
Widening Polyhedra with Landmarks

Axel Simon and Andy King

Computing Laboratory, University of Kent, Canterbury, UK
{a.simon,a.m.king}@kent.ac.uk

Abstract. The abstract domain of polyhedra is sufficiently expressive
to be deployed in verification. One consequence of the richness of this
domain is that long, possibly infinite, sequences of polyhedra can arise
in the analysis of loops. Widening and narrowing have been proposed to
infer a single polyhedron that summarises such a sequence of polyhedra.
Motivated by precision losses encountered in verification, we explain how
the classic widening/narrowing approach can be refined by an improved
extrapolation strategy. The insight is to record inequalities that are thus
far found to be unsatisfiable in the analysis of a loop. These so-called
landmarks hint at the amount of widening necessary to reach stability.
This extrapolation strategy, which refines widening with thresholds, can
infer post-fixpoints that are precise enough not to require narrowing. Un-
like previous techniques, our approach interacts well with other domains,
is fully automatic, conceptually simple and precise on complex loops.

1 Introduction

In the last decade, the focus of static analysis has shifted from program optimi-
sations towards program verification [5]. In this context, the abstract domain of
polyhedra [2, 10] has attracted much interest due to its expressiveness, as have
sub-classes of polyhedra [18, 19, 21, 22] that solve specific analysis tasks more
efficiently. However, an inherent problem in polyhedral analysis is the ability
to finitely reason about loops. Since the values of variables may differ in each
iteration, each iterate may well be described by a different polyhedron. In order
to quickly analyse a large or potentially infinite number of iterations, special ac-
celeration techniques are required. One such acceleration framework is provided
by the widening/narrowing approach to abstract interpretation [9, 10].

1.1 A Primer On Widening/Narrowing

In order to illustrate the widening/narrowing approach on the domain of polyhe-
dra and to discuss the implications of applying narrowing in an actual analyser,
consider the control flow graph of for (i=0; i<100; i++) {/*empty*/}:

i<100i=0 /* empty */
i++

+

yes

no

P

Q

S

T

R

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/18531539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The analysis amounts to characterising the values that can arise on the edges
of the control flow graph. To this end, each edge is decorated with a polyhe-
dron describing the relationships between the values of the variables on that
edge. Given that the program contains only a single variable i, the polyhedra
P,Q,R, S, T coincide with intervals over the reals. In the example, the polyhe-
dron P = {i ∈ R | 0 ≤ i ≤ 0} describes the value of i at the beginning of
the program. The +-node joins the polyhedra P and T to obtain Q = P t T .
This join corresponds to the smallest convex polyhedron that includes the set
of points P ∪ T . Due to the integrality of i, the polyhedra that characterise
the two outcomes of the test i < 100 are R = Q u {i ∈ R | i ≥ 100} and
S = Qu{i ∈ R | i ≤ 99} where u = ∩ denotes the intersection of two polyhedra.
The last polyhedron T is characterised by the affine map T = {i + 1 | i ∈ S}.

A solution of these equations can be found by applying Jacobi iteration [8],
which calculates new polyhedra Pj+1, Qj+1, Rj+1, Sj+1, Tj+1 from the polyhe-
dra of the previous iteration Pj , Qj , Rj , Sj , Tj . To ensure rapid convergence, a
widening point must be inserted into the Q,S, T cycle. Widening at Q amounts
to replacing the equation for Q with Qj+1 = Qj∇(PjtTj) where ∇ is a widening
operator that removes unstable bounds [9]. The possible values of i are given
below where ⊥ denotes the empty set; the updated entries are shown in bold:

j Pj Qj Rj Sj Tj

1 [0,0] ⊥ ⊥ ⊥ ⊥
2 [0, 0] [0,0] ⊥ ⊥ ⊥
3 [0, 0] [0, 0] ⊥ [0,0] ⊥
4 [0, 0] [0, 0] ⊥ [0, 0] [1,1]
5 [0, 0] [0,∞] ⊥ [0, 0] [1, 1]

j Pj Qj Rj Sj Tj

6 [0, 0] [0,∞] [100,∞] [0,99] [1, 1]
7 [0, 0] [0,∞] [100,∞] [0, 99] [1,100]
8 [0, 0] [0,∞] [100,∞] [0, 99] [1, 100]
1’ [0, 0] [0,100] [100,∞] [0, 99] [1, 100]
2’ [0, 0] [0, 100] [100,100] [0, 99] [1, 100]

In iteration 5, the output of the +-node is P4tT4 = [0, 1]. The widening operator
compares P4 t T4 against Q4 = [0, 0] and removes the unstable upper bound,
yielding Q5 = [0,∞]. Stability is reached in iteration 8. The calculated post-
fixpoint is now refined. This is realised by replacing widening with narrowing,
i.e. Qj+1 = Qj4(Pj t Tj). For polyhedra, it is sufficient to put 4 = u and to
bound the number of iterations [9, page 290]. Hence, let Qj+1 = Qj u (Pj t Tj)
which yields a refined state 1’ and a further refinement 2′ which, in this case,
coincides with the least fixpoint of the original equations.

1.2 The Limitations of Narrowing

To illustrate one drawback of narrowing, consider a re-analysis of the above
example where the widening is applied on S rather than on Q. In particular, let
Sj+1 = Sj∇(Qiu{i ∈ R | i ≤ 99}). The analyses differ after the first 4 iterations:

j Pj Qj Rj Sj Tj

5 [0, 0] [0, 1] ⊥ [0, 0] [1, 1]
6 [0, 0] [0, 1] ⊥ [0,∞] [1, 1]
7 [0, 0] [0, 1] ⊥ [0,∞] [1,∞]
8 [0, 0] [0,∞] ⊥ [0,∞] [1,∞]
9 [0, 0] [0,∞] [100,∞] [0,∞] [1,∞]

j Pj Qj Rj Sj Tj

10 [0, 0] [0,∞] [100,∞] [0,∞] [1,∞]
1’ [0, 0] [0,∞] [100,∞] [0,99] [1,∞]
2’ [0, 0] [0,∞] [100,∞] [0, 99] [1,100]
3’ [0, 0] [0,100] [100,∞] [0, 99] [1, 100]
4’ [0, 0] [0, 100] [100,100] [0, 99] [1, 100]

In the first analysis, only the polyhedra Q and R are larger before narrowing
commences. In the second analysis, S and T are also larger before narrowing. To
illustrate the impact of this in the context of verification, suppose /*empty*/ is
replaced by b = array[i] where array has 100 elements. To avoid an avalanche
of false warning messages it is common practise to intersect S with the legal
range of the index i [5], in this case 0 ≤ i ≤ 99, yielding the polyhedron S′,
and thereafter use S′ instead of S. Moreover, since the out-of-bounds check
amounts to the subsumption test S 6⊆ S′, it is straightforward to perform the
check during fixpoint calculation; the test could be postponed until a fixpoint
is reached, but this would require S′ to be recalculated unnecessarily. However,
this technique does not combine well with narrowing since a warning is issued if
S is nominated for widening rather than Q, i.e. the placement of the widening
point can determine whether a warning is issued or not.

Another implication of reducing a post-fixpoint with narrowing relates to
domain interaction. Assume that the array above is embedded into a C structure
declared as struct { int[100] array; int* p } s; and that the loop body
is changed to b = s.array[i]. Consider again the second analysis in which S
is widened to [0,∞] so that the upper bound of the array index i is lost. In this
case, a points-to analysis [17, 23] would generate a spurious l-value flow from s.p
to b. Once narrowing infers 0 ≤ i < 100 it is desirable to remove this spurious
flow. Alas, points-to analyses are typically formulated in terms of either closure
operations [17] or union-find algorithms [23], none of which support the removal
of flow information. Thus, even if narrowing can recover precision in one domain,
the knock-on precision loss induced in other domains may be irrecoverable.

Furthermore, narrowing on polyhedra [9] cannot recover precision if the loop
invariant is expressed as a disequality [5]. For instance, narrowing has no effect
if the loop invariant in the example is changed from i<100 to the equivalent
i!=100. Since it is unrealistic to modify the program under test, a substitute for
narrowing is required to analyse programs with disequalities as loop conditions.

1.3 Our Contribution to Widening/Narrowing

Rather than recovering inequalities through narrowing that were widened away,
our contribution is to use unsatisfiable inequalities as oracles to guide the fixpoint
acceleration. Specifically, we propose widening with landmarks, which records in-
equalities that were found to be unsatisfiable in two consecutive iterates. We then
extrapolate to the first iterate that makes any of these inequalities satisfiable. If
this extrapolation is not a fixpoint, we continue until no unsatisfiable inequal-
ities remain, at which point standard widening is applied [1, 14]. The rationale
for observing unsatisfiable inequalities is that the transition from unsatisfiable
to satisfiable indicates a change in the behaviour of a program. Widening with
landmarks is similar in spirit to widening with thresholds [5]. In this related
approach, the value of an unstable variable is extrapolated to the next threshold
from a set of user-supplied values. Rather than guiding widening with thresholds
on individual variables, our approach automatically extracts linear inequalities
from the program which bound the degree of extrapolation.

After introducing notation for polyhedra manipulation, Section 3 presents a
worked example of a string buffer analysis that conveys the ideas behind widening
with landmarks. Sections 4 and 5 formalise the notion of landmarks which are
used in Section 6 to define an extrapolation strategy. Section 7 comments on our
implementation and explains how widening with landmarks can be added to an
existing analysis. We discuss related work in Section 8 and conclude in Section 9.

2 Preliminaries

Let x = 〈x1, . . . xn〉 denote an ordered set of variables, let Lin denote the set
of linear expressions of the form a · x where a ∈ Zn and let Ineq denote the
set of linear inequalities a · x ≤ c where c ∈ Z. Moreover, let e.g. 6x3 ≤ x1 + 5
abbreviate 〈−1, 0, 6, 0, . . . 0〉 · x ≤ 5 and let e.g. x2 = 7 abbreviate the two
opposing inequalities 7 ≤ x2 and x2 ≤ 7. Each inequality a·x ≤ c ∈ Ineq induces
a half-space [[a · x ≤ c]] = {x ∈ Rn | a · x ≤ c}. Each finite set of inequalities
I = {ι1, . . . ιm} ⊆ Ineq induces a closed, convex polyhedron [[I]] =

⋂m
i=1[[ιi]].

Let Poly = {[[I]] | I ⊆ Ineq , |I| ∈ N} denote the set of all (finitely generated)
polyhedra. Given two polyhedra Pi = [[Ii]], i = 1, 2, define P1 u P2 = [[I1 ∪ I2]]
and let P1 v P2 iff [[I1]] ⊆ [[I2]]. Let P1 t P2 = u{P ∈ Poly | P1 v P ∧ P2 v P};
equivalently let P1 tP2 = cl(hull(P1 ∪P2)) where cl denotes topological closure
and hull is the convex hull operation on sets of points [10]. A set of inequalities
I ⊆ Ineq is said to be unsatisfiable if [[I]] = ∅, otherwise it is satisfiable. The
lattice 〈Poly ,v,u,t〉 contains infinite ascending chains P1 v P2 v P3 . . . so that
standard Kleene iteration [9] may not converge onto a fixpoint in finite time. To
guarantee convergence, widening operators ∇ : Poly × Poly → Poly have been
proposed for Poly which are required to satisfy the following properties [10]:

1. ∀x, y ∈ Poly . x v x∇y
2. ∀x, y ∈ Poly . y v x∇y
3. for all increasing chains x0 v x1 v . . ., the increasing chain defined by

y0 = x0 and yi+1 = yi∇xi+1 is ultimately stable.

Besides the standard lattice operations, we introduce a family of projection op-
erators ∃xi

: Poly → Poly such that ∃xi
(Q) = {〈x1, . . . , xi−1, x, xi+1, . . . xn〉 |

〈x1, . . . xn〉 ∈ Q, x ∈ R}. Intuitively, ∃xi(Q) removes any information pertain-
ing to xi from the polyhedron Q ∈ Poly . This is useful to model assignment,
e.g. ∃xi

(Q) u [[{xi = 42}]] updates the value of xi to 42. Finally, in order
to find the minimum value of an expression a · x such that x ∈ P , we in-
troduce the operation min : Lin × Poly → (Z ∪ {−∞}). To this end, let
C = {c ∈ Z | P u [[{a · x ≤ c}]] 6= ∅}, that is, C contains all constants c
such that the half-space defined by a · x ≤ c intersects with P , and define

min(a · x, P) =
{

min(C) if min(C) exists
−∞ otherwise.

Observe that min(a · x, P) can be realised with Simplex: if there exists y ∈ Rn

that minimises the expression a · y over P , then put min(a · x, P) = da · ye,
otherwise put min(a · x, P) = −∞.

3 Worked Example from String Buffer Analysis

In this section we explain the ideas behind widening with landmarks in the
context of an example drawn from string buffer analysis. Consider the following
loop which is naturally produced by a C compiler translating while (*s) s++;.

char s[32] = "the string";
int i = 0;
while (true) {

c = s[i];
if (c==0) break;
i = i+1;

};

The task is to check that the string buffer s is only accessed within bounds. This
program is challenging for automatic verification because the loop invariant is
always satisfied and the extra exit condition within the loop does not mention
the loop counter i. In C, a string is merely an array of bytes, in this case s is an
array of 32 bytes. The string literal initialises the first ten characters whilst the
eleventh position is set to 0 (the nul character). The analysis of this function
follows the ideas of [11, 20, 25] in representing only the position of the first nul
character, thereby ignoring the content of "the string". Thus, a single variable
per array suffices to express the relevant information. Specifically, let n represent
the index of the nul position in s. The control flow graph of the string buffer
example is decorated with polyhedra P,Q,R, S, T, U as follows:

c==0i=0 i=i+1+

yes

noP Q

S

TR
c=s[i]

U

The initial values of the program variables is described by P = [[{i = 0, n = 10}]].
The merge of this polyhedron and the polyhedron on the back edge, U , defines
Q = P t U . To verify that the array access s[i] is within bounds, we compute
Q′ = Q u [[{0 ≤ i ≤ 31}]] and issue a warning if Q′ 6= Q. The analysis continues
under the premise that the access was within bounds and hence R is defined in
terms of Q′ rather than Q as follows:

R = (∃c(Q′) u [[{i ≤ n− 1, 1 ≤ c ≤ 255}]])
t (∃c(Q′) u [[{i = n, c = 0}]])
t (∃c(Q′) u [[{n + 1 ≤ i, 0 ≤ c ≤ 255}]])

The projection operator ∃c removes all information pertaining to c in Q′ so that
c can be updated. Since the contents of s are ignored in our model, the new
value of c only depends on the relationship between the index i and n which
describes the position of the first nul character. The value of c is restricted to

[1, 255] if i < n, it is set to 0 if i = n and to [0, 255] if i > n. Note that this
model is valid for platforms where the C char type is unsigned. The last three
equations that comprise the system are given by the following:

S = R u [[{c = 0}]]
T = (R u [[{c ≤ −1}]]) t (R u [[{c ≥ 1}]])
U = {〈n, i + 1, c〉 | 〈n, i, c〉 ∈ T}

The affine transformation in the last equation defining U assumes that the vari-
ables in the polyhedron are ordered as in the sequence n, i, c.

3.1 Applying the Widening/Narrowing Approach

As before, we solve these equations iteratively, nominating Q as the widening
point to ensure convergence in the cycle Q,R, T, U . Thus, when the equations are
reinterpreted iteratively, the equation Q is replaced with Qj+1 = Qj∇(Pj tUj).
Applying the standard widening/narrowing approach results in the iterates shown
in Figure 1. Again, we apply widening when Q is evaluated the third time, so
that widening is applied on Q9 and P9 t U9 to obtain Q10. The resulting poly-
hedron Q10 = [[{0 ≤ i}]] is intersected with the verification condition to yield
Q′

10 = [[{0 ≤ i ≤ 31}]], thereby raising a warning since Q10 6= Q′
10. Before pro-

ceeding to the evaluation of R11, observe that ∃c(Q′
j) = Q′

j in all iterations j
since Pj does not constrain c and consequently neither does Qj = Uj tPj . Given
that Q′

10 allows i to take on any value in [0, 31], the three cases in the definition
of R that are guarded by i ≤ n − 1, i = n and n + 1 ≤ i all contribute to the
result R11. This result is depicted as the grey region in Figure 1 which shows
the relationship between i and c. The three regions whose join form the polyhe-
dron R11 are marked with two rectangles and a small cross for the c = 0 case.
Observe that applying narrowing, that is, replacing Qj+1 = Qj∇(Uj t Pj) with
Qj+1 = Qj4(Uj t Pj), yields another iterate 1′ in which the value of i ranges
over [0, 32] which still violates the array bound check since Q′

1′ 6= Q1′ where
Q′

1′ = Q1′ u {0 ≤ i ≤ 31} corresponds to Q1′ restricted to valid array indices.

3.2 The Rationale behind Landmarks

Now consider the same fixpoint calculation using widening with landmarks as
shown in Figure 2. We omit the first nine iterates before widening is applied
since they coincide with those given in Figure 1. While landmarks are gathered
throughout the fixpoint calculation, we focus on the calculation of the polyhedron
R as this gives rise to the only landmarks that are of relevance in this example.
The three graphs in Figure 2 depict the relation between i and c in the polyhedra
R3, R7, R11, which are the three iterates in which Rj changes. The polyhedron
R3 is derived from ∃c(Q′

3) = Q′
3 = [[{0 ≤ i ≤ 0}]]. During this computation, Q′

3

is intersected with [[{i ≤ n−1, 1 ≤ c ≤ 255}]], [[{n ≤ i ≤ n, 0 ≤ c ≤ 0}]] and [[{n+
1 ≤ i, 0 ≤ c ≤ 255}]] which represent three different behaviours of the program.

255

1

1 10

c

i

2

5 20 30

R11

j Qj Rj Sj Tj Uj

1 ⊥ ⊥ ⊥ ⊥ ⊥
2 {0 ≤ i ≤ 0} ⊥ ⊥ ⊥ ⊥

3 {0 ≤ i ≤ 0}


0 ≤ i ≤ 0,
1 ≤ c ≤ 255

ff
⊥ ⊥ ⊥

4 {0 ≤ i ≤ 0}


0 ≤ i ≤ 0,
1 ≤ c ≤ 255

ff
⊥


0 ≤ i ≤ 0,
1 ≤ c ≤ 255

ff
⊥

5 {0 ≤ i ≤ 0}


0 ≤ i ≤ 0,
1 ≤ c ≤ 255

ff
⊥


0 ≤ i ≤ 0,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff
6 {0 ≤ i ≤ 1}


0 ≤ i ≤ 0,
1 ≤ c ≤ 255

ff
⊥


0 ≤ i ≤ 0,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff
7 {0 ≤ i ≤ 1}


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff
⊥


0 ≤ i ≤ 0,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff
8 {0 ≤ i ≤ 1}


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff
⊥


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff
9 {0 ≤ i ≤ 1}


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff
⊥


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

ff
10 {0 ≤ i}


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff
⊥


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

ff
11 {0 ≤ i}

8<:
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

9=; ⊥


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

ff

12 {0 ≤ i}

8<:
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

9=;
8<:

10 ≤ i,
i ≤ 31,
0≤c≤0

9=;


0 ≤ i ≤ 31,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

ff

13 {0 ≤ i}

8<:
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

9=;
8<:

10 ≤ i,
i ≤ 31,
0≤c≤0

9=;


0 ≤ i ≤ 31,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 32,
1 ≤ c ≤ 255

ff

14 {0 ≤ i}

8<:
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

9=;
8<:

10 ≤ i,
i ≤ 31,
0≤c≤0

9=;


0 ≤ i ≤ 31,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 32,
1 ≤ c ≤ 255

ff

1’ {0 ≤ i ≤ 32}

8<:
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

9=;
8<:

10 ≤ i,
i ≤ 31,
0≤c≤0

9=;


0 ≤ i ≤ 31,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 31,
1 ≤ c ≤ 255

ff

Fig. 1. Fixpoint calculation of the string loop. A polyhedron [[S]] is abbreviated to
S and ⊥ denotes an unsatisfiable set of inequalities. The column Pj is omitted since
Pj = [[{0 ≤ i ≤ 0}]] for all iterations j. Further we omit 10 ≤ n ≤ 10 from all polyhedra.

255

1

1 10

255

1

1 10

255

1

1 10

c c c

i i i

2 2 2

5 5 5

R3 R7 R11

j Qj Rj Sj Tj Uj

10 {0 ≤ i ≤ 10}


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff
⊥


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

ff

11 {0 ≤ i ≤ 10}

8>><>>:
0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
−i− 10c ≤ −10

9>>=>>; ⊥


0 ≤ i ≤ 1,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

ff

12 {0 ≤ i ≤ 10}

8>><>>:
0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
−i− 10c ≤ −10

9>>=>>;
8>><>>:

10 ≤ i,
i ≤ 10,
0 ≤ c,
c ≤ 0

9>>=>>;


0 ≤ i ≤ 9,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

ff

13 {0 ≤ i ≤ 10}

8>><>>:
0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
−i− 10c ≤ −10

9>>=>>;
8>><>>:

10 ≤ i,
i ≤ 10,
0 ≤ c,
c ≤ 0

9>>=>>;


0 ≤ i ≤ 9,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 10,
1 ≤ c ≤ 255

ff

14 {0 ≤ i ≤ 10}

8>><>>:
0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
−i− 10c ≤ −10

9>>=>>;
8>><>>:

10 ≤ i,
i ≤ 10,
0 ≤ c,
c ≤ 0

9>>=>>;


0 ≤ i ≤ 9,
1 ≤ c ≤ 255

ff 
1 ≤ i ≤ 10,
1 ≤ c ≤ 255

ff

Fig. 2. Fixpoint calculation using widening with landmarks.

As the fixpoint calculation progresses, polyhedra grow and new behaviours are
incrementally enabled. A behaviour can only change from being disabled to
being enabled when one of its constituent inequalities makes the transition from
unsatisfiable to satisfiable. A fixpoint may exist in which not all behaviours of
a program are enabled, that is, there are behaviours that contain unsatisfiable
inequalities. The rationale for widening with landmarks is to find these fixpoints
by systematically considering the inequalities that prevent a behaviour from
being enabled. These inequalities are exactly those inequalities in the semantic
equations that are unsatisfiable in the context of the current iterate. In the
example, the last two behaviours contain the inequalities n ≤ i (arising from
i = n) and n + 1 ≤ i that are responsible for enabling the second and third
behaviour. These inequalities are unsatisfiable in Q′

3 and are therefore stored
as landmarks. The leftmost graph in Figure 2 indicates the position of the two
inequalities n ≤ i and n + 1 ≤ i which define the landmarks we record for R3.

3.3 Creating Landmarks for Widening

A landmark is a triple comprised of an inequality and two distances. On creation,
the first distance is set to the shortest straight-line distance the inequality must
be translated so as to touch the current iterate. In this example, translations by
10 and 11 units are required for n ≤ i and n + 1 ≤ i, respectively, to touch R3.

In the 7th iteration, when Rj is updated again, a second measurement is
taken between the inequality and the new iterate. This distance is recorded as
the second distance in the existing landmark. In the example, the second distance
for the landmarks for n ≤ i and n + 1 ≤ i is set to 9 and 10 units, respectively.

By iteration 8 both landmarks have acquired a second measurement, however,
it is not until widening is applied in iteration 10 that the landmarks are actually
used. The difference between the two measurements of a particular landmark
indicates how fast the iterates Rj are approaching the as-of-yet unsatisfiable
inequality of that landmark. From this difference we estimate how many times
Rj must be updated until the inequality becomes satisfiable. In the example,
the difference in distance between the two updates R3 and R7 is one unit for
each landmark. Thus, at this rate, Rj would be updated 9 more times until the
closer inequality, namely n ≤ i, becomes satisfied. Rather than calculating all
these intermediate iterates, we use this information to perform an extrapolation
step when the widening point Q is revisited.

3.4 Using Landmarks in Widening

From the perspective of the widening operator, the task is, firstly, to gather all
landmarks that have been generated in the traversal of the cycle in which the
widening operator resides. Secondly, the widening operator ranks the landmarks
by the number of iterations needed for the corresponding inequality to become
satisfied. Thirdly, the landmark with the smallest rank determines the amount of
extrapolation the widening operator applies. In the example, recall that the un-
satisfiable inequality n ≤ i in R7 would become satisfiable after 9 more updates of
R whereas the other unsatisfiable inequality n+1 ≤ i becomes satisfiable after 10
updates. Hence, n ≤ i constitutes the nearest inequality and, rather than apply-
ing widening when calculating Q10 = Q9∇(P9tU9), extrapolation is performed.
Specifically, the changes between Q9 = [[{0 ≤ i ≤ 1}]] and P9tU9 = [[{0 ≤ i ≤ 2}]]
are extrapolated 9 times to yield Q10 = [[{0 ≤ i ≤ 10}]]. The new value of Q10

forces a re-evaluation of R, yielding R11, as shown in Figure 2. In the next itera-
tion, the semantic equation for T yields [[{0 ≤ i, 1 ≤ c ≤ 255, 255i + c ≤ 2550}]].
Since i and c are known to be integral, this polyhedron can be refined [16] to
the entry T12 as shown in the table. A final iteration leads to a fixpoint.

Note that it is possible to apply extrapolation as soon as a single landmark
acquires its second measurement. However, to ensure that the state is extrap-
olated only to the point where the first additional behaviour becomes enabled,
the extrapolation step should be deferred until all landmarks have acquired their
second value. In practise, this means that no extrapolation is performed if a new
landmark was created in the last iteration. Note that new landmarks cannot

Listing 1 Adding or tightening a landmark: updateLandmark(P, ι, L)
Require: P ∈ Poly , ι ∈ Ineq , L ⊆ Lin × Z× (Z ∪ {∞})
1: e ≤ c← ι
2: c′ ← min(P, e)
3: if c < c′ then /* P u [[{ι}]] is empty */
4: dist ← c′ − c /* calculate the distance between P and [[{ι}]] */
5: if ∃distc, distp . 〈e, distc, distp〉 ∈ L then
6: return (L \ {〈e, distc, distp〉}) ∪ {〈e, min(dist , distc), distp〉}
7: else
8: return L ∪ {〈e, dist ,∞〉}
9: end if

10: end if
11: return L

be added indefinitely as there is at most one landmark for each inequality that
occurs in the semantic equations which are, in turn, finite.

The following sections formalise these ideas by presenting algorithms for gath-
ering landmarks and performing extrapolation using landmarks.

4 Acquiring Landmarks

This section formalises the intuition behind widening with landmarks by
giving a more algorithmic description on how landmarks are acquired. Listing 1
presents the algorithm updateLandmark which is invoked whenever a polyhedron
P is intersected with an inequality ι that arises from a semantic equation. In
line 2, the distance between ι and P is measured by calculating c′ = min(P, e).
Intuitively, e ≤ c′ is a parallel translation of ι that has a minimal intersection
with P . Line 3 compares the relative location of ι and its translation, thereby
ensuring that lines 4 to 9 are only executed if ι is unsatisfiable and, thus, can
yield a landmark. If ι is indeed unsatisfiable, line 4 calculates its distance to P .

Given this distance, line 5 determines if a landmark is to be updated or
created. An update occurs whenever different semantic equations contain the
same unsatisfiable inequality. In this case line 6 ensures that the smaller distance
is stored in the landmark. The rationale for storing the distance to the closer
inequality is that a landmark for the inequality that is further away can be
gathered later. In particular, if extrapolation to the nearer inequality does not
lead to a fixpoint, the nearer inequality is satisfiable in the extrapolated space
and cannot induce a new landmark. At this point the inequality that is further
away can become a landmark. Hence, tracking distances to closer inequalities
ensures that all landmarks are considered in turn.

When creating a new landmark, line 8 sets the second distance to infinity
which indicates that this new landmark is not yet ready to be used in extrapo-
lation. The next section details how the acquired landmarks are manipulated.

advance landmarks extrapolate/widen
clear all landmarks

calc no. of iterations

+

stable?

steps>0
yesno

no

yes

Fig. 3. Operations performed at a widening point.

Listing 2 Advance a landmark: advanceLandmarks(L)
Require: L ⊆ Lin × Z× (Z ∪ {∞})
1: L′ ← {〈e, distc, distc〉 | 〈e, distc, distp〉 ∈ L}
2: return L′

5 Using Landmarks at a Widening Point

The semantic equations of the program induce cyclic dependencies between the
states at each program point. A widening point must be inserted into each cycle
to ensure that the fixpoint computation eventually stabilises. In case of nested
cycles, a fixpoint is calculated on each inner cycle before moving on to the
containing cycle [6]. Figure 3 schematically shows the actions taken when a se-
mantic equation at a widening point is evaluated. If stability has not yet been
achieved, all landmarks gathered in the current cycle (excluding those in inner
cycles) are passed to the algorithm calcIterations which estimates the number
of times the cycle needs to be traversed until a state is reached at which the
first as-of-yet unsatisfiable inequality becomes satisfiable. This count is denoted
as steps in Figure 3. Two special values are distinguished: 0 and ∞. A value
of zero indicates that new landmarks were created during the last traversal of
the cycle. In this case, the left branch of Figure 3 is taken and the algorithm
advanceLandmarks, which is presented in Listing 2, is called. Normal fixpoint
computation is then resumed, allowing landmarks to acquire a second measure-
ment. The call to advanceLandmarks stores the calculated distance in the third
element of each landmark, thereby ensuring that this value is not lost when
updateLandmark updates the second element of the landmark tuple during the
next iteration.

The right branch of Figure 3 is selected whenever calcIterations returns a
non-zero value for steps which indicates that all landmarks have acquired two
measurements. This is the propitious moment for extrapolation as only now
can all landmarks participate in predicting the number of cycles until the first
as-of-yet unsatisfiable inequality is reached. In order to show how this num-
ber is derived, consider Listing 3. The algorithm calcIterations calculates an
estimate of the number of iterations necessary to satisfy the nearest landmark
stored in steps. This variable is initially set to ∞ which is the value returned
if no landmarks have been gathered. An infinite value in steps indicates that

Listing 3 Calculate distance calcIterations(L)
Require: L ⊆ Lin × Z× (Z ∪ {∞})
1: steps ←∞ /* indicate that normal widening should be applied */
2: for 〈e, distc, distp〉 ∈ L do
3: if distp =∞ then
4: steps ← 0
5: else if distp > distc then
6: steps ← min(steps, ddistc/(distp − distc)e) /* assume min(∞, n) = n */
7: end if
8: end for
9: return steps

widening, rather than extrapolation, has to be applied. Otherwise, the loop in
lines 2–8 examines each landmark in turn. For any landmark with two measure-
ments, i.e. those for which distp 6= ∞, line 6 calculates after how many steps the
unsatisfiable inequality that gave rise to the landmark 〈e, distc, distp〉 becomes
satisfiable. Specifically, distp−distc represents the distance traversed during one
iteration. Given that distc is the distance between the boundary of the unsatis-
fiable inequality and the polyhedron in that iteration, the algorithm computes
ddistc/(distp − distc)e as an estimate of the number of iterations required to
make the inequality satisfiable. This number is stored in steps unless another
landmark has already been encountered that can be reached in fewer iterations.

The next section presents an algorithm that extrapolates the change between
two iterates by a given number of steps. It thereby completes the suite of algo-
rithms necessary to realise widening with landmarks.

6 Extrapolation Operator for Polyhedra

In contrast to standard widening which removes inequalities that are unsta-
ble, extrapolation by a finite number of steps merely relaxes inequalities until the
next landmark is reached. Listing 4 presents a simple extrapolation algorithm
that performs this relaxation based on two iterates, namely P1 and P2. This
extrapolation is applied by replacing any semantic equation of the form Qi+1 =
Qi∇Ri with Qi+1 = extrapolate(Qi, Ri, steps) where steps = calcIterations(L)
and L is the set of landmarks relevant to this widening point. Thus the first argu-
ment to extrapolate, namely P1, corresponds to the previous iterate Qi, while P2

corresponds to Ri. Line 2 calculates the join P of both, P1 and P2, which forms
the basis for extrapolating the polyhedron P1. Specifically, bounds of P1 that are
not preserved in the join are extrapolated. The loop in lines 7–15 implements
this strategy which resembles the original widening on polyhedra [10] which can
be defined as Eres = {ιi | P v [[{ιi}]]} where ι1, . . . ιn is a non-redundant set of
inequalities such that [[{ι1, . . . ιn}]] = P1, c.f. [1]. Note that this widening can be
inaccurate if the dimensionality of P1 is smaller than that of P = P1 tP2; other
inequalities from P can be added to Eres to remedy this [1, 14] but we omit this
additional step for brevity. The entailment check P v [[{ιi}]] for ιi ≡ e ≤ c is

Listing 4 Extrapolate changes extrapolate(P1, P2, steps)
Require: P1, P2 ∈ Poly , steps ∈ N ∪ {∞}
1: [[ι1, . . . ιn]]← P1 /* ι1, . . . ιn is a non-redundant description of P1 */
2: P ← P1 t P2

3: if steps = 0 then
4: return P
5: else
6: Eres ← ∅
7: for i = 1, . . . n do
8: e ≤ c← ιi

9: c′ ← min(P, e)
10: if c′ ≤ c then
11: Eres ← Eres ∪ {e ≤ c} /* since P v [[ιi]] */
12: else if steps 6=∞ then
13: Eres ← Eres ∪ {e ≤ (c + (c′ − c)steps)}
14: end if
15: end for
16: return [[Eres]]
17: end if

5

1
2

4

8

1 2 3 4

y

i6 7 8

y≥8

Fig. 4. Illustrating non-linear growth.

implemented in line 9 by calculating the smallest c′ such that P v [[{e ≤ c′}]].
In the case that c′ ≤ c, the entailment holds and line 11 adds the inequality
to the result set. In the case that the entailment does not hold, the inequality
is discarded whenever steps = ∞. In this case extrapolate reduces to a simple
widening. If steps is finite, line 13 translates the inequality, thereby anticipating
the change that is likely to occur during the next steps loop iterations.

The presented algorithm performs a linear translation of inequalities. Since
array accesses are typically linear, this approach is well suited for verifying that
indices fall within bounds. However, a non-linear relationship such as that aris-
ing in the C loop int i=1; for(int y=1; y<8; y=y*2) i++; is not amenable
to linear extrapolation and thus leads to a loss of precision. The loop creates
successive values for i, y that correspond to the points 〈1, 1〉, 〈2, 2〉, 〈3, 4〉 and,
finally, at the exit of the loop, the point 〈4, 8〉. These are indicated as crosses in
Figure 4. The best polyhedral approximation of these points restricted by the
loop invariant y < 8 is shown in dark grey. However, extrapolating the first two
iterates, namely the polyhedron {〈1, 1〉} and the polyhedron that additionally

contains 〈2, 2〉, predicts that the shown landmark y ≥ 8 becomes satisfiable after
7 additional loop iterations. The extrapolation results in the state depicted as
a dashed line; continuing the fixpoint calculation leads to the light grey area as
loop invariant which is a coarser approximation than the optimal polyhedron.

7 Implementation

We have implemented widening with landmarks in a verifier for C programs that
combines numeric analysis with points-to analysis. The verifier is geared towards
string buffer analysis in that it implements the tracking of nul positions [20]. One
obstacle in a polyhedral analysis is the complexity of the polyhedral operations.
To support a large number of variables, we chose the two-variable-per-inequality
(TVPI) domain [22] which can only represent inequalities with at most two non-
zero variables per inequality. The underlying idea in this domain is to calculate
a closure of the TVPI inequalities. A closure step eliminates a from any two
(appropriately scaled) inequalities axi + bxj ≤ c and −axi + dxk ≤ e to obtain
bxj + dxk ≤ c + e which is then added to the closure. A closed system makes
it possible to implement all polyhedral operations efficiently on sets of planar
polyhedra. For example, the convex hull operation on planar polyhedra runs in
O(n log n) where n is the number of inequalities in the planar polyhedron [22].
Another advantage is the availability of algorithms to shrink each planar poly-
hedron around the integral grid [16]. This is not only useful to improve precision
when analysing integer variables (as necessary in T12 of Figure 2) but also limits
the size of coefficients of inequalities. Otherwise, inequalities with excessively
large coefficients have to be removed to ensure progress [21], a step that is im-
possible in the TVPI domain since closure could re-introduce these inequalities.

Implementing widening with landmarks requires two modifications to an ex-
isting analysis, namely modifying the intersection operation to gather landmarks
and replacing widening operators by extrapolation operations that evaluate the
acquired landmarks. When it comes to gathering landmarks, note that the TVPI
domain implements intersection of a polyhedron P and a set of inequalities
{ι1, . . . ιn} by computing (. . . ((P u {ι1}) u {ι2}) . . .) u {ιn} since a cheap incre-
mental closure can be applied after adding a single inequality. Adding inequal-
ities one-by-one makes it possible to intersperse calls to updateLandmark for
landmark acquisition. While it may seem that calculating min(e, P) in line 2
of Listing 1 incurs a performance penalty, it turns out that running this linear
program can actually improve memory performance of a domain. Consider the
semantic equation of R from Section 3 whose calculation requires three copies of
the input polyhedron ∃c(Q′) which are then intersected with inequalities express-
ing three different behaviours. During the fixpoint calculation, many behaviours
are disabled. A consequence of this is that a polyhedron will be copied, only for
the copy to become unsatisfiable when intersected with an inequality that ex-
presses such a disabled behaviour. Observe that in this case the test on line 3 of
updateLandmark succeeds and a landmark is added. A better strategy is to call
updateLandmark without copying the original input polyhedron and, only if no

1

1

y

x

2

2 5

5

1

1

y

x

2

2 5

5

1

1

y

x

2

2 5

5

Fig. 5. Improved widening from polytopes to polyhedra.

new landmarks arise, an actual copy of the input polyhedron is needed further
processing. This strategy avoids copying polyhedra that are shortly after aban-
doned when they turn unsatisfiable. Note that this refinement can be applied to
many semantic equations, in particular, to those that model conditionals which,
in our application, make up the majority of all intersection operations.

8 Related Work

Although the foundations of widening and narrowing were laid three decades
ago [7], the value of widening was largely unappreciated until comparatively re-
cently [9]. In the last decade there has been a resurgence of interest in applying
polyhedral analysis and, specifically, polyhedral widenings [1, 3, 4]. The original
widening operator in [10] discards linear relationships that result from joining the
state of the previous loop iteration with the current loop iteration. This causes
a loss of precision, especially when widening is applied in each loop iteration.
The so-called revised widening [14] remedies this by adding additional inequal-
ities from the join. Benoy [3] showed that the two widenings coincide whenever
widening is postponed until the dimensionality of the iterates has stabilised.

Besson et al. [4] present widenings that are especially precise when widening
polytopes into polyhedra. For instance, the iterates shown in Figure 5 feature
an inequality with changing coefficients that standard widening would remove.
Instead, this inequality is widened to y ≥ 0, thereby retaining a lower bound
on y. Extending our extrapolation function to include inequalities with chang-
ing coefficients is an interesting research question. Bagnara et al. [1] combine
the techniques of Besson et al. and other widenings with extrapolation strate-
gies that delay widening. More closely related is work on extrapolation using
information from the analysed equation system. For instance, widening with
thresholds [5] uses a sequence of user-specified values (thresholds) on individual
variables up to which the state space is extrapolated in sequence. Halbwachs et
al. [15] deduce thresholds automatically from guards in the semantic equations.
However, they observe redundant inequalities rather than unsatisfiable inequal-
ities, thereby possibly extrapolating to thresholds where no fixpoint can exist,
such as redundant inequalities that express verification conditions. The restric-
tion of inferring thresholds on single variables is lifted by lookahead widening
which uses standard widening and narrowing operators and thereby is able to

find bounds that are expressed with more than one variable [12]. It uses a pilot
polyhedron on which widening and narrowing is performed alongside a main
polyhedron. Once the pilot value has stabilised after narrowing, it is promoted
to become the main value. By using the main value to evaluate effects in other
domains, the problems of domain interaction as discussed in Section 1 do not
occur. Furthermore, by discarding behaviours that are enabled after widening
but are disabled with respect to the main value, their approach is able to find
fixpoints in which not all behaviours are enabled, such as the one in the example
on string buffers. While their approach solves essentially the same problem as
widening with landmarks, the analysis operates on two polyhedra instead of one.

Further afield is the technique of counterexample-driven refinement that has
recently been adapted to polyhedral analysis [13]. This approach is in some
sense orthogonal to narrowing that refines a single fixpoint. In counterexample-
driven refinement, the fixpoint computation is repeatedly restarted, guided by
a backwards analysis from the point of a false warning to some widening point.
Finally, it has been shown that widening and narrowing can be avoided altogether
in a relational analysis if the semantic equations are affine [24]. Incredibly, for
this restricted class of equations, least fixpoints can be found in polynomial time.

9 Conclusion

Motivated by shortcomings encountered in narrowing polyhedra, this paper pro-
poses an extrapolation technique called widening with landmarks. The idea is to
reason about unsatisfiable inequalities to guide the extrapolation process. This
tactic is sensitive to invariants that are not obvious from the loop condition.

Acknowledgements We would like to thank Denis Gopan for useful discussions on
lookahead widening. This work was supported by EPSRC project EP/C015517.

References

1. R. Bagnara, P. Hill, E. Ricci, and E. Zaffanella. Precise Widening Operators for
Convex Polyhedra. Science of Computer Programming, 58(1–2):28–56, 2005.

2. R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex polyhedra
and the double desciption method. Formal Asp. Comput., 17(2):222–257, 2005.

3. P. M. Benoy. Polyhedral Domains for Abstract Interpretation in Logic Program-
ming. PhD thesis, Computing Lab., Univ. of Kent, Canterbury, UK, January 2002.

4. F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral Analysis for Synchronous
Languages. In SAS, number 1694 in LNCS, pages 51–68, Venice, Italy, 1999.

5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux,
and X. Rival. Design and Implementation of a Special-Purpose Static Program
Analyzer for Safety-Critical Real-Time Embedded Software. In The Essence of
Computation: Complexity, Analysis, Transformation, number 2566 in LNCS, pages
85–108. Springer Verlag, 2002.

6. F. Bourdoncle. Efficient Chaotic Iteration Strategies with Widenings. In Inter-
national Conference on Formal Methods in Programming and their Applications,
volume 735 of LNCS, pages 128–141. Springer Verlag, 1993.

7. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Pro-
grams. In Second International Symposium on Programming, pages 106–130.
Dunod, Paris, France, 1976.

8. P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Pro-
grams. Journal of Logic Programming, 13(2–3):103–179, 1992.

9. P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/Nar-
rowing Approaches to Abstract Interpretation. In M. Bruynooghe and M. Wirsing,
editors, International Symposium on Programming Language Implementation and
Logic Programming, volume 631 of LNCS, pages 269–295. Springer-Verlag, 1992.

10. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Constraints among
Variables of a Program. In Symposium on Principles of Programming Languages,
pages 84–97, Tucson, Arizona, 1978. ACM Press.

11. N. Dor, M. Rodeh, and M. Sagiv. Cleanness Checking of String Manipulations in
C Programs via Integer Analysis. In P. Cousot, editor, Static Analysis Symposium,
number 2126 in LNCS, pages 194–212, Paris, France, 2001. Springer-Verlag.

12. D. Gopan and T. Reps. Lookahead Widening. In CAV, volume 4144. Springer,
2006. To appear.

13. B. S. Gulavani and S. K. Rajamani. Counterexample Driven Refinement for Ab-
stract Interpretation. In TACAS, volume 3920 of LNCS, pages 474–488. Springer,
April 2006.

14. N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. Thèse de 3ème cicle d’informatique, Université sci-
entifique et médicale de Grenoble, Grenoble, France, March 1979.

15. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of Real-Time Systems
using Linear Relation Analysis. Formal Methods in System Design, 11(2):157–185,
August 1997.

16. W. Harvey. Computing Two-Dimensional Integer Hulls. SIAM Journal on Com-
puting, 28(6):2285–2299, 1999.

17. N. Heintze and O. Tardieu. Ultra-fast Aliasing Analysis using CLA: A Million
Lines of C Code in a Second. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 254–263, 2001.

18. A. Miné. The Octagon Abstract Domain. In Eighth Working Conference on Re-
verse Engineering, pages 310–319. IEEE Computer Society, 2001.

19. S. Sankaranarayanan, M. Colón, H. B. Sipma, and Z. Manna. Efficient Strongly
Relational Polyhedral Analysis. In VMCAI, pages 111–125, 2006.

20. A. Simon and A. King. Analyzing String Buffers in C. In Algebraic Methodology
and Software Technology, number 2422 in LNCS, pages 365–379. Springer, 2002.

21. A. Simon and A. King. Exploiting Sparsity in Polyhedral Analysis. In C. Hankin
and I. Siveroni, editors, Static Analysis Symposium, number 3672 in LNCS, pages
336–351. Springer Verlag, September 2005.

22. A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality as an
Abstract Domain. In M. Leuschel, editor, Logic Based Program Development and
Transformation, number 2664 in LNCS, pages 71–89. Springer, September 2002.

23. B. Steensgaard. Points-to Analysis in Almost Linear Time. In Symposium on the
Principles of Progamming Languages, pages 32–41, 1996.

24. Z. Su and D. Wagner. A Class of Polynomially Solvable Range Constraints for
Interval Analysis without Widenings. Theor. Comput. Sci., 345(1):122–138, 2005.

25. D. Wagner. Static analysis and computer security: New techniques for software
assurance. PhD thesis, University of California at Berkeley, December 2000.

