are in-
dependent of the sizes of [the prime] sets”, “since there is no relation between
the size of a set and the size of the [ROBDD] that denotes it”. However, this
does not square with our results which suggest that the size of the ROBDDs
depends, at least to some extent, on the number of primes that it represents.
This is witnessed by the sharp increase in runtime that occurs for some cir-
cuits as k increases. However, the crucial point is not that the runtime spikes,
but the degree of precision achieved before the escalation in complexity. To this
end, the middle graph plots the ratio of minterms of the original Boolean func-
tion against that of the approximation for increasing values of k. Observe that
the quality of the approximation rapidly converges onto 1 as k increases. This
suggests the tactic of incrementally increasing k until either the precision is ac-
ceptable or a timeout is reached. Applying this tactic achieves precision rates of
70, 80, and 90% yielding runtimes of less than 5, 20 and 60 seconds respectively.
On the other hand, repeatedly incrementing k until the accumulated runtime
exceeds 30 seconds, achieves minterm precision rates for benchmarks 1–8 of
99, 99, 99, 99, 99, 92, 96, 95% respectively. This realises an anytime approach to
prime generation and ROBDD approximation in which the quality of the result
is limited only be the quantity of resource available. Incrementing k until at
least 1024 prime implicants are found (which if anything is rather high for the
purposes of analysis), requires the following values of k: 5, 5, 7, 7, 5, 6, 7, 7.

It should be noted that these figures are, if anything, rather pessimistic for
many types of program analysis. For example, in the context of groundness
analysis that is widely used in logic programming, it has been observed that the
vast majority of clauses that arise during analysis are very small in length [13].

This implies that widening with small k is unlikely to have any discernable
impact on the overall precision.

The value of an approximation algorithm has traditionally been reported in
terms of density [18, 21] which gives an indication as to the compactness of the
approximating ROBDD. The lower graph thus reports how the density varies
with k. By comparing the densities reported in Table 1 against those presented
in the graph, it can be seen that the widening can significantly improve on the
density of the original ROBDD.

5.2 Comparison Against Existing Methods

Table 2 summaries the results obtained by exercising the bddOverApprox and
remapOverApprox algorithms on the circuits in our benchmark suit. The table
is partitioned horizontally, into three groups of rows according to whether the
bddOverApprox algorithm, remapOverApprox algorithm, or the widening algo-
rithm proposed in this paper was applied. The second and third columns give
the size of the approximating ROBDD and the number of minterms in its un-
derlying Boolean function. The fourth and fifth columns detail the ratio of these
values with respect to the size and number of minterms in the original ROBDD
(as given in Table 1). The bddOverApprox and remapOverApprox algorithms
are parameterised by a quality parameter q ∈ [0, 1], that specifies the minimal
acceptable density improvement. That is, these algorithms ensure that the new
density d′ satisfies q ≥ d/d′ where d is the density of the original ROBDD. As
Shiple himself says [21], “The bddUnderApprox method is highly sensitive to the
[quality] parameter”. Added to this, there is no clear way to choose q so as to
obtain a desired reduction in ROBDD size.

For purposes of comparison, we chose to reduce the size of an ROBDD
by at least 50%, but ideally not significantly more than 50% (it was the de-
sire to solve this particular analysis problem that motivated this study). Both
bddOverApprox and remapOverApprox were called repeatedly under the bisec-
tion algorithm to search for a quality value that yielded an acceptable reduction
in size. The algorithm terminated when the difference between the high and
lower quality bounds was less than 0.01. The notes column gives the particu-
lar quality values that achieved the best ROBDD approximation and the time
column presents the total time required to call bisection which, of course, was
dominated by the time to approximate the ROBDDs. Despite the systematic
use of bisection, the reduction in ROBDD size was often significantly more than
50%. This was due to the ROBDD collapsing at certain quality thresholds.

The lower rows of the Table 2 summarise the results of incrementing k until
a space reduction of at least 50% was obtained. The notes column gives the re-
quired values of k and the cumulative execution time. Observe that the minterm
ratios thus obtained compare favourably with those derived using bddOverApprox
and remapOverApprox whilst the overall execution time is also reduced. Note
that other variable orderings may give different results for the bddOverApprox
and remapOverApprox. (As a sanity check, the widening was tested to verify
that it delivered the same approximations under different variable orderings.)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

Tim
e (

se
co

nd
s)

k

pair #177
pair #182

mm9b #420
mm9b #421
s9234 #288
s9234 #488

rot #149
rot #172

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

Mi
nte

rm
 R

ati
o

k

pair #177
pair #182

mm9b #420
mm9b #421
s9234 #288
s9234 #488

rot #149
rot #172

 1

 100000

 1e+010

 1e+015

 1e+020

 1e+025

 2 4 6 8 10 12 14 16

De
ns

ity

k

pair #177
pair #182

mm9b #420
mm9b #421
s9234 #288
s9234 #488

rot #149
rot #172

Fig. 1. Time, Minterm ratio and Density against k

Table 2. Comparison of approximation

ID Approximation Ratios Time Notes
size minterms size minterms

[18] 1. 8382 3.40 × 1014 0.32 1.83 4.61 q: 0.94
2. 9711 1.47 × 1015 0.29 1.81 6.32 q: 0.84
3. 933 1.88 × 109 0.01 1.16 10.85 q: 0.75
4. 722 1.88 × 109 0.01 1.16 11.96 q: 0.84
5. 15 5.68 × 1022 0.01 1.58 1086.12 q: 0.88
6. 11 2.89 × 1022 0.01 1.49 2321.68 q: 0.92
7. 91 7.30 × 1015 0.07 1.41 1.13 q: 0.96
8. 838 2.96 × 1016 0.49 2.75 1.50 q: 0.98

[21] 1. 8385 1.72 × 1015 0.32 10.85 4.86 q: 0.92
2. 9714 8.06 × 1015 0.29 9.93 6.35 q: 0.81
3. 933 1.88 × 109 0.01 1.16 12.39 q: 0.75
4. 722 1.88 × 109 0.01 1.16 13.10 q: 0.84
5. 15 5.68 × 1022 0.01 1.58 1057.62 q: 0.87
6. 11 2.89 × 1022 0.01 1.49 2562.30 q: 0.92
7. 168 8.10 × 1015 0.13 1.56 1.25 q: 0.92
8. 837 1.73 × 1016 0.49 1.60 1.67 q: 0.94

§ 3 1. 11027 2.06 × 1014 0.42 1.11 0.58 k: 5
2. 7301 8.32 × 1014 0.22 1.03 0.85 k: 6
3. 44334 1.68 × 109 0.47 1.02 6.38 k: 12
4. 39718 1.69 × 109 0.41 1.05 8.19 k: 11
5. 75 3.64 × 1022 0.01 1.01 20.36 k: 7
6. 103 1.96 × 1022 0.01 1.01 47.53 k: 6
7. 289 6.29 × 1015 0.22 1.21 0.88 k: 7
8. 527 1.09 × 1016 0.31 1.01 1.66 k: 7

6 Related Work

Quite apart from the heuristic algorithms of Shiple [21] and Ravi et al. [18] that
both reside in O(‖G‖2) where ‖G‖ is the number of nodes in the ROBDD, other
less well-known widenings have been proposed in the literature. Mauborgne [15]
shows how to perform strictness analysis with an ROBDD variant referred to as
a typed decision graph (TDG). Mauborgne advocates widening TDGs for space,
using an operator ∇(l, f) that takes, as input, a TDG that encodes a Boolean
function f and returns, as output, a TDG g with at most l nodes such that
f |= g. The first widening he proposes is in O(‖G‖4) where ‖G‖ is the number of
nodes in the TDG. To improve efficiency, Mauborgne suggests a second widen-
ing that resembles those of Shiple and Ravi et al. This algorithm computes the
TDGs f1, . . . , fn obtained by replacing each node i with 1. The fi are filtered to
remove those TDGs whose size exceed ‖G‖/2. Of the remaining fi, an fmax is
selected which “gives best results” and the widening is reapplied to fmax if its
TDG contains more than l nodes. More recently, Schachte and Søndergaard [20]

have presented elegant ROBDD algorithms for approximating functions to vari-
ous sub-domains of Boolean formulae. Although complexity theoretic issues still
remain, these algorithms are potentially useful as widenings.

Algorithm 4 EquivVars(f)
xi ← var(f)
if f|xi←0 = true then

return 〈i, 0, 1〉 :: ε
if f|xi←1 = true then

return 〈i, 1, 0〉 :: ε
if f|xi←0 = false then

return 〈i, 1, 0〉 ::EquivVars(f|xi←1)
if f|xi←1 = false then

return 〈i, 0, 1〉 ::EquivVars(f|xi←0)
v1 ← 〈i, 0, 1〉 ::EquivVars(f|xi←0)
v2 ← 〈i, 1, 0〉 ::EquivVars(f|xi←1)
return anti unify(v1, v2)

The widening presented in this paper relies upon the generation of prime
implicants. This problem was first addressed by Quine [17] and, since then,
there has been much interest in developing efficient prime implicant enumeration
algorithms (interested readers should consult [23] for a detailed history of the
problem and known algorithms). Interestingly, the ROBDD literature already
suggests an approach to widening ROBDDs that is based on prime implicants
(albeit of a restricted form). Bagnara and Schachte [1] propose an O(n2‖G‖)
ROBDD algorithm for finding all pairs x, y ∈ X such that ¬(x ↔ y) |= f where
n = ‖X‖. The formula ¬(x ↔ y) = (x ∧ ¬y) ∨ (¬x ∧ y) is actually a quadratic
prime implicant and this hints at an ROBDD widening. The algorithm sketched
in Algorithm 4 applies Plotkin’s anti-unification algorithm [16] to detect all
quadratic prime implicants of the form ¬(x ↔ y) and (x ↔ y) whilst reducing the
complexity from O(n2‖G‖) [1] to O(n lg n‖G‖) where n is the number of variables
in the ROBDD. A run of the algorithm is illustrated for an ROBDD representing
f = (x1∧(x2∨x3))∧(x2 ↔ x4)∧(x2 ↔ ¬x5). The intuition behind the algorithm
is that lists such as 〈2, 1, 0〉 : 〈4, 1, 0〉 : 〈5, 0, 1〉 and 〈2, 0, 1〉 : 〈3, 1, 0〉 : 〈4, 0, 1〉 :
〈5, 1, 0〉 represent x2 ∧ x4 ∧ ¬x5 and ¬x2 ∧ x3 ∧ ¬x4 ∧ x5. Anti-unification can
then be applied to these lists to obtain 〈2, A, B〉 : 〈4, A, B〉 : 〈5, B, A〉 which
encodes (x2 ↔ x4) ∧ (x4 ↔ ¬x5) where A and B are special symbols that
represent simple dependencies between variables. The algorithm finally returns
a list that represents x1 ∧ (x2 ↔ x4)∧ (x4 ↔ ¬x5) which, indeed, is a safe upper
approximation of f . By adapting an argument given in [13], it can be shown
that this algorithm returns an upper-approximation in a sub-class of Boolean
formulae that admits chains of maximal length 2n. Although not as general as
the approach proposed in this paper, this algorithm offers a compromise between
efficiency and generality that might suit some analyses [13].

f

〈1,1,0〉:〈2,A,B〉:〈4,A,B〉:〈5,B,A〉 !!!"#$%&'(x1
1

〈2,A,B〉:〈4,A,B〉:〈5,B,A〉
〈1,1,0〉:〈2,A,B〉:〈4,A,B〉:〈5,B,A〉

""!!
!!

!!
0

##"""""""""""!"#$%&'(x21

〈4,1,0〉:〈5,0,1〉

〈2,1,0〉:〈4,1,0〉:〈5,0,1〉

$$########################## 0

〈3,1,0〉:〈4,0,1〉:〈5,1,0〉

〈2,0,1〉:〈3,1,0〉:〈4,0,1〉:〈5,1,0〉

%%$
$$$$$$$$$$$$ 0

!"#$%&'(x3
1〈4,0,1〉:〈5,1,0〉

""!!
!!

!!
0

&&%
%%

%%!"#$%&'(x4
0

''&&
&&

& 1〈5,0,1〉

(('
''

''
'

!"#$%&'(x4
0〈5,1,0〉

""((
((

((
1

(('
''

''
0

0 !"#$%&'(x5
1

""((
((

(0

&&)
))

))
!"#$%&'(x5

1

''&&
&&

& 0

(('
''

''
0

0 1 1 0

Fig. 2. Algorithm 4 when applied to f = (x1 ∧ (x2 ∨ x3)) ∧ (x2 ↔ x4) ∧ (x2 ↔ ¬x5)

7 Conclusions

The paper has proposed a new widening for ROBDDs and an algorithm for
realising it. The widening can be used to either bound the number of times
that an ROBDD is updated in an iterative analysis or approximate an ROBDD
with another that has a more space-efficient representation. Empirical evidence
suggests that the widening is potentially useful and surprisingly tractable.

Acknowledgements We thank Jacob Howe, Laurent Mauborgne, Axel Simon,
Peter Schachte and Harald Søndergaard for useful discussions. This work was
funded by EPSRC Grant EP/C015517 and the British Council Grant PN 05.021.

References

[1] R. Bagnara and P. Schachte. Factorizing Equivalent Variable Pairs in ROBDD-
Based Implementations of Pos. In Algebraic Methodology and Software Technol-
ogy, volume 1548 of LNCS, pages 471–485. Springer, 1999.

[2] R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

[3] R. E. Bryant. On the Complexity of VLSI Implementations and Graph Represen-
tations of Boolean Functions with Application to Integer Multiplication. IEEE
Transactions on Computers, 40(2):205–213, 1991.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. Inform Comput, 98(2):142–170, 1992.

[5] A. K. Chandra and G. Markowsky. On The Number of Prime Implicants. Discrete
Mathematics, 24(1):7–11, 1978.

[6] M. Codish. Worst-Case Groundness Analysis using Positive Boolean Functions.
J Logic Program, 41(1):125–128, 1999.

[7] O. Coudert. Two Open Questions On ROBDDs and Prime Implicants.
http://www.informatik.uni-trier.de/Design and Test/abstract30.html.

[8] O. Coudert and J. C. Madre. Implicit and Incremental Computation of Primes and
Essential Primes of Boolean Functions. In Proceedings of the Design Automation
Conference, pages 36–39. IEEE, 1992.

[9] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Symposium on Principles of Programming Languages, pages 238–252, 1977.

[10] Y. Crama and P. L. Hammer. Boolean Functions. To appear.
[11] C. Fecht. Abstrakte Interpretation logischer Programme: Theorie, Implemen-

tierung, Generierung. PhD thesis, Universität des Saarlandes, 1997.
[12] J. P. Gallagher, K. S. Henriksen, and G. Banda. Techniques for Scaling Up Analy-

ses Based on Pre-interpretations. In International Conference on Logic Program-
ming, volume 3668 of LNCS, pages 280–296. Springer, 2005.

[13] A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple Polynomial Ground-
ness Analysis for Logic Programs. J Logic Program, 45:143–156, 2000.

[14] D. J. Kleitman, M. Edelberg, and D. Lubell. Maximal Sized Antichains in Partial
Orders. Discrete Mathematics, 1(1):47–53, 1971.

[15] L. Mauborgne. Abstract Interpretation Using Typed Decision Graphs. Science
of Computer Programming, 31(1):91–112, 1998.

[16] G. Plotkin. A Note on Inductive Generalisation. In Machine Intelligence, vol-
ume 5, pages 153–163. Edinburgh University Press, 1970.

[17] W. V. Quine. The Problem of Simplifying Truth Functions. American Mathe-
matical Monthly, (52):521–531, 1952.

[18] K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi. Approximation and
Decomposition of Binary Decision Diagrams. In Proceedings of the Design Au-
tomation Conference, pages 445–450. IEEE, 1998.

[19] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
International Conference on Computer-Aided Design, pages 42–47. IEEE, 1993.

[20] P. Schachte and H. Søndergaard. Closure Operators for ROBDDs. In Proceed-
ings of the Seventh International Conference on Verification, Model Checking and
Abstract Interpretation, volume 3855 of LNCS, pages 1–16. Springer, 2006.

[21] T. R. Shiple. Formal Analysis of Synchronous Circuits. PhD thesis, University of
California at Berkeley, Electronics Research Laboratory, 1996.

[22] F. Somenzi. CUDD Package, Release 2.4.1. http://vlsi.colorado.edu/∼fabio/.
[23] T. Strzemecki. Polynomial-time Algorithms for Generation of Prime Implicants.

ACM Journal of Complexity, 8(1):37–63, 1992.
[24] C. Umans. On the Complexity and Inapproximability of Shortest Implicant Prob-

lems. In International Colloqium on Automata, Languages and Programming,
volume 1644 of LNCS, pages 687–696. Springer, 1999.

[25] J. Whaley and M. S. Lam. Cloning-Based Context-Sensitive Pointer Alias Anal-
ysis Using Binary Decision Diagrams. In Programming Language Design and
Implementation, pages 131–144. ACM Press, 2004.

