
Lazy Set-Sharing Analysis

Xuan Li1, Andy King2, Lunjin Lu1

1 Oakland University Rochester, MI 48309, USA
{x2li,l2lu}@oakland.edu

2 University of Kent, Canterbury, UK
a.m.king@kent.ac.uk

Abstract. Sharing analysis is widely deployed in the optimisation, spe-
cialisation and parallelisation of logic programs. Each abstract unifica-
tion operation over the classic Jacobs and Langen domain involves the
calculation of a closure operation that has exponential worst-case com-
plexity. This paper explores a new tactic for improving performance:
laziness. The idea is to compute partial sharing information eagerly and
recover full sharing information lazily. The net result is an analysis that
runs in a fraction of the time of the classic analysis and yet has compa-
rable precision.

1 Introduction

Sharing analysis is one of the most well-studied analyses within logic program-
ming. Two variables are said to share if they are bound to terms that contain a
common variable; otherwise they are independent. Independence information has
many applications in logic programming that include occurs-check reduction [24,
10], automatic parallelisation [11] and finite-tree analysis [2]. Set-sharing anal-
ysis [17, 18], as opposed to pair-sharing analysis [24], has particularly attracted
much attention. This is because researchers have been repeatedly drawn to the
algebraic properties of the domain since these offer tantalising opportunities for
implementation [3, 7, 8, 12].

The reoccurring problem with the set-sharing domain is the closure under
union operation that lies at the heart of the abstract unification (amgu) opera-
tion [18]. A sharing abstraction is constructed from a set of sharing groups each
of which is a set of program variables. Closure under union operation repeatedly
unions together sets of sharing groups, drawn from a given sharing abstraction,
until no new sharing group can be obtained. This operation is exponential, hence
the interest in different, and possibly more tractable, encodings of set-sharing [7,
8]. One approach to curbing the problem of closure is to schedule the solving of a
sequence of equations so as to first apply amgu to equations that involve ground
terms [21]. To this end, Muthukumar and Hermenegildo [22] detail an queue-
ing/dequeueing mechanism for maximally propagating groundness among sys-
tems of equations. This tactic exploits the commutativity of the amgu operation
[13, 21][Lemma 62]. A refinement of this idea is to schedule the amgu operations
using an estimate of the cost of a closure. The amgu operations are applied in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/18531544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

order of increasing closure cost and then widening is invoked [25, 21][Section 4.3]
when the application of a closure becomes prohibitively expensive. To support
widening, the set-sharing domain has been extended [25, 21][Section 4.3] from a
set of sharing groups, to a pair of sets of sharing groups. A sharing group in the
first component (that is called a clique [25]) is then reinterpreted as representing
all sharing groups that are contained within it.

This paper addresses the question of whether closure calculation is actually
required at all. This paper shows that cliques can be reinterpreted as pending
closure operations. Under this reinterpretation, the complexity of amgu can
be reduced to a quadratic time operation on sharing groups and a constant
time operation on cliques. If necessary, a classic set-sharing abstraction can be
recovered using the cliques without incurring a precision loss by applying a
closure operation for the groups that are relevant to each clique. Quite apart
from being rather surprising, this reinterpretation of cliques can avoid computing
closures all together in some circumstances. Firstly, if one clique is contained
within another, then the smaller clique is redundant as is its associated closure
operation. Secondly, if a clique contains those variables that appear in a call, then
it can be passed from one procedure to another without applying closure. Thirdly,
if closure is prohibitively expensive, then it can be retained as clique, albeit
incurring a possible loss of precision in the projection and merge operations.
This leads to an analysis that is parameterised by a cost threshold k: a clique is
only created if the resulting number of sharing groups exceed k. The resulting
analysis is polynomial and benchmarking suggests that it realises a good tradeoff
between precision and efficiency.

This paper is organised as follows. Section 2 contains basic concepts and
recalls the Sharing domain. Section 3 informally introduces the motivation via
examples. Sections 4-7 present the abstract domain and abstract operators in
details. Section 8 discusses an experimental implementation. Section 9 discusses
related work and section 10 concludes.

2 Preliminaries

Let V denote a denumerable universe of variables. Let var(o) be the set of
variables in the syntactic object o. If S is a set then |S| is its cardinality and
℘(S) is the powerset of S. The (classic) set-sharing domain Sharing is defined
by Sharing = {S ∈ ℘(℘(V)) | ∅ ∈ S}. We call a set of variables G ⊆ V a sharing
group and a set S ∈ Sharing a sharing abstraction. The restriction G ! V is
defined by G ! V = G ∩ V where V ⊆ V . Moreover, if S ∈ Sharing then S ! V
is defined by S ! V = {G ! V | G ∈ S}. The function max : ℘(℘(V)) → ℘(℘(V))
is defined by max(S) = {G ∈ S | ∀H ∈ S.G ⊆ H → G = H}.

The most important operator in Sharing is the abstract unification operator
amgux=t where x is a variable and t is a term not containing x. The operator
amgux=t is defined in terms of three auxiliary operations. The closure under
union of a sharing abstraction S, denoted by S∗, is the smallest superset of S
satisfying if X ∈ S∗ and Y ∈ S∗ then X ∪ Y ∈ S∗. The set of sharing groups in

2

S that are relevant to a syntactic object o is rel(o, S) = {G ∈ S | var(o) ∩ G (=
∅}. We say that a sharing abstraction S ∈ Sharing is relevant to a term t iff
rel(t, S) (= ∅. The cross union of two sharing abstractions S1 and S2 is defined
by S1)S2 = {G∪H | G ∈ S1∧H ∈ S2}. The following definition of the abstract
unification is adapted from [8] that is equivalent to classic definition in [17, 18].

Definition 1. amgux=t(S) = S \ rel(x, S) \ rel(t, S) ∪ (rel(x, S)) rel(t, S))∗
where \ is the set minus operator.

The set of all clique-sets CL [25] is defined by CL = ℘({G ∈ ℘(V) | G (= ∅}).
A clique is an element of a clique-set. In this paper, a clique is the abstraction
of an equation of the e where e takes the form x = t.

3 Motivation Example

This section informally introduces the basic idea using several examples. We
demonstrate how to use cliques and part of sharing abstraction to represent the
whole sharing abstraction.

Example 1. Suppose S = {∅, {X1}, {X2}, {X3}, {X4}, {X5}, {X6}, {X7}} and
equation e is X1 = f(X2, X3, X4, X5, X6, X7). If we apply the classical abstract
unification amgu, we obtain

amgue(S) = {∅} ∪
{
{X1, X2}, {X1, X3}, {X1, X4},
{X1, X5}, {X1, X6}, {X1, X7}

}∗

There are 63 groups in amgue(S) \ {∅} in all. Note that we only list 6 groups
instead of enumerating all 63 groups for the sake of saving space. We shall
refer to these 6 groups as the basis of the 63 groups because the whole closure
(the 63 groups) can be recovered from the basis (the 6 groups) by applying
closure under union operator to the basis. In other words, we can use the basis
to represent the whole closure. The intuition behind the analysis is to record
which groups participate in the closure under union and avoid computing closure
under union operation until it is called for. We record which groups participate in
closure under union by keeping a record of the set of variables that are contained
within the equation e. Moreover, we only consider the equations that contain at
least one variable and thus we can use a clique [25] to represent these variable
sets. Therefore we use a pair 〈E, S〉 ∈ CL × Sharing to represent a sharing
abstraction: the first component is the set of cliques; the second component is
the partially computed sharing information. In this way, we can avoid closure
under union operation during analysis.

Example 2. Continuing with example 1, the state of sharing after abstract uni-
fication is expressed as

〈
{{X1, X2, X3, X4, X5, X6, X7}},
{∅, {X1, X2}, {X1, X3}, {X1, X4}, {X1, X5}, {X1, X6}, {X1, X7}}

〉

In this example, this part of sharing information is S \ rel(x = t, S)∪ rel(x, S))
rel(t, S). We will show that this is not a coincident in the later sections.

3

When we need to recover full sharing information, we can just apply the
closure under union to those groups that are relevant to each clique.

Example 3. Continuing with example 2, there is only one clique in first compo-
nents. If we denote {X1, X2, X3, X4, X5, X6, X7} by e and {∅, {X1, X2}, {X1, X3},
{X1, X4}, {X1, X5}, {X1, X6}, {X1, X7}} by S, then the full sharing information
is obtained by

S ∪ rel(e, S)∗ = {∅} ∪
{
{X1, X2}, {X1, X3}, {X1, X4},
{X1, X5}, {X1, X6}, {X1, X7}

}∗

which coincides with the sharing information derived in example 1.

If there is more than one clique, then sharing is recovered by considering each
clique in turn.

Example 4. Consider 〈{e1, e2}, S〉 where e1 = {X, Y }, e2 = {Y, Z} and S =
{∅, {X}, {Y }, {Z}}. First, applying e1, we obtain S1 = S∪rel(e1, S)∗ = {∅, {X},
{Y }, {Z}, {X, Y }}. Next applying e2, we have S1∪rel(e2, S1)∗ = {∅, {X}, {Y },
{Z}, {X, Y }, {Y, Z}, {X, Y, Z}}. In fact, as is shown latter, the order in which
the cliques are consider is incidental.

Although we call closure under union operator when we recover full sharing
information, we only apply it on demand. Even if the client wants to get full
sharing information at every program point, a lazy evaluation strategy is still
better because we avoid redundant computation during analysis. For an instance,
when clique e1 is a subset of e2, we can disregard e1 because the effect of e1 is
subsumed by that of e2. Moreover, the number of groups involved in least fixed
point computation is much less than the number of groups involved in classical
Sharing because only part of closure is involved.

In summary, we only compute part of sharing information at each program
point during analysis and can recover full sharing information on demand after
analysis. As a result, the closure under union operator is avoided for abstract
unification. In following sections, we will present this new domain formally.

4 Abstract Domain

Reducing the input data size and improving the efficiency of operators over the
domain are two ways to improve the efficiency of an analysis. Recall definition 1:

amgux=t(S) = S \ rel(x, S) \ rel(t, S) ∪ (rel(x, S)) rel(t, S))∗

For the ensuing discussion, denote rel(x, S)) rel(t, S) by Sb. Rather than
directly compute S∗

b and use this closure to calculate amgux=t(S), we compute
the partial sharing information S\rel(x, S)\rel(t, S)∪Sb and record information
that enables S∗

b to be computed on demand. The size of the partial sharing
information inferred using this strategy is never more, and is often significantly

4

less, than that inferred using full sharing. The key issue is to resolve which groups
belong to Sb so that we can recover S∗

b on demand. One way to deduce Sb, and
hence S∗

b , is to save the equation x = t because if G ∈ S \rel(x, S)\rel(t, S)∪Sb

then G ∈ Sb iff rel(x = t, G) (= ∅. Since only variables in the equation actually
matter in rel(x = t, G), it is sufficient to record the clique var(x = t) to recover
Sb and thereby derive full sharing. To summarise, the computational domain
of Sharing is replaced with pairs of the form 〈E, S〉 ∈ CL × Sharing where
each clique in the first component is an abstraction of an equation and is used to
recover the full sharing information that 〈E, S〉 describes. The following function
formalises this idea since it maps each abstract values in CL × Sharing to the
sharing abstractions they describe:

Definition 2. 〈E, S〉 ∝ S′ iff r(〈E, S〉) = S′ where r(〈E, S〉) is defined as
follows:

r(〈∅, S〉) = S

r(〈{e} ∪ E′, S〉) = S′′ ∪ rel(e, S′′)∗

where e ∈ E, E′ = E \ {e} and S′′ = r(〈E′, S〉).

This function is called the recovery function. Although this recovery function
calls closure under union operator, the recovery function is itself only called on
demand. Henceforth, we abbreviate r(〈E, S〉) by r(E, S).

Example 5. Let 〈E, S〉 = 〈{e1, e2, e3}, S〉, where e1 = {X, Y }, e2 = {Y, Z},
e3 = {Y, W} and S = {∅, {X}, {Y }, {Z}, {W}}. Thus we can recover the full
sharing information S′ that 〈E, S〉 describes by unfolding definition 2 in the
following fashion:

S′ = r({e1, e2, e3}, S) = r({e3}, r({e1, e2}, S)) = r({e3}, r({e2}, r({e1}, S)))

S1 = r({e1}, S) = S ∪ rel(e1, S)∗ = {∅, {X}, {Y }, {Z}, {W}, {X, Y }}

S2 = r({e2}, S1) = S1 ∪ rel(e2, S1)∗ =
{
∅, {X}, {Y }, {Z}, {W},
{X, Y }, {Y, Z}, {X, Y, Z}

}

S′ = r({e3}, S2) = S2 ∪ rel(e3, S2)∗ =






∅, {X}, {Y }, {Z}, {W}, {X, Y },
{Y, Z}, {X, Y, Z}, {Y, W},
{X, Y, W}, {Y, Z, W}, {X, Y, Z, W}






One natural question is whether the order in which cliques are considered in
the recovery process actually matters. The following lemma is a partial answer
to this question: it shows that the ordering does not matter when there are only
two cliques in the first component.

Lemma 1.

S∪rel(e1, S)∗∪rel(e2, S∪rel(e1, S)∗)∗ = S∪rel(e2, S)∗∪rel(e1, S∪rel(e2, S)∗)∗

The following proposition lifts this result to an arbitrary number of cliques;
it also means that the recovery function satisfies the diamond property.

5

Proposition 1. r(E, S) = r(P, S) whenever P is a permutation of E.

The abstract domain CL×Sharing is a non-canonical representation because
different pairs 〈E1, S1〉 (= 〈E2, S2〉 can map to the same sharing abstraction
during recovery. To obtain a partially ordered domain, it is necessary to induce
an equivalence relation on CL×Sharing. We therefore define 〈E1, S1〉 ≡ 〈E2, S2〉
iff r(E1, S1) = r(E2, S2) and consider the abstract domain XSharing = (CL ×
Sharing)≡, that is, the computational domain of sets of equivalence classes
induced by ≡. The partial ordering over XSharing, denoted by 0, can then by
defined as 〈E1, S1〉 0 〈E2, S2〉 iff r(E1, S1) ⊆ r(E2, S2). It then follows that
〈XSharing,0〉 is a complete lattice.

For notational simplicity, we blur the distinction between elements of XSharing
and the elements of CL×Sharing and interpret the pair 〈E1, S1〉 ∈ CL×Sharing
as representing the equivalence class [〈E1, S1〉]≡ ∈ XSharing. For example, the
recovery function over XSharing is the natural lifting of this function to the
domain of equivalence classes.

5 Abstract unification

The rationale for our work is to avoid applying the calculating closure under
union operator in abstract unification. In the following definition, we detail how
to avoid the closures by instead creating cliques in the first component. An
important consequence of this scheme, is that the operator is polynomial in the
number of groups. In what follows, we prove that this new notion of abstract
unification is both sound and precise.

Definition 3.

xamgux=t(〈E, S〉) =
〈

max(E ∪ {var(x = t)}),
(S \ rel(x = t, S)) ∪ (rel(x, S)) rel(t, S))

〉

Henceforth, we abbreviate xamgux=t(〈E, S〉) by xamgux=t(E, S). Note that
we only need to maintain maximal cliques in the first component because the
effect of a smaller clique is subsumed by that of a larger one (one that strictly
contains it). Therefore, we say a clique ei is redundant in E ∈ CL if there exists
ej ∈ E such that ei ⊆ ej . In that this is just one way of detecting redundancy:
other more sophisticated ways are also possible.

Example 6. Consider 〈E, S〉where E = {{X, Y, Z}} and S = {∅, {X, Y }, {X, Z},
{Z, W}}. Then xamguY =Z(E, S) = 〈{{X, Y, Z}}, {∅, {X, Y, Z}, {X, Y, Z, W}}〉

Lemma 2 explains how xamgu coincides with amgu when there is no clique in
the first component.

Lemma 2. r(xamgux=t(∅, S)) = amgux=t(S).

Proposition 2 also builds towards the main correctness theorem by showing the
equivalence of of two instances of abstract unification that operate on pairs whose
clique sets differ by just one clique.

6

Proposition 2. r(xamgux=t(E, S)) = r(xamgux=t(E \ {e}, r({e}, S))) where
e ∈ E.

By applying proposition 2 inductively, it follows that r(xamgux=t(E, S)) =
r(xamgux=t(∅, r(E, S))), that is, the result of applying xamgu to 〈E, S〉 coin-
cides with the sharing abstraction obtained by applying xamgu to 〈∅, r(E, S)〉.
This result leads into Theorem 1 which states that xamgu neither compromises
correctness not precision with respect to the classic approach of set-sharing.

Theorem 1. r(xamgux=t(E, S)) = amgux=t(r(E, S)).

Example 7. Recall from example 6 that xamguY =Z(E, S) = 〈{{X, Y , Z}},
{∅, {X, Y, Z}, {X, Y, Z, W}}〉. By applying r to the 〈E, S〉 pair we obtain r(E, S)
= {∅, {X, Y }, {X, Z}, {Z, W}, {X, Y, Z}, {X, Y, Z, W}, {X, Z, W}}. Then apply-
ing amgu to r(E, S) yields amguY =Z(r(E, S)) = {∅, {X, Y, Z}, {X, Y, Z, W}}.
Observe r(xamguY =Z(E, S)) = amguY =Z(r(E, S)) as predicted by the theorem.

6 Projection

Projection on Sharing is relatively simple. In our proposal, projection is not
straightforward as one might think. If projection was defined as 〈E, S〉 !! V =
〈E ! V, S ! V 〉, then cliques would be possibly lost by projection which could
affect recovery and can possibly compromise the soundness of the analysis as
a whole. For example, suppose 〈E, S〉 = 〈{{X, Y }}, {∅, {Z, X}, {Y, W}}〉 and
V = {Z, W}. Then 〈E ! V, S ! V 〉 = 〈∅, {∅, {Z}, {W}}〉 and hence we lose the
information that Z and W could possibly share. In our projection operator, we
divide the cliques into three classes. We need to apply a polynomial transfor-
mation for all cliques in the first class before applying the classical projection
operator !. It is easy to do projection for the cliques in the second class. No
projection is needed for the cliques in the third class.

6.1 First Class

Let V ⊆ V be a set of variables of interest. Every clique e such that e∩V = ∅ is in
the first class and it will be totally projected away. Usually the first class cliques
are generated by renaming. One way to keep the effect of a clique e in the first
class is applying the recovery function. This is precise but inefficient because
of the closure under union operator in the recovery function. To avoid this, we
maintain the effect of e by replacing e with a new clique e′ that simulates the
effect of e. This guarantees soundness but could lose precision. First, we define
two auxiliary functions.

Observe that if we use ∪rel(e, S) to replace e, we will ensure rel(e, S) is
selected because rel(e, S) ⊆ rel(∪rel(e, S), S).

Definition 4. Function Replace : CL × Sharing → CL is defined by

Replace(E, S) = max({∪rel(e, S)|e ∈ E})

7

We say that two cliques e1 and e2 are related with respect to a sharing
abstraction S if rel(e2, rel(e1, S)) (= ∅. We also say ei and ej are related with
respect to S if ei is related to el with respect to S and el is related to ej with
respect to S. We say E is related with respect to S if every e ∈ E is related to
each other with respect to S.

Definition 5. Let E1 be a set of cliques in the first class. We define a rewriting
rule =⇒S by E1 =⇒S E2 if e1, e2 ∈ E1 ∧ rel(e2, rel(e1, S)) (= ∅ ∧ E2 = E1 \
{e1, e2} ∪ {e1 ∪ e2}; otherwise E1 =⇒S E1.

We write E =⇒∗
S E′ if there exist E1, E2, . . . , En with E1 = E, En = E′,

Ei =⇒S Ei+1 for 0 ≤ i ≤ n − 1 and E′ =⇒S E′. That is we apply =⇒S

repeatedly until all the related cliques are combined into one. In other words,
there are no two cliques that are related with respect to S in E′. Once we have
E′, we can apply the Replace function to replace all the cliques in E′. Note that
the order in which cliques are considered and combined does not effect the final
result. Thus this definition satisfies the diamond property and is well-defined.

Let E =⇒∗
S E′. Then here exists E1, E2, . . . , En with E1 = E, En = E′,

Ei =⇒S Ei+1 for 0 ≤ i ≤ n−1. Note that n is bounded by the number of groups.
Each combination of two related cliques is polynomial. Thus the transformation
is polynomial in the number of groups too.

Example 8. Let E = {{X5, X8}, {X5, X6}}, S = {∅, {X1, X6, X8}, {X4, X8},
{X5}, {X2, X6}} and V = {X1, X2, X3, X4}. Then E′ = {{X5, X6, X8}} where
E =⇒∗

S E′.

Every e ∈ E is replaced by a corresponding e′ ∈ Replace(E′, S) where E =⇒∗
S

E′. There exists e′′ ∈ E′ such that e′ = ∪rel(e′′, S). Observe that e ⊆ e′′

follows from the definition of =⇒∗
S . Thus rel(e, S) ⊆ rel(e′′, S) and ∪rel(e, S) ⊆

∪rel(e′′, S) = e′. Thus e′ actually includes the effect of e. If e′ is not relevant to
V then it says nothing about V and hence it does not matter at all. Therefore
we can delete all the cliques that are not relevant to V in Replace(E′, S) where
E =⇒∗

S E′.

Definition 6. Let E be a set of cliques in the first class and V is a set of
variables. The function T : CL × Sharing → CL is defined by T (E, S) =
Replace(E′, S) \ E′′ where E =⇒∗

S E′, E′′ = {e′ ∈ Replace(E′, S)|e′ ∩ V = ∅}.

Note that T (∅, S) = ∅.

Example 9. Continuing with example 8, observe that Replace(E′, S) = {{X1,
X2, X4, X5, X6, X8}} where E =⇒∗

S E′. Hence Replace(E′, S)\E′′ = Replace(E′, S)
because E′′ = ∅. Thus, T (E, S) = {{X1, X2, X4, X5, X6, X8}}.

Proposition 3. (Soundness)
Let E be a set of cliques in the first class and E′ = T (E, S). Then

r(E, S) ! V ⊆ r(E′ ! V, S ! V)

8

6.2 Second Class and Third Class

Let V be a set of variables, 〈E, S〉 ∈ XSharing and e ∈ E. If e ∩ V (= ∅ and
e (⊆ V , we say that the clique e is in the second class. If the clique e is a subset
of V then we say it is in the third class.

Proposition 4. Let V be a set of variables. If rel(e, S) = rel(e ! V, S) for each
e ∈ E then r(E, S) ! V = r(E ! V, S ! V).

Example 10. Let 〈E, S〉 = 〈{{X, Y }, {Z, W}}, {∅, {X, Y, Z}, {Z, W}}〉 and V =
{X, Z}. Then r(E, S) = {∅, {X, Y, Z}, {Z, W}, {X, Y, Z, W}} and hence r(E, S) !
V = {∅, {X, Z}, {Z}}. On the other hand, 〈E ! V, S ! V 〉 = 〈{{X}, {Z}}, {∅,
{X, Z}, {Z}}〉. Therefore r(E, S) ! V = r(E ! V, S ! V).

Lemma 3. If a clique e is in second class then rel(e, S) = rel(e ! V, S).

According to lemma 3 and proposition 4, we can directly project those cliques
in the second class without losing soundness and precision. It is obvious that
rel(e, S) = rel(e ! V, S) is true for each clique in the third class. Note that the
second class and the third class are both relevant to V while the first class is
not. Thus we can conclude that we can directly apply classical projection to all
those cliques that are relevant to V . This is useful for implementation.

6.3 Projection

Therefore, we define the projection as following.

Definition 7. Let V be the set of all variables and V ∈ ℘(V). The projec-
tion function !!: XSharing × ℘(V) → XSharing is defined as 〈E, S〉 !! V =
〈(T (E1, S) ∪ E2 ∪ E3) ! V, S ! V 〉 where E1 contains the first class cliques in E,
E2 contains the second class cliques in E and E3 contains the third class cliques
in E.

Theorem 2. (Soundness)
Let V be a set of variables and 〈E, S〉 ∈ XSharing. Then r(E, S) ! V ⊆
r(〈E, S〉 !! V).

Although the projection operator needs to transform the first class cliques,
it is still faster than applying the recovery function because T is polynomial in
the number of groups.

7 Other Operations and Parameter Throughout

The design of the analysis is completed by defining other operators that are
required by an analysis engine. The initial state is 〈∅, init(ε)〉 where init(ε) de-
scribes the empty substitution [18]. The renaming operator Rename : XSharing →
XSharing is defined by Rename(〈E, S〉) = 〈tag(E), tag(S)〉 where tag is classical

9

tagging function defined in [18]. The join operator 4 : XSharing × XSharing →
XSharing is defined by 〈E1, S1〉4〈E2, S2〉 = 〈E′, S′〉 where r(E′, S′) = r(E1, S1)∪
r(E2, S2). In practice, we use 〈E1, S1〉4̄〈E2, S2〉 = 〈max(E1∪E2), S1∪S2〉 as an
approximation. Observe r(E1, S1)∪ r(E2, S2) ⊆ r(max(E1 ∪E2), S1 ∪S2). Thus
it is sound but may lose precision.

Example 11. Let e1 = {x, y}, e2 = {y, z}, S1 = {∅, {x, y}, {z}} and S2 =
{∅, {y, z}, {x}}. Then r({e1}, S1)∪r({e2}, S2) = {∅, {x}, {z}, {x, y}, {y, z}} while
r({e1, e2}, S1∪S2) = {∅, {x}, {z}, {x, y}, {y, z}, {x, y, z}}. This is not precise be-
cause it says variables x, y, z share a variable.

Basically, more cliques mean more efficiency and less cliques mean more pre-
cision. In fact, we can think Sharing is the most precise case of XSharing because
it saves no clique in first component. We can control the complexity/precision
ratio in two way:

– When do we create clique? The analysis is parameterised by a cost threshold
k: a clique is only created if the resulting number of sharing groups exceed
a predefined threshold k.

– Which clique do we create or remove? A practical analyser requires a ground-
ing operator whose effect is to ground given set of variables in a state. To this
end, a grounding operator ground : XSharing×V → XSharing is introducing
that is defined by

ground(〈E, S〉, x) = 〈E \ rel(x, E), r(rel(x, E), S) \ rel(x, r(rel(x, E), S))〉

Observe that cliques are possibly removed from first component and that
the overall size of the abstraction is not increased by this operator. This
operator is applied to model the effect of a built-in predicate such as >/2.
The effect of >/2 is to ground the variables associated with this operator.
For instance, the effect of X > Y is to ground both X and Y .

8 Implementation

We have implemented the new abstract domain and incorporated it to a top
down framework which is based on Nilsson [23]. The implementation is written in
C++. To obtain a credible experimental comparison, both the classical Sharing
and XSharing are implemented using the same language, the same framework,
the same data structure and the same primitive operators. Table 1 compares
Sharing and XSharing on cost and precision using some standard benchmark
programs. The first column and the fifth column list the names of programs. The
second column, the third column, the sixth column and the seventh column are
time performance for XSharing and Sharing respectively. The fourth and the
last column are the loss of precision in percentage considering pair sharing in-
formation. Suppose there are n program points in a program. For program point
i, the pair sharing information computed by Sharing is PSi while XSharing

10

computes XPSi. Pair-sharing PSi must be a subset of XPSi since XSharing is
approximate. It follows that |XPSi| ≥ |PSi|. Then pair sharing precision lost
at program point i can be defined by (|XPSi|− |PSi|)/|PSi|. The pair sharing
precision lost for whole program is

∑n
i=1((|XPSi|− |PSi|)/|PSi|)/n.

Benchmarks are divided into two groups in table 1. XSharing and Sharing
are both acceptable for the programs in the first group. For the programs in
the second group, XSharing is much faster. Classical Sharing takes hundreds
seconds for peepl.pl, sdda.pl, ga.pl and read.pl while XSharing only takes several
seconds. This is not a surprise because all key operators are polynomial.

Table 1. Time Performance Considering Effects of Built-in Predicates; k=0

CPU: Intel(R) Pentium(R) 4 CPU 2.40GHz.
Operating System: Windows XP

XSharing Sharing Precision XSharing Sharing Precision
Program Time Time Pair lose Program Time Time Pair lose
append.pl 0.008 0.016 0 qsort.pl 0.008 0.015 0
merge.pl 0.015 0.016 0 path.pl 0.008 0.008 0
zebra.pl 0.031 0.016 0 life.pl 0.016 0.041 0
disj r.pl 0.015 0.015 0 queens.pl 0.008 0.047 0
browse.pl 0.032 0.047 0 gabriel.pl 0.016 0.031 0
treesort.pl 0.015 0.172 0.5 dnf.pl 0.11 0.062 11
boyer.pl 0.047 0.062 0 tsp.pl 0.047 0.032 5
peephole.pl 0.078 0.125 0 kalah.pl 0.047 0.281 0
aiakl.pl 0.094 0.468 3 treeorder.pl 0.14 1.172 0

cs r.pl 0.078 1.187 0 boyer.pl 1.547 7.86 0
peep.pl 1.86 137.797 0 read.pl 2.469 129.859 0
sdda.pl 5.453 151.68 0 ga.pl 0.281 209.687 0

There are 24 programs in table 1. The pair sharing information computed
by XSharing is exactly same as Sharing for 20 programs. For the programs
peepl.pl, sdda.pl, ga.pl and read.pl, the performance is remarkably improved while
we have exactly same pair sharing information. There is loss of precision for 4
programs. This is caused by ordering, join and projection operators. For program
treesort.pl, the precision loss is 0.5% that is almost equal to zero. An interesting
program is dnf.pl. We lost 11% precision for this program while Sharing is
faster than XSharing. This is a negative result for our analysis. We investigated
this program and found out that there are many variables that are ground and
thus closure under union operations are applied on small sets. This explains
why Sharing is actually faster. Therefore, in our opinion, our analysis is more
suitable for complex programs that involve many variables and closure under
union operations.

We can adjust the threshold k to control the complexity/precision ratio of
the system. The threshold is 0 for all programs in table 1 and there are four
programs that lose precision. We can find the minimal k that guarantees these

11

programs do not lose precision. The minimal k are listed in the last column in
table 2. The other columns are same as table 1.

Table 2. The Minimal Threshold without Losing Precision

XSharing Sharing Precision Threshold
Program Time Time Pair lose k
treesort.pl 0.328 0.172 0 16
dnf.pl 0.047 0.062 0 16
aiakl.pl 0.483 0.468 0 171
tsp.pl 0.020 0.032 0 23

There are many built-in predicates in a real program and it is important to
consider the effect of them. Thus we have supported all built-in predicates in the
benchmark programs. For example, we have considered built-in predicates such
as = /2 and sort/2 whose effect is to apply abstract unification. We also pro-
cessed built-in predicates such as > /2 and ground/1 whose effect is to ground
variables. Other control built-in predicates such as ; /2 and → /2 are also pro-
cessed. Note that considering the effect of built-in predicates with grounding
effect can improve the efficiency significantly because many groups are removed.

9 Related work

There have been much research in sharing analysis of logic programs [17, 24, 4,
20, 8, 19, 9, 22, 14, 5] that have attempted to tame the computational aspects of
this domain without compromising too much precision. One approach is reducing
the number of groups that can possibly arise is due to Fecht [12] and Zaffanella
et al. [25] who use maximal elements to represent downward closed powersets of
variables. In fact Zaffanella et al. [25] apply a pair of sharing abstractions, which
is almost same as our proposal. The key difference is interpretation. In [25], a
clique represents all sharing groups that contained within it. In this paper, a
clique is used to select the basis of a closure.

Bagnara et al. [3] also argue that Sharing is redundant for pair-sharing based
on the following assumption: that the goal of sharing analysis for logic program
is to detect which pairs of variables are definitely independent. A group G is
redundant with respect to a sharing abstraction S if S already contains the pair
sharing information that G contains. Thus they obtain a simpler domain and,
perhaps more importantly, reduce complexity of abstract unification. That is,
closure under union is not needed. This simpler domain is as precise as Sharing
on pair-sharing. On the other hand, Bueno et al. [6] argue that the assumption
in [3] is not always valid. First, there are applications that use Sharing other
than retrieving sharing information between pairs of variables. Second, Sharing
is more precise when combined with other source of information. In this paper,
we consider a group is redundant if it can be regenerated using the cliques saved
in first component. Moreover, the redundant concept is applied to cliques.

12

Howe and King [16] present three optimisations for Sharing. These opti-
misations can be used when combine Sharing with freeness and linearity. One
principle in [16] is that the number of sharing groups should be minimised. This
principle is also used in our approach, though we do not seek to exploit either
freeness or linearity.

Another thread of work is in the use different encodings of the Sharing do-
main. In [8], Codish et al. show that Sharing is isomorphic to the domain of pos-
itive Boolean functions [1]. The closure under union operator over Sharing cor-
responds to downward closure operator ↓ over Pos that maps a positive Boolean
function to a definite Boolean function. A definite Boolean function thus corre-
sponds to a sharing that is closed under union. This domain is efficient because
of efficient data structure of Boolean function. Howe et al. propose a downward
closure operator ↓ in [15]. Codish et al. [7] also propose an algebraic approach
to the sharing analysis using set logic programs. This domain is isomorphic to
Sharing and leads to intuitive definitions for abstract operators.

10 Conclusion

This paper presents a new domain for sharing analysis based on a new efficient
representation for Sharing. All key operators are polynomial with respect to the
number of groups and soundness proofs are given. Moreover, by remembering the
cliques, we provide a scheme to reason about the relationship between cliques
such as finding redundant cliques. Lastly, there is a parameter to control the
complexity/precision ratio of the system. For the future work, we will devote
more efforts on the precision and find more redundant cliques. It looks promising
to explore how a pair can be recovered to non-redundancy sharing [3] by changing
the representation of first component too.

References

1. Tania Armstrong, Kim Marriott, Peter Schachte, and Harald Søndergaard. Two
Classes of Boolean Functions for Dependency Analysis. Science of Computer Pro-
gramming, 31(1):3–45, 1998.

2. Roberto Bagnara, Roberta Gori, Patricia M. Hill, and Enea Zaffanella. Finite-Tree
Analysis for Constraint Logic-Based Languages. Information and Computation,
193(2):84–116, 2004.

3. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Set-Sharing is Redundant
for Pair-Sharing. Theoretical Computer Science, 277(1-2):3–46, 2002.

4. Roberto Bagnara, Enea Zaffanella, and Patricia M. Hill. Enhanced Sharing Anal-
ysis Techniques: A Comprehensive Evaluation. Theory and Practice of Logic Pro-
gramming, 5(1&2):1–43, 2005.

5. Maurice Bruynooghe, Bart Demoen, Dmitri Boulanger, Marc Denecker, and Anne
Mulkers. A Freeness and Sharing Analysis of Logic Programs Based on A Pre-
interpretation. In Radhia Cousot and David A. Schmidt, editors, Proceedings of the
Third International Symposium on Static Analysis, volume 1145 of Lecture Notes
in Computer Science, pages 128–142, London, UK, 1996. Springer-Verlag.

13

6. Francisco Bueno and Maria J. Garćıa de la Banda. Set-Sharing Is Not Always
Redundant for Pair-Sharing. In Yukiyoshi Kameyama and Peter J. Stuckey, editors,
Proceedings of 7th International Symposium on Functional and Logic Programming,
volume 2998 of Lecture Notes in Computer Science, pages 117–131. Springer, 2004.

7. Michael Codish, Vitaly Lagoon, and Francisco Bueno. An Algebraic Approach to
Sharing Analysis of Logic Programs. Journal of Logic Programming, 42(2):111–149,
2000.

8. Michael Codish, Harald Søndergaard, and Peter J. Stuckey. Sharing and Ground-
ness Dependencies in Logic Programs. ACM Transactions on Programming Lan-
guages and Systems, 21(5):948–976, 1999.

9. Agostino Cortesi and Gilberto Filé. Sharing Is Optimal. Journal of Logic Pro-
gramming, 38(3):371–386, 1999.

10. Lobel Crnogorac, Andrew D. Kelly, and Harald Sondergaard. A Comparison of
Three Occur-Check Analysers. In Radhia Cousot and David A. Schmidt, editors,
Proceedings of Third International Symposium on Static Analysis, volume 1145 of
Lecture Notes in Computer Science, pages 159–173. Springer, 1996.

11. Jacques Chassin de Kergommeaux and Philippe Codognet. Parallel Logic Pro-
gramming Systems. ACM Computing Surveys, 26(3):295–336, 1994.

12. Christian Fecht. An Efficient and Precise Sharing Domain for Logic Programs.
In Herbert Kuchen and S. Doaitse Swierstra, editors, Proceedings of the 8th In-
ternational Symposium on Programming Languages: Implementations, Logics, and
Programs, volume 1140 of Lecture Notes in Computer Science, pages 469–470.
Springer, 1996.

13. Patricia M. Hill, Roberto Bagnara, and Enea Zaffanella. Soundness, Idempotence
and Commutativity of Set-Sharing. Theory and Practice of Logic Programming,
2(2):155–201, 2002.

14. Patricia M. Hill, Enea Zaffanella, and Roberto Bagnara. A Correct, Precise and
Efficient Integration of Set-Sharing, Freeness and Linearity for The Analysis of
Finite and Rational Tree Languages. Theory and Practice of Logic Programming,
4(3):289–323, 2004.

15. J. M. Howe and A. King. Efficient Groundness Analysis in Prolog. Theory and
Practice of Logic Programming, 3(1):95–124, January 2003.

16. Jacob M. Howe and Andy King. Three Optimisations for Sharing. Theory and
Practice of Logic Programming, 3(2):243–257, 2003.

17. Dean Jacobs and Anno Langen. Accurate and Efficient Approximation of Variable
Aliasing in Logic Programs. In Ross A. Overbeek Ewing L. Lusk, editor, Proceed-
ings of the North American Conference on Logic Programming, pages 154–165.
MIT Press, 1989.

18. Dean Jacobs and Anno Langen. Static Analysis of Logic Programs for Independent
And-Parallelism. Journal of Logic Programming, 13(2&3):291–314, 1992.

19. Andy King. Pair-Sharing over Rational Trees. Journal of Logic Programming,
46(1-2):139–155, 2000.

20. Vitaly Lagoon and Peter J. Stuckey. Precise Pair-Sharing Analysis of Logic Pro-
grams. In Proceedings of the 4th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, pages 99–108. ACM Press,
2002.

21. Anno Langen. Advanced Techniques for Approximating Variables Aliasing in Logic
Programs. PhD thesis, 1991.

22. Kalyan Muthukumar and Manuel V. Hermenegildo. Compile-Time Derivation of
Variable Dependency Using Abstract Interpretation. Journal of Logic Program-
ming, 13(2-3):315–347, 1992.

14

23. Ulf Nilsson. Towards a Framework for the Abstract Interpretation of Logic Pro-
grams. In Pierre Deransart, Bernard Lorho, and Jan Maluszynski, editors, Pro-
ceedings of the Programming Language Implementation and Logic Programming,
volume 348 of Lecture Notes in Computer Science, pages 68–82. Springer, 1989.

24. Harald Søndergaard. An Application of Abstract Interpretation of Logic Programs:
Occur Check Reduction. In Bernard Robinet and Reinhard Wilhelm, editors,
Proceedings of the 1st European Symposium on Programming, volume 213 of Lecture
Notes in Computer Science, pages 327–338. Springer, 1986.

25. Enea Zaffanella, Roberto Bagnara, and Patricia M. Hill. Widening Sharing. In
Gopalan Nadathur, editor, Proceedings of the International Conference on Prin-
ciples and Practice of Declarative Programming, volume 1702 of Lecture Notes in
Computer Science, pages 414–432, London, UK, 1999. Springer-Verlag.

15

