
Syntactic Generation of Practice Novice
Programs in Python

Abejide Ade-Ibijola

Formal Structures, Algorithms, and Industrial Applications Research Cluster
Department of Applied Information Systems

School of Consumer Intelligence and Information Systems
University of Johannesburg, Auckland Park Bunting Road Campus

Johannesburg, South Africa
8 abejideai@uj.ac.za, r www.abejide.org

Abstract. In the present day, computer programs are written in high
level languages and parsed syntactically as part of a compilation pro-
cess. These parsers are defined with context-free grammars (CFGs), a
language recogniser for the respective programming language. Formal
grammars in general are used for language recognition or generation.
In this paper, we present the automatic generation of procedural pro-
grams in Python using a CFG. We have defined CFG rules to model
program templates and implemented these rules to produce infinitely
many distinct practice programs in Python. Each generated program is
designed to test a novice programmer’s knowledge of functions, expres-
sions, loops, and/or conditional statements. The CFG rules are highly
generic and can be extended to generate programs in other procedu-
ral languages. The resulting programs can be used as practice, test or
examination problems in introductory programming courses. 500,000 it-
erations of generated programs can be found at: https://tinyurl.com/
pythonprogramgenerator. A survey of 103 students’ perception showed
that 93.1% strongly agreed that these programs can help them in practice
and improve their programming skills.

Keywords: Synthesis of things, program synthesis, practice python programs,
novice programmers, context-free grammar applications.

1 Introduction

Teaching novices how to program takes up a great deal of time and it requires
a lot of patience [20]. Similarly, learning how to program is difficult for novice
programmers, with evidences of high drop out rates in introductory programming
courses [8, 17, 9, 35]. A lot of research has gone into, both: pedagogy models of
teaching this subject, and software tools for aiding the learning process. This
has given rise to the domain of novice program comprehension and automatic
tutoring [34, 27] — the study of:

1. what misconceptions (or difficulties) novice programmers have [19],

2

2. what pedagogy models can help them [11], and
3. what technological interventions can be used to support the learning process

of the subject [34].

Novice Misconceptions or Difficulties Novice programmers often struggle
with comprehending the syntax of programming languages [11], having to
learn a number of different set of skills at the same time [35], the debugging
process [6], lack of practice [26], the complexity of certain topics (such as
arrays, loops, and relational or boolean algebra for conditional statements)
that are difficult to understand [10, 37, 7].

Pedagogy Models Some popular pedagogy models that have been adopted in
teaching programming include: teaching without the vehicle of a language
(e.g. using textual algorithms) [11], adopting the productive failure tech-
nique, i.e. giving students complex problems to solve while hoping they form
their own solutions before giving them direct instructions [30], and teaching
problem solving before programming [16].

Technological Interventions Several approaches have been employed to aid
novice program comprehension using technology, such as introducing serious
games [25] with findings revealing that these games add to the fun element
in learning, and students rated the game as an effective way to learn pro-
gramming [24]. Automatic program summarisation [15], automatic program
narration [3] and program visualisation [33] aids have also been proposed to
aid program comprehension.

One major way to aid novice program comprehension is to get novices to prac-
tice more [12, 16, 22, 29], as emphases has been laid on the lack of practice as one
major reason for high failure rates [26]. This is not only true for programming,
as it has been proven that acquiring long-term knowledge and skill often depend
on the frequency of practice [21].

This work presents the syntactic generation of programming exercises — that
can be completed with pen and paper — as a practice aid for novice program-
mers. To achieve this, we have adopted random context-free grammars (CFG) in
the formalisation of programming templates and implemented these formalisms
to produce unique instances of Python programs. These programs cover basic
programming concepts such as assignment statement, function calls, evaluation
of arithmetic expressions and predefined functions, conditional statements and
loops. This process is described in Figure 1.

In Figure 1, we take a category of the desired programs (e.g. simple arith-
metic programs, programs with loops, programs with if-statements, etc.) and an
integer indicating the number of iterations of such programs that is to be gen-
erated, and use the predefined CFG rules to generate new and unique instances
of the requested program.

We have leveraged on findings that claim that practice can aid novice program
comprehension and hence, made the following contributions. We have:

3

Fig. 1. Process of Python program generation using CFG rules

1. designed a random context-free grammar (a set of rules) for the automatic
generation of practice programming problems in Python — a programming
language widely used in teaching introductory programming,

2. implemented the grammar rules and shown that it generates infinitely many
Python programs that can be given to novice programmers as pen-and-paper
practice problems, and

3. evaluated the usefulness of the generated programs and shown that novice
programmers across two universities find them very helpful.

The remainder of this paper is organised as follows. Section 2 presents the back-
ground and related works. Section 3 presents the CFG design for Python pro-
grams generation. Section 4 presents the implementation of the CFG rules and
iterations of generated programs. Section 5 discusses an evaluation of this idea,
while Section 6 presents the conclusion and future work.

2 Background and Related Work

In this section we introduce the problem, justify the choice of Python, discuss
the motivation and related works.

2.1 Problem Statement

The problem tackled in this paper is summed up in the following questions.

1. Can we aid program comprehension by algorithmically generating more prac-
tice programs?

2. How do we design and implement context-free grammars to answer the Ques-
tion 1 above?

3. What is the perception of novice programmers about automatically gener-
ated programs as practice and/or comprehension aids?

These questions are answered in Sections 3, 4, and 5 of this paper respectively.

2.2 Motivation

The following are known challenges of teaching and learning introductory pro-
gramming:

4

Programming is Difficult Learning to program is difficult [8, 9, 35], and more
practice can aid this process [12, 16, 22, 29].

High Failure Rates There are high failure and drop-out rates from intro-
ductory programming courses around the world, despite extensive research
which attempts to address the issue [17, 9].

Wrong Learning Style Students often find programming difficult when they
adopt the wrong style of learning (e.g. memorising programs, practising with
past questions, etc.) or have the wrong motivation (e.g. wanting to pass the
course and proceed with their mainstream courses — if its an elective1 [18].

These challenges have motivated this work, resulting in a technique for the au-
tomatic generation of Python programs that can be used as practice problems
by novice programmers.

2.3 Why Python?

In 2016, Python was ranked the second2 most widely used programming language
in teaching introductory programming [31], and recent assessments show that the
use of Python has resulted in better successes in teaching programming at first
year [36]. This language is used in the University where we have evaluated the
results in this paper. All Python programs generated and presented in this paper
are of Version 3.x3.

2.4 Type and Syntax of Python Practice Programs

This work focuses on a specific type of programming practice problems, namely:
program tracing. Program tracing exercises require a novice to determine the
values of variables and validity of statements at every program state and hence,
determine the final output (if any) of a program or report a bug. These types
of exercises are well used to test a novice’s knowledge of basic concepts such as
functions, loops, conditional statements, etc. An example of this type of pro-
gramming problem shown in Listing 1.1.

Listing 1.1. Sample program tracing exercise 1

1 #Determine the output of the following program fragment:
2 x = 5
3 for y in range (1,6):
4 print(x * y) �

1 Electives are courses not in the mainstream of the offered degree. An example is a
student studying towards a Bachelor’s degree in Chemistry, who takes an introduc-
tory programming course in Python.

2 After Java programming language
3 Versions of Python can be found here: https://www.python.org/doc/versions/

5

Listing 1.1, the user is given a program fragment to test the knowledge of:
assignment of values to variables, range in Python, the use of for loops, and
print statements. Here, the novice is expected to produce the set of results:
5, 10, 15, 20, 25 on separate lines.

Listing 1.2. Sample program tracing exercise 2

1 i = -11
2 u4 = 5
3 w = (i - u4)
4 print(w) �
In Listing 1.2, the task is a lot simpler. A novice is expected to add the values of
two variables together i and u4, and display the result of the addition. In order
to generate this type of a practice problem, we just need to generate a “random
program” that has the structure shown in Syntax 1.

Syntax 1:
initialise identifiers n ∈ N, assign values v ∈ V :

n1 = v1
n2 = v2
...
nk = vk, 1 ≤ k < |N |

set ni ∈ N ←− expr(nj ∈ N |i 6= j)
display ni

The expr function in this syntax is a recursive function that generates simple
mathematical expressions as a continuous concatenation of terms. This syntax
is generic, and can produce the instance shown in Listing 1.3.

Listing 1.3. A random instance of Syntax 1.

1 x = 4
2 t1 = 20
3 j9 = -19
4 v = ((x + j9)) - ((b - t1))
5 print(v) �

However, it will be a tedious process to define many of this type of syntax for
the automatic generation of practice python programs. Hence, we have adopted
CFGs to formalise this process. With CFGs, non-terminal symbols are created to
abstract the repeating components (e.g. identifiers, expressions, conditions, etc)
of templates, therefore making it easier to describe the syntax of these programs.

2.5 Target Learning Outcomes

The learning outcomes that we target in this work cover the evaluations of:

1. in-built functions — mostly mathematical functions (e.g. floor, ceiling,
abs, etc.),

2. expressions (arthimetic, logical and relational),
3. loops (for-loops, and while-loops), and
4. conditional statements, i.e. if, elif, else.

6

2.6 Related Work

While there is no work mainly in the automatic generation of practice python
programs, there have been related work done (using similar techniques) in the
areas of:

Synthesis of problems Generating exercises in algebra for MOOCs [28], gen-
eration of problems and solutions for natural deductions and proofs [4], gen-
eration of algebra problems to help with mathematics pedagogy [32] using
a syntax-directed approach, and grammar-driven generation of regular ex-
pression problems and solutions [2].

Synthesis of artefacts Synthesis of geometry constructions [13, 14] and syn-
thesis of social media profiles using probabilistic context-free grammars
(PCFGs) [1].

2.7 Definition of Terms

Here we define some terms used in this paper.

Definition 1 (Symbol, Alphabet, and String [23]). A symbol is an item or
a single token. An alphabet, denoted by Σ is any finite set of symbols. A string
is formulated from concatenation of zero or more symbols.

Definition 2 (Context-free grammar [5]). A context-free grammar (or CFG)
G is a four-tuple: G = (N,Σ, P, S) where

1. N is a set of nonterminals, also known as “syntactic variables”. Nonterminal
represent phrases/clauses in a sentence. Hence, nonterminals are sometimes
referred to as syntactic categories, with every nonterminal defining a sub-
language of the language G.

2. Σ is a finite set of terminal symbols, disjoint from N , from which the actual
content of a sentence is composed. Σ is referred to as the alphabet of the
language defined by the grammar G.

3. P is the set of productions, each production consisting of a nonterminal,
called the left hand side of the production, a forward arrow, and a sequence
of terminal and/or nonterminal symbols, called the right hand side of the
production.

4. S is the start nonterminal (or start symbol), used to denote the entire sen-
tence. The relation S ∈ N must always hold.

More on CFGs can be found in Aho et al [5] and Martin [23].

3 Grammar Design for Python Practice Programs

In this section we present the design of a CFG for the automatic generation of
Python practice programs. In program design and/or compilation, two classes of
languages are often used, namely: regular and context-free languages. Regular

7

languages are used for lexical analysis while context-free languages (CFLs) are
used to describe syntax or used for syntax analysis. In this work, the rules for
our templates are mere concatenations of the smaller rules for identifiers, control
structures, etc of the programming language, hence, it suffices to say that the
concatenation of two or more CFLs will always produce a CFL. This is why we
have chosen to model these templates using a CFG.

3.1 Building Block

First, we begin the design of our grammar G = (N,Σ, P, S) with a building
block of production rules p ∈ P that result in terminal symbols α ∈ Σ, such
as letters, digits, etc. (see Productions 1 to 13). Production 1 defines letters
that may appear in the formulations of identifier names — this excludes the
letters l, o ∈ ΣFset . ΣFset = {l, o} is a forbidden set of alphabets and this con-
straint is included because of the similarity between l, 1 and o, 0. In Production
4, we have abstracted a list of parameters to p̂, and used this in defining the
parameters taken by pre-defined functions in Production 10. Productions 5 to 9
defines operators (arithmetic, logical, and relational). Productions 11 to 13 are
for formatting the final derived string (in this case, a string in this language is
a complete Python program).

<letter> −→ l ∈
[
Σ ∩ ΣFset

′
]

(1)

<digit> −→ d ∈ 0 |. . . | 9 (2)
<value> −→ v (3)

<parameter_list> −→ p̂ (4)
<rel_op> −→< |> |<= |>= |! = |== (5)

<arth_op> −→ + | − | ∗ | / | % (6)
<logi_op_infix> −→ and | or | ∧ (7)

<logi_op_prefix> −→ not (8)
<logi_op> −→ <logi_op_infix> | <logi_op_prefix> (9)
<pd_fxns> −→ (pow | sqrt | trunc | floor | ceil | ...)<parameter_list>

(10)

<nl> −→ newline (11)
<tab_in> −→ tab (12)

<spc> −→ spc (13)

We proceed and define more rules for identifiers, terms, operators, and expres-
sions in Productions 14 to 18.

8

<ident> −→ <letter>(<letter>|<digit>)∗ (14)
<term> −→ <ident> | <value> (15)

<operator> −→ <arth_op> | <rel_op> | <logi_op> (16)
<expr> −→ <term><operator><term> (17)

<enclosed_expr> −→ <bra_op><expr><bra_cl> (18)

<ident_init> −→ <ident_init><init> | (19)
−→ <init> (20)

<init> −→ <ident><=><value><nl> (21)

At many points in the programs, we desire to display/print outputs in the form
of values, expressions or variables. Hence we define a symbol for displaying as
follows:

<display> −→ <value> | <term> | <expr> (22)

We proceed to build on this and specify productions for arithmetic, condi-
tional and looping structures.

3.2 Arithmetic Expressions

Simple arithmetic operations are defined recursively in Productions 23 to 27, al-
lowing occurrences of expressions in enclosed brackets, predefined and functions.
This is used in Production 24 for assignment statements.

<assignments> −→ <ident><=><sim_arth_eval> (23)
<sim_arth_eval> −→ <sim_arth_eval><arth_op><enclosed_expr> | (24)

−→ <sim_arth_eval><arth_op><pd_fxns> | (25)
−→ <enclosed_expr> | (26)
−→ <pd_fxns> (27)

3.3 If Statement Blocks

Here we describe productions for if statements.

<if_stmt> −→ <if><chain_cond><:><nl> (28)
<elif_stmt> −→ <elif><chain_cond><:><nl> (29)
<else_stmt> −→ <else><:><nl> (30)

9

The <chain_cond> symbol used by the if productions is described with Pro-
ductions 31 to 37. Production 35 allows the not operator to appear in front of
some relational conditions in order to negate these statements.

<chain_cond> −→ <chain_cond><logi_op_infix><encl_cond> | (31)
−→ <logi_op_infix><encl_cond> (32)
−→ <encl_cond> (33)

<encl_cond> −→ <bra_op><condition><bra_cl> (34)
<condition> −→ <opt_not><cond_expr> (35)
<cond_expr> −→ <ident><rel_op>(<ident> | <value>) (36)

<opt_not> −→ <logi_op_prefix> | λ (37)

3.4 Loops

Here we describe two types of loops, for, and while loops. The symbol <initial>
is given as a random number. Since we do not want exercises that will take a lot
of time for a novice to complete, it is important to cap the number of iterations
they will have to carry out in the process of tracing the loops. Hence, Produc-
tion 40 computes the final values of the for loop using random numbers of step
length and desired number of executions, these are bounded in the ranges shown
in Productions 41 and 42 respectively.

<for_hdr> −→ for<spc>in<spc>range<bra_op><initial>, <final>,

(<step> | λ)<bra_cl><:> (38)
<initial> −→ <value> (39)

<final> −→ <step> ∗ <exe_count> + <initial>− 1 (40)
<step> −→ 1 |. . . | 10 (41)

<exe_count> −→ 2 |. . . | 4 (42)
<while_hdr> −→ while<bra_op><condition><bra_cl><:> (43)

<for_loop> −→ <for_hdr><nl><tab_in><display> (44)
<while_loop> −→ <while_hdr><nl><tab_in><display><adj_cond> (45)

In Production 44 and 45, the entire loop structures are defined, allowing for
indentations with the <tab_in> symbol. <adj_cond> is a symbol derived with
a function that adjusts the variables within the loop to ensure that the loop is
not infinite and that every execution takes it closer to its termination.

10

3.5 Complete Python Programs

Now we give productions for three types of complete programs. Programs that
tests knowledge of: arithmetic operations, conditional statements, and loops.
Production 46 is straightforward, initialises identifiers, does assignments, and
displays related contents. Similarly, Production 47 does initialisations and then
allows an if statement block to appear. Production 48 makes sure that the
else-if part of the if structure is optional.

<prog_arth_expr_eval> −→ <ident_init><assignments><display> (46)

<prog_cond_expr_eval> −→ <ident_init><if_stmt><tab_in><display> |
(47)

−→ <ident_init><if_stmt><tab_in><display>

((<elif-stmt><tab_in><display>) | λ)

<else_stmt><tab_in><display> (48)

<prog_loop_expr_eval> −→ <ident_init><for_loop> |<while_loop> (49)

In conclusion to the rules of G, we define the start symbol S ∈ P in Produc-
tion 50 to 52.

<prog> −→ <prog_arth_expr_eval> | (50)
−→ <prog_cond_expr_eval> | (51)
−→ <prog_loop_expr_eval> (52)

4 Implementation and Results

The grammar rules described in this work were implemented in a tool called
the Python Code Generator, using .Net framework Class Library (FCL). The
implementation produced a thousand iterations of unique programs in 1.04 sec-
onds, 10,000 iterations in 9.01 seconds, and 100,000 iterations in 1 minute, 30.3
seconds; about half of a minute. We ran the program for one million programs
and this completed in 4 minutes, 34 seconds. 500,000 generated programs can be
found here: https://tinyurl.com/pythonprogramgenerator. Five iterations
of generated programs (for the if statement category) are shown in Listing 1.4.

11

Listing 1.4. Sample outputs from python code generator

1 #---------------
2 # Code Number: 1
3 p9 = -2
4 p = 3
5 h = -17
6
7 g = (p - (13%8)) + ((h + p9))
8
9 if (h <= -26):

10 print(g)
11 else:
12 print (((p + h)) - (p9 + p))
13
14 #---------------
15 # Code Number: 2
16 k7 = -11
17 z = 4
18 b = 18
19 v = 2
20 t0 = 19
21 z6 = 0
22
23 p = (((z6 + k7)) - (math.ceil (-76.11) - v)) - (t0 + b) + (math.sqrt (16))
24
25 if not (k7 != -3) or (z != 4):
26 print(p)
27 else:
28 print ((math.floor (-23.46) + t0) - ((v - b)))
29
30 #---------------
31 # Code Number: 3
32 z4 = 10
33
34 m = (math.trunc (-25.22) - z4)
35
36 if (z4 >= 12):
37 print(m)
38 else:
39 print (((z4 + z4)) + ((z4 - math.trunc (-17.10))))
40
41 #---------------
42 # Code Number: 4
43 x8 = 6
44 w5 = 12
45
46 a6 = (x8 + w5)
47
48 if not (w5 <= 3):
49 print(a6)
50 else:
51 print ((w5 - math.pow(-1,1)) - ((math.sqrt (169) + w5)))
52
53 #---------------
54 # Code Number: 5
55 d1 = 12
56 g = -16
57
58 w3 = ((math.trunc (0.50) + g)) + ((30%5) + d1)
59
60 if not (d1 < 0) or not (g != -9):
61 print(w3)
62 else:
63 print (((math.pow(-1,2) - d1)) + (g - d1)) �

12

4.1 Solution Generation

For the generated problems to be very useful for novice programmers, it is impor-
tant to also generate solutions that will serve as a benchmark. This is a relatively
trivial task. This is because our grammar generates valid Python 3 programs,
hence, passing this programs to a Python interpreter give us the output. In Fig-
ure 2, we describe how we have generated solutions to every Python file that
was generated.

Fig. 2. Process of solution generation

Each python file is fetched in succession, and interpreted until there is no more
file left.

4.2 Experimental Proof of Uniqueness

For each category (<prog_arth_expr_eval>, <prog_cond_expr_eval>, and
<prog_loop_expr_eval>) we experimented by generating one billion program
instances and there was no repeated programs during execution. This can be
explained with the large amount of possible permutations of identifiers, initiali-
sations, conditions, and expressions that are derivable from the start symbol. It
is possible to conduct a theoretical proof of uniqueness (or a very small num-
ber — close to zero — representing the probability of a program recurring) by

13

constructing a parse tree with the production rules, and computing the product
of all possible branch of decisions. This is discussed further in the future work
section of this paper.

5 Evaluation

In this section we present results from a survey-based evaluation of the stu-
dents’ perception of the generated Python programs, and its possible useful-
ness. We conducted an online survey at two main Universities in South Africa,
namely: the University of Johannesburg and the University of the Witwater-
srand. The respondents were mostly students that were registered for Com-
puter Science or Information Systems degrees. Survey can be found here: https:
//tinyurl.com/pcg-survey2018.

(a) Registered for programming (b) Programming is difficult

(c) Practice aids learning of pro-
gramming

(d) Generated code will help me to practice

Fig. 3. Survey: relevance of generated programs

In total, we received 103 responses. 79.6% of the students were in first year
currently taking a Python programming course, and a total of 92.1% are cur-
rently doing taking a programming course across different degrees and levels.
Others are Masters and PhD students who admit that they have programmed
at some point (See Figure 3(a)). We asked the students if they find program-
ming difficult or too technical, and 73.6% believed it was either too difficult or
sometimes too difficult. 26.5% of the students claimed they do not think pro-
gramming is difficult (See Figure 3(b))— this difficulty spread agrees with the
literatures in program comprehension as previously discussed in Section 2.

14

An overwhelming 99% agreed that practice can help them in learning pro-
gramming better (See Figure 3(c)), with 93.1% strongly believing that the gen-
erated programs can help them in practice and improve their performance in
programming (See Figure 3(d)). An interesting question is if the generated pro-
grams for each level are of the same complexity or difficulty. 50.5% of the students
strongly thought the difficulty of the programs were the same, despite the dif-
ference in the instances. Total of 79.6% agree to some degree that the programs
are of similar difficulty. A total of 90.2% agreed that the programs can be used
for tests and examinations. With these feedbacks, we conclude that generating
programs for practice, tests, and possibly examinations is worthwhile.

6 Conclusion and Future work

6.1 Conclusion

In this paper we have presented a CFG-based technique for the syntactic gen-
eration of practice python programs and solutions that can be administered
to students in pen-and-paper program tracing sessions. We have shown that
this technique can generate millions of practice programs in few minutes. Half
a million of sample generated programs can be viewed or downloaded here:
https://tinyurl.com/pythonprogramgenerator. We have also presented an
evaluation that shows an overwhelming majority of students agreeing that the
generated programs can help them in practising, and can be used in test, and/or
examination questions.

6.2 Future Work

From here, we will explore the generation of buggy novice programs as debugging
is one of the well known activities that improves programming knowledge of
novice programmers. We will also make this tool available on a website to the
Computer Science Education community. On the formal aspect, we will work
on proving (theoretically) that it is possible (or impossible) to have repeated
programs after a larger number of iterations.

References

1. Ade-Ibijola, A.: Synthesis of social media profiles using a probabilistic context-free
grammar. In: Pattern Recognition Association of South Africa and Robotics and
Mechatronics (PRASA-RobMech), 2017. pp. 104–109. IEEE (2017)

2. Ade-Ibijola, A.: Synthesis of regular expression problems and solutions. Interna-
tional Journal of Computers and Applications pp. 1–17 (2018), https://doi.org/
10.1080/1206212X.2018.1482398

3. Ade-Ibijola, A., Ewert, S., Sanders, I.: Abstracting and narrating novice programs
using regular expressions. In: Proceedings of the Annual Conference of the South
African Institute for Computer Scientists and Information Technologists. pp. 19–
28. ACM (2014)

15

4. Ahmed, U.Z., Gulwani, S., Karkare, A.: Automatically generating problems and
solutions for natural deduction. In: IJCAI. pp. 1968–1975 (2013)

5. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools
(1986)

6. Alqadi, B.S., Maletic, J.I.: An empirical study of debugging patterns among novices
programmers. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education. pp. 15–20. ACM (2017)

7. Baker, A., Zhang, J., Caldwell, E.R.: Reinforcing array and loop concepts through
a game-like module. In: 17th International Conference on Computer Games
(CGAMES). pp. 175–179. IEEE (2012)

8. Bergin, S., Mooney, A., Ghent, J., Quille, K.: Using machine learning techniques
to predict introductory programming performance. International Journal of Com-
puter Science and Software Engineering (IJCSSE) 4(12), 323–328 (2015)

9. Butler, M., Morgan, M., et al.: Learning challenges faced by novice programming
students studying high level and low feedback concepts. In: Proceedings of the 24th
ascilite Conference. pp. 2–5 (2007)

10. Dale, N.B.: Most difficult topics in cs1: results of an online survey of educators.
ACM SIGCSE Bulletin 38(2), 49–53 (2006)

11. Fincher, S.: What are we doing when we teach programming? 29th Annual Frontiers
in Education Conference 1, 12A4–1 (1999)

12. Foote, S.: Learning to program. Addison-Wesley Professional (2014)
13. Gulwani, S., Korthikanti, V.A., Tiwari, A.: Synthesizing geometry constructions.

In: ACM SIGPLAN Notices. vol. 46, pp. 50–61. ACM (2011)
14. Gulwani, S., Korthikanti, V.A., Tiwari, A.: Synthesizing geometry constructions.

SIGPLAN Not. 46(6), 50–61 (Jun 2011), http://doi.acm.org/10.1145/1993316.
1993505

15. Haiduc, S., Aponte, J., Marcus, A.: Supporting program comprehension with source
code summarization. ACM/IEEE 32nd International Conference on Software En-
gineering 2, 223–226 (2010)

16. Hill, G.J.: Review of a problems-first approach to first year undergraduate pro-
gramming. In: Software Engineering Education Going Agile, pp. 73–80. Springer
(2016)

17. Iqbal Malik, S.: Role of adri model in teaching and assessing novice programmers.
Tech. rep., Deakin University (2016)

18. Jenkins, T.: On the difficulty of learning to program. In: Proceedings of the 3rd
Annual Conference of the LTSN Centre for Information and Computer Sciences.
vol. 4, pp. 53–58. Citeseer (2002)

19. Johnson, W.L.: Understanding and debugging novice programs. Artificial Intelli-
gence 42(1), 51–97 (1990)

20. Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of novice
programmers, vol. 37, pp. 14–18. ACM (2005)

21. Lucariello, J.M., Nastasi, B.K., Anderman, E.M., Dwyer, C., Ormiston, H., Skiba,
R.: Science supports education: The behavioral research base for psychology’s top
20 principles for enhancing teaching and learning. Mind, Brain, and Education
10(1), 55–67 (2016)

22. Malik, S.I., Coldwell-Neilson, J.: A model for teaching an introductory program-
ming course using adri. Education and Information Technologies 22(3), 1089–1120
(2017)

23. Martin, J.: Introduction to Languages and the Theory of Computation. McGraw-
Hill, New York (2003)

16

24. Mathrani, A., Christian, S., Ponder-Sutton, A.: PlayIT: Game based learning ap-
proach for teaching programming concepts. Educational Technology & Society
19(2), 5–17 (2016)

25. Miljanovic, M.A., Bradbury, J.S.: Robot on!: A serious game for improving pro-
gramming comprehension. In: Proceedings of the 5th International Workshop on
Games and Software Engineering. pp. 33–36. GAS ’16, ACM, New York, NY, USA
(2016), http://doi.acm.org/10.1145/2896958.2896962

26. Özmen, B., Altun, A.: Undergraduate students’ experiences in programming: Dif-
ficulties and obstacles. Turkish Online Journal of Qualitative Inquiry 5(3), 1–27
(2014)

27. Ramalingam, V., Wiedenbeck, S.: An empirical study of novice program compre-
hension in the imperative and object-oriented styles. In: Seventh workshop on
Empirical studies of programmers. pp. 124–139. ACM (1997)

28. Sadigh, D., Seshia, S.A., Gupta, M.: Automating exercise generation: A step to-
wards meeting the mooc challenge for embedded systems. In: Proceedings of the
Workshop on Embedded and Cyber-Physical Systems Education. p. 2. ACM (2012)

29. Shargabi, A., Aljunid, S.A., Annamalai, M., Shuhidan, S.M., Zin, A.M.: Tasks that
can improve novices’ program comprehension. In: IEEE Conference on e-Learning,
e-Management and e-Services (IC3e). pp. 32–37. IEEE (2015)

30. Sharples, M., de Roock, R., Ferguson, R., Gaved, M., Herodotou, C., Koh, E.,
Kukulska-Hulme, A., Looi, C.K., McAndrew, P., Rienties, B., et al.: Innovating
pedagogy 2016: Open university innovation report 5 (2016)

31. Siegfried, R.M., Siegfried, J., Alexandro, G.: A longitudinal analysis of the reid list
of first programming languages. Information Systems Education Journal 14(6), 47
(2016)

32. Singh, R., Gulwani, S., Rajamani, S.K.: Automatically generating algebra prob-
lems. In: AAAI (2012)

33. Storey, M., Best, C., Michand, J.: SHriMP views: An interactive environment for
exploring java programs. In: Proceedings of the 9th International Workshop on
Program Comprehension. pp. 111–112. IEEE (2001)

34. Storey, M.A.: Theories, tools and research methods in program comprehension:
past, present and future. Software Quality Journal 14(3), 187–208 (2006)

35. Wang, T., Su, X., Ma, P., Wang, Y., Wang, K.: Ability-training-oriented automated
assessment in introductory programming course. Computers & Education 56(1),
220–226 (2011)

36. Yadin, A.: Reducing the dropout rate in an introductory programming course.
ACM inroads 2(4), 71–76 (2011)

37. Zhang, J., Atay, M., Caldwell, E.R., Jones, E.J.: Visualizing loops using a game-like
instructional module. In: Advanced Learning Technologies (ICALT), 2013 IEEE
13th International Conference on. pp. 448–450. IEEE (2013)

