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Abstract 
 

The mid-latitudes of Mars host numerous ice-related landforms that bear many 

similarities to terrestrial ice masses. One particular landform has a strong resemblance 

to valley or debris-covered glaciers found on Earth and have subsequently become 

known as ‘glacier-like forms’ (GLFs). GLFs have detailed surface morphologies 

consistent with recent deposition and viscous deformation of ice, but there is still 

uncertainty regarding their formation, current and former volume, and dynamic 

evolution. Specifically, this thesis presents new observations and results that assess the 

current and former volume and dynamics of Mars’ mid-latitude GLFs.  

 

The findings presented in this thesis suggest that at the broadest level Mars’ mid-

latitudes appear to preserve a complex and spatially heterogeneous record of glaciation 

and that GLFs appear to be the manifestation of a more localised period of alpine 

glaciation. GLFs represent an active component of the near-surface water budget of 

Mars, locking away an estimated global equivalent water layer of between 3 ± 1 and 10 

± 3 mm. Evidence of recession and mass loss was identified in approximately one-third 

(n = 436) of the GLF population, suggesting that these landforms once contributed a 

larger volume of water to the near-surface water budget of Mars. Assessment of 

environmental and topographical controls over current ice volume and ice-mass loss 

revealed that their distribution and size is unlikely to be purely controlled by insolation 

forcing. Instead it is suggested that regional to local meteorological and topographical 

conditions also play an important role in GLF ice accumulation and/or preservation, 

with variation in physical environments providing microclimates favourable for 

accumulation and/or preservation of ice. The emerging picture shows that Mars’ GLFs 

appear to have been dynamically active, and that they have played an important role in 

altering the surface landscape of Mars through erosion, transport and deposition of 

material. 

 



   

  

 

 



vii 

	

	

	

	

	

 

Table of Contents 
	

Declaration and statements ...……………………………………………………... i 

Acknowledgements …………...………………………………………………….. iii 

Abstract …………………………………………………………………………... v 

Table of Contents ………………………………………………………………… vii 

List of Figures ……………………………………………………………………. xv 

List of Tables ……………………………………………………………………... xix 

List of Acronyms …………………………………………………………………. xxi 

   

Chapter 1.   Introduction 1 

 1.1. Mid-latitude glaciation on Mars ……………………………………….. 2 

 1.2. Glacier-like forms ……………………………………………………… 5 

  1.2.1. GLF classification and geographical characteristics …………... 7 

  1.2.2. GLF mechanical and thermal properties ………………………. 9 

  1.2.3. GLF formation and evolution …………………………………. 13 

  1.2.4. Summary of current GLF understanding and knowledge gaps ... 15 

 1.3. Aim and objectives …………………………………………………….. 18 

 1.4. Thesis structure ………………………………………………………… 19 



  TABLE OF CONTENTS viii 

  1.4.1. Overview ………………………………………………………. 19 

  1.4.2. Summary of manuscript details and author contribution ……… 20 

 References ………………………………………………………………….. 21 

   

Chapter 2.   Landscapes of polyphase glaciation: eastern Hellas Planitia, 
Mars 

29 

 Preface ……………………………………………………………………… 30 

 Abstract ……………………………………………………………………...  34 

 2.1. Introduction ……………………………………………………………. 34 

 2.2. Study site and brief review of previous work ………………………….. 36 

  2.2.1. Study site ………………………………………………………. 36 

  2.2.2. Previous work …………………………………………………. 37 

 2.3. Data, methods and software …………………………………………… 39 

  2.3.1. Image sources ………………………………………………….. 39 

  2.3.2. Surface mapping ………………………………………………. 40 

 2.4. Description of geomorphic units and structural features ………………. 40 

  2.4.1. Plains …………………………………………………………... 41 

   2.4.1.1. Craters …………………………………………………. 41 

   2.4.1.2. Sinuous ridges …………………………………………. 41 

  2.4.2. Lobate debris apron ……………………………………………. 43 

   2.4.2.1. Moraine-like ridges ……………………………………. 43 

   2.4.2.2. Flow unit boundaries ………………………………….. 44 

   2.4.2.3. Arcuate transverse structures ………………………….. 44 

   2.4.2.4. Longitudinal surface structures ……………………….. 44 

   2.4.2.5. Ring-mold craters ……………………………………... 44 

  2.4.3. Degraded glacial material ……………………………………... 45 

   2.4.3.1. Terraces ……………………………………………….. 45 



TABLE OF CONTENTS       

 
	

ix 

   2.4.3.2. Medial moraine-like ridges ……………………………. 46 

   2.4.3.3. Raised textured areas ………………………………….. 46 

  2.4.4. Glacier-like forms ……………………………………………... 46 

   2.4.4.1. Flow-parallel and flow-transverse lineations …………. 47 

   2.4.4.2. Crevasses and crevasse traces …………………………. 47 

   2.4.4.3. Ridge clusters …………………………………………. 48 

 2.5. Conclusions ……………………………………………………………. 48 

 References ………………………………………………………………….. 49 

 Supplementary Material Ch. 2 ……………………………………………... 55 

 Summary ……………………………………………………………………. 56 

   

Chapter 3.   Area and volume of mid-latitude glacier-like forms on Mars 59 

 Preface ……………………………………………………………………… 60 

 Abstract ……………………………………………………………………... 64 

 3.1. Introduction ……………………………………………………………. 64 

 3.2. Data and methods ……………………………………………………… 67 

  3.2.1. Datasets …………………………….………………………….. 67 

  3.2.2. GLF outline mapping and area calculation ……………………. 68 

  3.2.3. GLF volume calculation ……………………………………….. 70 

  3.2.4. GLF inventory attributes ………………………………………. 71 

   3.2.4.1. Environmental parameters …………………………….. 71 

   3.2.4.2. Analysis of environmental parameters ………………... 71 

  3.2.5. Uncertainty in GLF mapping and volume calculation ………… 72 

   3.2.5.1. Outline mapping ………………………………………. 72 

   3.2.5.2. Volume estimation ……………………………………. 72 

 3.3. Results …………………………………………………………………. 73 



  TABLE OF CONTENTS x 

  3.3.1. GLF outline mapping ………………………………………….. 73 

  3.3.2. GLF area ………………………………………………………. 74 

  3.3.3. GLF volume …………………………………………………… 74 

   3.3.3.1. Population-scale volume distribution …………………. 75 

   3.3.3.2. Environmental controls over GLF volume distribution . 77 

 3.4. Interpretation and discussion …………………………………………... 80 

  3.4.1. GLF volume distribution and contribution to mid-latitude ice ... 80 

  3.4.2. Controls on GLF volume ……………………………………… 83 

   3.4.2.1. Latitude …………….………………………………….. 83 

   3.4.2.2. Aspect ………………….……………………………… 84 

   3.4.2.3. Slope …………………………………………………... 85 

   3.4.2.4. Elevation ………………………………………………. 85 

  3.4.3. Implications for Late Amazonian glaciation on Mars ………… 86 

 3.5. Conclusions ……………………………………………………………. 87 

 References ………………………………………………………………….. 89 

 Supplementary Material Ch. 3 ……………………………………………… 95 

 Summary ……………………………………………………………………. 112 

   

Chapter 4.   Former extent of glacier-like forms on Mars  115 

 Preface ……………………………………………………………………… 116 

 Abstract …………………………………………………………………….. 120 

 4.1. Introduction ……………………………………………………………. 120 

 4.2. Data and methods ……………………………………………………… 123 

  4.2.1. Population-scale recessional GLF inventory ………………….. 123 

   4.2.1.1. Mapping distribution and morphology ………………... 123 

   4.2.1.2. Spatial distribution …………………………………….. 123 



TABLE OF CONTENTS       

 
	

xi 

  4.2.2. Case study: Crater Greg GLF reconstruction ………………….. 125 

   4.2.2.1. Study site ………………………………..…………….. 125 

   4.2.2.2. Glacial reconstruction …………………………………. 127 

  4.2.3. Uncertainty in recession identification and reconstruction ……. 130 

   4.2.3.1. Identification of recession …………………………….. 130 

   4.2.3.2. Identification and digitisation of GLF extent …………. 130 

   4.2.3.3. Removal of moraine ridges ……………………………. 131 

   4.2.3.4. Creation of DEMs …………………………………….. 131 

   4.2.3.5. Surface reconstruction and change analysis …………... 131 

 4.3. Results …………………………………………………………………. 132 

  4.3.1. Population-scale distribution of recessional GLFs ……………. 132 

  4.3.2. Environmental controls over recessional GLF distribution …… 132 

   4.3.2.1. Latitude ………………………………………………... 132 

   4.3.2.2. Elevation ………………………………………………. 136 

   4.3.2.3. Relief ………………………………………………….. 136 

   4.3.2.4. Orientation …………………………………………….. 136 

  4.3.3. Case study: Crater Greg GLF reconstruction ………………….. 137 

 4.4. Interpretation and discussion ………………………………………….. 139 

  4.4.1. Controls on GLF recession ……………………………………. 139 

  4.4.2. Crater Greg GLF reconstruction and population ice loss 
potential ………………………………………………………………. 

143 

 4.5. Conclusions ……………………………………………………………. 144 

 References ………………………………………………………………….. 146 

 Supplementary Material Ch. 4 ……………………………………………… 155 

 Summary ……………………………………………………………………. 160 

   



  TABLE OF CONTENTS xii 

Chapter 5.   Palaeo-glaciers on Mars: modelling their formation and 
evolution  

163 

 Preface ……………………………………………………………………… 164 

 Abstract ........................................................................................................... 168 

 5.1. Introduction ............................................................................................. 168 

 5.2. Study site ................................................................................................. 170 

 5.3. Numerical model ..................................................................................... 172 

  5.3.1. Model description ....................................................................... 172 

  5.3.2. Model input ................................................................................. 173 

   5.3.2.1. Bed profile and width distribution .................................. 173 

   5.3.2.2. Ice rheology .................................................................... 175 

   5.3.2.3. Basal sliding ................................................................... 175 

   5.3.2.4. Mass balance ................................................................... 175 

 5.4. Modelling approach and results ............................................................... 176 

 5.5. Discussion ................................................................................................ 183 

    5.5.1. Crater Greg GLF formation ........................................................ 183 

  5.5.2. GLF response to climatic forcing ................................................ 185 

  5.5.3. Modelling considerations ............................................................ 186 

 5.6. Conclusions ............................................................................................. 186 

 References ...................................................................................................... 187 

 Summary ……………………………………………………………………. 194 

   

Chapter 6.   Conclusions and outlook 197 

 6.1. Conclusions ............................................................................................. 198 

  6.1.1. Summary and contribution of works ........................................... 198 

   6.1.1.1. Chapter 2.    Landscapes of polyphase glaciation: 
eastern Hellas Planitia, Mars …………...  

198 



TABLE OF CONTENTS       

 
	

xiii 

   6.1.1.2. Chapter 3.    Area and volume of mid-latitude glacier-
like forms on Mars …………………….. 

199 

   6.1.1.3. Chapter 4.    Former extent of glacier-like forms on 
Mars ……………………………………... 

200 

   6.1.1.4. Chapter 5.    Palaeo-glaciers on Mars: reconstructing 
their formation and evolution using a 
numerical ice flow model ………………... 

201 

  6.1.2. Overall synthesis ......................................................................... 202 

 6.2. Avenues for future work .......................................................................... 203 

 References ...................................................................................................... 205 

   

Appendix A.   Glacier-like forms on Mars 211 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



  TABLE OF CONTENTS xiv 

	

	



xv 

	

	

	

	

 

List of Figures 
	

Chapter 1.   Introduction  

1.1 Images indicating water-generated landscapes on Mars ………………… 3 

1.2 Variations in orbital parameters of Mars for the last 10 Ma …………..… 4 

1.3 A well-developed tongue-shaped icy landform located in Crater Greg …      6 

1.4 Example images of well-developed GLFs .……..…………...................... 7 

1.5 Mid-latitude distribution of GLFs ....................……………………......... 8 

1.6 Radar profiles identifying buried glaciers in eastern Hellas Planitia ......... 10 

1.7 Geomorphological sketch map of GLF from Hubbard et al. (2011) ......... 12 

1.8 Illustration of the stratigraphic relationship of GLFs to wider ice 
deposits ………………………………………………………………….. 

 
15 

  

Chapter 2.   Landscapes of polyphase glaciation: eastern Hellas Planitia, 
Mars 

 

2.1 Example of an integrated glacial landsystem on Mars …………………. 36 

2.2 Location and expansion of massif studied herein ………………….…… 38 

2.3 Feature identification in CTX and HiRISE imagery ………………….… 42 

  

Chapter 3.   Area and volume of mid-latitude glacier-like forms on Mars  

3.1 Examples of GLFs and their manually digitized outlines …………...…... 69 



  LIST OF FIGURES xvi 

3.2 Map of Mars showing the mid-latitude distribution of each mapped GLF  74 

3.3 Mid-latitude distribution of individual GLF volume ................................. 76 

3.4 GLF count and volume per size class ........................................................ 77 

3.5 Bar plots showing mean GLF volume for environmental parameters .......  79 

3.6 Scatter plot showing GLF volume against mean GLF slope ..................... 80 

3.7 Distribution of elevation zones of high mean GLF volume ...................... 86 

SF1 Examples of compound GLFs and their manually digitised outlines ........ 97 

SF2 Mid-latitude distribution of mapped GLFs after Souness et al. (2012) ..... 98 

SF3 Histograms showing GLF count for various environmental parameters ... 99 

SF4 Mid-latitude distribution of cumulative GLF volume ............................... 100 

SF5 Bar plots showing total GLF volume for environmental parameters ........ 101 

  

Chapter 4.   Former extent of glacier-like forms on Mars   

4.1 CTX images exemplifying GLFs showing evidence of recession ............. 124 

4.2 Location and expansion of our case study GLF reconstruction ................. 126 

4.3 Interpreted GLF limits and reconstruction array ....................................... 128 

4.4 Distribution of recessional GLFs relative to the total GLF population ..... 133 

4.5 Normalised plots of recessional GLFs relative to the total GLF 
population ……………………………………………………………….. 

 
135 

4.6 Crater Greg GLF reconstructed palaeo-ice surface ................................... 138 

4.7 Crater Greg GLF reconstructed 3-D geometry and ice thickness .............. 139 

SF1 Mid-latitude distribution of GLFs after Souness et al. (2012) ................... 156 

SF2 Histograms showing GLF count for environmental parameters ................ 157 

SF3 Mid-latitude distribution of recessional GLFs ........................................... 158 

SF4 Histograms showing recessional GLF count for environmental 
parameters ………………………………………………………………..  

 
159 

  



LIST OF FIGURES       

 
	

xvii 

Chapter 5.   Palaeo-glaciers on Mars: modelling their formation and 
evolution  

 

5.1 Location of Crater Greg and glacial history of the investigated GLF ....... 171 

5.2 Glacial catchment, bed topography and width distribution of model 
flowline ...................................................................................................... 

 
174   

5.3 Equilibrium surface profiles of the modelled GLF as a function of 
stepped ELA lowering ............................................................................... 

 
177   

5.4 Equilibrium surface profiles of the modelled GLF as a function of 
stepped temperature and ELA lowering .................................................... 

 
178   

5.5 Obliquity scenario La2004 of Laskar et al. (2004) .................................... 182 

5.6 Modelled GLF frontal position as a function of obliquity driven ELA 
changes ....................................................................................................... 

 
183   

   

Appendix A.   Glacier-like forms on Mars  

A.1 Three-dimensional image of a typical martian GLF .................................. 214 

A.2 The spatial distribution of Mars’ GLFs after Souness et al. (2012) .......... 217 

A.3 Case study illustrations of the former extent of martian GLF #146 .......... 222 

A.4 GLF #146 CTX image expansion and geomorphological interpretation .. 224 

A.5 Distribution of crevassed GLFs on Mars ................................................... 227 

A.6 CTX image of crevassed GLF #1054 ........................................................ 228 

A.7 CTX image of crevassed GLF #541 .......................................................... 230 

A.8 Examples of surface boulder exposures on GLF #498 .............................. 233 

A.9 GLF #498 Geomorphological map and interpretation of boulder clusters. 234 

A.10 Surface incisions on GLF #947 and trace of incised segments ................. 238 

  

	

	

	



  LIST OF FIGURES xviii 

	

	

	

	

	

	

	



xix 

	

	

	

	

 

List of Tables 
	

Chapter 1. Introduction  

1.1 Criteria for GLF identification following Souness et al. (2012) ................ 8 

  

Chapter 2.   Landscapes of polyphase glaciation: eastern Hellas Planitia, 
Mars 

 

2.1 List of imagery used in mapping ............................................................... 39 

  

Chapter 3.   Area and volume of mid-latitude glacier-like forms on Mars  

3.1 Criteria for GLF identification following Souness et al. (2012) ................ 68 

3.2 Basic descriptive statistics for GLF area and volume ................................ 75 

3.3 Ice volume estimate and global equivalent water layer thickness for 
several mid-latitude landforms .................................................................. 

    
83 

ST1 Two-sample t-test of statistical similarity of environmental parameters ... 102 

ST2 GLF count and total volume of those GLFs per longitude in 5o bins ........ 103 

ST3 GLF count and total volume of those GLFs per latitude in 2o bins ........... 106 

ST4 GLF count and total volume of those GLFs per aspect class .................... 107 

ST5 GLF count and total volume of those GLFs per slope in 2o bins ............... 108 

ST6 GLF count and total volume of those GLFs per elevation in 500 m bins .. 109 

ST7 GLF count and total volume of those GLFs by size class ......................... 111 



  LIST OF TABLES xx 

Chapter 4.   Former extent of glacier-like forms on Mars   

4.1 Basic descriptive statistics for the environmental parameters of 
orientation, elevation, relief and latitude for all and recessional GLFs ..... 

  
134 

  

Chapter 5.   Palaeo-glaciers on Mars: modelling their formation and 
evolution  

 

5.1 Steady-state terminus position and formation time of the modelled GLF 
as a function of stepped temperature lowering .......................................... 

  
180 

   

Appendix A.   Glacier-like forms on Mars  

A.1 List of commonly used terms and corresponding acronyms ..................... 215 

   

	



xxi 

	

	

	

List of Acronyms 
	

CCF Concentric crater fill 

CTX Context Camera 

DEM/DTM  Digital elevation model/Digital terrain model 

GCM General circulation model 

GIS Geographic Information System 

GLF Glacier-like form 

HiRISE High Resolution Imaging Science Experiment  

ISIS Integrated Software for Imagers and Spectrometers 

JMARS Java Mission-planning and Analysis for Remote Sensing 

LDA Lobate debris apron 

LMGM Last martian glacial maximum 

LVF Lineated valley fill 

MLR Moraine-like ridge 

MOC Mars Orbiter Camera 

MOLA Mars Orbiter Laser Altimeter 

MRO Mars Reconnaissance Orbiter 

MSGL Mega-scale glacial lineations 

SHARAD Shallow Radar 

THEMIS Thermal Emission Imaging System 

VFF Viscous flow feature 

	



  LIST OF ACRONYMS xxii 

	



	 1 
	

 

 

CHAPTER 1 
 

Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
	

To strive, to seek, to find, and not to yield 

Alfred Tennyson 
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1. Introduction  

 

This thesis seeks to improve our understanding of near-surface, ice flows in the mid-

latitudes of Mars. It focuses on a suite of landforms termed glacier-like forms (e.g. 

Hubbard et al., 2011) and is motivated by the need to improve our understanding of 

geologically recent (Late Amazonian) climatic change on Mars. Glacier-like forms were 

targeted over other mid-latitude ice masses as they are the landform most similar – at 

least in overall appearance – to terrestrial glaciers. They thereby provide an opportunity 

to use terrestrial glacier analogues as a way to understand better cryospheric processes 

operating now and in the geologically recent past on Mars.   

 

Below, a synthesis of key literature relating to the broad concept of mid-latitude 

glaciation on Mars is provided. This is followed by a summary of current understanding 

and knowledge gaps with respect to glacier-like forms. The aim and objectives of the 

thesis are then presented, followed by a summary of the thesis structure.  

 

 

1.1. Mid-latitude glaciation on Mars  

 

Current atmospheric conditions on Mars are both cold and dry with an average 

temperature of ~215 K (-58oC) and an average vapour pressure of ~7 mbar (Read and 

Lewis, 2004; Barlow, 2008). These conditions prevent liquid water from being stable on 

the surface of Mars and only allow water ice to persist on the planet’s surface in the 

polar regions (Mellon and Jakosky, 1995; Forget et al., 2006), with exposed surface ice 

sublimating into the atmosphere outside these regions (e.g. Byrne et al., 2009). 

However, such conditions are at odds with the geological and geomorphological records 

(Figure 1.1) that show compelling evidence of widespread fluvial and glacial activity 

(e.g. Baker, 2001; Kargel, 2004; Carr and Head, 2010; Souness and Hubbard, 2012). 
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Figure 1.1: Images indicating water-generated landscapes. (a) Fossil delta in 

Eberswalde Crater. Numerous inverted channels can be seen meandering and 

crisscrossing one another (Mars Orbiter Camera [MOC] mosaic MOC2-1225; centred 

on 33.61o W, 23.84o S). Image credit NASA/JPL/MSSS. (b) Hourglass Glacier in 

Promethei Terra. Icy material is thought to have flowed from the smaller, 9 km, wide 

crater into the larger, 16 km wide, crater below. The surface contains a number of 

lineations and lobate structures indicative of viscous flow (High Resolution Stereo 

Camera perspective view; centred on 102.83o E, 38.92o S). Image credit ESA/DLR/FU 

Berlin.    

 

 

Numerous landforms have been identified in the mid-latitudes (30 – 60o) of Mars that 

have been attributed to viscous deformation and the flow of H2O ice during the 

Amazonian epoch (~3 Ga BP to present) and predominately within the last 1 Ga BP  

(e.g. Sharp, 1973; Squyres, 1978, 1979; Squyres and Carr, 1986; Head et al., 2005; Holt 

et al., 2008). In many instances, these ‘viscous flow features’ (VFFs) share numerous 

characteristics with glaciers on Earth (e.g. Head et al., 2005, 2006, 2010; Marchant and 

Head, 2007; Holt et al., 2008). For a glacial scenario to be true, there must have been a 

marked shift in climate from that of today to one that favours ice emplacement and 

accumulation in the mid-latitudes. Based on converging theoretical (e.g. Head et al., 

2003) and numerical studies – which have successfully reconstructed precipitation and 

accumulation of water ice in the locations where these ice-rich landforms have been 

identified (e.g. Forget et al., 2006; Madeleine et al., 2009) – it has been suggested that 
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changes in the orbital parameters of Mars (Figure 1.2) brought about climatic changes 

that have resulted in one or more ‘ice ages’ (Laskar et al., 2002, 2004; Head et al., 2003; 

Kargel, 2004).  

 

 

 
Figure 1.2: Variations in orbital parameters of Mars for the last 10 Ma BP from 

numerical simulations. (a) Obliquity. (b) Eccentricity. (c) Insolation. Adapted from 

Laskar et al. (2002). 

 

 

These changes in orbital parameters are analogous to Milankovitch Cycles on Earth, 

which have been shown to induce and/or sustain glaciation (Imbrie and Imbrie, 1986). 

However, in contrast to the Earth scenario, glacial periods on Mars are thought to 

initiate during periods of higher (>30o) obliquity (e.g. Head et al., 2003; Forget et al., 

2006). During these periods of high obliquity, increased insolation at the poles causes 



CHAPTER 1.   INTRODUCTION	 	 5 

sublimation and ice redistribution to the mid-latitudes (Haberle et al., 2003; Head et al., 

2003; Mischan et al., 2003).  

 

Satisfactory reconstructions of orbital variations for Mars can only be generated for 

about the last 20 Ma, but show that during this time the obliquity has fluctuated between 

~15 and 45o (Laskar et al., 2004). As seen in Figure 1.2, the obliquity of Mars changed 

dramatically around 5 Ma ago, shifting from a mean obliquity period of ~35o to a mean 

obliquity period of ~25o for the last 5 Ma. This change in mean obliquity is 

hypothesised to have ended the most recent ‘ice age’ (Souness and Hubbard, 2012). 

Since that time, apart from during intermittent fluctuations where obliquity exceeded 

30o, mid-latitude ice would have been left to sublimate in the drier atmosphere, similar 

to the present day. Thus, the ice-rich landforms observed across large proportions of 

Mars’ mid-latitudes are likely the relict remnants of once much larger ice masses, and 

their survival to today is only possible due to a debris cover protecting the ice from 

sublimation (Bryson et al., 2008; Holt et al., 2008; Plaut et al., 2009; Fastook et al., 

2014). Notwithstanding the above, numerous questions still exist as to exactly how and 

when these VFFs formed, and to their geometrical change and dynamics since initial 

formation.    

 

 

1.2. Glacier-like forms  

 

Since their reporting within the literature in ~2003 (e.g. Hartmann et al., 2003; 

Marchant and Head, 2003; Milliken et al., 2003) various names have been applied in the 

description of small- to medium-scale (<10s km), lobate or tongue-like icy landforms 

(Figure 1.3). These include: rock glaciers (Marchant and Head, 2003); VFFs (Milliken 

et al., 2003); glacier-like flows (Arfstrom and Hartmann, 2005); superposed lineated 

valley fill (Levy et al., 2007); small-scale superposed lineated valley fill (Levy et al., 

2007); and glacier-like forms (Hubbard et al., 2011). This thesis follows Hubbard et al. 

(2011) and uses the term ‘glacier-like form’ (GLF) throughout.  
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Figure 1.3: A satellite image of a particularly well-developed tongue-shaped icy 

landform located in Crater Greg. A number of early studies focused on the ‘glacier-

like’ nature of the landform, including the sequence of raised latero-terminal ridges 

surrounding the apparent margin of the landform, the deflated and degraded nature of 

the main body, and the chevron surface pattern of the upper basin (subset of MOC 

image M18-00897; centred on 113.16o E, 38.15oS). From Hartmann et al. (2003). 
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1.2.1. GLF classification and geographical characteristics  

 

GLFs represent perhaps the most distinctive subtype of VFF (see Souness and Hubbard, 

2012 for detailed classification scheme), being similar in appearance and morphology to 

terrestrial valley glaciers. Broadly speaking, GLFs form in small cirque-like alcoves or 

valleys and appear to flow downslope, generally coalescing from a wide upper basin 

and terminating in a narrow elongate tongue that is often confined by moraine-like 

ridges (Figures 1.3 and 1.4).  

 

 

 
Figure 1.4: Examples of GLFs, highlighting the diversity in their morphology and 

appearance. (a) Simple valley-like GLF terminating in non-ice terrain (subset of CTX 

image B04_011261_2146_XN_34N289W; centred on ~70.59o E, 33.12o N). (b) 

Piedmont type GLF terminating in an outer ice terrain. Note how the GLF lobe is 

superposed on the wider ice-rich terrain (subset of CTX image 

P22_009653_2224_XN_42N309W; centred on ~50.50o E, 42.24o N). (c) A dual alcove 

GLF. Note how the GLF merges with the wider ice-rich terrain (subset of CTX image 

P03_002112_2208_XN_40N337W; centred on ~22.27o E, 40.07o N).  

 

 

Building on earlier work of Milliken et al. (2003), Souness et al. (2012) produced 

formal criteria for the identification and classification of GLFs (Table 1.1) and, from 

visual inspection of >8000 Context Camera (CTX) images, identified 1309 GLFs 

between 25 and 65o latitude in both hemispheres (Figure 1.5). Based on analysis of 

geographical and topographical data from point measurements and/or geometric buffers, 

the authors identified several inter- and intra-hemispheric similarities in the overall 

distribution  and morphology  of  GLFs.  Of  the total GLF  population, 727 (56%) were 
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Table 1.1: Criteria for GLF identification following Souness et al. (2012). 

  
Description 
 

[i] Be surrounded by topography showing general evidence of flow over or around obstacles 
[ii] Be distinct from the surrounding landscape exhibiting a texture or colour difference from 

adjacent terrains 
[iii] Display surface foliation indicative of down-slope flow; e.g. compressional/extensional 

ridges, surface lineations, arcuate surface morphologies or surface crevassing 
[iv] Have a length to width ratio >1 (i.e. be longer than it is wide) 
[v] Have either a discernible ‘head’ or a discernible ‘terminus’ indicating a compositional 

boundary or process threshold 
[vi] Appear to contain a volume of ice (or some other viscous substance), having a flat ‘valley 

fill’ surface, thus differentiating it from a previously glaciated ‘GLF skeleton’ 

 

 

 

 
Figure 1.5: Mid-latitude distribution of GLFs as identified by Souness et al. (2012). 

Note the preponderance of GLFs along the fretted terrain of Deuteronilus Mensae, 

Protonilus Mensae and Nili Fossae in the northern hemisphere, and surrounding the 

Hellas and Argyre impact basins in the southern hemisphere. Modified from Souness et 

al. (2012). 
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identified in the northern hemisphere and 582 (44%) in the southern hemisphere, and 

were shown to have a preference for the mid-latitudes (centred on a mean latitude of     

~ ±40o).  GLFs were also shown to have a remarkably similar mean length (4.91 km in 

the north and 4.35 km in the south) and width (1.26 km in the north and 1.34 km in the 

south), a strong preference for a poleward orientation (with a mean bearing of 26.6o 

[NNE] in the north and 173.1o [SSE] in the south) – indicating a strong sensitivity to 

insolation – and to be preferentially present in regions of moderate, but not high, relief. 

 

Although GLFs are identified in isolation, where they terminate on bedrock (e.g. Figure 

1.4a), they frequently feed into pre-existing VFFs where they either superpose (Figure 

1.4b) or integrate (Figure 1.4c) and form part of what Head et al. (2010) referred to as 

Mars’ integrated glacial landsystem. Following this model, GLFs represent the smallest 

component of this glacial landsystem and may merge downslope to form broad, 

rampart-like lobate debris aprons (LDAs [Squyres, 1978; Squyres. 1979]). In turn, 

LDAs may converge or coalesce, typically from opposing valley walls, to form lineated 

valley fills (LVFs), which commonly exhibit complex and contorted surfaces that show 

no obvious flow direction. However, it should again be noted, both LDAs and LVFs are 

commonly observed in isolation and need not require the inclusion of influent mass. 

 

 

1.2.2. GLF mechanical and thermal properties 

 

The precise composition of GLFs is a continuing point of discussion and remains 

largely unknown, mainly due to the occurrence of a ubiquitous layer of fine-grained 

regolith covering their surface. More broadly, the amount and quantity of water ice 

involved in VFF composition (including GLFs) is still debated, leading to a variety of 

feature-scale interpretations being proposed, including (i) ice assisted talus flows	(~20 – 

30% ice [Squyres 1978, 1979]); (ii) rock-glaciers (~30 – 80% ice [Colaprete and 

Jakosky, 1998; Mangold, 2003]); and (iii) debris-covered glaciers (>80% ice [Head et 

al., 2005; Li et al., 2005]). Given the limited number of direct observations of VFF 

interiors, coupled with the fact that the distinction between such forms and ‘standard’ 

glaciers is not clearly defined even on Earth (e.g. Berthling, 2011), it is unlikely that we 

are in a position to definitively attribute martian equivalents. That said, a number of 

recent observations appear to corroborate a more high-ice model of VFF formation. For 
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example, Head et al. (2005) argued that numerous surface textures, including sinuous 

ridges, irregular depressions and flowlines on a VFF in eastern Hellas Planitia (Figure 

1.1b) were indicative of ‘extremely ice-rich’ glacier-like viscous flow. Further, Dundas 

and Bryne (2010) reported the capture of very recent meteorite strikes – in the mid-

latitudes of Mars (between ~43 and 56o N) – that indicated the presence of relatively 

clean (i.e., debris poor) massive ice at shallow depths below the surface. These results 

supported geophysical findings from the Shallow Radar (SHARAD), on board the Mars 

Reconnaissance Orbiter (MRO), that has detected massive H2O ice deposits with 

minimal lithic content, buried beneath a thin (<10m) debris layer on VFFs in both the 

southern and northern hemispheres, respectively (e.g. Figure 1.6 [Holt et al., 2008; Plaut 

et al., 2009]). Such findings have led to the general acceptance that H2O ice accounts for 

the dominant portion of VFF (including GLF) mass. However, our understanding of the 

internal structure, and the precise ratio of ice-rock mixture, of most VFFs – or indeed 

rock and debris-covered glaciers on Earth – remain elusive and have by no means been 

fully explored.   

 

 

 
Figure 1.6: SHARAD profiles of Holt et al. (2008) identifying ‘buried glaciers’ centred 

at ~104o E, 43o S in the eastern Hellas Planitia region. (a) Simulated radargram of 

expected off-nadir clutter echoes as one-way travel time. (b) SHARAD data represented 

in one-way travel time. White arrows indicate returns not present in the clutter 

simulation (a), and are interpreted to represent the subsurface. (c) SHARAD data 

converted to depth assuming a water-ice composition. From Holt et al. (2008). 
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A second point of discussion that also remains largely unknown is the rheology of 

GLFs. This is particularly hampered by the fact that in no instance has GLF (or VFF) 

motion being observed, and our understanding of such motion has hitherto relied on 

modelling, or being inferred from their overall shape and surface flow structures, such 

as ‘chevron’ crevasses (e.g. Figure 1.3 [Marchant and Head, 2003]). For example, 

Milliken et al. (2003) implemented the multi-component constitutive relation of 

Goldsby and Kohlstedt (2001) to model the stress-strain rate within VFF, in order to 

assess the likelihood of motion. The authors based their analysis on typical ranges of 

VFF temperature, slope and (assumed) grain size, and calculated shear stresses of ~10-

1.5 – 10-2.5 MPa and consequent strain rates on the order of 10-11 – 10-16 a-1 for an 

estimated 10 m thick VFF deposit. Using these rates, Milliken et al. (2003) estimated 

that a period of between 3 Ka and 300 Ma would be required to produce a shear strain 

of 100 %, which was in broad agreement with the estimated age (105 – 107 a) of the 

material. It should be noted, that although representing a major advance at the time, the 

model was not applied to any particular GLF geometry and thus was not distributed 

spatially. 

 

Coupled with the above, reliable estimates of GLF motion require knowledge of 

conditions, either at present and/or in the past, at the bed of the ice mass. Currently, 

there is a general consensus that most present-day GLFs (and VFFs) are cold-based 

(Head and Marchant, 2003; Shean et al., 2005) – i.e. they are frozen to their bed and 

involve little to no liquid water – with flow occurring through ductile or brittle ice 

deformation. This conclusion is driven by the absence of evidence for wet-based – i.e. 

ice at the glacier bed is at pressure melting point – glaciation (e.g. proglacial or lateral 

meltwater channels, and/or eskers that are visibly connected to the parent ice mass). 

Nonetheless, this is not to say that GLFs have been entirely cold-based throughout their 

history. For example, evidence for at least partial periods of wet-based glaciation has 

been proposed based on GLF morphology and associated landform assemblage (e.g. 

Arfstrom and Hartmann, 20005; Hubbard et al., 2011). Hubbard et al. (2011) conducted 

a geomorphological assessment of a GLF in Crater Greg, eastern Hellas Planitia 

(Figures 1.3 and 1.7), and concluded that the upper basin currently hosts a degraded 

GLF, with the lower basin zone now exhibiting relict bedforms. Two of these bedforms, 

their ‘mound and tail’ terrain and ‘linear’ terrain, were compared to terrestrial drumlins 

and mega-scale glacial lineations (MSGL), respectively. Given that both of these 
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landforms are associated with the influence of liquid water, this would appear to 

preclude an entirely cold-based scenario and suggest that the GLF may have, at least 

intermittently, experienced wet-based glaciation. Furthermore, outside of the current 

GLF basin, Hubbard et al. (2011) identified one further terrain that may have formed in 

the presence of liquid water. The authors likened their ‘rectilinear ridge’ terrain to 

moraine-mound complexes on Earth, which can form either from the direct presence of 

water (e.g. Lukas, 2005), or through the existence of polythermal – i.e. glaciers that 

have complex thermal structure where part of their bed is frozen and part of their bed is 

at the pressure melting point – glaciation (e.g. Hambrey et al., 2005). However, it is 

pertinent to point out that all three of theses terrains were also considered with alternate 

explanations that did not involve wet-based glaciation (Hubbard et al. 2011). 

 

      

 
Figure 1.7: Geomorphic map of Hubbard et al. (2011) identifying predominant surface 

terrains and features (subset of High Resolution Imaging Science Experiment [HiRISE] 

image PSP_002320_1415; centred on 113.16o E, 38.15oS). From Hubbard et al. (2011). 
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At the broader VFF scale, several landforms have been interpreted as indicative of, or at 

least consistent with, the action of liquid water and therefore potentially wet-based 

glaciation. These include, for example, small supraglacial and proglacial valleys 

coincident with mid-latitude VFFs and interpreted as similar to glacier meltwater 

channels (Fassett et al., 2010), as well as sinuous and anastomosing ridge networks, 

bedforms and large-scale groves being interpreted as subglacial eskers, MSGL and 

glacial erosional grooving, respectively (Kargel et al., 1995; Banks and Pelletier, 2008; 

Banks et al., 2009). The association of the latter three landforms in Argyre Planitia has 

even led to suggestions that large, likely wet-based, ice masses once occupied portions 

of the martian surface (e.g. Kargel and Strom, 1992; Bernhardt et al., 2013). At the very 

least, some GLFs and VFFs do appear to preclude an entirely cold-based scenario, but 

our collective understanding of the thermal regime of these ice masses, and how this 

may vary both spatially and temporally remains largely unknown.  

 

 

1.2.3. GLF formation and evolution 

 

There is on-going debate as to exactly how and when GLFs formed, and as to how they 

have evolved since their initial formation. However, it is generally agreed that GLFs are 

extant forms relating to a past, but relatively recent, martian ice age (see Section 1.1 

above). This hypothesis is supported by both flow modelling (see Section 1.2.2 above 

[Milliken et al., 2003; Turtle et al., 2003]) and investigations of surface crater density 

(e.g. Arfstrom and Hartmann, 2005), which place GLFs as geologically recent, and 

probably between ~105 and 107 years old. It should be noted that both of these dating 

techniques are not definitive and are potentially subject to errors because of 

uncertainties propagating from assumptions used in these types of analyses. For 

modelling, these uncertainties include the (i) internal geometry and (ii) rheology of 

GLFs (see Section 1.2.2 above), and for crater density analyses are related to (i) 

occlusion of craters via sublimation and/or viscous relaxation of the icy substrate (e.g. 

Pathare et al., 2005; Sinha and Murty, 2013), and (ii) the small areas often involved and 

thus numbers and size of craters used (e.g. Dauber et al., 2013).  

 

Moreover, there is a growing body of evidence that GLFs (and other VFFs) are the 

remnants of once far larger ice masses (e.g. Dickson et al., 2008; Hubbard et al., 2011; 
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Sinha and Murty, 2013), which were most extensive during a hypothesised last martian 

glacial maximum, or LMGM (See Section 1.1 [e.g. Souness and Hubbard, 2013]). Such 

evidence has been presented in the form of detailed geomorphological reconstructions, 

that have identified former ice limits from variations in surface texture and from the 

presence of bounding or distal moraine-like ridges, or MLRs (Figures 1.3 and 1.4 [e.g. 

Arfstrom and Hartmann, 2005]). One particularly marked example of a GLF that has 

undergone apparent recession and mass loss has been the focus of much study (Figures 

1.3 and 1.7 [e.g. Hartmann et al., 2003; Marchant and Head, 2003; Kargel, 2004; 

Arfstrom and Hartmann, 2005; Hubbard et al., 2011]). For example, in an analysis of 

this particular GLF, Hubbard et al. (2011) described a sequence of nested arcuate ridges 

surrounding the flanks and immediate forefield of this GLF (Figure 1.7). The authors 

argued that these ridges were equivalent to latero-terminal moraines on Earth, and 

discussed the possibility that the landform assemblage revealed a system that had been 

subject to general recession, punctuated by episodes (at least three) of minor advance of 

standstill (Hubbard et al., 2011), and that this behaviour could have been driven by 

recent climatic fluctuations (e.g. Arfstrom and Hartmann, 2005; Hubbard et al., 2011). 

 

Beyond GLFs, an expanded former ice extent has also been identified on the regional 

scale of Mars’ integrated glacial landsystem (see Section 1.2.1 above [e.g. Head et al., 

2006; Dickson et al., 2008]), where former glacial highstands up to ~900 m above the 

present day surface have been inferred (Dickson et al., 2008). Indeed, the identification 

of features and landforms of glacial origin across large areas of Mars’ present day 

surface has also led to inferences of former regional- to continental-scale ice sheet 

glaciation (Kargel and Strom, 1992; Kargel et al., 1995; Head and Marchant, 2003; 

Bernhardt et al., 2013). Furthermore, several studies have noted the superposed 

relationship (Figures 1.4 and 1.8) of some GLFs to the underlying ice-rich terrain (LDA 

or LVF) onto which they appear to have flowed – particularly along the fretted terrain 

(Sharp, 1973) of Deuteronilus Mensae, Prontonilus Mensae and Nili Fossae (Figures 1.5 

and 1.8) – leading to suggestions of recurrent glacial phases with at least one ‘local’ 

glacial phase advancing over an earlier ‘regional’ glaciation (e.g. Levy et al., 2007; 

Dickson et al., 2008; Baker et al., 2010; Sinha and Murty, 2013).  
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Figure 1.8: Illustration of the stratigraphic relationship of GLFs to wider ice deposits. 

(a) Here a GLF can be seen emanating out of a valley and terminating in a distinctive 

lobate form. A raised latero-terminal ridge encompasses the terminus. The GLF is 

topographically superposed on the wider ice deposit – in this instance lineated valley 

fill. (b) Sketch map of (a). From Dickson et al. (2008). 

 

 

Despite these recent advances in understanding, we currently have limited knowledge of 

the mechanisms and climatic environments under which GLFs first accumulated 

sufficient ice-rich mass to flow downslope, the nature and timing of Mars’ LMGM, the 

current and former volume of water contained within GLFs, and whether GLF (and 

VFF) recession has been spatially and/or temporally variable. 

 

 

1.2.4. Summary of current GLF understanding and knowledge gaps 

 

Given the observations presented in Sections 1.2.1 – 1.2.3 above, the current state of 

knowledge regarding GLFs is as follows: 
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• Souness et al. (2012) suggested that GLF(s): (i) are widespread across the mid-

latitudes of Mars; (ii) share a common evolutionary history; (iii) appear to be 

influenced by, at least at some point in their history, climate/insolation; and (iv) 

flow is now influenced by local relief and gravity, but may have been in the 

recent past affected by an Earth-like mass-balance. 

 

• Given the young age reported for GLFs and based on their stratigraphic 

relationships with other mid-latitude ice masses, it is possible that (some) GLFs 

represent a smaller more ‘localised’ glacial phase that is overriding an older 

‘regional’ glaciation (Figure 1.8). Mars’ mid-latitudes may thus contain 

evidence of multiple phases of glaciation. 

 

• The identification of raised latero-terminal ridges surrounding the terminus of 

numerous GLFs suggests that, much like their Earth-based analogues (e.g. Zemp 

et al., 2009), GLFs have experienced an expanded former extent and have been 

subject to a period of mass loss since a former maximum. A further implication 

of this is that GLFs may therefore be, or have been, important landscaping 

agents through both deposition and erosion.  

 

• Based on the above three points, GLFs that remain on the surface of Mars today 

are likely to be relict deposits that have survived from a potentially recent period 

of glaciation and may thus represent an important archive of information on 

recent climatic change on Mars.        

 

Despite this relatively recent knowledge base, our understanding of the origin and 

evolution of GLFs is still in its infancy and a number of fundamental aspects of their 

behaviour remain virtually unknown. The most pressing of these knowledge gaps can be 

summarised as follows:    
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• What conditions can lead to GLF formation? Given the present climate of Mars 

is not favourable to ice accumulation in the mid-latitudes, significant climatic 

changes must have occurred in the geologically recent past in order for GLFs to 

have developed. By investigating the factors controlling the distribution of GLFs 

and assessing the potential climatic conditions required for their formation, we 

could begin to reconstruct these recent climatic perturbations and their spatial 

variation.  

 

• What volume of water is stored in GLFs? Given the widespread presence of 

GLFs across the mid-latitudes of Mars (Figure 1.5) they potentially constitute an 

important reservoir of water. However, the contribution of GLFs to the nonpolar 

surface/near surface water inventory of Mars (e.g. Carr and Head, 2015) remains 

unknown. Furthermore, identifying the locations where, and the quantities in 

which, water exists on Mars may be highly relevant to future human and robotic 

exploration – water being a key component in the search for past life, and 

providing a potential resource for future explorers of Mars.   

 

• How much mass has been removed from GLFs? Although instances of ice mass 

loss from GLFs have been reported (Figure 1.3), little attention has been paid to 

quantifying such loss. Better understanding the controls responsible for ice mass 

loss may provide valuable insights into recent/current climatic change and how 

GLFs, and their associated ice masses, might change under future climates.  

 

• What are the mechanical properties and mechanisms of motion in GLFs? GLFs, 

and wider VFFs, show surface evidence for viscous flow; however, little is 

known about their (ice) rheology, mechanisms of GLF motion (e.g. velocity; 

stress-strain relationships), and their thermal regime.  

 

• What role have GLFs played in landscaping the surface of Mars? Considering 

glaciers are a significant landscaping agent on Earth (e.g. Clark et al., 2004), ice 

masses on Mars could have played an important geomorphic role in altering the 

landscape of Mars.    
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1.3. Aim and objectives 

 

The overarching aim of this thesis is to assess the current and former volume and 

dynamics of mid-latitude GLFs on Mars, in order to advance our understanding of the 

planet’s recent glacial history. To achieve this aim, the following objectives have been 

identified: 

 

(1) To map GLFs, associated ice masses and surrounding landforms to assess the 

style of glaciation. 

 

(2) To investigate the physical glaciology of GLFs on Mars, including their former 

extent, motion, debris transport and hydrology. 

 

(3) To conduct population-scale outline mapping of GLFs in order to estimate the 

ice volume from their areal extent. 

 

(4) To identify, at the population-scale, GLFs that show evidence of recession and 

target an appropriate example for palaeo-glaciological reconstruction in order to 

assess area and volumetric change. 

 

(5) Based on Objectives (3) and (4), examine the environmental and topographical 

controls influencing the distribution and stability of GLFs. 

 

(6) To use computer-based numerical ice flow modelling to investigate the range of 

environmental and climatic conditions under which GLFs may have formed, and 

to assess their response to climatic forcing. 
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1.4. Thesis structure 

 

1.4.1. Overview 

 

This thesis has six chapters. An introduction to the broad subject of mid-latitude 

glaciation on Mars was provided in Chapter 1 that synthesised the current understanding 

and gaps in knowledge regarding GLFs, and provided context for the thesis. In Chapter 

2, a geomorphic and structural assessment of a glacierised landscape in eastern Hellas 

Planitia in Mars’ southern hemisphere is presented. In Chapter 3, the first 

comprehensive ice volume estimate of martian GLFs is presented and explanations for 

variation in their size and distribution offered. In Chapter 4, a population-scale 

inventory of GLF recession, including a palaeo-glaciological reconstruction of the 

former three-dimension extent of a GLF in Crater Greg, eastern Hellas Planitia, is 

presented. In Chapter 5, initial results from numerical ice flow modelling are presented. 

This modelling extended the investigations into the glacial history of the GLF 

reconstructed in Chapter 4 and assessed the environment and climatic conditions that 

could have led to the formation of the former maximum GLF extent, as recorded in the 

geomorphological record. In Chapter 6, a summary of Chapters 2 – 5 is given and an 

examination of how these outputs have contributed to addressing the aim of the thesis is 

presented, and is finished by providing avenues for future research.  

 

Chapters 2 – 5 constitute published or near-published outputs that form standalone, but 

complementary, manuscripts, each of which represents original and new research. 

Therefore, each chapter consists of some, or all, of the following sections: Abstract; 

Introduction/Literature Review; Site Description; Data and Methods; Results; 

Discussion; Conclusions; References; and Supporting Material. Chapters 2 and 4 have 

been published in the Journal of Maps and Icarus, respectively, Chapter 3 is currently 

under review for the journal Earth and Planetary Science Letters and Chapter 5 is a 

manuscript in preparation for submission. Full details of these manuscripts and the 

contribution made by the author of this thesis are provided in Section 1.4.2. During the 

duration of this thesis, the author also co-authored complimentary work carried out by 

affiliated parties. These contributions are included in the publication of Hubbard et al. 

(2014) in the journal The Cryosphere. This publication is attached in Appendix A.  
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1.4.2. Summary of manuscript details and author contributions 

 

Chapter 2 

Brough, S., Hubbard, B., Souness, C., Grindrod, P. M., & Davis, J. (2016). Landscapes 

of polyphase glaciation: eastern Hellas Planitia, Mars. Journal of Maps, 12(3), 530-542. 

doi: 10.1080/17445647.2015.1047907. 

 

SB and BH conceived the study. SB, PG and JD produced the digital elevation models 

used in mapping. SB conducted all mapping, data analysis, figure production and led 

the manuscript writing. BH, CS, PG and JD provided conceptual and technical advice, 

and edited the manuscript. Mapping of the GLF is based on work presented in Hubbard 

et al. (2014 [Appendix A]) and Souness (2013).  

 

 

Chapter 3 

Brough, S., Hubbard, B., & Hubbard, A. (in review). Area and volume of mid-latitude 

glacier-like forms on Mars. Earth and Planetary Science Letters. 

 

SB and BH conceived this study. SB conducted all mapping, data analysis, figure 

production and led the manuscript writing. BH and AH provided conceptual and 

technical advice and edited the manuscript. 

 

 

Chapter 4 

Brough, S., Hubbard, B., & Hubbard, A. (2016). Former extent of glacier-like forms on 

Mars. Icarus, 274, 37-49. doi: 10.1016/j.icarus.2016.03.006. 

 

SB and BH conceived this study. SB conducted all mapping, data analysis, figure 

production and led the manuscript writing. BH and AH provided conceptual and 

technical advice and edited the manuscript. 
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Chapter 5 

Brough, S., Hubbard, A., & Hubbard, B. (in prep). Palaeo-glaciers on Mars: modelling 

their formation and evolution.  

 

SB, BH and AH conceived this study. AH wrote and provided the model. SB modified 

the model, conducted all data analysis, figure production and led the manuscript writing. 

BH and AH provided conceptual and technical advice and edited the manuscript. 
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Landscapes of polyphase glaciation: eastern 
Hellas Planitia, Mars 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
	

Imagination will often carry us to worlds that never were.  

But without it we go nowhere 

Carl Sagan 
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Preface to manuscript ‘Landscapes of polyphase glaciation: 

eastern Hellas Planitia, Mars’ 

 
Introduction and rationale 

 

Although an extensive body of literature documenting and describing Mars’ mid-

latitude ice masses and their associated landforms exists (e.g. Pierce and Crown, 2003; 

Milliken et al., 2003; Levy et al., 2010; Head et al., 2010), our collective understanding 

of how these ice masses form and subsequently evolve is far from complete. For 

example, although it is now generally accepted that many of Mars’ mid-latitude ice 

masses were once substantially larger than their present day configuration (e.g. Dickson 

et al., 2008), there is a paucity of investigations that have attempted to reconstruct their 

former extents and volumes. Furthermore, there is a growing body of literature 

suggesting that Mars’ mid-latitudes may have experienced more than one glacial phase 

(e.g. Head et al., 2003; Dickson et al., 2008), but again, our understanding of the timing 

and spatial extent of such phases of glaciation remains poorly constrained – with much 

of this initial focus being directed on the northern hemisphere (see Section 1.2).  

 

This chapter (published in the Journal of Maps [Brough et al., 2016]) describes a 

geomorphic and structural investigation of a glacial landscape in eastern Hellas Planitia, 

in a bid to better understand the region’s glacial history. It serves to provide a map 

based example to key concepts that are further developed in later chapters of the thesis – 

for example, the current (Chapter 3) and former (Chapter 4) extent of mid-latitude ice 

masses – and to provide further insight into the knowledge gaps discussed above. 

 

Eastern Hellas Planitia was targeted as the study area for a number of reasons: (i) it is 

located in Mars’ southern hemisphere; (ii) climatic simulations have revealed the region 

to be a likely source for snow accumulation during periods of high (>45o) obliquity 

(Forget et al., 2006); (iii) it is known to contain a high population of viscous flow 

features (VFFs), including lobate debris aprons (LDAs [e.g. Pierce and Crown, 2003]) 

and glacier-like forms (GLFs [e.g. Souness et al., 2012]); and (iv) there is strong 

morphological and geophysical evidence for these VFFs to be glacial in origin (e.g. 

Appendix A; Head et al., 2005; Holt et al., 2008). The specific study site (centred on 
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~103oE, 40.6oS) was chosen after an initial investigation of the massif revealed what 

appeared to be a discontinuity between the LDA and the higher altitude material 

(including a well-developed GLF), thus, affording an opportunity to test the hypothesis 

that multiple phases of glaciation may have occurred in eastern Hellas Planitia (e.g. 

contributing to Objective [1] of the thesis). The detailed geomorphic and structural 

mapping would also provide a platform to investigate the fundamental glaciological 

behaviour (e.g. extent; motion) of the VFFs in question (e.g. contributing to Objective 

[2] of the thesis). The remainder of this preface discusses the methods that were adopted 

during the study. 

 

 

Geomorphic and structural mapping 

 

There is an extensive body of terrestrial glaciological literature concerned with 

reconstructing glacial environments based on their landforms and structural assemblage 

(see Hubbard and Glasser, 2005). By compiling evidence left on the landscape with 

observations from modern glaciers, the extent and dynamics of both former (glaciated) 

and modern (glacierised) glacial environments can be reconstructed (e.g. Kleman et al., 

1997; Evans and Twigg, 2002; Greeenwood and Clark, 2009). Furthermore, these 

analyses may provide an insight into how such ice masses have evolved over time and 

as to processes occurring within the ice mass. For example, by analysing the structure of 

a glacier it is possible to make inferences about the glacier’s flow regime (e.g. Hambrey 

and Lawson, 2000; Goodsell et al., 2005). Given the useful insights that have been 

obtained from these studies on Earth, numerous authors have applied the same 

principles in a bid to describe glacial landscapes and landforms on Mars (e.g. Pierce and 

Crown, 2003; Milliken et al., 2003; Baker et al., 2010; Head et al., 2010; Levy et al., 

2010; Souness and Hubbard, 2013). This study incorporated knowledge generated from 

both terrestrial and martian cryospheric communities in its analysis. 

 

Geomorphic and structural features were mapped from manual inspection of satellite 

imagery within Geographic Information System (GIS) software. Mapping was 

conducted from a 6 metre per pixel orthorectified Context Camera (CTX) image, as this 

provided the highest-resolution continuous coverage of the study area. This CTX 
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coverage was supplemented with High Resolution Imaging Science Experiment 

(HiRISE) images, with spatial resolution of up to ~0.25 m, where available. Each 

geomorphic unit and structure was subsequently described within the text and 

explanations of their significance discussed. Whilst this method for glaciological 

investigation on Mars has been extensively used (e.g. Pierce and Crown, 2003; Milliken 

et al., 2003; Baker et al., 2010; Head et al., 2010; Levy et al., 2010; Souness and 

Hubbard, 2013), it should be noted that, as with all remote sensing projects, for a feature 

to be identified/mapped it must be greater than the observable resolution of the imaging 

sensor. Therefore, these types of analysis overlook features measuring less than this 

observable resolution. Naturally, as the coverage of higher spatial resolution imagery 

(e.g. HiRISE) increases, a more detailed assessment of surface landforms and structures 

may be sought. Notwithstanding this spatial dependence, major structures are often 

greater than the spatial resolution of the coarser CTX imagery (6 m), and therefore 

clearly identifiable for mapping.  
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Abstract: The mid-latitudes of Mars host numerous ice-related landforms that bear 

many similarities to terrestrial ice masses. This collection of landforms, termed viscous 

flow features (VFFs), is composed primarily of H2O ice and shows evidence of viscous 

deformation. Recent work has hypothesised that VFFs are the diminishing remains of 

once larger ice masses, formed during one or more previous ice ages, and the landscape 

therefore records evidence of polyphase glaciation. However, debate persists concerning 

the former extent and volume of ice, and style of former glaciations. The accompanying 

map (1:100,000 scale) presents a geomorphic and structural assessment of a glacial 

landscape in eastern Hellas Planitia, Mars. Here we present a description of the features 

identified, comprising four geomorphic units (plains, lobate debris apron, degraded 

glacial material, and glacier-like form) and 16 structures (craters, moraine-like ridges, 

flow unit boundaries, arcuate transvers structures, longitudinal surface structures, ring-

mold craters, terraces, medial-moraine like ridges, raised textured areas, flow-parallel 

and flow-transverse lineations, crevasses and crevasse traces, and ridge clusters). 

 

 

2.1. Introduction 

 

The mid-latitudes of Mars host numerous ice-related landforms with many similarities 

to terrestrial ice masses (e.g. Arfstrom and Hartmann, 2005; Head et al., 2005; Baker et 

al., 2010; Hubbard et al., 2011; Souness et al., 2012; Sinha and Murty, 2013). These 

landforms are composed primarily of H2O ice, have surface morphologies consistent 

with viscous deformation and have consequently become known as viscous flow 

features, or VFFs (Milliken et al., 2003; Holt et al., 2008; Plaut et al., 2009). Recent 

advances in orbital and climatic modelling have supported earlier arguments that VFFs 

are related to geologically recent ice ages. These ice ages are proposed to occur as a 

consequence of increased solar radiation forcing water stored in the polar caps of Mars 

to be transported towards lower latitudes, under periods of high (>30o) obliquity 

(Touma and Wisdom, 1993; Head et al., 2003; Laskar et al., 2004; Forget et al., 2006). 

 

Despite an increase in research into such non-polar ice deposits on Mars during recent 

decades, several fundamental planetary and glaciological issues remain, of which our 

collective understanding is still only in its infancy (see Souness and Hubbard, 2012; 
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Hubbard et al., 2014). Of particular prominence is the origin and subsequent evolution 

of mid-latitude VFFs (e.g. Pierce and Crown, 2003; Fastook et al., 2011; Parsons et al., 

2011; Souness et al., 2012; Souness and Hubbard, 2013). 

 

Such VFFs comprise four distinct subtypes (see review of Souness and Hubbard, 2012): 

(i) glacier-like forms, or GLFs (Hartmann, 2003; Hubbard et al., 2011); (ii) lobate 

debris aprons, or LDAs (Squyres, 1978; Pierce and Crown, 2003); (iii) lineated valley 

fill, or LVF (Squyres, 1978); and (iv) concentric crater fill, or CCF (Levy et al., 2010). 

However, VFFs commonly coalesce and interact to form what Head et al. (2010) 

described as Mars’ integrated glacial landsystem (Figure 2.1). Following this model, 

GLFs represent the lowest order component of this glacial landsystem, generally 

forming in small valleys or cirque-like alcoves. Often multiple GLFs forming adjacent 

escarpments converge to form broad, rampart-like LDAs. In turn, LDAs may converge 

or coalesce to form an often complex and contorted LVF. 

 

At present there is a growing body of evidence suggesting that mid-latitude ice deposits 

are the remnants of a once far larger ice mass (e.g. Dickson et al., 2008, 2010; Sinha and 

Murty, 2013; Hubbard et al., 2014) and the widespread identification of glacial features 

and landforms has led to suggestions that continental scale glaciation may have 

occurred on Mars (e.g. Kargel et al., 1995; Fastook et al., 2014). Reconstructing glacial 

environments based on their landforms and structural assemblage is a powerful concept 

applied in terrestrial glaciology (see Hubbard and Glasser, 2005). Through utilising 

evidence left on the landscape with observations from modern glaciers, we can 

reconstruct the extent and dynamics of both former (glaciated) and modern (glacierised) 

glacial environments (e.g. Kleman et al., 1997; Evans and Twigg, 2002; Greeenwood 

and Clark, 2009). 

 

The map described herein documents the geomorphic units and structural features 

associated with a glacial landscape in eastern Hellas Planitia, Mars. Here, we present an 

overview of the data and methods used, and provide a description of the units recorded 

on the main map (which can be found in Supplementary Material Ch. 2). 
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Figure 2.1: Example of an integrated glacial landsystem as described by Head et al., 

2010. Each component of the landsystem is labelled as follows: (i) GLFs; (ii) LDAs; 

(iii) LVFs; and (iv) CCF. The valley floor shows a complex, heavily distorted surface, 

typical of the integrated glacial landsystem. This scene is a subset of CTX image 

G02_018857_2226_XI_42N309W (centred 42.62o N, 50.51o E). 

 

 

2.2. Study site and brief review of previous work  

 

2.2.1. Study site 

 

Located to the east of Hellas Planitia, one of the largest impact structures on Mars, 

Reull Vallis is a morphologically complex outflow channel system comprising 

Noachian (~4.65 – 3.7 Ga BP), Hesperian (~3.7 – 3.0 Ga BP), and Amazonian (~3.0 Ga 

BP – present) materials (Tanaka and Leonard, 1995; Mest and Crown, 2001). Reull 

Vallis has an abundant population of VFFs (e.g. Souness et al., 2012), in particular 

LDAs, of which over 90 have been identified here (Mest and Crown, 2001; Pierce and 

Crown, 2003). Herein, we map a particularly well-developed LDA and associated 
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landforms which surround an isolated highland massif (Figure 2.2). The massif sits just 

to the north of the Reull Vallis outflow channel and is centred on ~103o E, 40.6o S.  The 

study site covers an area of 2647 km2 to the west of the massif and topography ranges 

between ~2700 and -650 m (relative to Mars datum). The LDA extends radially up to 

~26 km from the base of the massif and has a maximum and minimum elevation of ~40 

and -610 m, respectively, giving an overall elevation difference of ~650 m. Although 

not investigated, the eastern portion of the massif also contains several ice-related 

landforms (Figure 2.2c). The appearance of these landforms share several similarities 

with features described herein, and elsewhere on Mars (e.g. Whalley and Azizi, 2003), 

and likely reflect a wider cold climate landsystem in Reull Vallis. 

 

 

2.2.2. Previous work 

 

Eastern Hellas Planitia is a key region in martian climatic and glaciological studies. 

Climatic simulations have revealed the region to have experienced snow accumulation 

when Mars’ obliquity exceeded 45o (Forget et al., 2006). Radar data from Mars 

Reconnaissance Orbiters’ (MRO) Shallow Radar (SHARAD) have augmented these 

findings by detecting massive H2O ice deposits, buried beneath thin (<10 m) debris 

layers surrounding LDAs near Reull Vallis (Holt et al., 2008). Furthermore, an analysis 

of craters and stratigraphic relationships of LDAs in the Reull Vallis region indicates 

that LDAs are Lower Amazonian in age, and are the youngest units in the region (Mest 

and Crown, 2001; Mest and Crown, 2014).  

 

Investigations using high-resolution imagery have identified several lines of evidence 

for glacier-like flow in VFFs within eastern Hellas Planitia. Using Mars Express’ High 

Resolution Stereo Camera images, Head et al. (2005) described numerous surface 

textures, including sinuous ridges, irregular depressions and flowlines on the surface of 

an LDA and within crater deposits. These were hypothesised as being indicative of ice-

rich, glacier-like viscous flow. Hubbard et al. (2014) recently identified surface 

fracturing on a GLF in eastern Hellas Planitia. These authors argued that the location 

and geometry of the surface features are comparable to crevasses common on Earth’s 

glaciers, and as such, are a direct indication of ice flow and brittle deformation. 
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Figure 2.2: Location and expansion of massif studied herein. (a) Global context 

indicting massifs location to the east of Hellas impact basin, illustrated as a MOLA 

elevation transparency overlain on a THEMIS-IR day mosaic. (b) Regional context of 

the Reull Vallis region as seen in THEMIS-IR day mosaic. The region is characterised 

by large outflow channel systems and abundant montane outcrops. Reull Vallis runs 

directly below the massif and portions of the Dao, Niger, and Harmakhis Vallis are also 

identifiable along the western part of the image (orientated NE-SW). (c) CTX mosaic of 

massif investigated. The LDA can be clearly seen encircling the massif. The area 

mapped in this study is identified by the red box and represents the DTM extent (section 

2.3.1). Black dots indicate central location of features identified in Figure 2.3. Mosaic 

comprised from subset of CTX images D13_03226_1393_XI_40S256W; 

G16_024552_1394_XI_40S257W; D10_031066_1393_XI_40S257W; and 

P16_007397_1382_XN_41S257W. 
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2.3. Data, methods and software 

 

2.3.1. Image sources 

 

We use both Context Camera (CTX [Malin et al., 2007]) and High Resolution Imaging 

Science Experiment (HiRISE [McEwen et al., 2007]) imagery, acquired from the MRO 

satellite (Table 2.1). CTX images have a spatial resolution of ~6 m per pixel and cover 

an area up to 30 x 160 km (Zurek and Smrekar, 2007). CTX imagery was supplemented 

by HiRISE imagery where available. HiRISE images have an unparalleled spatial 

resolution of up to ~0.25 m per pixel and cover an area up to 6 x 12 km (Zurek and 

Smrekar, 2007). For global and regional context, we also use the Mars Orbiter Laser 

Altimeter (MOLA [Smith et al., 1999]) gridded digital terrain model (DTM), with a 

typical resolution of 460 m per pixel, and the global mosaic of Thermal Emission 

Imaging System (THEMIS [Edwards et al., 2011]) daytime infra-red images, with a 

typical resolution of 100 m per pixel. All data used in this study are available through 

the NASA Planetary Data System.    

 

 

Table 2.1: List of imagery used in mapping. 

    Scene Centre 

Instrument Scene ID Date 
(dd/mm/yyyy) 

Resolution 
(m) 

Lat.   

(o) 

Lon.    
(o) 

CTX D15_032978_1391_XN_40S257W 09/08/2013 6 -40.92 102.58 

CTX D16_033400_1391_XN_40S257W 11/09/2013 6 -40.94 102.59 

HiRISE PSP_004272_1390_RED 25/06/2007 0.25 -40.50 102.45 

HiRISE ESP_011669_1390_RED 21/01/2009 0.50 -40.88 102.50 

HiRISE ESP_019462_1390_RED 20/09/2010 0.25 -40.76 102.37 

HiRISE ESP_033400_1390_RED 11/11/2013 0.25 -40.84 102.62 

HiRISE ESP_033901_1390_RED 20/10/2013 0.25 -40.86 102.74 

HiRISE ESP_035391_1390_RED 13/02/2014 0.50 -40.49 102.56 
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We created a 20 m per pixel DTM using standard techniques with Integrated Software 

for Imagers and Spectrometers (ISIS) and SOCET SET software packages (Kirk et al., 

2008) and the CTX stereo image pair D15_032978_1391_XN_40S257W and 

D16_033400_1391_XN_40S257W. Using previous methods (Kirk et al., 2003; 2008; 

Okubo, 2010), we estimate the vertical precision of our CTX stereo DTM to be 3.5 m. 

We then used this DTM to produce a 6 m per pixel orthorectified image, which was the 

main data product used in this study. 

 

 

2.3.2. Surface mapping 

 

All mapping and analysis was carried out in ESRI’s ArcMap 10.1 Geographic 

Information System (GIS) software. Mapping was conducted through manual inspection 

of the imagery. Geomorphic unit and structural classifications were guided by both 

terrestrial and martian cryospheric literature (e.g. Goodsell et al., 2005; Hubbard and 

Glasser, 2005; Baker et al., 2010; Souness and Hubbard, 2013). Standard image 

enhancement procedures (e.g. histogram equalisation and standard deviation) were 

applied on an image-by-image basis to enhance the appearance and maximise the 

contrast between features during digitisation.  

 

Features mapped include an LDA, a GLF, degraded glacial material, crevasses, 

moraine-like ridges, lineations, terraces, craters, and flow units. Digitisation was carried 

out at two main scales: (i) 1:50,000 was used for large scale features, including LDA 

and plains and (ii) 1:25,000 was used for less well-resolved features such as crevasses, 

lineations, and moraine-like ridges. Features which varied in size, such as craters and 

terraces, were mapped at scales appropriate to their characteristics.  

 

    

2.4. Description of geomorphic units and structural features 

 

This section describes the geomorphic units and their associated structural features 

progressing from the distal to proximal end of the glacial system as follows: (i) plains; 

(ii) LDA; (iii) degraded glacial material; and (iv) GLF. To avoid repetition, although 
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presented in all relevant geomorphic units, a structure will only be described in the first 

unit where it occurs in the text. 

 

 

2.4.1. Plains 

 

Plains form the distal part of the glacial landscape, representing an area of ice-free or 

ice-poor terrain that is texturally distinct from the surrounding ice-related surfaces. The 

distal plains are characterised by a heavily cratered, but otherwise relatively smooth 

surface. There is no evidence of surface flow within this unit. Identifying such areas of 

terrain that appear unaffected by ice flow is important when looking at glacial 

reconstruction, as it provides a clear outer boundary for active glaciation. Structures 

observed within the plains unit are: (i) craters and (ii) sinuous ridges. 

 

 

2.4.1.1. Craters 

 

Craters are identified as surface depressions caused by the impact of a hypervelocity 

object – usually a meteoroid (Figure 2.3a). They are typically bowl-shaped, and quasi-

circular in planform, but their appearance can change over time. Deformation within the 

substrate of the material can cause the craters to distort and therefore provide an 

indication of local strain (e.g. Sinha and Murty, 2013). The appearance or sharpness of 

craters may also change over time, as surface processes degrade their surface terrains 

and edges (e.g. Baker et al., 2010). Craters form an essential part of planetary 

investigation, as they provide a means by which surfaces may be dated (e.g. Hartmann 

and Neukum, 2001).  

 

 

2.4.1.2. Sinuous ridges 

 

Sinuous ridges are identified as ridges that display both positive raised relief from their 

surroundings and a sinuous morphology (Figure 2.3a). Ridges may be branched and 

connected  to  each  other, or occur  in isolation. They  often  interact with craters where   
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Figure 2.3: Feature identification in CTX and HiRISE imagery, as discussed in the 

main text. Images orientated north up. (a) Craters and sinuous ridge. (b) Moraine-like 

ridge surrounding LDA. (c) Flow unit boundary - arcuate structures can be seen 

deforming along the flow unit boundary in the centre of the image. (d) Arcuate 

transverse ridges. (e) Longitudinal surface structure. (f) Well-formed ring-mold crater. 

(g) Terraces and medial moraine-like ridges – terraces appear to cut across the two 

medial moraine-like ridges, which run longitudinally from the top centre to bottom 

centre of the image. (h) Raised textured area – visible on the western and central 

portion of the image is a lumpy, raised surface texture that clearly contrasts the 

smoother terrain to the east.  (i) Flow-parallel lineations. (j) Flow-transverse 

lineations. (k) Crevasses (open fracture) and crevasse traces (closed fracture). (l) ridge 

clusters. Images used: a, c, d, f -ESP_035391_1390_RED; b - 

PSP_004272_1390_RED; e, g - D15_032978_1391_XN_40S257W orthorectified image 

(see Section 3.1); and h, i, j, k, l -ESP_033400_1390_RED.  
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they appear to emanate away from, or are dissected by them. These ridges are 

predominantly located in the northern part of the map. However, one particular 

prominent sinuous ridge appears to be buried under the upper northern part of the LDA, 

before emanating into the foreground in a northwest direction. It is possible that these 

ridges are subglacial in origin (i.e. similar to eskers on Earth); however, their 

morphology is more consistent with ‘wrinkle’ and degraded ridges in the Reull Valles 

region, the origin of which are interpreted to be fluvial or volcanic (Mest and Crown, 

2001; Mest and Crown, 2014). 

 

 

2.4.2. Lobate debris apron  

 

The surface morphology and convexity described above have previously been used to 

infer that LDAs show viscous flow and that the mechanism by which flow is achieved is 

a result of ice deformation (e.g. Squyres, 1978; Colaprete and Jakosky, 1998; Pierce and 

Crown, 2003; Head et al., 2005; Holt et al., 2008; Grindrod and Fawcett, 2011). 

Structures observed within the LDA unit are: (i) moraine-like ridges; (ii) flow unit 

boundaries; (iii) arcuate transverse structures; (iv) longitudinal surface structures; (v) 

ring-mold craters; and (vi) craters (Section 2.4.1.1). 

 

 

2.4.2.1. Moraine-like ridges  

 

Moraine-like ridges are long (10’s km), often narrow (10-2 – 10-1 km), ridges that are 

raised above their surroundings (Figure 2.3b). Moraine-like ridges run parallel to the 

terminus of VFFs, commonly in an arcuate manner and are similar to terminal or ice-

marginal moraines associated with terrestrial glaciers (Arfstrom and Hartmann, 2005). 

Such moraines (including on Mars) mark the former terminal position of an ice mass 

and are, therefore, indicators of ice recession, and can also indicate a former boundary 

between a previously glaciated and currently glacierised terrain. On Earth, moraines 

form an essential component of glacial reconstruction in both glacierised (e.g. Evans 

and Twigg, 2002) and glaciated environments (e.g. Greenwood and Clark, 2009). 
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2.4.2.2. Flow unit boundaries 

 

A flow unit boundary is identified as a boundary between two flow units that have 

distinctive velocity fields with an associated discontinuity in orientation of deformation-

related features (Figure 2.3c). Structures may also appear smeared along the junction 

(Goodsell et al., 2005).  

 

 

2.4.2.3. Arcuate transverse structures 

 

Arcuate transverse structures are identified as linear structures with positive or negative 

relief that are arranged roughly transverse to the apparent flow direction. These linear 

structures can be followed down the LDA, where they become highly arcuate or 

deformed (Figure 2.3d). Arcuate transverse structures can provide an indication of local 

flow rates and the distribution of stresses within the flowing material.  

 

 

2.4.2.4. Longitudinal surface structures 

 

Longitudinal structures are identified as extended linear features (up to ~20 km long) 

that are arranged roughly parallel to the apparent flow direction (Figure 2.3e). These 

structures are similar in appearance and persistence to longitudinal foliation identified 

on terrestrial glaciers. However, there is an ongoing debate as to the terminology, 

origin, and significance of these features (see Glasser and Gudmundsson, 2012). This 

debate notwithstanding, both flow-transverse (Section 2.4.2.3) and flow-parallel 

structures can be used to elucidate local flow direction, deformation and strain history 

(e.g. Baker et al., 2010; Souness and Hubbard, 2013). 

 

 

2.4.2.5. Ring-mold craters 

 

In contrast to (standard) craters (Section 2.4.1.1), ring-mold craters are identified as an 

almost rimless depression with an annular moat enclosing an inner circular plateau of 

varying morphology (Figure 2.3f [e.g. Kress and Head, 2008]). The morphology of 



CHAPTER 2.   LANDSCAPES OF POLYPHASE GLACIATION 45	

 
	

ring-mold craters is consistent with previous laboratory experiments of impact craters 

forming in relatively pure ice (e.g. Kato et al., 1995) and shows a distinctly different 

morphology from craters formed in ice-poor surfaces. This distinct difference in 

morphology between ring-mold and bowl-shaped craters has led to the interpretation 

that ring-mold craters are formed in an ice-rich substrate (Kress and Head, 2008). 

Furthermore, ring-mold craters appear to be exclusively located within VFFs and 

therefore have the potential to be a diagnostic indicator for the presence of subsurface 

ice (Kress and Head, 2008).  

 

 

2.4.3. Degraded glacial material 

 

Occupying the base and encroaching up the slopes of the massif is an area of 

homogeneous terrain characterised by a texturally smoothed surface, abundant terrace 

structures, and a concave down-slope profile. In contrast to the plains and LDA, there is 

little evidence of surface cratering on this homogeneous terrain. Several small alcoves 

appear to be cut into the massif, but two larger alcoves (one located towards the centre 

of the massif and one on the southern face) are associated with structures, including 

raised textured areas and moraine-like ridges, similar to the adjacent GLF (Section 

2.4.4). This overall appearance suggests a deflated or degraded terrain, possibly formed 

during the region’s current state of periglaciation. Based on structural evidence within 

the alcoves, it may also be possible that GLFs once occupied these localities, and 

therefore localised glaciation may have previously occurred in this unit. Structures 

observed within this degraded glacial material unit are: (i) terraces; (ii) raised textured 

areas; (iii) medial moraine-like ridges; (iv) moraine-like ridges (Section 2.4.2.1); and (v) 

craters (Section 2.4.1.1).    

 

 

2.4.3.1. Terraces 

 

Terraces are identified as an interlinked network of step-like ridges that form sub-

perpendicular to slope (Figure 2.3g). Their length, size and coherence appear highly 

variable, which correspondingly produces a variety of patterns. Terraces cut across 
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other structures (such as moraine- and medial moraine-like ridges), suggesting that 

these features represent a later age of formation relative to the structure across which 

they cut.    

 

 

2.4.3.2. Medial moraine-like ridges 

 

Medial moraine-like ridges, in contrast to moraine-like ridges (section 2.4.2.1), persist 

longitudinally within an ice mass (Figure 2.3g), rather than forming an arcuate structure 

demarking a limit of glaciation. Medial moraines are important structures on glaciers on 

Earth as they can be used to identify flow pathways and the deformation of debris 

within a glacier (e.g. Hambrey et al., 1999). They are also often flow unit boundaries 

(section 2.4.2.2). 

 

 

2.4.3.3. Raised textured areas 

 

Raised textured areas are identified as areas showing a distinct lumpy surface texture 

that is raised above the surrounding mass (Figure 2.3h). The occurrence of a markedly 

different surface texture from adjacent areas suggests that there is a local change in 

mechanical process or material composition. 

 

 

2.4.4. Glacier-like form (GLF) 

 

A well-pronounced GLF with clearly distinguishable outlines occupies a small, cirque-

like alcove on the southwestern flank of the massif. The GLF has a discernible head and 

terminus, the latter of which appears to have breached a cirque lip to the northwest of 

the feature. Running parallel to the terminus of the breached snout is an extensive 

moraine-like ridge (Section 2.4.2.1), enclosing the GLF. Within the body of the GLF 

are several distinct structures indicative of flow and transportation of mass down-slope, 

including fractures and surface lineations (Hubbard et al., 2014). Two large textured 

areas are identifiable on the lower surface of the GLF, the southernmost of which is 

associated with a cluster of ridges. Like the degraded glacial material (Section 2.4.3), 
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the GLF surface has a distinct lack of craters. The GLF appears to reflect a currently 

glacierised environment, indicative of local ice accumulation and subsequent flow. 

Structures observed in the GLF unit are: (i) flow-parallel and flow-transverse lineations; 

(ii) crevasses and crevasse traces; (iii) ridge clusters; (iv) moraine-like ridges (Section 

2.4.2.1); (v) raised textured areas (Section 2.4.3.3); (vi) craters (Section 2.4.1.1); and 

(vii) ring-mold craters (Section 2.4.2.5). 

 

 

2.4.4.1. Flow-parallel and flow-transverse lineations 

 

Flow-parallel and flow-transverse lineations show many similarities to the longitudinal 

and arcuate structures found in the LDA unit (Figure 3i – j [Section 2.4.2]). However, 

both flow-parallel and flow-transverse lineations only show positive relief and their 

length is an order of magnitude smaller (up to ~1 km long). Like longitudinal and 

arcuate surface structures, flow-parallel and flow-traverse lineations can be used to 

elucidate local flow direction, deformation, and strain history (e.g. Baker et al., 2010; 

Souness and Hubbard, 2013). 

 

 

2.4.4.2. Crevasses and crevasse traces 

 

Crevasses are identified as open fractures on the GLF surface which may cut across 

other structures (Figure 2.3k). Crevassing occurs where the tensile strain rate of ice 

exceeds a temperature-dependant threshold (Vaughan, 1993). Crevasses are 

correspondingly orientated perpendicular to the direction of maximum extensional 

strain (Hambrey and Lawson, 2000). Crevasse traces are identified by distinct, often 

dark, lines in areas of crevassing that do not have a visible opening or fracture. Crevasse 

traces are former crevasses, which have subsequently closed, likely due to the crevasse 

passing through a compressive flow regime (Figure 2.3k [Hambrey and Lawson, 

2000]).   
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2.4.4.3. Ridge clusters 

 

Ridge clusters are a series of sub-parallel, nested, elongate ridges (Figure 2.3l). Ridges 

are clustered towards the southwest of the GLF where they merge with the raised 

textured area and are difficult to identify individually. However, individual structures 

are easily identifiable to the north of the feature, where ridges become well defined.  

 

 

2.5. Conclusions 

 

This paper presents a detailed geomorphic and structural map of glacial landforms in 

eastern Hellas Planitia, Mars. Initial evidence suggests that the region has undergone at 

least two, possibly three, phases of glaciation, with a wider, more extensive glacial 

period being recorded in the LDA, and a secondary, more localised glaciation recorded 

in the GLF. The work presented here is part of a wider ongoing project addressing the 

extent and dynamics of mid-latitude VFFs on Mars (e.g. Hubbard et al., 2014). It also 

provides further evidence, and extends the spatial scale, for the hypothesis that Mars has 

experienced multiple phases of glaciation.    

 

 

Software 

 

Image pre-processing was carried out in the freely available ISIS provided by the 

United States Geological Survey. Stereo DTM production was carried out in the 

commercial software package SOCET SET ® provided by BAE Systems. Image 

processing and mapping was carried out using ESRI ArcMap 10.1 GIS. Figures and 

final map were produced in ESRI ArcMap 10.1. Figures were subsequently exported to 

Adobe Illustrator CS for annotation. 
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Summary to manuscript ‘Landscapes of polyphase glaciation: 

eastern Hellas Planitia, Mars’ 
 

Chapter 2 has presented a geomorphic and structural investigation of a glacial landscape 

in eastern Hellas Planitia. The key outcomes to carry forward are as such: 

 

1. Two units showed significant evidence of glacial flow: (i) at the broad scale the 

lobate debris apron (LDA) preserved a convex-up profile and numerous arcuate 

and longitudinal structures indicative of the downslope flow of ice; and (ii) at 

the more localised scale the glacier-like form (GLF) also preserved several 

structures indicative of flow and transport of ice downslope. A third terrain, 

degraded glacial material, also showed evidence for the downslope flow of 

mass, but structures lacked clear indication of a present day ice core and are 

more akin to slope processes of periglacial environments. 

	

2. There is a clear discontinuity between material in the GLF and degraded glacial 

material, and the LDA. Certainly, the GLF preserves evidence for localised ice 

accumulation and subsequent flow of mass within a well-defined cirque basin 

that is raised above the LDA surface. Two further alcoves (one located towards 

the centre of the massif and one on the southern face) within the degraded 

glacial material are associated with structures similar to the adjacent GLF and 

perhaps were former centres of localised ice accumulation, that have 

subsequently deflated. Nonetheless, there is a clear ridge at the confluence of the 

degraded glacial material and the LDA, again suggesting a material or process 

threshold between the two units. 

 
3. There is an apparent (qualitative) difference in the density and size of craters 

between geomorphic units. The LDA, GLF and degraded glacial material 

contain a lower density and size distribution relative to the outer plain, 

consistent with a younger age for the deposition or exposure of the former 

terrains. Further, both the GLF and degraded glacial material generally lack 

resolvable craters on their surface, and although insufficient in numbers to 
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formally analyse, would suggest that these features are of a geologically very 

young age, and younger than the encompassing LDA.   

 
4. Given points (2) and (3) above, it is interpreted that the LDA represents a larger 

and more extensive phase of glaciation, and that the GLF (and likely the 

degraded glacial material) represent a smaller, more localised, phase of 

glaciation. Such an interpretation is consistent with the hypothesis that Mars’ 

mid-latitudes preserve evidence of multiple phases of glaciation, but extends the 

spatial scale at which these observations have been reported. 

 

5. The identification of numerous moraine-like ridges (MLRs) surrounding both 

the LDA and GLF are clear indications of ice mass loss since emplacement. This 

mass loss has occurred through both surface lowering and terminus recession. 

The identification of numerous MLR and medial moraine-like ridges further 

implies that these viscous flow features (VFFS) are, or at least have been at 

some point in their history, capable of entraining, transporting and depositing 

debris.  

 

6. Analysis of several surface structures, for example the identification of fractures 

and arcuate transverse ridges, revealed insights into the dynamics of these ice 

masses and indicate that, much like terrestrial glaciers, Mars’ VFFs (GLF and 

LDA in this instance) have experienced variable flow regimes.  
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If the Sun & Moon should doubt 

They’d immediately go out 

William Blake 
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Preface to manuscript ‘Area and volume of mid-latitude 

glacier-like forms on Mars’ 
 

Introduction and rationale 

 

As introduced in Chapter 1 (see Section 1.2), a substantial reservoir of buried ice has 

been identified within viscous flow features in the mid-latitudes of Mars (e.g. Holt et 

al., 2008; Levy et al. 2014). However, there is uncertainty regarding the formation, 

current and former volume, and dynamic evolution of these ice masses. Reducing such 

uncertainties is important if we are to better understand how water moves through the 

martian hydrological cycle through time (e.g. Carr and Head, 2015). With respect to 

glacier-like forms (GLFs), although their distribution has been well documented and 

constrained in previous studies (e.g. Chapter 2; Milliken et al., 2003; Souness et al., 

2012) – and unlike the wider lobate debris aprons, lineated valley fill and concentric 

crater fill deposits (e.g. Levy et al., 2014; Karlsson et al., 2015) – no study has 

attempted to estimate the potential ice volume contained within these landforms. 

  

This chapter (submitted to Earth and Planetary Science Letters) looks to build upon the 

local- to regional-scale mapping of GLFs that was introduced in Chapter 2 (see also 

Appendix A), and presents a systematic population-scale mapping investigation in to 

the areal and volumetric extent of martian GLFs. The analysis draws on techniques 

similar to those used by terrestrial glaciologists interested in glacier monitoring (e.g. 

Paul et al., 2009) and/or reconstructing ice volume in inaccessible areas (e.g. Bahr et al., 

2015). These results will fill a knowledge gap within our understanding of the 

contribution of GLFs to the to the nonpolar surface/near surface water inventory of 

Mars (e.g. contributing to Objective [3] of the thesis), and provide an opportunity to 

evaluate environmental and topographical controls over the resulting volume 

distribution (e.g. contributing to Objective [5] of the thesis). The remainder of this 

preface discusses the methods that were adopted during the study. 
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GLF inventory compilation 

 

In 2012, Souness et al. published by far the most complete inventory of GLFs. This 

study built upon the earlier work of Milliken et al. (2003) to formally define, and 

analyse the distribution of GLFs between the latitudes of 25 and 65o in both 

hemispheres. Although representing a major advancement at the time, this analysis was 

conducted on the basis of point measurements and/or geometric buffers 

(rectangles/circles from Mars Orbiter Laser Altimeter [MOLA] derived background 

topography) rather than from directly mapped GLF boundaries. The later are of great 

importance for accurately assessing current ice extents and for providing baselines to 

assess past and future change in response to climate (e.g. Paul et al., 2009). The initial 

phase of this study therefore focused on deriving such boundaries, in the form of digital 

vector outlines, and the second phase looked to derive a volumetric estimate. 

 

 

Mapping GLFs 

Using the location and imagery information contained within the inventory of Souness 

et al. (2012), all Context Camera (CTX) images where a GLF had been identified were 

processed with a standard routine to map projected 6 m per pixel resolution images, via 

USGS’ Integrated Software for Imagers and Spectrometers 

(https://isis.astrogeology.usgs.gov/fixit/projects/isis/wiki/Working_with_Mars_Reconna

issance_Orbiter_CTX_Data). Given the nature of this imagery (panchromatic and single 

band), and the fact that GLFs are covered in a ubiquitous layer of debris, it was not 

possible to utilise automated techniques commonly applied to terrestrial glaciers (see 

Racoviteanu et al., 2009) for delineation of GLF outlines. Therefore, GLFs were 

manually delineated using the identification criteria of Souness et al. (2012), within 

Geographic Information System (GIS) software. 

 

 

Inventory data 

With the GLF outlines in digital format, it was possible to couple these data with the 

MOLA digital elevation model – the best globally available dataset – in order to include 

valuable environmental and topographical data with the inventory. Within the GIS, it is 

possible to derive grid-based (zonal) statistics for each glacier from the digital 
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intersection of both datasets. Inventory parameters calculated in this way were: ID, area, 

centroid x-y coordinates; elevations of maximum, minimum, mean, median and 

standard deviation; mean slope; and the mean aspect (also classified into eight cardinal 

and inter-cardinal directions). This method and parameter selection followed the 

recommendation of the terrestrial glaciological community (see Paul et al., 2009), and 

was chosen as it produces reproducible data that can be used in change assessment.   

 

 

Volumetric analysis 

Perhaps the biggest challenge was to derive the volumetric estimate of ice contained 

within the GLF population, given that our knowledge of the composition and ice 

thickness distribution of GLFs on Mars is severely limited (see Section 1.2.2) and 

difficult to obtain using currently available satellite-based geophysical methods 

(Appendix A). Although a number of sophisticated methods for estimating ice mass 

thickness of terrestrial glaciers exist (see Farinotti et al., 2017 and references therein), 

many of these approaches include data that is simply not available for their martian 

counterparts (e.g. surface velocity; mass balance; large-scale, high-resolution DEMs). 

One method that has been applied by terrestrial glaciologist interested in estimating ice 

volume from inaccessible/large areas is volume-area scaling (see Bahr et al., 2015 and 

references therein). Such ‘scaling’ approaches rest on the principle that (glacier) volume 

can be estimated from the (glacier) surface area alone. Although volume-area scaling 

has a number of assumptions and limitations that can influence the accuracy of the 

volume estimation (see detailed discussion in Section 3.2.5), given the availability of 

GLF area generated previously, it leaves volume-area scaling as the most viable option 

for volume estimation for the entire GLF population. 
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Abstract: Although a substantial ice reservoir has been identified within the mid-

latitudes of Mars, there is uncertainty regarding the formation, current and former 

volume, and dynamic evolution of these ice masses. Here, we present the first 

comprehensive ice volume estimate of martian glacier-like forms (GLFs) from 

systematic population scale mapping and volumetric analysis. The outlines of 1243 

GLFs were manually delineated from 6 m per pixel Context Camera (CTX) images and 

the volume of each determined using a volume-area scaling approach. Our results show 

that GLFs cover a surface area of 11344 ± 393 km2 and have a total volume of 1744 ± 

441 km3. Using two end-member scenarios for ice concentration by volume of 30 % 

(pore ice) and 90 % (debris-covered glacier ice), we calculate the volume of ice 

contained within GLFs to be between 523 ± 132 km3 (480 ± 121 Gt) and 1570 ± 397 

km3 (1439 ± 364 Gt), equivalent to a mean global water layer 3 ± 1 – 10 ± 3 mm thick. 

We investigate the local topographic setting of each GLF by reference to the Mars 

Orbiter Laser Altimeter (MOLA) digital elevation model. Our analysis reveals that 

globally GLFs are on average larger in latitudes >36o and on slopes between 2 and 8o. In 

the northern hemisphere GLFs between 500 and 2500 m in elevation and in the southern 

hemisphere GLFs with a northern aspect are also larger on average. The observed 

spatial patterns of GLF landform and volume distribution suggests that regional to local 

meteorological and topographical conditions play an important role in GLF ice 

accumulation and/or preservation. Assuming a net accumulation rate of 10 mm a-1 

typical of climatic excursions with high obliquity, we estimate a period of at least 13 ka 

is required to yield the average calculated GLF ice thickness of ~130 m. Such a period 

is well within the timeframe of a high obliquity cycle (20 – 40 ka), suggesting that the 

current GLF volume could have formed during a single climate excursion. 

 

 

3.1. Introduction  

 

Extensive evidence has been presented for the existence and character of buried water 

ice within Mars’ mid-latitudes (30 – 60o [e.g. Squyres, 1978, 1979; Squyres and Carr 

1986; Mustard et al., 2001; Head et al., 2003; Milliken et al., 2003; Arfstrom and 

Hartmann, 2005; Levy et al., 2007; Dickson et al., 2008; Holt et al., 2008; Head et al., 

2010, Dickson et al., 2012; Souness et al., 2012; Hartmann et al., 2014; Levy et al., 

2014]). Pervasive landforms consistent with viscous deformation and the resulting flow 
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of ice are of particular interest. Collectively, these landforms have been termed viscous 

flow features, or VFFs (Milliken et al., 2003; Souness et al., 2012). Among some of the 

earliest VFFs identified were lobate debris aprons (LDA [Squyres, 1978, 1979]), 

lineated valley fill (LVF [Squyres 1978, 1979]), and concentric crater fill (CFF 

[Squyres and Carr, 1986]). The original interpretations of these landforms were that 

they were either ice assisted (<30% ice) or were formed by debris/talus flows from 

ground ice emplaced by vapour diffusion (e.g. Squyres 1978, 1979). However, more 

recent investigations – corroborated with geophysical evidence showing many, if not 

all, of these landforms are composed of a substantial core (~90%) of water ice (Holt et 

al., 2008; Plaut et al., 2009) – have noted several similarities between VFFs and debris-

covered glaciers on Earth (e.g. Head et al., 2010; Mackay and Marchant, 2017).  

 

Given that water ice is not presently stable across much of the latitudinal range where 

these ice-rich landforms are observed (Mellon and Jakosky, 1995; Mellon et al., 2004), 

VFFs are suggested to have formed as a result of climatic excursions redistributing ice 

from polar to mid-latitude regions during periods of high (>30o) obliquity (Head et al., 

2003; Forget et al., 2006; Madeleine et al., 2009; Fassett et al., 2014). VFF survival to 

the present day is due, at least in part, to the ice being protected from sublimation by 

surface debris (Holt et al., 2008; Fastook et al., 2014). Constraining the timing of high 

obliquity periods required for VFF formation is hindered by the fact that numerical 

models can only satisfactorily predict orbital variations for approximately the last 20 

Ma (e.g. Laskar et al., 2004). However, crater-related age estimates for LDA, LVF and 

CFF constrain the age of formation to between 60 Ma and 1 Ga BP (see Berman et al., 

2015). Furthermore, ice volume estimates from analysis of mapped outlines of >11,000 

mid-latitude VFFs (LDA, LVF, CCF), suggest a total of between 1.25 x 105 and 3.74 x 

105 km3 of ice is potentially held within in these landforms; the equivalent of a global 

water layer between 0.8 and 2.4 m thick (Levy et al., 2014; Karlsson et al., 2015). Thus, 

VFFs constitute: (i) an important component of the surface/near-surface water inventory 

of Mars (Carr and Head, 2015); and (ii) have become an important proxy for improving 

our understanding of long term climate change throughout the Amazonian Epoch of 

Mars (e.g. Fassett et al., 2014; Fastook et al., 2014; Parsons and Holt, 2016).    

 

In recent years, growing attention has focused on a set of smaller scale VFFs that, in 

planform, appear similar to (debris-covered) valley glaciers on Earth (e.g. Milliken et 
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al., 2003; Arfstrom and Hartmann, 2005; Hubbard et al., 2011; Souness et al., 2012; 

Hubbard et al., 2014). Such landforms have become known as glacier-like forms, or 

GLFs (Hubbard et al., 2011; noting that these landforms have also been subject to a 

range of nomenclature within the literature, including: VFFs [Milliken et al., 2003]; 

glacier-like flows [Arfstrom and Hartmann, 2005]; superposed lineated valley fill [Levy 

et al., 2007] and small-scale superposed lineated valley fill [Levy et al., 2007]). GLFs 

appear to flow downslope, generally coalescing from cirque-like alcoves or valleys to a 

narrow elongate tongue that is commonly demarcated by raised latero-terminal ridges. 

The identification of such ridges suggests that GLFs are relict remains of more 

extensive ice masses that have receded since a climatic optimum (Hubbard et al., 2011; 

Hartmann et al., 2014; Brough et al., 2016a), perhaps as a result of the last major change 

from a high (~35o) to low (~25o) mean obliquity period ~4 Ma – 6 Ma BP (Laskar et al., 

2004). Although identified in isolation, GLFs often feed into pre-existing VFFs to form 

what Head et al. (2010) described as Mars’ integrated glacial landsystem.  

 

In total ~1300 GLFs have been identified between 30 and 60o latitude in both 

hemispheres and inter-hemispheric similarities in their morphology (e.g. length and 

width) and environmental settings suggests a common evolutionary history (Souness et 

al., 2012; Brough et al., 2016a). Age estimates for several GLFs in Crater Greg, 

although somewhat speculative due to the small areas involved and thus numbers of 

craters used (e.g. Dauber et al., 2013), indicate that they are likely <10 Ma old, with an 

upper boundary of <50 Ma (Arfstrom and Hartmann, 2005; Hartmann et al., 2014). 

Furthermore, numerous studies have noted a distinct stratigraphic relationship between 

GLFs and other ice-rich landforms (LDA, LVF and CCF), with the former being 

superposed on the later (e.g. Levy et al., 2007). The apparent younger age of GLFs and 

their stratigraphic relationships with other ice-rich landforms has provided supporting 

evidence for the hypothesis that GLFs represent a more recent, perhaps localised and 

small-scale, glacial phase and the more extensive LDA, LVF and CCF deposits record 

an earlier, regional, glacial phase (Levy et al., 2007; Dickson et al., 2008; Brough et al., 

2016b). Therefore, GLFs may represent: (i) important archives of geologically recent 

climatic change (e.g. Hartmann et al., 2014; Brough et al., 2016a); (ii) an active/recently 

active hydrological store; and (iii) effective landscaping agents through erosion, 

transportation and deposition of material. Despite these important questions, and unlike 

the wider LDA, LVF and CCF deposits (e.g. Levy et al., 2014; Karlsson et al., 2015), 
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no population-scale outline mapping or estimation of the water ice volume of GLFs 

exist and our understanding of the basic physical and mechanical properties of GLFs is 

still being added to (e.g. Souness et al., 2012; Hubbard et al., 2014; Brough et al., 

2016a). The study by Souness et al. (2012) represents the most comprehensive analysis 

of GLFs to date, providing the geographic coordinates and morphometric data for each 

individual GLF identified at the time. However, this analysis was conducted on the 

basis of point measurements and/or geometric buffers (rectangles/circles from Mars 

Orbiter Laser Altimeter [MOLA] derived background topography) rather than from 

directly mapped GLF boundaries. 

 

The aim of this paper is to advance our understanding of the glacial history of Mars’ 

GLFs by providing the first population-scale outline mapping and estimation of the 

water ice volume of GLFs, as well as evaluating controls over the resulting volume 

distribution. Specifically, we provide: (i) manually digitised outlines for all GLFs; (ii) 

an estimate of the volume of water ice held within GLFs, using a volume-area scaling 

approach commonly applied to ice masses on Earth (cf. Bahr et al., 2015 and references 

therein) and more recently to Mars (Karlsson et al., 2015); (iii) an assessment of 

potential controlling environmental variables on GLF volume; and (iv) an updated GLF 

inventory to that of Souness et al. (2012). 

 

 

3.2. Data and methods  

 

3.2.1. Datasets 

 

Analysis of GLFs in this study was based on all 1293 landforms identified in the 

database of Souness et al. (2012)1. This database contained two pieces of information 

used in the present study: (i) the Context Camera (CTX) image ID, and (ii) the location 

(latitude and longitude) of all GLFs. Where a GLF had been identified, map projected 

(level 2) CTX images at 6 m pixel resolution were produced using the USGS’ 

Integrated Software for Imagers and Spectrometers. The processed CTX images, GLF 
																																																													
1 Souness et al. (2012) originally identified 1309 GLFs. However, Brough et al. (2016a) recently refined 
this number to 1293 due to the identification of duplicate entries. 
2 Many of the environmental parameters described above formed part of the study by Souness et al. 
(2012). Our intention was not to replicate but to update the inventory of Souness et al. (2012) based on 
directly mapped, rather than approximated, outlines of individual GLFs. Herein, we only report on new 
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centroid coordinates and a gridded MOLA digital elevation model (DEM) were then 

analysed in ESRI’s ArcMap 10.1 Geographic Information System (GIS) software. 

MOLA elevation data at ~463 m horizontal resolution was used to define a number of 

topographic related parameters including slope and aspect (in radians and broken down 

into linear, sine and cosine, form).  

 

 

3.2.2. GLF outline mapping and area calculation 

 

GLF outlines (vector polygons) were manually digitised by a single user (SB) at a scale 

of 1:25 000 following the criteria set out in Souness et al. (2012) and summarised in 

Table 3.1. Three scenarios were identified and classified in demarcating the GLF 

boundaries (Figure 3.1). Type 1 GLFs (n = 249) were the easiest to demarcate, 

terminating on a non-ice surface and with their complete boundary being constrained by 

the surrounding topography (e.g. Figure 3.1a, d). Type 2 GLFs (n = 216) are similar to 

Type 1 but differ in that they terminate within a wider icy terrain, often superposed on 

the wider LDA/LVF (e.g. Figure 3.1b, e). Type 3 GLFs (n = 778) similarly terminate in 

wider icy terrain but do not have an unequivocal continuous boundary (e.g. Figure 3.1c, 

f). In this scenario, the boundary is identified based on observable changes in surface 

texture as indicated by criterion [ii] of Table 3.1.      

 

 

Table 3.1: Criteria for GLF identification following Souness et al. (2012). 

  
Description 
 

[i] Be surrounded by topography showing general evidence of flow over or around obstacles 
[ii] Be distinct from the surrounding landscape exhibiting a texture or colour difference from 

adjacent terrains 
[iii] Display surface foliation indicative of down-slope flow; e.g. compressional/extensional 

ridges, surface lineations, arcuate surface morphologies or surface crevassing 
[iv] Have a length to width ratio >1 (i.e. be longer than it is wide) 
[v] Have either a discernible ‘head’ or a discernible ‘terminus’ indicating a compositional 

boundary or process threshold 
[vi] Appear to contain a volume of ice (or some other viscous substance), having a flat ‘valley 

fill’ surface, thus differentiating it from a previously glaciated ‘GLF skeleton’ 
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Figure 3.1: Examples of GLFs (a – c) and their manually digitized outlines (d – f). (a) A 

Type 1 GLF. The boundary is readily demarcated with the GLF constrained within a 

valley and the terminus identified by moraine-like ridges (Subset of CTX image 

B04_011261_2146_XN_34N289W; centred on ~70.59o E, 33.12o N). (b) A Type 2 GLF. 

The boundary is again clear, but in this case the GLF is superposed on LVF (Subset of 

CTX image P22_009653_2224_XN_42N309W; centred on ~50.50o E, 42.24o N). (c) A 

Type 3 GLF. The boundary is somewhat unclear as the GLF emerges out of the alcove 

and merges with the outer LVF deposit (Subset of CTX image 

P03_002112_2208_XN_40N337W; centred on ~22.27o E, 40.07o N). 

 

 

Compound GLFs (i.e. where two or more GLFs share a border) were treated as follows. 

GLFs flowing in different directions from a common source area were each classified 

separately and mapped from the drainage divide (Figure SF1 in Supplementary Material 

Ch. 3). In contrast, ice flow units originating from separate source areas and converging 

into a single distinct terminus (e.g. Figure SF1) were classified as a single GLF. In all 

scenarios, when the GLF margin was flanked by a moraine-like ridge (MLR) the 

boundary was placed on the inside of the MLR. If multiple MLRs were visible, then the 

innermost ridge was used. Once the outline of the GLF had been mapped, any internal 

bedrock/nunatak perturbations were removed from the GIS polygon.  
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Each GLF was assigned to the unique ID corresponding to Souness et al. (2012), with 

GLFs that here are treated as one, rather than multiple entries, assigned the first 

corresponding ID. Subsequently, the area for each GLF was calculated in ArcMap using 

an Albers Equal Area Conic map projection. 

 

 

3.2.3. GLF volume calculation 

 

Knowledge of the composition and ice thickness distribution of GLFs on Mars is 

severely limited and difficult to obtain using currently available satellite-based 

geophysical methods (Hubbard et al., 2014). Numerous methods for estimating ice 

volume exist for ice masses on Earth (see Farinotti et al., 2017). However, the more 

sophisticated of these require input data not presently available for Mars (e.g., surface 

velocity; mass balance; large-scale, high-resolution DEMs). Here we applied a simple 

and commonly used volume-area scaling method (cf. Bahr et al., 2015 and references 

therein) based solely on (glacier) area. 
 

Volume-area scaling rests on the principle that (glacier) volume (V) can be estimated 

from the (glacier) surface area (A) with the relationship: V = kAϒ or log(V) = log(k) + ϒ 

log(A), where k and ϒ are scaling parameters derived from data, or through theoretical 

considerations (Bahr et al., 2015). Although a number of regional and global volume-

area scaling relationships have been proposed for glaciers on Earth (see Bahr et al., 

2015), given the general absence of ancillary data, volume-area scaling relationships for 

martian ice masses are scant and, to our knowledge, the only scaling relationship for 

mid-latitude VFFs is provided by Karlsson et al. (2015). Based on radar-validated 

measurements of ice thickness from LDAs on Mars, Karlsson et al. (2015) determined a 

volume-area relationship: log(V) = 1.12 log(A) – 0.978. Although obtained from LDA, 

in the absence of contemporaneous radar-validated measurements for GLFs, we adopted 

this relationship and applied it to our outline mapping (see Section 3.2.2) to calculate 

the volume for each individual GLF. 
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3.2.4. GLF inventory attributes 

 

3.2.4.1. Environmental parameters 

 

As well as the ID, Type, area and volume values already attributed to each GLF (see 

Sections 3.2.2 and 3.2.3), several environmental parameters were calculated from the 

MOLA topographic datasets (see Section 3.2.1) including: the centroid x-y coordinates; 

elevations of maximum, minimum, mean, median and standard deviation; mean slope; 

and the mean aspect (also classified into eight cardinal and inter-cardinal directions) 2. 

The mean aspect for each GLF was derived following Paul (2007) and the resulting 

orientations were classified into 45° bins corresponding to the eight cardinal and inter-

cardinal directions. The mapped GLF outlines and corresponding environmental 

parameters are provided as supplementary material.  

 

 

3.2.4.2. Analysis of environmental parameters 

 

Several environmental parameters were extracted and analysed to evaluate controls over 

GLF volume. Mean GLF volume (km3) was calculated as a function of longitude (o), 

latitude (o), aspect (cardinal and inter-cardinal directions), slope (o) and elevation (m 

relative to Mars datum), and two sample t-tests were run, using an alpha (P) level of 

0.05, to assess for significant differences between populations (Table ST1 in 

Supplementary Material Ch. 3). Global and hemispheric GLF counts and total GLF 

volume were also plotted and can be found in Supplementary Material Ch. 3 (Figures 

SF2 – SF5 and Tables ST2 – ST6). 

 

 

 
																																																													
2 Many of the environmental parameters described above formed part of the study by Souness et al. 
(2012). Our intention was not to replicate but to update the inventory of Souness et al. (2012) based on 
directly mapped, rather than approximated, outlines of individual GLFs. Herein, we only report on new 
findings obtained from this study or through results obtained from previously unreported analysis. 



72  CHAPTER 3.   AREA AND VOLUME OF GLACIER-LIKE FORMS 

3.2.5. Uncertainty in GLF mapping and volume calculation  

 

3.2.5.1. Outline mapping 

 

Manual classification is prone to errors that reflect a users’ ability to identify the 

features of interest (Smith, 2011). Glacier boundaries, and particularly those of debris-

covered glaciers, are inherently difficult to define from remotely-sensed imagery alone 

(e.g. Paul et al., 2013). However, these difficulties can be mitigated to some degree by a 

single interpreter following a consistent and tightly constrained mapping technique in 

terms of e.g., criteria and scale (Smith, 2011), both of which were followed in the 

present study (see Section 3.2.2).  

 

In order to quantify uncertainty associated with this study’s outline mapping, we 

followed standard procedure (e.g. Paul et al., 2013) and conducted an error analysis by 

performing multiple and independent digitisations of a selection of GLFs. Each of the 

three GLF Types (see Section 3.2.2) presented in Figure 3.1 was digitised independently 

at a scale of 1:25 000 five times, and the resulting GLF areas were compared. This 

yielded, a mean standard deviation of 2.0, 2.2 and 4.0 % of the area for Types 1, 2 and 3 

GLFs respectively. The uncertainty in the total mapped GLF area reported in this study 

was consequently calculated by applying these Type-dependant (1 std. dev.) variations 

to each individual GLF as appropriate.   

 

 

3.2.5.2. Volume estimation 

 

Karlsson et al. (2015) constrained their volume-area relationship by interpolating 

Shallow Radar (SHARAD) measurements into bed elevation maps for seven LDAs, 

where sufficient SHARAD coverage was available, in order to calculate their thickness 

and thus estimate their volume. By comparing misfit in their interpolated bed elevation 

maps with individual SHARAD tracks, Karlsson et al. (2015) assigned an uncertainty of 

25 % to their calibration data set. In the absence of SHARAD data for GLFs we adopt 

this value and add it to the area uncertainty of 2.0, 2.2 and 4.0 % to Type 1, 2 and 3 

GLFs, respectively (see Section 3.2.5.1).  
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Furthermore, volume-area scaling has a number of assumptions and limitations that can 

influence the accuracy of the volume estimation (see review by Bahr et al., 2015 for 

detailed discussion). For example, at the individual glacier scale, the use of a scaling 

parameter k that has not been established for that glacier (i.e. the use of a mean, global 

value) can lead to large volume errors, as the fractional error in estimated volume is 

equal to the fractional error in k (Bahr et al., 2015). Applying a mean value of k to a 

single randomly selected glacier can cause volume errors of ~34%, based on a one 

standard deviation error in k (Bahr et al., 2015). However, for large populations of 

glaciers (n >100), volume-area scaling can give accurate estimates of their total volume 

even with significant errors in k (Bahr et al., 2015). Another issue that needs 

consideration is that when applied only to a part or subsection of a glacier, volume-area 

scaling significantly underestimates the correct volume, producing underestimations as 

large as 100% for those glaciers (Bahr et al., 2015). Given that some part of the 

boundary of Type 3 GLFs is connected to another ice body (Figure 3.1c), our volume 

estimation is likely conservative and the actual volume of ice stored in GLFs larger than 

that reported herein. Given the challenges of obtaining data able to resolve this issue 

(e.g. radar) and the likely range of differing conditions across the GLF population, it is 

difficult to quantify the value of this underestimation with any confidence and its 

constraint remains to be addressed by future studies.  

 

 

3.3. Results  

 

3.3.1. GLF outline mapping 

 

From a total population of 1293 GLFs identified by Souness et al. (2012), we positively 

identified 1273 (~98 %) of them, with the remaining 20 being either unidentifiable or 

repeated GLFs in the earlier inventory. Mapping these 1273 GLFs resulted in 1243 

unique entries, with 30 compound GLFs being re-classified as single GLFs. Of the total 

number of 1243 mapped GLFs, 698 (~56 %) are located in the northern hemisphere and 

545 (~44 %) in the southern hemisphere (Figure 3.2).  
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Figure 3.2: Map of Mars showing the mid-latitude distribution of each mapped GLF 

(black dots). 1243 GLFs were mapped globally: 698 were located in the northern 

hemisphere and 545 were located in the southern hemisphere. Red dots identify the 

locations of the 20 GLFs not mapped in this study. Background map is MOLA elevation 

transparency overlain on a MOLA hillshade projection. 

 

 

3.3.2. GLF area  

 

In total, the 1243 GLFs identified have a surface area of 11344 ± 393 km2 (Table 3.2), 

equivalent to 0.01% of the total surface area of Mars. Of this surface area, 6680 ± 240 

km2 (~59 %) is in the northern hemisphere and 4664 ± 154 km2 (~41 %) is in the 

southern hemisphere (Table 3.2). Global mean GLF area is 9.13 km2 (std. dev. = 18.69), 

comprising 9.57 km2 (std. dev. = 21.78) and 8.56 km2 (std. dev. = 13.76) in the northern 

and southern hemispheres, respectively (Table 3.2). 

 

 

3.3.3. GLF volume 

 

The following analyses were carried out in terms of GLF volume only but, given the 

scaling method applied, similar relationships apply to GLF area. 
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Table 3.2: Basic descriptive statistics for GLF area and volume. 

 
 
 

 
Area 

 

  
Volume 

 

ROI Total 
(km2) 

Total 
(%) 

Mean 
(km2) 

Std. 
dev. 

 Total 
(km3) 

Total 
(%) 

Mean 
(km3) 

Std. 
dev. 

 
Global 

 

 
11343.93 

 
100.0 

 
9.13 

 
18.69 

  
1743.60 

 
100.0 

 
1.40 

 
3.54 

North 6679.75 58.9 9.57 21.78  1045.10 59.9 1.50 4.22 
South 

 
4664.17 41.1 8.56 13.76  698.49 40.1 1.28 2.41 

 

 

3.3.3.1. Population-scale volume distribution  

 

Spatial distribution by volume 

We calculate the total martian GLF volume to be 1744 ± 441 km3 (Table 3.2). Of this 

volume, 1045 ± 265 km3 (~60 %) is in the northern hemisphere and 698 ± 175 km3 (~40 

%) is in the southern hemisphere (Table 3.2). Global mean GLF volume is 1.40 km3 

(std. dev. = 3.54), comprising 1.50 km3 (std. dev. = 4.22) and 1.28 km3 (std. dev. = 

2.41) in the northern and southern hemispheres, respectively (Table 3.2).  

 

Several regions show high volumetric contributions, including the ‘fretted terrain’ of the 

northern hemisphere and regions surrounding the Hellas impact basin in the southern 

hemisphere (Figures 3.3 and SF4). This distribution broadly reflects the overall GLF 

population (Figure SF2): mean GLF volume in these regions is similar to the 

hemispheric GLF mean (Figure 3.3). However, there are two regions where mean GLF 

volume has a statistically significant difference from the respective hemispheric mean; 

these are Tempe Terra (between -95 and -65o longitude) in the northern hemisphere (P 

= 0.023) and surrounding the Argyre impact basin (between -65 and -20o longitude) in 

the southern hemisphere (P = 0.016), where mean GLF volume increases to 2.85 and 

2.31 km3, respectively (Figure 3.3 and Table ST1). 
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Figure 3.3: Map of Mars showing the mid-latitude distribution of individual GLF 

volume. The colour and size of the circles represents the volume (km3) of each GLF 

(green through to purple; larger circles = more volume). GLF volume is 1743.60 km3 

globally: 1045.10 km3 is in the northern hemisphere and 698.49 km3 is in the southern 

hemisphere. Bar plots, showing mean GLF volume in 5o longitude bins, for each 

hemisphere are presented above and below the distribution map. Background map as in 

Figure 3.2.  
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Figure 3.4: GLF count and volume per size class for: (a) global, (b) northern 

hemisphere, and (c) southern hemisphere GLF populations. 

 

 

Size-class distribution by volume 

The distribution of GLFs by count and total volume for selected size classes is 

summarised in Table ST7 of the supplementary material and the normalised (%) 

distribution presented in Figure 3.4. Globally, the distribution appears to be dominated 

by middle size-class GLFs, with ~87 % of the total count and ~55 % of the total volume 

contained within GLFs of volume 0.1 – 5 km3. The two smallest size classes for volume 

(e.g. GLFs <0.1 km3) host ~8 % of the total count but contain <1 % of the total volume. 

In contrast, only ~5 % of GLFs are in the two largest size classes for volume (e.g. GLFs 

>5 km3), but they contribute ~45 % of the total volume (Figure 3.4a and Table ST7). On 

the whole, GLF size-class distribution is similar for both hemispheres (Figure 3.4b – c 

and Table ST7).  

 

 

3.3.3.2. Environmental controls over GLF volume distribution 

 

Latitude 

Mean GLF volume increases with latitude such that GLFs located <36o north or south 

have mean volumes of 0.98 and 0.62 km3 respectively, compared to mean volumes of 

1.69 and 1.42 km3 for those located >36o (Figure 3.5a and Table ST3). This difference 

in mean volume between GLFs located <36o and GLFs located >36o is statistically 

significant for both the northern (P = 0.006) and southern hemispheres (P = <0.001), 

thus revealing those lower-latitude GLFs have smaller average volumes than those 
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GLFs at higher-latitudes. This association is particularly strong in the southern 

hemisphere, where mean GLF volume increases to 3.27 km3 at latitudes >48o (Figure 

3.5a and Table ST3). 

 

 

Aspect  

In both hemispheres GLFs flowing towards the north (NW, N, NE) are larger than those 

flowing towards the south (SE, S, SW) (Figure 3.5b – d and Table ST4). In the northern 

hemisphere GLFs with a northern aspect have a mean volume of 1.55 km3 in contrast to 

a mean volume of 1.19 km3 for GLFs with a southern aspect. This difference is stronger 

in the southern hemisphere where GLFs have mean volumes of 1.91 and 1.10 km3 for 

northern and southern aspects, respectively. However, a statistically significant 

difference in mean volume between northern and southern flowing GLFs is noted only 

for the southern hemisphere (P = 0.024). 

 

 

Slope 

Mean GLF volume peaks on slopes between 2 and 4o in the northern and southern 

hemispheres, respectively (Figure 3.5e – g and Table ST5). In both hemispheres, there 

is a statistically significant difference in mean volume between GLFs located on 2 – 8o 

slopes and GLFs located on slopes outside the range of 2 – 8o (P = <0.001), with the 

former having larger mean volumes of 2.94 and 2.46 km3 and the later having smaller 

mean volumes of 0.71 and 0.95 km3 for the northern and southern hemispheres, 

respectively. This association is enhanced in the northern hemisphere where a mean 

GLF volume of 7.13 km3 is noted for GLFs on slopes between 2 and 4o (Figure 3.5e – g 

and Table ST5). Plotting mean slope against GLF size (Figure 3.6) reveals that smaller 

GLFs show increased variability in slope where they are located compared to larger 

GLFs which show less variability and cover a narrower range of lower slope values.  
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Figure 3.5: Bar plots showing mean GLF volume (km3) for: (a) global and hemispheric 

latitude in 2o bins; (b) global, (c) northern and (d) southern hemispheric aspect in the 

eight cardinal and inter-cardinal directions; (e) global, (f) northern and (g) southern 

hemispheric slope in 2o bins; (h) global, (i) northern hemisphere and (j) southern 

hemisphere elevation in 500 m bins. 
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Figure 3.6: Scatter plot showing GLF volume against mean GLF slope for each 

individual GLF. The distribution reveals inter-hemispheric similarity between the 

northern (black open circles) and southern hemispheres (red open circles). 

 

 

Elevation 

Two zones host GLFs of increased mean volume, these are between -3500 and -2000 m, 

with a mean GLF volume of 1.86 km3, and between 500 and 2500 m, with a mean GLF 

volume of 1.67 km3 (Figure 3.5h – j and Table ST6). Although these peaks are visible in 

both the northern and southern hemisphere it does mask an inter-hemispheric contrast: 

in the northern hemisphere the mean GLF volume is greatest between 500 and 2500 m 

(3.73 km3) and in the southern hemisphere mean GLF volume is greatest between -3500 

and -2000 m (2.99 km3). However, this difference in mean GLF volume is only 

statistically significant for those northern hemispheric GLFs between 500 and 2500 m 

(P = 0.049). 

 

 

3.4. Interpretation and discussion  

 

3.4.1. GLF volume distribution and contribution to mid-latitude ice 

  

Globally, GLF volume is distributed similarly to the parent GLF population (Figures 3.3 

and SF2), with several regions of high volume concentration along the martian 

dichotomy boundary, Tempa Terra and Phlegra Montes in the northern hemisphere and 
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to the east of the Hellas impact basin in the southern hemisphere. This spatial 

distribution is similar to the wider volume distribution of VFFs (LDA and LVF) in the 

mid-latitudes of Mars (e.g. Levy et al., 2014), indicating similarity in controls on GLF 

and VFF formation and/or preservation. Coupled with the observed spatial variation in 

GLF volume (Figures 3.3 and 3.4), these observations add further support to the 

hypothesis that regional to local meteorological and topographical conditions play an 

important role in VFF formation due to ice accumulation and preservation (Dickson et 

al., 2012; Levy et al., 2014; Brough et al., 2016a), and it is not exclusively a result of 

latitude-dependent insolation forcing. Under this scenario, specific atmospheric 

circulation patterns, driven by changes in orbital parameters, strongly influence the 

locations where glacial conditions persist, and could be an explanation for the spatial 

heterogeneity noted in the distribution of GLFs and the wider VFFs (e.g. Levy et al., 

2014). Indeed, several studies using general circulation models (GCMs) for Mars have 

predicted, during periods of increased obliquity and atmospheric dust, ice accumulation 

in regions that match the observed VFF distribution (e.g. Forget et al., 2006; Madeleine 

et al., 2009). 

 

Our estimated volume of 1744 ± 441 km3 from mid-latitude GLFs does not take into 

account variations in the ice content of GLFs. Following Levy et al. (2014), we chose 

two end member scenarios to calculate ice content (see Section 3.1): scenario (i) favours 

a low ice content value of 30% by volume, as suggested by the ice assisted debris/rock 

glacier origin (e.g. Squyres, 1978, 1979); and scenario (ii) favours a high ice content 

value of 90% by volume, as suggested by the debris-covered glacier origin (e.g. Holt et 

al., 2008; Head et al., 2010). These two end member scenarios yield ice contributions of 

523 ± 132 km3 (480 ± 121 Gt) and 1570 ± 397 km3 (1439 ± 364 Gt) for mid-latitude 

GLFs, or the equivalent of a global water layer between 3 ± 1 and 10 ± 3 mm thick. 

Although it is unlikely that all GLFs, and by extension VFFs, are compositionally 

homogeneous (e.g. Parson et al., 2011), converging evidence from morphological (Head 

et al., 2010), geophysical (Holt et al., 2008; Plaut et al., 2009) and numerical (Forget et 

al., 2006; Madeleine et al., 2009; Fastook et al., 2014) studies, point towards VFF 

formation through the accumulation of atmospherically derived ice. We therefore favour 

the (higher) debris-covered glacier ice volume estimate of 1570 ± 397 km3 (1439 ± 364 

Gt). 
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The VFF inventory of Levy et al. (2014), although being the most comprehensive to 

date, did not include GLFs in their ice volume estimation. Thus, the contribution of 

mid-latitude VFFs to the present day surface/near-surface water budget should be 

revised upwards to account for this. We note the concurrence of some 130 GLFs 

mapped in this inventory and those identified as part of the wider VFF analysis by Levy 

et al. (2014). These 130 GLFs have an estimated ice volume of 606 ± 154 km3. 

Therefore, the remaining 1203 GLFs add an additional ice volume of between 341 ± 86 

and 1024 ± 258 km3 to the VFF estimate of Levy et al. (2014), based on our two end 

member scenarios. 

 

Comparing the volume of GLFs (on the order of 103) to other ice deposits located in 

Mars’ mid-latitudes (Table 3.3) reveals that they contribute about an order of magnitude 

less (on the order of 104) than the latitude-dependent mantle (Mustard et al., 2001; 

Kreslavsky and Head, 2002; Conway and Balme, 2014), LVF and CCF, and are of 

about two orders of magnitude less (on the order of 105) than LDA (Levy et al., 2014; 

Karlsson et al., 2015). In total, GLFs contribute an additional ice volume of ~0.4% to 

Mars’ currently known mid-latitude deposits. On a global scale, GLFs contain <0.1% of 

the volume of ice stored in the polar ice caps (Table 3.3), thus GLFs contribute only a 

minor component to the present day surface/near-surface water budget (e.g. Carr and 

Head 2015). However, taking into account the degraded nature of many GLFs (Brough 

et al., 2016a), it is possible that they once contributed a much larger volume to Mars’ 

water budget. Furthermore, given that many GLFs are clearly demarcated by metres 

high MLR (e.g. Hubbard et al., 2011) and/or coalesce into the wider glacial valley 

landsystem (e.g. Head et al., 2010), they likely constitute an important component to the 

erosion and supply of debris in mid-latitude environments (Levy et al., 2016) and, given 

their Late Amazonian age, may represent some of the most recent geomorphological 

activity on Mars (Hubbard et al., 2014; Brough et al., 2016a).  
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Table 3.3: Ice volume estimates and global equivalent water layer thickness for several 

mid-latitude landforms. The two polar caps are included for comparison. 

 
Landform 

 

 
Ice volume 

(km3) 
 

 
Global equivalent water layer 

(m) 

 
References 

 
Glacier-like 

forms 
 

 
0.52 – 1.57 x 103 

 
0.003 – 0.010 

 
This study 

North Polar 
Cap 

0.82 – 1.14 x 106 5.2 – 7.2 Smith et al., 2001; Putzig 
et al., 2009 

    
South Polar 

Cap 
1.20 – 1.70 x 106 7.6 – 10.8 Zubar et al., 1998; Plaut et 

al., 2007 
    

Lobate debris 
aprons 

0.79 – 2.36 x 105 0.50 – 1.50 Levy et al., 2014; Karlsson 
et al., 2015 

    
Concentric 
crater fill 

2.63 – 7.88 x 104 0.17 – 0.50 Levy et al., 2014 

    
Lineated 
valley fill 

1.95 – 5.86 x 104 0.12 – 0.37 Levy et al., 2014 

    
Latitude-
dependent 

mantle 

1.00 – 8.00 x 104 0.06 – 0.51 Mustard et al., 2001; 
Kreslavsk and Head, 2002; 
Conway and Balme, 2014 

 
 

 

3.4.2. Controls on GLF volume 

 

3.4.2.1. Latitude 

 

Latitude has a systematic control over GLF volume with an increase in mean GLF 

volume with increasing latitude, particularly enhanced in the southern hemisphere 

(Figure 3.5a and Table ST3). This relationship is highlighted by the difference in mean 

GLF volume when comparing GLFs at lower latitudes (<36o) to those GLFs at higher 

latitudes (>36o). There are two potential explanations as to why lower latitude GLFs are 

on average smaller than higher latitude GLFs. First, on Earth, the distribution of glacier 

ice (area and volume) can, other things being equal, be controlled by the proximity to a 

precipitation source with glaciers in regions farther from a source diminishing in size 

(Koerner, 1977). Thus, given that the polar regions are the principal source areas of 

mass exchange with the mid-latitudes during climatic fluctuations (e.g. Head et al., 
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2003), it is possible that lower latitude regions receive less mass during initial 

emplacement due to their distance from the contributing moisture source. Second, the 

latitudinal boundary of 36o, above which mean GLF volume increases, is close to the 

current stability threshold for shallow ground ice, which places ice stability at latitudes 

pole-ward of 40 – 45o (Mellon and Jakosky, 1995; Mellon et al., 2004). Therefore, the 

mean volume difference between GLFs below and above 36o north and south can be 

explained by the fact that ice below the latitudinal threshold for ice stability is 

susceptible to preferential removal via sublimation/ablation – indeed GLFs at latitudes 

<40o have previously been shown as preferential sites of recession compared to GLFs at 

latitudes >40o (Brough et al., 2016a). Accordingly, it is possible that at least two 

differing signals are contributing to the observed latitudinal pattern in mean GLF 

volume, with one related to initial reduced ice emplacement in, and the other to 

preferential ice removal from, GLFs at latitudes <36o. Although the exact influence and 

contribution of these two factors to GLF size remains unknown, it does offer viable 

explanations for the observed difference in mean GLF volume between latitudes above 

and below 36o. 

 

 

3.4.2.2. Aspect 

 

Although, as expected, pole-ward facing GLFs predominate in the southern hemisphere 

(Figure SF3 [Souness et al., 2012]), these GLFs are smaller and contain less mass on 

average than those facing north (Figure 3.5d). In terrestrial scenarios pole-ward facing 

alcoves are often preferential locations for ice accumulation and/or preservation due to 

reduced insolation (Unwin, 1973). However, our observations of equator-facing GLFs 

being on average larger than pole-ward facing GLFs suggests that a purely insolation 

driven argument cannot be invoked for GLFs in the southern hemisphere, or the effect is 

overwhelmed by a counteracting process. This pattern suggests that insolation alone 

does not control GLF volume in the southern hemisphere and again points to the 

possibility that local meteorological and topographical conditions can play an important 

role in ice accumulation and preservation (Dickson et al., 2012; Levy et al., 2014; 

Brough et al., 2016a).   
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3.4.2.3. Slope 

 

GLFs located on slopes between 2 and 8o have the largest average volume (Figure 3.5e 

– g and Table ST5). The influence of slope on glacier thickness on Earth is well-

established and shows that larger glaciers tend to have lower mean slopes and smaller 

glaciers tend to have steeper slopes, principally due to the influence of slope on driving 

stress and hence velocity (Cuffey and Paterson, 2010). Thus, suggesting that slope 

process may have a similar influence on martian GLFs as their Earth based counterparts.  

 

In terms of the relationship between mean slope and GLF size (Figure 3.6), the increase 

in the variability of slope values for smaller GLFs reveals that smaller GLFs are less 

sensitive to their topographic settings than larger GLFs, implying that smaller GLFs can 

form in a wider range of terrain. This again suggests that, for smaller GLFs, local 

meteorological and topographical conditions can combine to provide microclimates 

favourable for the accumulation and/or preservation of ice. A similar effect has been 

reported in relation to the topographic setting of glaciers in the European Alps on Earth 

(e.g. Paul et al., 2011). As a consequence, the increased topographic variability 

observed for small GLFs may affect their response to current/future climatic 

perturbations, such that small GLFs that are of comparable size may show variable 

responses to the same climatic perturbation. 

 

 

3.4.2.4. Elevation 

 

Mean GLF volume is noticeably larger between the elevations of 500 and 2500 m in the 

northern hemisphere, suggesting this zone holds some control over GLF volume (Figure 

3.5h – j and Table ST6). Plotting the distribution of these northern hemisphere GLFs 

indicates that they cluster around Tempa Terra (Figure 3.7). This suggests that GLF 

volume may be related to a combination of both elevation and local to regional 

meteorological conditions providing favourable conditions for ice accumulation and/or 

preservation. Indeed, large-scale martian atmospheric modelling indicates that high net 

ice accumulation is predicted in Tempa Terra under high obliquity conditions (e.g. 

Madeleine et al., 2009).  

 



86  CHAPTER 3.   AREA AND VOLUME OF GLACIER-LIKE FORMS 

 
Figure 3.7: Map of Mars showing distribution of elevation zones of high mean GLF 

volume. Red circles (n = 34) denote the distribution of northern hemisphere GLFs 

between 500 and 2500 m. Note the predominance of GLFs in the Tempa Terra region 

(red box).  

 

 

3.4.3. Implications for Late Amazonian glaciation on Mars 

 

Age estimates place GLFs as young surface landforms <50 Ma and likely <10 Ma old 

(Arfstrom and Hartmann, 2005; Hartmann et al., 2014), but our understanding of when 

or for how long glacial conditions are required for GLF formation is uncertain. A mean 

ice thickness of ~130 m was calculated from the area and volume of each GLF in our 

analysis. Under a 10 mm a-1 accumulation rate possible during climatic excursions of 

high obliquity (e.g. Madeleine et al., 2009), ice of this thickness could have 

accumulated within ~13 ka assuming no influent mass from beyond GLF boundaries. 

Considering each high obliquity excursion, which were common earlier than 300 ka 

ago, last on the order of 20 – 40 ka (Laskar et al., 2002; Head et al., 2003) it is possible 

that Mars’ current GLF volume could have been emplaced during a single event – as 

suggested for the associated latitude-dependant mantle (Conway and Balme, 2014). 

However, as ~33 % of the GLF population shows evidence of ablation and mass loss 

(Brough et al., 2016a) it is likely that a more complex formation history exists, perhaps 

requiring multiple high obliquity accumulation cycles, a scenario proposed to explain 
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the formation of some larger VFFs (e.g. Parsons and Holt, 2016). Considering there has 

been over 15 high obliquity periods during the last 2 Ma (Laskar et al., 2002; Head et 

al., 2003), such a scenario is plausible and indeed, likely (e.g. Milliken et al., 2003). 

Therefore, the timespan for formation of ~13 ka should be viewed as an absolute 

minimum limit. As with the wider VFF deposits (e.g. Fastook et al., 2014; Parsons and 

Holt, 2016), constraining the environmental conditions and timespan required to form 

GLFs can be tested with numerical ice flow models if appropriate boundary conditions 

are known and is a direction for future research. 

 

 

3.5. Conclusions  

 

A new population-scale GLF inventory was compiled through a combination of MOLA 

topographic data and directly mapped outlines of 1243 GLFs from CTX imagery. We 

used these products to: (i) provide the first ice volume estimate of GLFs to the mid-

latitude surface/near surface water budget on Mars; (ii) improve our understanding of 

the controls on GLF formation and evolution; and (iii) assess their formation in relation 

to the most recent high obliquity climatic excursions on Mars. From these 

investigations, we conclude the following: 

 

• GLF area was calculated to be 11344 ± 393 km2, equivalent to ~0.01 % of the 

total surface area of Mars. Of this surface area, 6680 ± 240 km2 (~59 %) is in the 

northern hemisphere and 4664 ± 154 km2 (~41 %) is in the southern hemisphere.  

 

• GLF volume was calculated to be 1744 ± 441 km3. Using two end member 

scenarios the actual population-scale ice volume contribution is found to be 523 

± 132 km3 (480 ± 121 Gt) for a pore ice content (30 % ice by volume) scenario 

and 1570 ± 397 km3 (1439 ± 364 Gt) for a debris-covered glacier (90 % ice by 

volume) scenario. This mapped out to a global equivalent water layer of between 

3 ± 1 and 10 ± 3 mm thick. Based on converging morphological, geophysical 

and numerical evidence pointing towards GLF/VFF formation through the 

accumulation of atmospherically derived ice, we favour the (higher) debris-

covered glacier estimate. 
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• GLF deposits represent an ice volume contribution on the order of 103 km3, 

between one and two orders of magnitude less than those reported for LDM, 

LDA, LVF and CCF (Mustard et al., 2001; Kreslavsky and Head, 2002; Conway 

and Balme, 2014; Levy et al., 2014; Karlsson et al., 2015). GLFs contribute an 

equivalent of 0.4 % of currently known mid-latitude ice deposits. 

 

• Coupling mean thickness estimates with GCM derived ice accumulation rates 

(e.g. Madeleine et al., 2009) suggests that GLFs require at least 13 ka to obtain 

the equivalent mass currently stored in these features. This places a minimum 

boundary on the duration of ice emplacement that is less than one high obliquity 

cycle. Although we do not rule out the possibility that formation requires 

multiple depositional cycles and suggest that better understanding the required 

formation conditions for GLFs be a priority research area. 

 

• Spatial patterns of GLF landform and volume distribution suggest that regional 

to local meteorological and topographical conditions play an important role in 

GLF ice accumulation and preservation. Specifically, GLF location and volume, 

although influenced by, is not simply a relation of latitudinal dependence or 

insolation driven factors and that variation in physical environments is also 

important in providing microclimates favourable for the accumulation and/or 

preservation of ice. 

 

• Assessment of the environmental conditions that influence GLF accumulation 

and/or preservation revealed that GLF size is, to a certain extent, controlled by 

their physical setting. Specifically, GLFs globally are on average larger in 

latitudes >36o and on slopes between 2 and 8o. In the northern hemisphere GLFs 

between 500 and 2500 m in elevation and in the southern hemisphere GLFs with 

a northern aspect are also larger on average.  
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This is supplementary material to an article under review for publication in Earth and 

Planetary Science Letters, submitted on 15/08/2017. 

 

This supplementary material consists of five figures, seven tables and a geographic 

information system (GIS) ready version of the glacier-like form (GLF) inventory. The 

supplementary material is organised as follows: 

 

Supplementary figures and tables: Figure SF1 presents two examples of compound 

GLFs and their manually digitised outlines. Figures SF2 – SF5 present the raw GLF 

count and total volume of those GLFs in various size classes for longitude (o), latitude 

(o), aspect sector (cardinal and inter-cardinal direction), slope (o) and elevation (m). The 

numerical values for these size classes are presented in Tables ST2 – ST6; this data 

provides the basis for Figures 3.3 and 3.5 of the corresponding manuscript. Table ST1 

summarises two sample t-test results for selected longitude (o), latitude (o), aspect sector 

(cardinal and inter-cardinal direction), slope (o) and elevation (m) zones discussed in the 

corresponding manuscript. Table ST7 summarises the distribution of GLFs by count 

and total volume of those GLFs in selected size classes; this data provides the basis for 

Figure 3.4 of the corresponding manuscript.     
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GLF_inventroy.zip: The GIS shapefile and associated metadata for the GLF inventory 

can be accessed at:  

https://www.dropbox.com/s/p9hoe3idotzp8ts/GLF_inventory.zip?dl=0.  

 

The header information for the GIS attribute table is summarised below: 

Parameter Description Unit 

GLF_ID Unique ID for each GLF entry - 

GLF_ID_Sou Corresponding ID from the inventory of Souness et al. (2012) 
Icarus, 217, 243-255 

- 

x_dd Longitude coordinate in decimal degrees o 

y_dd Latitude coordinate in decimal degrees o 

area_km2 GLF area km2 

vol_km3 GLF volume km3 

elev_min Minimum GLF elevation m 

elev_max Maximum GLF elevation m 

elev_mean Mean GLF elevation m 

elev_media Median GLF elevation m 

elev_std Standard deviation of GLF elevation m 

slope_mean Mean GLF slope (degrees) o 

aspect_360 GLF aspect (0-360) o 

aspect_sec GLF aspect divided into eight cardinal and inter-cardinal directions 
(N, NE, E, SE, S, SW, W, NW) 

- 

deposit_ty Relationship of GLF to surrounding terrain classified into Type 1; 
Type 2 or Type 3 (see Section  2.2 of the corresponding manuscript 

for full description) 

- 

Levy_2014 Does GLF overlap with VFFs of Levy et al. (2014) JGR: Planets¸ 
119, 2188-2196? 1 = no; 2 = yes 

- 
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SF1: Examples of compound GLFs (a and b) and their manually digitised outlines (c 

and d). (a) Divergent GLFs. As depicted in transect A – A’ (x-axis 0 to 15 km; y-axis -

2700 to -2000 m) two GLFs flow away from a central divide and both terminate with a 

distinct lobate form. Such entries are mapped as two separate GLFs, with the divide 

located at the topographic peak (Subset of CTX image 

P16_007451_2211_XI_41N303W; centred on ~56.35o E, 42.14o N). (b) Converging 

GLFs. Two GLFs in separate valleys coalesce and terminate in one trunk. Such entries 

are mapped as one single GLF in this study (Subset of CTX image 

P17_007490_2095_XN_29N286W; centred on ~73.60o E, 30.43o N). 
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SF2: Map of Mars showing the mid-latitude distribution of mapped GLFs (data from 

Souness et al., 2012). 1243 GLFs were mapped globally: 698 were located in the 

northern hemisphere and 545 were located in the southern hemisphere. Histograms, 

showing GLF count in 5o longitude bins, for each hemisphere are presented above and 

below the distribution map. Background map is MOLA elevation transparency overlain 

on a MOLA hillshade projection. 
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SF3: Histograms showing GLF count for: (a) global and hemispheric latitude in 2o 

bins; (b) global, (c) northern and (d) southern hemispheric aspect in the eight cardinal 

and inter-cardinal directions; (e) global, (f) northern and (g) southern hemispheric 

slope in 2o bins; (h) global, (i) northern and (j) southern hemispheric elevation in 500 m 

bins. 
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SF4: Map of Mars showing the mid-latitude distribution of GLF volume. The colour 

and size of the circles represents the volume (km3) of each GLF (green through to 

purple; larger circles = more volume). GLF volume is 1743.60 km3 globally: 1045.10 

km3 is in the northern hemisphere and 698.49 km3 is in the southern hemisphere. Bar 

plots, showing total GLF volume in 5o longitude bins, for each hemisphere are 

presented above and below the distribution map. Background map as in Figure SF2. 
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SF5: Bar plots showing total GLF volume (km3) for: (a) global and hemispheric 

latitude in 2o bins; (b) global, (c) northern and (d) southern hemispheric aspect in the 

eight cardinal and inter-cardinal directions; (e) global, (f) northern and (g) southern 

hemispheric slope in 2o bins; (h) global, (i) northern and (j) southern hemispheric 

elevation in 500 m bins. 
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ST1: The statistical similarity of GLF properties discussed in the corresponding 

manuscript, calculated using a two sample t-test. Those properties with ‘P’ values 

highlighted in bold are statistically different at an alpha level of 0.05. 
 

Parameter 
 

Independent 
Variables 

 

 
Hem. 

 
 

 
Count 

(#) 
 

 
Mean 
(km3) 

 

 
Std. dev. 

(km3) 
 

 
d.f. 

 
 

 
t 

 
P 
 
 

 
Longitude 

 
-95o to -65o 

 
N 

 
70 

 
2.85 

 
5.25 

 
78.5 

 
2.31 

 
0.023 

 ≠ -95o to -65o 

 
N 628 1.35 4.07    

 -65o to -20o S 73 2.31 4.01 77.7 2.47 0.016 
 ≠ -65o to -20o 

 
S 472 1.12 2.01    

Latitude <36o N 186 0.98 1.98 684.9 2.78 0.006 
 >36o 

 
N 512 1.69 4.77    

 <36o S 98 0.62 0.75 511.8 5.54 <0.001 
 >36o 

 
S 447 1.43 2.62    

Aspect N (NW, N, NE) N 381 1.55 4.51 501.2 1.06 0.291 
 S (SE, S, SW) 

 
N 208 1.19 3.69    

 N (NW, N, NE) S 94 1.91 3.28 113.9 2.28 0.024 
 S (SE, S, SW) 

 
S 374 1.10 2.15    

Slope 2 to 8o N 246 2.94 6.76 250.7 5.13 <0.001 
 ≠ 2 to 8o 

 
N 452 0.71 0.99    

 2 to 8o S 120 2.46 3.86 131.6 4.19 <0.001 
 ≠ 2 to 8o 

 
S 425 0.95 1.66    

Elevation 500 to 2500 N 34 3.73 6.65 34.3 2.03 0.049 
 ≠ 500 to 2500 

 
N 664 1.38 4.04    

 -3500 to -2000 S 18 2.99 5.48 17.2 1.36 0.190 
 ≠ -3500 to -

2000 
 

S 527 1.22 2.22    
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ST2: GLF count and total volume of those GLFs per longitude in 5o bins. The percentages of the total count and volume, along with the mean 

GLF volume per size class are also shown. 

 
ROI 

 
Longitude  

 
Count 

 
Volume 

 
Mean GLF 

volume 

 
ROI 

 
Longitude  

 
Count 

 
Volume 

 
Mean GLF 

volume 
 (o) 

 
(#) 

 
(%) 

 
(km3) 

 
(%) 

 
(km3) 

 
 
 

(o) 
 

(#) 
 

(%) 
 

(km3) 
 

(%) 
 

(km3) 
 

North -180 to -175 6 0.9 14.42 1.4 2.40 South -180 to -175 2 0.4 0.46 0.1 0.23 
 -175 to -170 2 0.3 1.31 0.1 0.65  -175 to -170 0 0.0 0.00 0.0 0.00 
 -170 to -165 0 0.0 0.00 0.0 0.00  -170 to -165 2 0.4 1.61 0.2 0.81 
 -165 to -160 0 0.0 0.00 0.0 0.00  -165 to -160 2 0.4 16.54 2.4 8.27 
 -160 to -155 0 0.0 0.00 0.0 0.00  -160 to -155 0 0.0 0.00 0.0 0.00 
 -155 to -150 0 0.0 0.00 0.0 0.00  -155 to -150 5 0.9 4.16 0.6 0.83 
 -150 to -145 0 0.0 0.00 0.0 0.00  -150 to -145 5 0.9 3.67 0.5 0.73 
 -145 to -140 8 1.1 9.23 0.9 1.15  -145 to -140 1 0.2 0.40 0.1 0.40 
 -140 to -135 8 1.1 3.48 0.3 0.43  -140 to -135 2 0.4 0.34 0.0 0.17 
 -135 to -130 10 1.4 15.47 1.5 1.55  -135 to -130 4 0.7 4.07 0.6 1.02 
 -130 to -125 2 0.3 0.96 0.1 0.48  -130 to -125 9 1.7 7.03 1.0 0.78 
 -125 to -120 1 0.1 0.06 0.0 0.06  -125 to -120 4 0.7 4.58 0.7 1.14 
 -120 to -115 0 0.0 0.00 0.0 0.00  -120 to -115 0 0.0 0.00 0.0 0.00 
 -115 to -110 2 0.3 0.37 0.0 0.19  -115 to -110 4 0.7 4.10 0.6 1.03 
 -110 to -105 1 0.1 0.04 0.0 0.04  -110 to -105 0 0.0 0.00 0.0 0.00 
 -105 to -100 1 0.1 0.06 0.0 0.06  -105 to -100 1 0.2 0.11 0.0 0.11 
 -100 to -95 0 0.0 0.00 0.0 0.00  -100 to -95 8 1.5 0.79 0.1 0.10 
 -95 to -90 9 1.3 57.29 5.5 6.37  -95 to -90 12 2.2 1.66 0.2 0.14 
 -90 to -85 17 2.4 46.64 4.5 2.74  -90 to -85 1 0.2 0.40 0.1 0.40 
 -85 to -80 28 4.0 59.90 5.7 2.14  -85 to -80 0 0.0 0.00 0.0 0.00 
 -80 to -75 8 1.1 25.23 2.4 3.15  -80 to -75 12 2.2 21.17 3.0 1.76 
 -75 to -70 7 1.0 1.91 0.2 0.27  -75 to -70 5 0.9 1.87 0.3 0.37 
 -70 to -65 1 0.1 8.26 0.8 8.26  -70 to -65 10 1.8 13.84 2.0 1.38 
 -65 to -60 0 0.0 0.00 0.0 0.00  -65 to -60 7 1.3 14.00 2.0 2.00 
 -60 to -55 0 0.0 0.00 0.0 0.00  -60 to -55 17 3.1 38.83 5.6 2.28 
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ST2 continued 

 
ROI 

 
Longitude  

 
Count 

 
Volume 

 
Mean GLF 

volume 

 
ROI 

 
Longitude  

 
Count 

 
Volume 

 
Mean GLF 

volume 
 (o) 

 
(#) 

 
(%) 

 
(km3) 

 
(%) 

 
(km3) 

 
 
 

(o) 
 

(#) 
 

(%) 
 

(km3) 
 

(%) 
 

(km3) 
 

North -35 to -30 0 0.0 0.00 0.0 0.00 South -35 to -30 6 1.1 17.85 2.6 2.98 
 -30 to -25 0 0.0 0.00 0.0 0.00  -30 to -25 4 0.7 36.81 5.3 9.20 
 -25 to -20 0 0.0 0.00 0.0 0.00  -25 to -20 1 0.2 5.10 0.7 5.10 
 -20 to -15 0 0.0 0.00 0.0 0.00  -20 to -15 1 0.2 0.06 0.0 0.06 
 -15 to -10 1 0.1 0.30 0.0 0.30  -15 to -10 0 0.0 0.00 0.0 0.00 
 -10 to -5 3 0.4 3.26 0.3 1.09  -10 to -5 2 0.4 0.03 0.0 0.02 
 -5 to 0 0 0.0 0.00 0.0 0.00  -5 to 0 0 0.0 0.00 0.0 0.00 
 0 to 5 0 0.0 0.00 0.0 0.00  0 to 5 0 0.0 0.00 0.0 0.00 
 5 to 10 0 0.0 0.00 0.0 0.00  5 to 10 19 3.5 8.53 1.2 0.45 
 10 to 15 6 0.9 34.31 3.3 5.72  10 to 15 7 1.3 8.57 1.2 1.22 
 15 to 20 36 5.2 47.35 4.5 1.32  15 to 20 11 2.0 17.36 2.5 1.58 
 20 to 25 29 4.2 57.91 5.5 2.00  20 to 25 4 0.7 1.98 0.3 0.49 
 25 to 30 39 5.6 43.80 4.2 1.12  25 to 30 8 1.5 6.32 0.9 0.79 
 30 to 35 45 6.4 52.25 5.0 1.16  30 to 35 23 4.2 21.83 3.1 0.95 
 35 to 40 39 5.6 52.29 5.0 1.34  35 to 40 20 3.7 11.24 1.6 0.56 
 40 to 45 28 4.0 63.99 6.1 2.29  40 to 45 25 4.6 46.54 6.7 1.86 
 45 to 50 64 9.2 119.04 11.4 1.86  45 to 50 14 2.6 30.99 4.4 2.21 
 50 to 55 73 10.5 58.91 5.6 0.81  50 to 55 1 0.2 1.73 0.2 1.73 
 55 to 60 40 5.7 41.81 4.0 1.05  55 to 60 4 0.7 1.37 0.2 0.34 
 60 to 65 31 4.4 17.15 1.6 0.55  60 to 65 1 0.2 0.09 0.0 0.09 
 65 to 70 28 4.0 18.43 1.8 0.66  65 to 70 1 0.2 1.49 0.2 1.49 
 70 to 75 48 6.9 32.37 3.1 0.67  70 to 75 1 0.2 2.08 0.3 2.08 
 75 to 80 3 0.4 1.98 0.2 0.66  75 to 80 3 0.6 4.38 0.6 1.46 
 80 to 85 0 0.0 0.00 0.0 0.00  80 to 85 1 0.2 1.04 0.1 1.04 
 85 to 90 0 0.0 0.00 0.0 0.00  85 to 90 6 1.1 3.22 0.5 0.54 
 90 to 95 0 0.0 0.00 0.0 0.00  90 to 95 14 2.6 8.09 1.2 0.58 
 95 to 100 0 0.0 0.00 0.0 0.00  95 to 100 38 7.0 36.83 5.3 0.97 
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ST2 continued 

 
ROI 

 
Longitude  

 
Count 

 
Volume 

 
Mean GLF 

volume 

 
ROI 

 
Longitude  

 
Count 

 
Volume 

 
Mean GLF 

volume 
 (o) 

 
(#) 

 
(%) 

 
(km3) 

 
(%) 

 
(km3) 

 
 
 

(o) 
 

(#) 
 

(%) 
 

(km3) 
 

(%) 
 

(km3) 
 

North 100 to 105 0 0.0 0.00 0.0 0.00 South 100 to 105 51 9.4 71.97 10.3 1.41 
 105 to 110 0 0.0 0.00 0.0 0.00  105 to 110 44 8.1 73.01 10.5 1.66 
 110 to 115 0 0.0 0.00 0.0 0.00  110 to 115 43 7.9 47.86 6.9 1.11 
 115 to 120 3 0.4 0.55 0.1 0.18  115 to 120 7 1.3 7.80 1.1 1.11 
 120 to 125 4 0.6 3.67 0.4 0.92  120 to 125 2 0.4 0.99 0.1 0.49 
 125 to 130 0 0.0 0.00 0.0 0.00  125 to 130 9 1.7 6.26 0.9 0.70 
 130 to 135 0 0.0 0.00 0.0 0.00  130 to 135 4 0.7 8.81 1.3 2.20 
 135 to 140 1 0.1 0.12 0.0 0.12  135 to 140 2 0.4 0.81 0.1 0.41 
 140 to 145 1 0.1 0.39 0.0 0.39  140 to 145 3 0.6 0.62 0.1 0.21 
 145 to 150 0 0.0 0.00 0.0 0.00  145 to 150 2 0.4 1.01 0.1 0.50 
 150 to 155 0 0.0 0.00 0.0 0.00  150 to 155 3 0.6 3.30 0.5 1.10 
 155 to 160 1 0.1 0.14 0.0 0.14  155 to 160 0 0.0 0.00 0.0 0.00 
 160 to 165 51 7.3 139.92 13.4 2.74  160 to 165 4 0.7 3.10 0.4 0.78 
 165 to 170 11 1.6 8.96 0.9 0.81  165 to 170 5 0.9 3.93 0.6 0.79 
 170 to 175 2 0.3 1.56 0.1 0.78  170 to 175 0 0.0 0.00 0.0 0.00 
 175 to 180 0 0.0 0.00 0.0 0.00  175 to 180 0 0.0 0.00 0.0 0.00 
  

Total 
 

 
698 

 

 
100.0 

 

 
1045.10 

 

 
100.0 

 

 
- 
 

  
Total 

 

 
545 

 

 
100.0 

 

 
698.49 

 

 
100.0 

 

 
- 
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ST3: GLF count and total volume of those GLFs per latitude in 2o bins. The 

percentages of the total count and volume, along with the mean GLF volume per size 

class are also shown. 

 
ROI 

 
Latitude 

 
Count 

 
Volume 

 
Mean GLF volume  

 (o) 
 

(#) 
 

(%) 
 

(km3) 
 

(%) 
 

(km3) 
 

 
North 

 
26 to 28 

 
1 

 
0.1 

 
0.09 

 
0.1 

 
0.09 

 28 to 30 9 1.3 2.92 0.3 0.32 
 30 to 32 38 5.4 26.24 2.5 0.69 
 32 to 34 71 10.2 59.92 5.7 0.84 
 34 to 36 67 9.6 92.24 8.8 1.38 
 36 to 38 74 10.6 179.88 17.2 2.43 
 38 to 40 93 13.3 198.64 19.0 2.14 
 40 to 42 139 19.9 224.76 21.5 1.62 
 42 to 44 73 10.5 78.59 7.5 1.08 
 44 to 46 78 11.2 115.35 11.0 1.48 
 46 to 48 30 4.3 35.92 3.4 1.20 
 48 to 50 23 3.3 26.39 2.5 1.15 
 50 to 52 0 0.0 0.00 0.0 0.00 
 52 to 54 0 0.0 0.00 0.0 0.00 
 54 to 56 0 0.0 0.00 0.0 0.00 
 56 to 58 0 0.0 0.00 0.0 0.00 
 58 to 60 0 0.0 0.00 0.0 0.00 
 60 to 62 2 0.3 4.17 0.4 2.08 
  

Total 
 

698 
 

100.0 
 

1045.10 
 

100.0 
 
- 

       
South -26 to -28 2 0.4 3.57 0.5 1.79 
 -28 to -30 3 0.6 0.82 0.1 0.27 
 -30 to -32 17 3.1 12.47 1.8 0.73 
 -32 to -34 6 1.1 6.62 0.9 1.10 
 -34 to -36 70 12.8 37.50 5.4 0.54 
 -36 to -38 79 14.5 43.02 6.2 0.54 
 -38 to -40 105 19.3 92.79 13.3 0.88 
 -40 to -42 86 15.8 121.17 17.3 1.41 
 -42 to -44 54 9.9 105.35 15.1 1.95 
 -44 to -46 34 6.2 36.22 5.2 1.07 
 -46 to -48 37 6.8 68.95 9.9 1.86 
 -48 to -50 17 3.1 52.60 7.5 3.09 
 -50 to -52 21 3.9 48.79 7.0 2.32 
 -52 to -54 9 1.7 33.48 4.8 3.72 
 -54 to -56 5 0.9 35.16 5.0 7.03 
 -56 to -58 0 0.0 0.00 0.0 0.00 
 -58 to -60 0 0.0 0.00 0.0 0.00 
 -60 to -62 0 0.0 0.00 0.0 0.00 
  

Total 
 

 
545 

 

 
100.0 

 

 
698.49 

 

 
100.0 

 

 
- 
 

 



107  CHAPTER 3.   AREA AND VOLUME OF GLACIER-LIKE FORMS 
    
 

	  

ST4: GLF count and total volume of those GLFs per aspect class (cardinal and inter-

cardinal directions). The percentages of the total count and volume, along with the 

mean GLF volume per size class are also shown. 

 
ROI 

 
Aspect class 

 
Count 

 
Volume 

 
Mean GLF volume  

  (#) 
 

(%) 
 

(km3) 
 

(%) 
 

(km3) 
 

 
All 

 
N 

 
216 

 
17.4 

 
366.43 

 
21.0 

 
1.70 

 NE 152 12.2 203.31 11.7 1.34 
 E 118 9.5 209.72 12.0 1.78 
 SE 155 12.5 235.07 13.5 1.52 
 S 280 22.5 304.00 17.5 1.09 
 SW 147 11.8 118.89 6.8 0.81 
 W 68 5.5 105.27 6.0 1.55 
 NW 107 8.6 200.91 11.5 1.88 
  

Total 
 

1243 
 

100.0 
 

1743.60 
 

100.0 
 
- 

       
North N 178 25.5 268.13 25.7 1.51 
 NE 119 17.1 152.52 14.6 1.28 
 E 70 10.0 138.47 13.3 1.98 
 SE 59 8.5 76.66 7.3 1.30 
 S 95 13.6 133.90 12.8 1.41 
 SW 54 7.7 36.53 3.5 0.68 
 W 39 5.6 68.25 6.5 1.75 
 NW 84 12.0 170.64 16.3 2.03 
  

Total 
 

698 
 

100.0 
 

1045.10 
 

100.0 
 
- 

       
South N 38 7.0 98.30 14.1 2.59 
 NE 33 6.1 50.79 7.3 1.54 
 E 48 8.8 71.25 10.2 1.48 
 SE 96 17.6 158.41 22.7 1.65 
 S 185 33.9 170.10 24.3 0.92 
 SW 93 17.1 82.36 11.8 0.89 
 W 29 5.3 37.01 5.3 1.28 
 NW 23 4.2 30.27 4.3 1.32 
  

Total 
 

 
545 

 

 
100.0 

 

 
698.49 

 

 
100.0 

 

 
- 
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ST5: GLF count and total volume of those GLFs per slope in 2o bins. The percentages 

of the total count and volume, along with the mean GLF volume per size class are also 

shown. 

 
ROI 

 
Slope  

 
Count 

 
Volume 

 
Mean GLF volume 

 (o) 
 

(#) 
 

(%) 
 

(km3) 
 

(%) 
 

(km3) 
 

 
All 

 
0 – 2 

 
6 

 
0.5 

 
1.64 

 
0.1 

 
0.27 

 2 – 4 48 3.9 308.80 17.7 6.43 
 4 – 6 102 8.2 368.56 21.1 3.61 
 6 – 8 216 17.4 340.70 19.5 1.58 
 8 – 10 280 22.5 290.75 16.7 1.04 
 10 – 12 259 20.8 266.72 15.3 1.03 
 12 – 14 162 13.0 92.65 5.3 0.57 
 14 – 16 103 8.3 51.45 2.9 0.50 
 16 – 18 45 3.6 17.10 1.0 0.38 
 18 – 20 17 1.4 4.48 0.3 0.26 
 20 – 22 5 0.4 0.74 0.1 0.15 
  

Total 
 

1243 
 

100.0 
 

1743.60 
 

100.0 
 
- 

       
North 0 – 2 6 0.9 1.64 0.2 0.27 
 2 – 4 40 5.7 285.19 27.3 7.13 
 4 – 6 72 10.3 281.55 26.9 3.91 
 6 – 8 134 19.2 155.76 14.9 1.16 
 8 – 10 162 23.2 156.49 15.0 0.97 
 10 – 12 131 18.8 106.09 10.2 0.81 
 12 – 14 73 10.5 34.45 3.3 0.47 
 14 – 16 47 6.7 15.68 1.5 0.33 
 16 – 18 22 3.2 5.57 0.5 0.25 
 18 – 20 10 1.4 2.37 0.2 0.24 
 20 – 22 1 0.1 0.31 0.1 0.31 
  

Total 
 

698 
 

100.0 
 

1045.10 
 

100.0 
 
- 

       
South 0 – 2 0 0.0 0.00 0.0 0.00 
 2 – 4 8 1.5 23.62 3.4 2.95 
 4 – 6 30 5.5 87.01 12.5 2.90 
 6 – 8 82 15.0 184.93 26.5 2.26 
 8 – 10 118 21.7 134.26 19.2 1.14 
 10 – 12 128 23.5 160.63 23.0 1.25 
 12 – 14 89 16.3 58.21 8.3 0.65 
 14 – 16 56 10.3 35.77 5.1 0.64 
 16 – 18 23 4.2 11.53 1.7 0.50 
 18 – 20 7 1.3 2.11 0.3 0.30 
 20 – 22 4 0.7 0.43 0.1 0.11 
  

Total 
 

545 
 

 
100.0 

 

 
698.49 

 

 
100.0 

 

 
- 
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ST6: GLF count and total volume of those GLFs per elevation in 500 m bins. The 

percentages of the total count and volume, along with the mean GLF volume per size 

class are also shown. 

 
ROI 

 
Elevation  

 
Count 

 
Volume 

 
Mean GLF volume 

 (m) 
 

(#) 
 

(%) 
 

(km3) 
 

(%) 
 

(km3) 
 

 
All 

 
-7000 to -6500 

 
4 

 
0.3 

 
1.74 

 
0.1 

 
0.44 

 -6500 to -6000 1 0.1 0.09 0.0 0.09 
 -6000 to -5500 4 0.3 0.54 0.0 0.13 
 -5500 to -5000 12 1.0 8.54 0.5 0.71 
 -5000 to -4500 4 0.3 1.77 0.1 0.44 
 -4500 to -4000 5 0.4 6.74 0.4 1.35 
 -4000 to -3500 19 1.5 23.63 1.4 1.24 
 -3500 to -3000 32 2.6 77.75 4.5 2.43 
 -3000 to -2500 94 7.6 162.12 9.3 1.72 
 -2500 to -2000 121 9.7 218.92 12.6 1.81 
 -2000 to -1500 159 12.8 164.31 9.4 1.03 
 -1500 to -1000 144 11.6 140.63 8.1 0.98 
 -1000 to -500 102 8.2 161.96 9.3 1.59 
 -500 to 0 54 4.3 63.68 3.7 1.18 
 0 to 500 84 6.8 99.47 5.7 1.18 
 500 to 1000 138 11.1 209.20 12.0 1.52 
 1000 to 1500 109 8.8 183.34 10.5 1.68 
 1500 to 2000 73 5.9 125.55 7.2 1.72 
 2000 to 2500 45 3.6 70.19 4.0 1.56 
 2500 to 3000 16 1.3 7.66 0.4 0.48 
 3000 to 3500  7 0.6 10.78 0.6 1.54 
 3500 to 4000 5 0.4 3.13 0.2 0.63 
 4000 to 4500 2 0.2 0.21 0.0 0.10 
 4500 to 5000 1 0.1 0.10 0.0 0.10 
 5000 to 5500 2 0.2 0.20 0.0 0.10 
 5500 to 6000 1 0.1 0.09 0.0 0.09 
 6000 to 6500 0 0.0 0.00 0.0 0.00 
 6500 to 7000 4 0.3 0.32 0.0 0.08 
 7000 to 7500 1 0.1 0.94 0.1 0.94 
  

Total 
 

1243 
 

100.0 
 

1743.60 
 

100.0 
 
- 

       
North -7000 to -6500 0 0.0 0.00 0.0 0.00 
 -6500 to -6000 0 0.0 0.00 0.0 0.00 
 -6000 to -5500 1 0.1 0.10 0.0 0.10 
 -5500 to -5000 6 0.9 3.78 0.4 0.63 
 -5000 to -4500 2 0.3 0.86 0.1 0.43 
 -4500 to -4000 3 0.4 5.76 0.6 1.92 
 -4000 to -3500 11 1.6 16.99 1.6 1.54 
 -3500 to -3000 26 3.7 70.69 6.8 2.72 
 -3000 to -2500 92 13.2 148.16 14.2 1.61 
 -2500 to -2000 111 15.9 186.14 17.8 1.68 
 -2000 to -1500 143 20.5 153.42 14.7 1.07 
 -1500 to -1000 134 19.2 135.83 13.0 1.01 
 -1000 to -500 90 12.9 129.35 12.4 1.44 
 -500 to 0 29 4.2 48.15 4.6 1.66 
 0 to 500 12 1.7 18.69 1.8 1.56 
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ST6 continued 

 
ROI 

 
Elevation  

 
Count 

 
Volume 

 
Mean GLF volume 

 (m) 
 

(#) 
 

(%) 
 

(km3) 
 

(%) 
 

(km3) 
 

 500 to 1000 13 1.9 64.74 6.2 4.98 
 1000 to 1500 15 2.1 50.80 4.9 3.39 
 1500 to 2000 6 0.9 11.16 1.1 1.86 
 2000 to 2500 0 0.0 0.00 0.0 0.00 
 2500 to 3000 1 0.1 0.04 0.0 0.04 
 3000 to 3500  0 0.0 0.00 0.0 0.00 
 3500 to 4000 2 0.3 0.34 0.0 0.17 
 4000 to 4500 0 0.0 0.00 0.0 0.00 
 4500 to 5000 0 0.0 0.00 0.0 0.00 
 5000 to 5500 0 0.0 0.00 0.0 0.00 
 5500 to 6000 1 0.1 0.09 0.0 0.09 
 6000 to 6500 0 0.0 0.00 0.0 0.00 
 6500 to 7000 0 0.0 0.00 0.0 0.00 
 7000 to 7500 0 0.0 0.00 0.0 0.00 
  

Total 
 

698 
 

100.0 
 

1045.10 
 

100.0 
 
- 

       
South -7000 to -6500 4 0.7 1.74 0.2 0.44 
 -6500 to -6000 1 0.2 0.09 0.0 0.09 
 -6000 to -5500 3 0.6 0.44 0.1 0.15 
 -5500 to -5000 6 1.1 4.76 0.7 0.79 
 -5000 to -4500 2 0.4 0.91 0.1 0.45 
 -4500 to -4000 2 0.4 0.98 0.1 0.49 
 -4000 to -3500 8 1.5 6.64 1.0 0.83 
 -3500 to -3000 6 1.1 7.06 1.0 1.18 
 -3000 to -2500 2 0.4 13.97 2.0 6.98 
 -2500 to -2000 10 1.8 32.78 4.7 3.28 
 -2000 to -1500 16 2.9 10.88 1.6 0.68 
 -1500 to -1000 10 1.8 4.79 0.7 0.48 
 -1000 to -500 12 2.2 32.62 4.7 2.72 
 -500 to 0 25 4.6 15.53 2.2 0.62 
 0 to 500 72 13.2 80.78 11.6 1.12 
 500 to 1000 125 22.9 144.46 20.7 1.16 
 1000 to 1500 94 17.2 132.53 19.0 1.41 
 1500 to 2000 67 12.3 114.38 16.4 1.71 
 2000 to 2500 45 8.3 70.19 10.0 1.56 
 2500 to 3000 15 2.8 7.62 1.1 0.51 
 3000 to 3500  7 1.3 10.78 1.5 1.54 
 3500 to 4000 3 0.6 2.79 0.4 0.93 
 4000 to 4500 2 0.4 0.21 0.0 0.10 
 4500 to 5000 1 0.2 0.10 0.0 0.10 
 5000 to 5500 2 0.4 0.20 0.0 0.10 
 5500 to 6000 0 0.0 0.00 0.0 0.00 
 6000 to 6500 0 0.0 0.00 0.0 0.00 
 6500 to 7000 4 0.7 0.32 0.0 0.08 
 7000 to 7500 1 0.2 0.94 0.1 0.94 
  

Total 
 

 
545 

 

 
100.0 

 

 
698.49 

 

 
100.0 

 

 
- 
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ST7: GLF count and total volume of those GLFs by size class. The percentages of the 

total count and volume per size class are also shown. 

 
ROI 

 
Volume class 

 
Count 

 
Volume 

 
 

(km3) 
 

(#) 
 

(%) 
 

(km3) 
 

(%) 
 

 
Global 

 
<0.05 

 
21 

 
1.7 

 
0.70 

 
0.1 

 0.05-0.1 83 6.7 6.28 0.4 
 0.1-0.5 514 41.4 143.31 8.2 
 0.5-1 270 21.7 190.86 10.9 
 1-5 295 23.7 617.90 35.4 
 5-10 29 2.3 204.98 11.8 
 >10 31 2.5 579.57 33.2 
  

Total 
 

1243 
 

100.0 
 

1743.60 
 

100.0 
      
North <0.05 11 1.6 0.34 0.1 
 0.05-0.1 47 6.7 3.57 0.3 
 0.1-0.5 282 40.4 81.08 7.8 
 0.5-1 161 23.1 113.43 10.8 
 1-5 166 23.8 344.12 32.9 
 5-10 10 1.4 68.23 6.5 
 >10 21 3.0 434.33 41.6 
  

Total 
 

698 
 

100.0 
 

1045.10 
 

100.0 
      
South <0.05 10 1.8 0.36 0.1 
 0.05-0.1 36 6.6 2.71 0.4 
 0.1-0.5 232 42.6 62.22 8.9 
 0.5-1 109 20.0 77.44 11.1 
 1-5 129 23.7 273.78 39.2 
 5-10 19 3.5 136.74 19.5 
 >10 10 1.8 145.24 20.8 
  

Total 
 

 
545 

 
100.0 

 
698.49 

 
100.0 
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Summary to manuscript ‘Area and volume of mid-latitude 

glacier-like forms on Mars’ 

 

Chapter 3 has presented a population-scale mapping investigation in to the areal and 

volumetric extent of martian GLFs. The key outcomes to carry forward are as such: 

 

1. GLF area was calculated to be 11344 ± 393 km2 and GLF volume was calculated 

to be 1744 ± 441 km3. Two end member scenarios were used to characterise the 

actual population-scale ice volume contribution, and were found to be 523 ± 132 

km3 (480 ± 121 Gt) for a pore ice content (30 % ice by volume) scenario and 

1570 ± 397 km3 (1439 ± 364 Gt) for a debris-covered glacier (90 % ice by 

volume) scenario. This is equivalent to a contribution of a global water layer 

between 3 ± 1 and 10 ± 3 mm thick to the present day surface/near-surface water 

budget of Mars.  

 

2. Assessment of the environmental conditions that influence(d) GLF accumulation 

and/or preservation revealed that GLF size is, to a certain extent, controlled by 

their physical setting. In particular, at the global scale, GLFs are larger at higher 

latitudes and on shallower slopes; in the northern hemisphere, GLFs with 

elevations between 500 and 2500 m; and in the southern hemisphere, GLFs with 

a northern aspect are also larger on average.  

 

3. Given the spatial pattern of GLF landform and volume distribution, GLF ice 

accumulation and/or preservation appears to be sensitive to a combination of 

regional to local meteorological and topographical conditions and, although 

influenced by (see point 2 above), is not simply a relation of latitudinal 

dependence or insolation driven factors.  

 

 
4. GLF size appeared particularly sensitive to slope, therefore suggesting that like 

glaciers on Earth, slope processes play(ed) an important role in driving GLF 

motion. 
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5. Smaller GLFs are less sensitive to their topographic setting, and as such small 

GLFs of comparable size are likely to show a heterogeneous response to the 

same climatic perturbation. 	
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CHAPTER 4 
 

Former extent of glacier-like forms on Mars 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How great would be the desire in every admirer of nature to behold, 

if such we possible,  

the scenery of another planet 

Charles Darwin 
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Preface to manuscript ‘Former extent of glacier-like forms on 

Mars’ 

 

Introduction and rationale 

 

Although the concept of ice mass loss and reconstruction of Mars’ mid-latitude ice 

masses was introduced in Chapter 2 and its associated preface, many studies – including 

Chapter 2 – have focused on local- to regional-scale mapping investigations of the 

former extents of these ice masses (e.g. Dickson et al., 2010). Furthermore, relatively 

few studies have tried to quantify the actual volumetric loss from these ice masses (e.g. 

Shean et al., 2005; Dickson et al., 2008). This is particularly true for glacier-like forms 

(GLFs) where studies have mainly focused on the detailed description of a single, or a 

small collection of landforms (e.g. Appendix A; Hubbard et al., 2011; Hartmann et al, 

2014), and all of these studies stop short of calculating volumetric change. Addressing 

these knowledge gaps is important as better understanding the distribution of, and 

controls responsible for, ice mass loss may provide valuable insights into recent/current 

climatic change and how GLFs, and their associated ice masses, might change under 

future climates. 

 

In Chapters 2 and 3 regional- and population-scale analysis have been undertaken in a 

bid to improve our understanding of the current and former extent and volume of GLFs. 

This chapter (published in Icarus [Brough et al., 2016]) looks to further contribute to 

this wider goal and aims to advance our understanding of the evolutional history of 

Mars’ GLFs. Specifically, it presents a population-scale investigation assessing and 

quantifying the distribution of, and controls on, GLF recession (e.g. contributing to 

Objectives [2] and [4] of the thesis). This population-scale recessional survey is 

supplemented by the three-dimensional reconstruction of the maximum extent and 

morphology of a specific GLF in Crater Greg, eastern Hellas Planitia in order to 

calculate its volume and area change (e.g. contributing to Objectives [2] and [4] of the 

thesis). These results will contribute to better understanding of the evolution of Mars’ 

GLFs through time and provide an opportunity to investigating the environmental and 

topographical controls responsible for ice mass loss (e.g. contributing to Objective [5] 
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of the thesis). The remainder of this preface discusses the methods that were adopted 

during the study. 

 

 

GLF recessional inventory and glacial reconstruction 

 

Recessional inventory 

Identification of recessional GLFs was based on analysis of all GLFs in the database of 

Souness et al. (2012). This database was chosen as it was the most comprehensive to 

date and importantly, contained the Context Camera (CTX [6 m per pixel]) image ID, 

for all identified GLFs. All GLFs in the database were manually examined by eye using 

Arizona State University’s Mars Image Explorer (http://viewer.mars.asu.edu/) and 

JMARS software (https://jmars.asu.edu/), as this allowed for the fast ingestion and 

viewing at full resolution of the CTX imagery, and negated the need to 

download/process large volumes of data. To allow for the investigation of the 

environmental settings of recessional GLFs and to assess likely controlling variables on 

their spatial distribution, all GLFs showing evidence of an expanded former extent were 

ingested in to Geographic Information System (GIS) software and plotted based on the 

coordinate data of Souness et al. (2012). This spatial information was coupled with the 

published environmental parameters of the aforementioned study, which included 

latitude, longitude, elevation, relief and orientation.  

 

The method Souness et al. (2012) used for their relief calculation was more involved 

than taking a point measurement for other parameters such as latitude. These authors 

calculated the relief from the standard deviation of elevation taken from a 5 km radius 

buffer from the GLFs’ head. While this measure does capture relief, for example a 

smooth terrain with little elevation variation within this buffer will provide a small 

standard deviation, it is per se, a closer measure of landscape roughness. A closer 

approximation of relief could have been sought from taking the maximum and 

minimum elevation from the 5 km buffer, or more directly from mapped outlines, as 

discussed in Chapter 3 and its associated preface. 

 

 

http://viewer.mars.asu.edu/
https://jmars.asu.edu/


118  CHAPTER 4.   FORMER EXTENT OF GLACIER-LIKE FORMS 

 

 

GLF reconstruction 

The GLF targeted for reconstruction is located in Crater Greg, eastern Hellas Planitia, 

thus, as in Chapter 2, it is located in a likely region for snow accumulation during 

periods of high (>45o) obliquity (Forget et al., 2006). More specifically, the GLF was 

selected due to the previous identification of sequential moraine-like ridges in the 

forefield (e.g. Hubbard et al., 2011) and, due to the availability of High Resolution 

Imaging Science Experiment (HiRISE) satellite imagery and corresponding digital 

elevation model. In order to reconstruct the palaeo-ice surface of the GLF the maximum 

former extent needs to be demarcated. The mapping of the maximum former extent uses 

the knowledge gained in Chapter 2 and applies this mapping approach to the 

aforementioned GLF to demarcate its boundary using geomorphological evidence (e.g. 

moraine-like ridges and trimlines).  

 

The second stage is to recreate the palaeo-ice surface of the GLF using the constraining 

geomorphological information generated in the previous stage (e.g. former upper and 

lower GLF limits). Theoretical solutions of the palaeo-surface can be obtained using a 

simple, steady-state, model that uses an adaptation of Nye’s (1951, 1952) perfect-

plasticity approximation for ice flow. This approach rests on the assumption that ice 

deforms at an infinite rate when the driving stress exceeds a critical yield strength. Such 

models are commonly used to reconstruct palaeo-ice surface for glaciers on Earth (e.g. 

Wolff et al., 2013) due to the fact that the model only requires two input parameters; the 

bed topography along a flowline and a yield strength for ice (Van der Veen, 1999). This 

approach has previously been used for Mars (Shean et al., 2005) and is utilised in this 

study given that the required input data can be derived from the available data products. 

The major difference between using such an approach for glaciers on Earth and Mars is 

the value used for the ice yield strength. On Earth this value is typically between 50 and 

150 kPa (Cuffey and Paterson, 2010), but empirical studies have placed this value 

between ~10 and ~40 kPa for Mars (Karlsson et al., 2015). Using these Mars derived 

yield strength values in the model, rather than their higher Earth counterparts, will 

ultimately result in a reduction in the reconstructed ice thickness.  
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Abstract: Mars’ mid-latitude glacier-like forms (GLFs) have undergone substantial 

mass loss and recession since a hypothesised last martian glacial maximum (LMGM) 

stand. To date, there is a lack of knowledge of the nature and timing of the LMGM, the 

subsequent mass loss and whether this mass loss has been spatially variable. Here, we 

present the results of a population-scale inventory of recessional GLFs, derived from 

analysis of 1293 GLFs1 identified within Context Camera (CTX) imagery, to assess the 

distribution and controls on GLF recession. A total of 436 GLFs were identified 

showing strong evidence of recession: 197 in the northern hemisphere and 239 in the 

southern hemisphere. Relative to their parent populations, recessional GLFs are over-

represented in the low latitude belts between 25 and 40o and in areas of high relief, 

suggesting that these zones exert some control over GLF sensitivity and response to 

forcing. This analysis is complemented by the reconstruction of the maximum extent 

and morphology of a specific GLF for which High Resolution Imaging Science 

Experiment (HiRISE) derived digital elevation data are available. Using Nye’s (Nye, J. 

F. [1951] Proc. Roy. Soc. Lond, Ser. A-Mat. Phys. Sci, 207, 554-572) perfect plastic 

approximation of ice flow applied to multiple flow-lines under an optimum yield 

strength of 22 kPa, we calculate that the reconstructed GLF has lost an area of 6.86 km2 

with a corresponding volume loss of 0.31 km3 since the LMGM. Assuming the loss 

reconstructed at this GLF occurred at all mid-latitude GLFs yields a total planetary ice 

loss from Mars’ GLFs of 135 km3, similar to the current ice volume in the European 

Alps on Earth. 

 

 

4.1. Introduction 

 

Although water ice is not presently stable across much of Mars’ mid-latitudes (Mellon 

and Jakosky, 1995; Mellon et al., 2004), evidence of pervasive ice-rich landforms 

between 30 and 60o latitude has been presented (Sharp, 1973; Squyres, 1978, 1979; 

Lucchitta, 1984; Mangold, 2003; Milliken et al., 2003; Levy et al., 2007; Baker et al., 

2010; Dickson et al., 2010; Head et al., 2010, Souness et al., 2012; Hubbard et al., 2014; 

Brough et al., 2016; Sinha and Murty, 2015). Based on evidence from the Shallow 

Radar (SHARAD) instrument on board the Mars Reconnaissance Orbiter, the 

                                                           
1 In their inventory Souness et al. (2012) identified 1309 GLFs. We refine the number of GLFs to 1293, 

due to the identification of duplicate entries. 
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composition of these ice-rich deposits is consistent with water ice (Holt et al., 2008; 

Plaut et al., 2009), and their surface morphologies are indicative of viscous flow of that 

ice (e.g. Squyres, 1979; Mangold, 2003; Head et al., 2005). Collectively, these ice-rich 

deposits have become known as viscous flow features, or VFFs (Milliken et al., 2003), 

and are hypothesised to have been formed during a previous ‘ice age’ as a result of 

changes in orbital and atmospheric parameters providing preferential conditions for 

mid-latitude ice accumulation during periods of high (>30o) obliquity (Head et al., 

2003; Forget et al., 2006; Madeleine et al., 2009; Fassett et al., 2014). The last major 

change from a high (~35o) to low (~25o) mean obliquity period occurred ~4 – 6 Ma BP 

(Laskar et al., 2004), perhaps causing the end of the hypothesised last martian glacial 

maximum, or LMGM (Souness and Hubbard, 2013). The persistence of VFFs to the 

present day is therefore probably due, at least partly, to their ubiquitous debris cover 

protecting the underlying ice from sublimating into the atmosphere (Bryson et al., 2008; 

Holt et al., 2008; Plaut et al., 2009; Fastook et al., 2014). 

 

Glacier-like forms (GLFs) are a distinctive subtype of VFFs, similar in planform 

appearance to terrestrial valley glaciers or debris-covered glaciers (e.g. Arfstrom and 

Hartmann, 2005; Hubbard et al., 2011; Souness et al., 2012). GLFs form in cirque-like 

alcoves or valleys and appear to flow downslope, generally coalescing from a wide 

upper basin to a narrow elongate tongue that is often confined by raised latero-terminal 

ridges. GLFs may or may not feed into pre-existing VFFs and form what Head et al. 

(2006, 2010) described as Mars’ integrated glacial landsystem. Following this model, 

GLFs represent the smallest component of this glacial landsystem and may converge 

downslope to form broad, rampart-like lobate debris aprons (LDAs). Where LDAs 

converge or coalesce, complex and contorted surfaces termed lineated valley fill (LVF) 

are commonly observed (Squyres, 1978, 1979; Lucchitta, 1984). 

 

GLFs and other VFFs (LDA or LVF) have been interpreted as relict remains of once far 

larger ice masses (Dickson et al., 2008; Sinha and Murty, 2013; Hubbard et al., 2014; 

Brough et al., 2016), that were most extensive during a hypothesised LMGM (Souness 

and Hubbard, 2013). For example, in a two-dimensional planform analysis of a GLF in 

Phlegra Montes, Hubbard et al. (2014) noted a set of pronounced ridges resembling 

terrestrial moraines, encompassing a texturally distinct ‘arcuate’ terrain, devoid of many 
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impact craters, in the forefield of a GLF. The contrast between this distinct landform 

and the wider surface led the authors to suggest that the proglacial arcuate terrain 

represented a phase of expanded glaciation, and that the GLF had subsequently receded 

by up to ~3.3 km. Such an expanded former extent has also been identified on GLFs 

elsewhere on Mars (Hubbard et al., 2011; Hartmann et al., 2014), as well as on the 

regional scale of Mars’ integrated glacial landsystem (e.g. Head et al., 2006; Dickson et 

al., 2008; Fastook et al., 2014), where surface lowering of up to ~900 m has been 

inferred (Dickson et al., 2008). Indeed, the identification of relict landforms of glacial 

origin across large areas of Mars has led to inferences of former regional- to 

continental-scale ice sheet glaciation (Kargel et al., 1995; Hobley et al., 2014; Souček et 

al., 2015). Furthermore, several studies have noted the superposed relationship of some 

GLFs to the underlying ice-rich terrain (LDA or LVF) onto which they appear to have 

flowed, leading to suggestions of recurrent glacial phases with at least one ‘local’ 

glacial phase advancing over an earlier ‘regional’ glaciation (Levy et al., 2007; Dickson 

et al., 2008; Baker et al., 2010; Sinha and Murty, 2013; Brough et al., 2016). Despite 

these inferred changes, we currently have limited knowledge of the nature and timing of 

Mars’ LMGM, the volume of ice lost since that time, and whether such GLF recession 

has been spatially variable (e.g. Hubbard et al., 2014). 

 

On Earth, the vast majority of valley glaciers have experienced an expanded former 

extent, or glacial maximum, and have receded since that time (Zemp et al., 2009; Radić 

and Hock, 2014; Fischer et al., 2015). The visible imprint of such recession, or in some 

cases complete deglaciation, is recorded to varying degrees in the geomorphic and 

sedimentary record. Detailed investigation of these remnant landform and sediment 

assemblages can therefore be used to reconstruct former glacier limits and thermal 

conditions (e.g. Kleman et al., 1997; Hambrey and Glasser, 2012). Furthermore, due to 

their short response times, valley glaciers have become important indicators of climatic 

change (Hambrey et al., 2005; Raper and Braithwaite, 2009; Carrivick et al., 2015). 

Thus, if the processes and responses of martian GLFs are broadly equivalent to their 

terrestrial counterparts, they may represent: (i) effective geomorphic agents, through 

both erosion and deposition; and (ii) important archives of recent climatic change on 

Mars.  

 

The aim of this paper is to advance our understanding of the glacial history of Mars’ 
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GLFs by assessing and quantifying the distribution of, and controls on, GLF recession. 

Specifically, we: (i) provide a population-scale inventory detailing the locations of 

GLFs that show evidence of recession; (ii) analyse the environmental settings of 

recessional GLFs to assess likely controlling variables on their spatial distribution; and 

(iii) provide a high-resolution three-dimensional reconstruction of a typical recessional 

GLF to calculate its volume and area change. 

 

 

4.2. Data and methods 

 

4.2.1. Population-scale recessional GLF inventory 

 

4.2.1.1. Mapping distribution and morphology 

 

Identification of recessional GLFs was based on analysis of all GLFs in the database of 

Souness et al. (2012). This database contains the Context Camera (CTX [6 m per pixel]) 

image ID, coordinate information and basic morphometric and environmental data for 

all identified GLFs. All GLFs in the database were manually examined by eye using 

Arizona State University’s Mars Image Explorer (http://viewer.mars.asu.edu/) and 

JMARS software (https://jmars.asu.edu/). GLFs showing evidence of an expanded 

former extent (Figure 4.1) were recorded into a separate database (provided in 

Supplementary Material Ch. 4) and subsequently imported and plotted, based on the 

coordinate data of Souness et al. (2012), using ESRI’s ArcMap 10.1 Geographic 

Information System (GIS) software.  

 

 

4.2.1.2. Spatial distribution 

 

To determine what, if any, controls are responsible for the observed spatial distribution 

of recessional GLFs, several environmental parameters were extracted and analysed. 

These include latitude (o), longitude (o), elevation (m relative to Mars datum), relief (m) 

and orientation (o). Following Souness et al. (2012) relief was calculated as the standard  

http://viewer.mars.asu.edu/
https://jmars.asu.edu/
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Figure 4.1: Montage of CTX images exemplifying GLFs identified as showing evidence 

of recession. (a) A well-developed set of arcuate moraine ridges demarcating a 

deglaciated terrain in the foreground of a GLF in Phlegra Montes (subset of CTX 

image P16_007368_2152_XN_35N195; centred on ~164.54o E, 34.05o N). (b) Lateral 

moraine ridges on eastern sidewall of a GLF in Protonilus Mensae. Note multiple 

ridges are visible, suggesting progressive or phased recession has occurred (subset of 

CTX image P01_001570_2213_XI_41N305W; centred on ~54.71o E, 41.27o N). (c) 

Tongue-shaped GLF with pronounced sequence of latero-terminal moraine ridges 

(subset of CTX image G05_020121_1412_XN_38S247W; centred on ~113.16o E, 38.15o 

S). (d) Palimpsest landscape. Located in close proximity to current GLFs were 

landscapes indicative of former glaciation. However, as no GLFs are identified in these 

regions they were not included in the inventory (subset of CTX image 

P06_003231_2090_XI_29N286W; centred on ~73.15o E, 30.01o N).  
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deviation of elevation values extracted from a 5 km radius buffer from the GLF’s head. 

As well as plotting recessional GLF counts against these variables, both the recessional 

GLF population and the total GLF population were normalised against their total counts 

(436 and 1293, respectively), and the subsequent normalised ratio of recessional GLFs 

relative to total GLF population plotted to evaluate the relative abundance of recessional 

GLFs (with a ratio >1 indicating over-representation and <1 indicating under-

representation). 

 

The normalised ratio plots for global and hemispheric GLF coverage are presented 

herein. The global and hemispheric recessional GLF counts can be found in 

Supplementary Material Ch. 4 (Figures SF1–SF4). 

 

 

4.2.2. Case study: Crater Greg GLF reconstruction  

 

The presence of overlapping High Resolution Imaging Science Experiment (HiRISE) 

satellite imagery allows high-resolution digital elevation models (DEMs) to be created 

(e.g. Kirk et al., 2008). Here we utilise a 2 m per pixel DEM (stereo pair 

PSP_002320_1415_RED and PSP_003243_1415_RED [see Hubbard et al., 2011 for 

details]) and corresponding orthorectified HiRISE image, with a resolution of ~0.25 m 

per pixel, to reconstruct the former extent of a well-studied GLF (e.g. Hartmann et al., 

2003; Marchant and Head, 2003; Milliken et al., 2003; Kargel, 2004; Hubbard et al., 

2011 [Figure 4.2d]). 

 

 

4.2.2.1. Study site 

 

Our case study reconstruction is based on the analysis of a GLF located in Crater Greg, 

eastern Hellas Planitia (Figure 4.2). This crater is located in a climatically important 

zone with global climate models suggesting that it was positioned in one of two regions 

of high ice deposition outside of the polar ice-caps during periods of high obliquity 

(Forget et al., 2006; Hartmann et al., 2014). 

 



126  CHAPTER 4.   FORMER EXTENT OF GLACIER-LIKE FORMS 

 

 

 

Figure 4.2: Location and expansion of our case study GLF reconstruction. (a) Global 

context map indicating location of host crater, Greg, illustrated as a MOLA elevation 

transparency overlain on a THEMIS-IR day mosaic. (b, c) Expansion of Crater Greg, 

illustrating local context and abundance of GLFs on the crater’s northern headwall 

(CTX image G05_020121_1412_XN_38S247W). (d) The subject GLF to reconstruction, 

illustrated as a subset of HiRISE image PSP_002320_1415_RED (centred on ~113.16o 

E, 38.15o S). 

 

 

Several lobate tongues classified as GLFs are located on the northern wall of Crater 

Greg (Arfstrom and Hartmann, 2005; Hubbard et al., 2011; Souness et al., 2012; 

Hartmann et al., 2014 [Figure 4.2c]). The GLF studied herein (Figure 4.2d), is ~4 km 
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long and ~1 – 2 km wide, extends down-slope at an angle of ~10o, and according to 

Hartmann et al. (2014) is likely younger than ~50 Ma BP, with a best estimate of ~2–9 

Ma BP. Several arcuate ridges visible in the immediate forefield of the GLF (Figure 

4.2d) have been interpreted as latero-terminal moraines (Hubbard et al., 2011; Hartmann 

et al., 2014) – a type of moraine that demarcates not only the frontal position of an ice 

mass but also provides geometric constraints on former lateral and vertical extents, an 

important component of glacier reconstruction on Earth (e.g. Benn et al. 2005). Based 

on the GLF’s overall geomorphological characteristics, Hubbard et al. (2011) concluded 

that the upper basin currently hosts a degraded GLF, while the lower basin zone 

represents deglaciated terrain. Although several authors have commented on the 

degraded nature of this GLF, with previous estimates of thinning based on heights of the 

innermost set of lateral moraines of between 30 and 50 m (Hubbard et al., 2011; 

Hartmann et al., 2014), no attempt has been made to reconstruct the GLF’s former 

three-dimensional extent, or to quantify the volume of ice lost since that maximum 

extent.  

 

 

4.2.2.2. Glacial reconstruction 

 

In order to assess changes in volume and area of our selected GLF we use standard GIS 

routines in ESRI’s ArcMap v10.1 (e.g. Wolff et al., 2013). Below, we detail the 

methods used to reconstruct the GLFs palaeo-ice surface and to calculate morphometric 

change since the time of that extent. We summarise sources of potential uncertainty that 

may arise during our reconstruction in Section 4.2.3. 

 

The outlines of the current and former GLF surface were manually digitised on screen. 

The former GLF outline was mapped on the basis of clear moraine ridges (Section 

4.2.2.1) and associated geomorphological evidence such as the locations of trimlines 

(Figure 4.3). To demarcate the current GLF surface we follow the interpretation of 

Hubbard et al. (2011) to isolate the surface with a relatively fresh, sharp appearance 

(including their ‘scaly’ and ‘polygonized’ terrains). These terrains contrast sharply with 

the surrounding material, which is dominated by heavily dissected unconsolidated 

material to the north (termed ‘incised-headwall’ terrain by Hubbard et al. [2011]; Figure 
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4.3b), and regions of round to elongate ridges to the south (their ‘mound-and-tail’ and 

‘linear’ terrain; Figure 4.3c). These outer terrains were interpreted by Hubbard et al. 

(2011) as consistent with regions of former glaciation.  

 

 

 

Figure 4.3: Interpreted GLF limits and reconstruction array (subset of HiRISE image 

PSP_002320_1415_RED). (a) Overview of mapped current (blue line) and former 

(green line) GLF limits with glacier surface (red) and constraining marginal (green) 

reconstruction nodes overlain. (b–d) Geomorphological and surface evidence used in 

demarcating the current and former GLF limits: (b) incised headwall terrain, (c) 

compositional boundary between relatively fresh ‘polygonized’ terrain and contrasting 

‘linear’ terrain (dashed white line marks the inferred current GLF terminus) and (d) 

clearly visible moraine ridges.  
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In order to recreate the former GLF’s bed, we removed the later set of moraine ridges 

located between the current and former GLF surfaces by clipping them from the DEM 

and re-interpolating the surface using ArcMap’s ‘Topo to Raster’ (ANUDEM 

algorithm) tool.  

 

To reconstruct the palaeo-ice surface, we calculated the ice thickness along an array of 

17 flow-line profiles that extend from the terminus of the outer moraine ridge up to the 

GLF’s headwall. Flow-lines were created based on geometric considerations of 

terrestrial glacier flow. Each flow-line was converted into a series of nodes at 100 m 

intervals (Figure 4.3a) and, following Van der Veen’s (1999, pg 149 – EQ. 6.2.3) 

adaptation of Nye’s (1951, 1952) perfect-plasticity approximation for ice flow, the GLF 

surface elevation was solved at each node from the margin iterating up-glacier to the 

headwall. The perfect-plasticity approximation assumes that ice deforms at an infinite 

rate when the driving stress exceeds a critical yield strength (Van der Veen, 1999). 

Yield strength values for terrestrial glaciers typically range from 50–150 kPa (Cuffey 

and Paterson, 2010). However, recent SHARAD-validated measurements of ice 

thickness on Mars using the same perfect-plastic approach utilised herein, reveal a 

critical yield strength value of 22 kPa (Karlsson et al., 2015); a value markedly lower 

than those derived for terrestrial glaciers due, potentially, to the impurity content of 

martian ice, which is estimated to be between 5 and 10 % (Holt et al., 2008; Grima et 

al., 2009; Karlsson et al., 2015). For our GLF reconstruction we adopted this yield 

strength value bracketed by two additional scenarios to reflect low (12 kPa) and high 

(38 kPa) yield strengths (Karlsson et al., 2015). Calculation of driving stress followed 

Van der Veen (1999) and accordingly uses a lower gravitational constant of 3.71 m s-2 

for Mars compared to Earth. To constrain the zero-thickness boundary around the 

reconstructed GLF, we converted the mapped former margin to nodes at 50 m intervals 

and extracted the elevation from the HiRISE DEM (Figure 4.3a). Finally, by combining 

these values, the former GLF’s palaeo-ice surface was interpolated using ArcMap’s 

‘Topo to Raster’ tool, which has previously provided robust results for glacier surface 

interpolation (e.g. Racoviteanu et al., 2007; Carrivick et al., 2015). Our reconstructed 

GLFs were generated at a resolution of 2 m per pixel to allow direct comparison with 

the original DEM. We estimated the GLF’s former ice thickness by subtracting the 

GLF’s current DEM (with the inner moraines removed) from each of the three 
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reconstructed surfaces. Volume and area change was calculated using Arc Map’s ‘cut 

and fill’ tool. 

 

 

4.2.3. Uncertainty in recession identification and reconstruction 

 

Both the identification of recession and the GLF reconstruction used herein are subject 

to uncertainties, some of which are constrained and others are not. Below we summarise 

the sources of these uncertainties and outline their management. 

 

 

4.2.3.1. Identification of recession  

 

As with all remotely sensed manual classification studies, there is a potential degree of 

human error, mainly reflecting the user’s ability to identify their features of interest 

(Smith, 2011). However, evidence of GLF recession was considered to be 

unambiguous, with geometric changes visible in clearly identifiable latero-terminal 

moraine ridges and/or in clear surface depressions. Further, the identification of 

recession depends on the production and subsequent survival of evidence until the time 

of image acquisition, while any feature must be greater than the observable resolution of 

the imaging sensor (Smith, 2011). 

 

 

4.2.3.2. Identification and digitisation of GLF extent 

 

In the absence of field validation, demarcating the current and former limit of a GLF is 

solely based on geomorphological and surface features identified in satellite imagery. 

The identification of glacier boundaries, particularly exemplified on debris-covered 

glaciers, is inherently difficult in remotely-sensed imagery and subject to variable 

observer interpretation (e.g. Nuimura et al., 2015). Although mitigated by the high 

resolution of the satellite imagery and DEM used, defining exact boundaries involves 

some error.   
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4.2.3.3. Removal of moraine ridges 

 

Care was taken to remove only the proportion of the surface affected by the inner set of 

moraine ridges, rather than any natural surface perturbation. This is effectively 

mitigated because moraine ridges were easily identifiable in contours where they appear 

as sharp crested peaks. 

 

 

4.2.3.4. Creation of DEMs 

 

The choice of interpolation routine causes variation in the reconstructed surface 

depending on the method used (e.g. inverse distance weighting, spline, kriging, tin). We 

use the Topo to Raster interpolation method as it has been shown to produce improved 

results relative to other interpolation methods (Racoviteanu et al., 2007), and has 

previously provided reliable estimates of former ice surfaces (Racoviteanu et al., 2007; 

Carrivick et al., 2015). Although the choice of pixel size used in interpolation is user-

defined, it has previously been shown to have a negligible influence on volume 

calculations (e.g. Villa et al., 2007). 

 

 

4.2.3.5. Surface reconstruction and change analysis 

 

In the absence of SHARAD-validating measurements, we do not remove the current 

GLF volume or potential proglacial sediment in-fill from our DEM. However, under the 

GLF’s current degraded state, it is unlikely that either of these materials is greater than 

metres to tens of metres thick (Hubbard et al., 2011). We therefore assume the present 

valley floor, with the innermost moraine ridges removed (Sections 4.2.2.2 & 4.2.3.3), 

represented the former GLF bed for our reconstruction scenarios. 
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4.3. Results 

 

4.3.1. Population-scale distribution of recessional GLFs 

 

From a total population of 1293 GLFs located in Mars’ mid-latitudes, 436 (33.7 %) 

show evidence of an expanded former extent (Figure 4.4). Of these 436 recessional 

GLFs, 197 (45.2 %) are located in the northern hemisphere, and 239 (54.8 %) in the 

southern hemisphere. Several clusters of recessional GLFs are visible, e.g., across the 

‘fretted terrain’ of the northern dichotomy boundary and surrounding the Hellas impact 

basin (Figure 4.4). This distribution broadly reflects concentration variations in the 

parent population, resulting in recessional:total GLF ratios close to 1 (Figure 4.4).  

 

 

4.3.2. Environmental controls over recessional GLF distribution 

 

4.3.2.1. Latitude 

 

The latitudinal distribution of recessional GLFs shows inter-hemispheric similarity, 

with a mean of 38.4o in the northern hemisphere and 39.0o in the southern hemisphere 

(Table 4.1). However, in both hemispheres, the lower-latitude regions between ~25 and 

40o are over-represented by recessional GLFs, with a mean ratio of 1.33, relative to the 

regions between 40 and 65o, where a mean (under-represented) ratio of 0.64 is observed 

(Figure 4.5a). This effect strengthens at even lower latitudes within the surveyed region, 

such that the mean ratio rises to 1.83 between 28 and 32o in the northern hemisphere 

and to 1.72 between 26 and 30o in the southern hemisphere (Figure 4.5a).  
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Figure 4.4: Mars global map showing the mid-latitude distribution of recessional GLFs 

(red dots) relative to the total GLF population (black dots). 436 recessional GLFs were 

identified globally: 197 were located in the northern hemisphere and 239 were located 

in the southern hemisphere. Ratio bar plots in 5o longitude bins, showing normalised 

concentration of recessional GLFs relative to the normalised concentration of the total 

GLF population, for each hemisphere are presented above and below the distribution 

map. Background map is MOLA elevation transparency overlain on MOLA hillshade 

projection. 
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Table 4.1: Basic descriptive statistics for the environmental parameters of orientation, elevation, relief and latitude for (a) all GLFs (after 

Souness et al., 2012) and (b) recessional GLFs. See also Figures SF2 and SF4. 

(a) All GLFs Parameter Mean Std. 

dev. 

(b) Recessional 

GLFs 

Parameter Mean Std. dev. 

All (n = 1293) Orientation  (o) 145 117 All (n = 436) Orientation (o) 167 87.0 

 Elevation (m) -363 1950  Elevation (m) -33 1760 

 Relief (m) 364 171  Relief (m) 394 176 

 Latitude (o) - -  Latitude (o) - - 

        

North (n = 723) Orientation (o) 26 105 North (n = 197) Orientation (o) 49 119 

 Elevation (m) -1370 1290  Elevation (m) -1170 1180 

 Relief (m) 323 161  Relief (m) 340 158 

 Latitude (o) 39.3 4.90  Latitude (o) 38.4 4.80 

        

South (n = 570) Orientation (o) 173 73.0 South (n = 239) Orientation (o) 175 55.0 

 Elevation (m) 911 1900  Elevation (m) 900 1600 

 Relief (m) 416 169  Relief (m) 439 178 

 Latitude (o) -40.8 5.30  Latitude (o) -39.0 3.60 
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Figure 4.5: Ratio plots showing normalised concentration of recessional GLFs relative 

to the normalised concentration of the total GLF population for: (a) global and 

hemispheric latitude in 2o bins; (b) global, (c) northern- and (d) southern-hemispheric 

elevation in 500 m bins; (e) global, (f) northern- and (g) southern-hemispheric relief 

index in 50 m bins; (h) global, (i) northern- and (j) southern-hemispheric orientation in 

5o bins. 
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4.3.2.2. Elevation 

 

In contrast to latitudinal distribution of recessional GLFs, there are distinct inter-

hemispheric differences in terms of elevation. Mean recessional GLF elevation of the 

northern and southern hemispheres was -1170 and (+)900 m (Table 4.1) respectively. In 

the northern hemisphere, recessional GLFs appear over-represented (ratio up to 2) at 

elevations close to 0 m, particularly between -500 and (+)2000 m (Figure 4.5c). In the 

southern hemisphere, apart from one isolated peak between -6500 and -6000 m (ratio 

~2.5) and some minor fluctuations between -2000 and (+)7500 m, the elevation of 

recessional GLFs appears to generally reflect that of the parent GLF population (e.g. 

ratio of ~1).  

 

 

4.3.2.3. Relief 

 

The relief of recessional GLFs generally shows that they are over-represented towards 

the higher relief index values between 700 and 1000 m (Figure 4.5e–g). The mean relief 

index of recessional GLFs has a value of 340 m (standard deviation = 158 m) in the 

northern hemisphere and a slightly higher value of 439 m (standard deviation = 178 m) 

in the southern hemisphere (Table 4.1).  

 

 

4.3.2.4. Orientation 

 

Overall, recessional GLFs are over-represented in a broadly southward-facing 

orientation range between ~120 and 290o (Figure 4.5h). However, this general pattern 

masks an inter-hemispheric contrast: the mean bearing of recessional GLFs is 49o in the 

northern hemisphere, with little preference for orientation (Figure 4.5i), compared to the 

southern hemisphere where there is a mean bearing of 175o, and a pronounced southerly 

(i.e. pole-facing) orientation bias of between 150 and 225o (Figure 4.5j, Table 4.1). 
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4.3.3. Case study: Crater Greg GLF reconstruction 

 

The reconstructed GLF’s plan-form geometry was larger in all directions than its 

present day configuration. Overall, the reconstructed GLF appears to have coalesced 

from a wide upper basin down through a bedrock confined channel, which coupled with 

two lower alcoves provided mass to the narrow GLF terminus (Figures 4.3 and 4.6). 

The current GLF has a maximum length and width of 2.3 and 2.5 km respectively, and 

covers an area of 2.81 km2. The reconstructed GLF extended ~2.5 km southward down 

the wall of Crater Greg to the lowest moraine ridge and northward up the steep headwall 

by ~400 – 500 m (Figure 4.3). The reconstructed GLF’s lateral margins extended by 

~700 m to the east and ~500 m to the west of the current GLFs margins (Figure 4.3). 

These geometric changes result in the reconstructed GLF having a maximum length and 

width of 5.2 and 3.5 km respectively, and covering an area of 9.67 km2. The GLF has 

therefore experienced a reduction in area of 6.86 km2, or ~70 %, since its maximum 

extent.  

 

For each of the three reconstruction scenarios (Figure 4.6) we calculated the former 

GLF’s maximum and average ice thickness (Figure 4.7), and ice volume loss relative to 

the present-day surface. For our low (12 kPa), mean (22 kPa) and high (38 kPa) yield 

strength scenarios we calculate: (i) maximum ice thickness as 38, 62, and 97 m; (ii) 

mean ice thickness as 19, 32, and 54 m; and (iii) ice volume loss as 0.18, 0.31, and 0.52 

km3 respectively. In general, an increase in yield strength equated to an increase in 

mean and maximum ice thickness, and ice volume loss, such that all values for the high 

yield strength reconstruction were ~2.5 times greater than the low yield strength 

reconstruction.  
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Figure 4.6: Crater Greg GLF reconstructed palaeo-ice surface. (a) Reconstructed 

palaeo-ice surface based on yield strength of 22 kPa, with 50 m contours. (b) Current 

ice surface with 50 m contours for comparison. Difference in reconstructed palaeo-ice 

surface from (a) for yield strength of 12 kPa (c) and 38 kPa (d). 
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Figure 4.7: Crater Greg GLF reconstructed three-dimensional geometry and ice 

thickness. Reconstructed palaeo-ice thickness for yield strength of (a) 22 kPa, (b) 12 

kPa and (c) 38 kPa. (d) Palaeo-ice surface elevation of (a–c) along a central flow-line. 

 

 

4.4. Interpretation and discussion 

 

4.4.1. Controls on GLF recession  

 

One third of all GLFs showed evidence of recession. Such recession appears widespread 

in both the northern and southern hemispheres (Figure 4.4) and covers all latitude, 

elevation, relief and orientation ranges (Figure 4.5). This widespread evidence of 

recession is therefore indicative of global rather than regional or hemispheric changes in 

controlling, likely climatic, conditions. On Earth, the locality and survival of glaciers 
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are a result of the interplay of effective precipitation, temperature and topography 

(Cuffey and Paterson, 2010). These three factors are in turn governed by variation in 

latitude and altitude on the macro-scale and orientation, relief and distance from a 

precipitation source at a regional or more local scale. 

 

Latitude and relief appear to exert a systematic control on where recessional GLFs 

occur on Mars. Both of these environmental parameters show statistical over-

representation of recessional GLFs towards the boundary of their environmental ranges 

(Figure 4.5), although it should be noted that total numbers of GLFs are lower in these 

regions than towards the centre of the ranges (Figures SF2 and SF4).  

 

In terms of latitude, recessional GLFs are over-represented relative to the total GLF 

population at lower latitudes (i.e. closer to the equator). This over-representation occurs 

within the latitudinal range between 25 and 40o in both the northern and southern 

hemisphere and was particularly enhanced between 26 and 32o in both (Figure 4.5a). 

This association was not apparent for the higher pole-ward latitudes between 40 and 

65o, where recessional GLFs are conversely equally- or under-represented (Figure 4.5a). 

The over-representation of recessional GLFs in the lower latitudinal domain may be a 

direct reflection of the current stability of shallow ground ice on the planet. At present, 

ground ice is suggested to be stable at depths of less than 5 m pole-ward of ~45o 

(Mellon et al., 2004; Bryne et al., 2009; Schorghofer and Forget, 2012). This limit 

provides an effective threshold such that near surface ice at lower latitudes is at best 

meta-stable and susceptible to sublimation/ablation. Thus, although recession is 

identified across all latitudes, over-representation of recessional GLFs at lower latitudes 

(25 – 40o in particular) suggests that ice is being preferentially removed from these 

localities, with corresponding implications for preferential GLF recession. 

 

In terms of relief, recessional GLFs were over-represented in areas of higher relief index 

values in both the northern and southern hemispheres (Figure 4.5e – g), albeit covering 

a slightly lower index value in the northern hemisphere (550 – 800 m) than in the 

southern hemisphere (700 – 1000 m [Figure 4.5e–g]). This hemispheric difference 

mirrors that of the overall GLF population (Figures SF2 and SF4 [Souness et al., 2012]), 

and also potentially that identified at the wider VFF scale (e.g. Karlsson et al., 2015). 

On Earth, relief plays an important role in glacier formation and preservation. On higher 
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relief (steeper) slopes, glaciers are prone to particularly rapid mass change due to a high 

sensitivity to changes in mass balance and potentially increased solar insolation if they 

are tilted towards the Sun (see discussion below), or even complete mass loss as a result 

of avalanching (e.g. Raper and Braithwaite, 2009). While there is little evidence of ice 

avalanching on Mars, steeper GLFs are still likely to respond more rapidly to climatic 

change. Although recession is observed across all relief values, the over-representation 

of recessional GLFs at higher relief values may therefore reflect that they have already 

re-adjusted their mass distribution to recent climatic change(s), whereas lower relief 

GLFs are still re-adjusting to climatic perturbations. Furthermore, surface debris can 

accumulate to thicker depths on shallower slopes, a process that would further dampen 

the rate in mass response of lower-relief GLFs (e.g. Marchant et al., 2002).  

 

The over-represented recessional GLF latitude and relief domains often host low total 

GLF numbers (Figures SF2 and SF4 [Souness et al., 2012]). We attribute this 

association to environmental conditions that are marginal for initial GLF formation, 

and/or their subsequent preservation. 

 

In terms of elevation and orientation, there was no clear systematic pattern of 

recessional GLFs visible at either the global or hemispheric scale. For example, Souness 

et al. (2012) found that GLFs showed a strong pole-ward bias in orientation in both the 

northern and southern hemisphere. These authors related this bias to the fact that pole-

facing alcoves received lower insolation than equatorial facing alcoves and therefore, 

much like terrestrial glaciers, were more likely to be conducive to accumulation and 

preservation of ice. Thus, if orientation was to exert a dominant control over GLF 

recession, one would expect to see GLFs facing away from their nearest pole (i.e. 

equatorial facing: south in the northern hemisphere and north in the southern 

hemisphere) to be over-represented – a pattern that was not identified (Figure 4.5h – j).  

 

There are at least two potential explanations as to why no orientation bias was observed 

in the distribution of recessional GLFs. First, this inventory only considers current 

GLFs and does not consider potential sites of former GLFs that have been either 

partially removed (e.g. Figure 4.1d), and therefore no longer conform to the definition 

of a GLF as set out by Souness et al. (2012), or completely removed so that a glaciated 
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(ice free) landscape now prevails (e.g. Figure 4.1d). During lower obliquity periods, 

equator-facing slopes are likely to receive higher insolation than pole-facing slopes, and 

equator-facing GLFs are therefore more likely to be preferentially removed than pole-

facing GLFs. Second, it may be possible that a regime similar to those used to explain 

scalloped terrain development (e.g. Lefort et al., 2009; Ulrich et al., 2010; Séjourné et 

al., 2011) and gully formation (Costard et al., 2002) may also affect GLFs. Here, it is 

argued that during periods of very high obliquity (≥45o) pole-facing slopes become the 

more likely regions of higher insolation and day-averaged summer temperatures, and 

thus preferential sites for ice removal, relative to equator-facing slopes (Costard et al., 

2002). If we take into account obliquity variation over the last 20 Ma, a period for 

which reliable obliquity solutions have been obtained (Laskar et al., 2004) and one 

which covers the possible age of GLFs (Hartmann et al., 2014), Mars has experienced at 

least six periods of obliquity of ≥45o (Laskar et al., 2004). However, it should be noted 

that these high obliquity excursions are relatively short lived and that the last 20 Ma has 

been dominated by obliquity ≤45o (Laskar et al., 2004). Therefore, it is possible that at 

least two contrasting signals are manifested in the orientation distribution of recessional 

GLFs, with one preferentially reducing/removing equator-facing GLFs and the other 

preferentially reducing/removing pole-facing GLFs. Although the exact contribution 

and importance of these processes to ice removal remains unknown, it does provide a 

potential explanation for the observed orientation distribution of recessional GLFs. 

 

Taken together, these results can add further perspective to the development and 

evolution of glacial/periglacial landforms in Mars’ mid-latitudes. Several landforms or 

terrains, including dissected mantle terrain (Mustard et al., 2001; Kreslavsky and Head, 

2002; Milliken and Mustard, 2003), banded terrain (Diot et al., 2014), scalloped 

depressions (Lefort et al., 2009; Ulrich et al., 2010; Séjourné et al., 2011), polygons 

(Mangold, 2005), and VFFs (Milliken et al., 2003; Souness et al., 2012; Levy et al., 

2014) appear between 30 and 60o in both hemispheres, and have been, to various 

degrees, attributed to latitude-dependent insolation forcing. The identification of a 

latitudinal threshold at ~40o in both hemispheres, below which GLFs are preferentially 

removed (Figure 4.5), would conform to this hypothesis, particularly as this latitude 

falls close to the current stability of shallow ground ice on the planet (Mellon et al., 

2004; Bryne et al., 2009; Schorghofer and Forget, 2012). However, there is also some 

degree of heterogeneity in recession, whereby GLFs in a similar setting do not show a 
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similar response (Figures 4.4 and 4.5). It is therefore likely that regional or local 

meteorological conditions also play a role in GLF survival and/or initial emplacement, 

as may be the scenario for other mid-latitude glacial/periglacial landforms (Conway and 

Balme, 2014; Levy et al., 2014).        

 

 

4.4.2. Crater Greg GLF reconstruction and population ice loss potential 

 

Our reconstructed GLF in Crater Greg has changed substantially since its former 

maximum. The GLF has receded 3 km, or ~60 %, of its maximum length, and lost an 

area of 6.86 km2, or ~70 %, of its maximum extent (Figures 4.6 and 4.7). Assuming that 

the mean yield strength of 22 kPa (Section 4.2.2.2) is the most appropriate value for our 

GLF reconstruction, we calculate that the GLF had a maximum and mean ice thickness 

of 62 and 32 m respectively (Figure 4.7), and has lost an ice volume of 0.31 km3. The 

GLF in Crater Greg has therefore undergone substantial mass loss since the LMGM, 

with these changes manifested in both surface lowering and terminus recession.  

 

The identification of over 400 GLFs showing evidence of recession, coupled with 

substantial mass and area loss for our reconstructed case study GLF, suggests that a 

large proportion of ice has been removed from GLFs since the LMGM. Although 

tentative, assuming that the volume loss of 0.18 – 0.52 km3 from the reconstructed 

Crater Greg GLF (Section 4.3.3) is typical of all recessional GLFs (n = 436), yields a 

first-order estimate of global ice volume loss from GLFs since the LMGM of between 

78 and 227 km3, with a best estimate of 135 km3 for an optimum yield strength of 22 

kPa – an equivalent ice volume to that currently stored in the Alpine glaciers of central 

Europe (Huss and Farinotti, 2012), although the mass balance terms are likely very 

different in the two settings.  

 

This generalised estimate does emphasise the requirement for regional- or population-

scale reconstruction studies if we are to improve our current understanding of the 

evolution of mid-latitude ice deposits under a changing martian climate. For example, 

recessional GLFs in the northern hemisphere have an overall lower elevation and relief 

index than those in the southern hemisphere (Section 4.2 and Figure SF4). Thus, these 
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spatially varying conditions, coupled with potential endogenic environmental variability 

in, for example, ice-debris content, ice grain size or supra-glacial debris layer thickness, 

are likely to exert some control over the rates of individual GLF recession and volume 

loss (i.e. a non-uniform recession rate and ice volume change in GLFs [Parsons et al., 

2011]) – a ubiquitous occurrence on terrestrial glaciers (e.g. Scherler et al., 2011). Such 

variability would be captured by high-resolution mapping and reconstruction of all 

recessional GLFs. Similar studies have proven useful on terrestrial glaciers (e.g. Glasser 

et al., 2011), and would be a beneficial avenue for future research on Mars.  

 

Several lines of evidence have been presented for partial to complete degradation of 

non-polar ice deposits (e.g. Head and Marchant, 2003; Dickson et al., 2008; Hauber et 

al., 2008), and although not formally analysed herein, several instances of alcoves 

adjacent to GLFs containing ice remnants were observed (e.g. Figure 4.1d). It is 

possible that such deposits are the remains of former GLFs that have partially, or 

completely, receded since ice emplacement. Thus, in restricting this analysis to 

identified GLFs (Souness et al., 2012), total ice volume loss has likely been 

underestimated. Therefore, due to the potential sources of over- or under-estimation 

outlined above, the estimate of ice volume loss from GLFs reported here should be 

viewed only as an initial approximation, pending refinement based on a more granular-

level analysis.  

 

The estimated ice volume loss from GLFs (135 km3) is minor relative to the volume of 

ice contained in the Northern Polar Layered Deposits (~821,000 km3 [Putzig et al., 

2009]), which potentially serves as a likely reservoir exchanging mass with the mid-

latitudes (e.g. Head et al., 2003, Levrard et al., 2004). Thus, although not a significant 

mass exchange at the planetary level, the GLF ice loss we report is potentially important 

for mid-latitude environmental conditions and landform development.  

 

 

4.5. Conclusions 

 

Visual analysis of 1293 GLFs reveals that 436 show evidence of an expanded former 

extent. This recession is distributed across both the northern and southern hemispheres, 

thereby indicating widespread climatic change on Mars. Although recession is observed 
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across all environmental parameters, the statistical over-representation of recessional 

GLFs is particularly pronounced in (i) low latitude and (ii) high relief domains, 

suggesting that these parameters exert some control over GLF recession. With respect to 

latitude, GLFs between 25 and 40o in both hemispheres appear to be preferentially 

experiencing mass loss. Here, the higher latitudinal boundary coincides with the limit of 

present day ground ice stability, and, as such, may represent a threshold between the 

effective preservation and sublimation/ablation of GLFs. The over-representation of 

recessional GLFs in regions of higher relief would suggest that, like their terrestrial 

counterparts, these ice masses have a shorter response time to climatic perturbations 

than lower relief GLFs, reflecting the influence of slope on mass redistribution both 

directly and indirectly via the stability of supraglacial debris. These two domains of 

over-representation of recessional GLFs are characterised by low total GLF numbers, 

suggesting that the areas already represent zones of marginal glaciation, which have 

subsequently become un-stable under martian climatic change. 

 

Our GLF reconstruction provides, to our knowledge, the first estimate of both area and 

volume loss from a GLF (noting that similar studies have previously been applied to 

other, often large scale, ice masses [e.g. Shean et al., 2005]). Results indicate that the 

case study Crater Greg GLF has receded in area by ~70 % and has lost an ice volume 

between 0.18 and 0.52 km3, with a best estimate of 0.31 km3, since its former maximum 

extent. Scaling this up to all recessional GLFs (n = 436) suggests a global first-order 

estimate of ice volume loss from Mars’ mid-latitude GLFs of between 78 and 227 km3, 

with a best estimate of 135 km3. Future research should focus on refining this estimate 

through consideration of volume change at all individual recessional GLFs, as well as 

on the much wider VFF scale (e.g. Levy et al., 2014).   
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SF1: Mars global map showing the mid-latitude distribution of GLFs (data from 

Souness et al., 2012). 1293 GLFs were identified globally: 723 were located in the 

northern hemisphere and 570 were located in the southern hemisphere. Histograms of 

GLF concentration in 5o longitude bins are presented above and below the distribution 

map. Background map is MOLA elevation transparency overlain on MOLA hillshade 

projection. 
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SF2: Histograms of GLF population distribution relative to latitude, elevation, relief 

and orientation (data from Souness et al., 2012): (a) global and hemispheric latitude in 

2o bins; (b) global, (c) northern- and (d) southern-hemispheric elevation in 500 m bins; 

(e) global, (f) northern- and (g) southern-hemispheric relief index in 50 m bins; (h) 

global, (i) northern- and (j) southern-hemispheric orientation in 5o bins. 
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SF3: Mars global map showing the mid-latitude distribution of recessional GLFs. 436 

recessional GLFs were identified globally: 197 were located in the northern hemisphere 

and 239 were located in the southern hemisphere. Histograms of GLF concentration in 

5o longitude bins are presented above and below the distribution map. Background map 

is MOLA elevation transparency overlain on MOLA hillshade projection. 
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SF4: Histograms of recessional GLF population distribution relative to latitude, 

elevation, relief and orientation: (a) global and hemispheric latitude in 2o bins; (b) 

global, (c) northern- and (d) southern-hemispheric elevation in 500 m bins; (e) global, 

(f) northern- and (g) southern-hemispheric relief index in 50 m bins; (h) global, (i) 

northern- and (j) southern-hemispheric orientation in 5o bins. 
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Summary to manuscript ‘Former extent of glacier-like forms 

on Mars’ 

 

Chapter 4 has presented a population-scale inventory of recessional GLFs. Coupled 

with this inventory was a glacial reconstruction of the maximum extent and morphology 

of a typical GLF. The key outcomes to carry forward are as such: 

 

1.  A total of 436 GLFs showed evidence of an expanded former extent. This 

recession appears widespread in both the northern and southern hemispheres and 

covers all latitude, elevation, relief and orientation ranges. Such widespread 

evidence of recession is therefore interpreted to be indicative of global rather 

than regional or hemispheric climatic change. 

 

2. Assessment of the environmental settings of recessional GLFs revealed that 

latitude and relief exert(ed) some control over GLF sensitivity and response to 

climatic forcing. These results suggested that GLFs are particularly sensitive to 

the planetary limit of shallow ground ice stability and that GLFs in areas of 

higher relief (rougher topography) likely have a shorter response time to climatic 

perturbations than GLFs in areas of lower relief (smoother topography). 

 

3. Although GLFs that showed evidence of recession appeared to be sensitive to 

their latitude and relief (see point 2 above), there was also some degree of 

heterogeneity in GLF recession, whereby GLFs in a similar setting did not show 

a similar response. It is therefore likely that a combination of regional to local 

meteorological conditions also play(ed) a role in GLF survival and/or initial 

emplacement. 

 

4. The reconstruction of a GLF in Crater Greg, eastern Hellas Planitia, revealed a 

loss in area of ~70 % and volume of between 0.18 and 0.52 km3 since its 

maximum extent. This analysis suggested that, at least some, GLFs have 

undergone substantial change and mass lass since their initial emplacement. 

Scaling this volume loss up to all recessional GLFs (n = 436) suggested a first-
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order estimate of ice volume loss from Mars’ GLFs of between 78 and 227 km3, 

with a best estimate of 135 km3. 

 

5. As discussed in the summary to Chapter 2, the identification of MLRs in the 

forefield of the reconstructed GLF are a clear indication of ice mass loss through 

both surface lowering and terminus recession. The identification of these 

structures also provided further evidence that GLFs are, or at least have been at 

some point in their history, landscape altering agents capable of entraining, 

transporting and depositing debris. 
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CHAPTER 5 
 

Palaeo-glaciers on Mars: modelling their 
formation and evolution  

 

 

 
	

 

 

 

 

 

 

 

 

 

 

 
All models are wrong, 

but some are useful 

George Box 
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Preface to manuscript ‘Palaeo-glaciers on Mars: modelling 

their formation and evolution’ 
 

Introduction and rationale 

  

The results and conclusions of work presented in previous chapters have improved our 

understanding of the current and former extent, volume and dynamics of Mars’ glacier-

like forms. However, in spite of these new advancements, relatively little is still known 

about the processes and climates responsible for GLF formation, and how they respond 

to climatic forcing (see Section 1.2.3). Better constraining the environmental and 

climatic conditions that can lead to GLF formation is of particular significance given 

that GLFs may represent some of the most recent ice flows on Mars (Arfstrom and 

Hartmann, 2005; Hartmann et al., 2014), therefore, by investigating the potential 

conditions responsible for their formation, we could begin to reconstruct the magnitude 

of these recent climatic perturbations and their spatial variation. 

 

This chapter presents ice flow modelling experiments that investigate the climates under 

which one particular GLF may have formed in Crater Greg, eastern Hellas Planitia. It 

builds upon the glacial geomorphological reconstruction presented in Chapter 4 to 

specifically investigate: (i) the long-term ELA and temperature required to best 

reproduce the maximum frontal position and vertical extent recorded in the 

geomorphological record; and (ii) the effect and response of the GLF to transient 

climatic forcing (e.g. contributing to Objectives [2] and [6] of the thesis). These results 

provide the opportunity to link geological observations of GLF fluctuations to the 

environmental and climatic conditions that were potentially responsible for producing 

them. The remainder of this preface discusses the methods that were adopted during the 

study. 
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Numerical modelling 

 

A number of ice flow models with a varying range of complexity exist. Here we use a 

time-evolving, plane-strain model of ice flow that is based on a finite-difference, first-

order solution of the ice-flow equations (Blatter, 1995; Blatter et al., 1998; Hubbard, 

2006). The model includes the effects of longitudinal or deviatoric stress and although 

such schemes are more elaborate than the often used driving stress approximation (e.g. 

Fastook et al., 2011), the inclusion of longitudinal stresses have been shown to be an 

important component of valley glacier modelling on Earth (e.g. van der Veen et al., 

1999; Hubbard, 2000), and more recently on Mars (e.g. Parsons and Holt, 2016). The 

use of such a model is justified given the valley-like topographic setting of the GLF 

studied herein is likely to induce changes in gradients at the glacier bed and surface, or 

through variability in basal and lateral friction.  

 

The model itself is driven by a mass balance parameterisation forced by altering the 

equilibrium line altitude (ELA) through time. For this approach the mass balance 

function is based on the altitudinal-derived mass balance parameterisation of Fastook et 

al. (2008), which provided a linear mass balance gradient of 0.005 mm water equivalent 

per m of elevation for our modelling domain (their Figure 5b). In reality the 

parameterisation of Fastook et al. (2008) can be seen as more of a climate tuning 

function, as both accumulation and ablation are ultimately dependant on the base 

temperature via the lapse rate (Fastook et al., 2008). Offsetting the base temperature can 

simulate a change in climate by changing the mass balance distribution (their Figure 

5c). This change in climate is achieved by altering (raising/lowering) the ELA in our 

modelling domain rather than changing the mass balance function, and given the small 

altitudinal range (~1300 m) of our domain, is a sufficient approximation to the method 

of Fastook et al.  (2008). Furthermore, this approach closely aligns with comparative 

studies for Earth based glaciers (e.g. Hubbard, 1997a). Ultimately, a more robust 

approach would be to use regional/site specific temperature and ice accumulation rates 

generated from a general circulation model (e.g. Forget et al., 2006), this is currently 

precluded by the resolution differences in modelling domains. 

 



166  CHAPTER 5.   NUMERICAL ICE FLOW MODELLING OF GLACIER-LIKE FORMS 

 

Other boundary conditions that are required were the glacier (or GLF) bed along a 

central flowline, down-glacier width distribution, ice rheology and subglacial 

conditions. Apart from the bed and the width distribution, these inputs are only poorly 

constrained for Mars and thus can introduce uncertainty into the modelling process (see 

detailed discussion provided in section 5.3.2). This issue underlies the modelling 

approach adopted here and cannot be avoided given the limited empirical data available 

to constrain the problem. However, that does not make the approach invalid and by 

careful parameter selection (using well investigated Earth analogues), coupled with 

forthright presentation of model assumptions, the experiments conducted remain valid 

and arguably provide important insights in themselves and that can be further refined in 

future studies, particularly as new data and evidence becomes available. Developments 

in martian palaeo-climatic reconstruction, remote sensing/DEM analysis and satellite-

born geophysical instrumentation including in ice penetrating radar (e.g. Karlsson et al., 

2015; Parsons and Holt, 2016), are presently on-going and will combine to 

incrementally improve constraints on such glacier flow modelling as has conducted 

here, thereby leading to improved understanding of these little known and understood, 

yet extremely remote, glacial systems and their associated landforms. 
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Abstract: Mars’ glacier-like forms (GLFs) are mid-latitude ice rich landforms that are 

thought to have formed during one or more periods of ice accumulation during the Late 

Amazonian. However, little is known about the climate that leads to GLF formation or 

how these ice masses evolved over time. Here we present initial results from a two-

dimensional, plane-strain flow model that investigates the climates under which one 

particular GLF may have formed in Crater Greg, eastern Hellas Planitia. A suite of 

model experiments were conducted and output was compared directly to 

geomorphogical evidence of former horizontal and vertical ice limits. The model was 

driven by a mass balance parameterisation forced by altering the equilibrium line 

altitude (ELA) through time and is applied under a range of englacial temperature 

scenarios. For ice temperatures of between 263 and 233 K an ELA range of between 

615 and 640 m (above Mars datum) was required to reconstruct the maximum frontal 

position in the geomorphological record. However, none of these experiments 

corresponded with the vertical limits on ice thickness provided by moraine heights. 

Colder englaical temperatures of <243 K, yielding thicker ice, were were required to 

satisfy the upper vertical constraint and conversely thinner ice with a temperature 

configuration of at least 20 K warmer (i.e. >263 K) was required to match the lower 

vertical constraint. This suggests that a spatially varying ice rheology or basal regime 

may have acted upon the GLF. The response of the GLF to a transient climate 

experiment, forced by obliquity variations, indicates that the maximum frontal position 

attained by the GLF was achieved during an initial extended period of climate 

favourable to ice accumulation. Several terminus standstills were noted during the 

advance/retreat fluctuations of the GLF terminus throughout the obliquity cycle, thereby 

providing a plausible transient reconstruction that facilitates the formation of multiple 

moraines as recorded in the geomorphological record. 

  

 

5.1. Introduction  

 

High-resolution remotely sensed images of the martian surface have revealed numerous 

mid-latitude (30 – 60o) landforms that have surface morphologies consistent with 

viscous deformation and the flow of H2O ice (e.g. Squres 1978; Lucchitta, 1984; Head 

et al., 2005; Holt et al., 2008; Head et al., 2010). Collectively, these landforms have 

become encompassed by the umbrella term viscous flow features (VFFs) and in total 
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>12,000 VFFs have been identified (Milliken et al., 2003; Dickson et al., 2012; Souness 

et al., 2012; Levy et al., 2014). Given that water ice is not presently stable across a large 

proportion of the latitudes where VFFs are located (e.g. Mellon and Jakosky, 1995; 

Mellon et al., 2004; Byrne et al., 2009), such deposits are thought to have formed under 

different climatic conditions from today. These climatic perturbations are hypothesised 

to result from orbital changes of Mars providing preferential conditions for ice 

accumulation during periods of increased obliquity (Laskar et al., 2002, 2004; Head et 

al., 2003). The survival of this ice to the present day is related, at least in part, to a now 

ubiquitous armouring of debris protecting the underlying ice from sublimation (e.g. 

Fastook et al., 2014). 

 

Glacier-like forms (GLFs) are a distinctive sub-type of VFF similar in planform 

appearance to terrestrial valley glaciers or debris-covered glaciers (e.g. Arfstrom and 

Hartmann, 2005; Hubbard et al., 2011; Souness et al., 2012), and have been shown to be 

<50 Ma, and likely <10 Ma old – making them some of the most recent ice flows on 

Mars (Arfstrom and Hartmann, 2005; Hartmann et al., 2014). Despite their potential 

importance as an archive of recent climatic change on Mars, relatively little is known 

about the processes and climates under which GLF formation occurs, and how they 

have evolved in the geologically recent past (e.g. Hubbard et al., 2014). On Earth, 

numerical ice flow modelling provides a useful methodology by which we can link 

historical or geological observations of glacier fluctuations to the environmental and 

climatic conditions that were responsible for producing them (e.g. Oerlemans, 1988; 

Hubbard, 1997a, b). However, applications of a similar nature to Mars mid-latitudes 

have thus far focused on the large scale VFFs: namely lobate debris aprons (e.g. 

Colaprete and Jakosky, 1998; Fastook et al., 2014; Parsons and Holt, 2016), lineated 

valley fill (e.g. Fastook et al., 2011) and concentric crater fill (e.g. Fastook and Head, 

2014) and relatively little focus has been given to understanding the formation and 

evolution of GLFs (Milliken et al., 2003).  

  

Here we present results of a two-dimensional numerical ice flow model forced by 

equilibrium line altitude (ELA) perturbations to investigate the climates under which 

one particular GLF may have formed in Crater Greg, eastern Hellas Planitia. Model 

results are constrained and interpreted with reference to geomorphogical evidence of 

glaciation in the area concerned. Specifically we investigate: (i) the long-term ELA and 
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temperature required to best reproduce the maximum frontal position and vertical extent 

recorded in the geomorphological record; and (ii) the effect and response of the GLF to 

transient climatic forcing. 

 

 

5.2. Study site 

 

Crater Greg (centred on ~38.65oS, 113.16oE [Figure 5.1]) is located to the east of Hellas 

Planitia. It has a diameter of 66 km and is thought to be of Hesperian age (1 – 3 Ga old 

[Hartmann et al., 2014]). The crater preserves strong evidence of post formation 

alteration from the action of water, in both liquid and solid state. Numerous landforms 

within the crater have been attributed as glacial in origin (see Section 5 of Hartmann et 

al., 2014). A collection of particularly prominent lobate tongues, classified as GLFs, are 

located on the crater’s northern (Figure 5.1c [Hartmann et al., 2003; Marchant and 

Head, 2003; Kargel, 2004; Arfstrom and Hartmann, 2005; Hubbard et al., 2011; 

Souness et al., 2012; Hartmann et al., 2014; Brough et al., 2016a]). Age estimates for 

these GLFs suggest that they are likely <50 Ma old, with a best estimate of ~2-9 Ma 

(Hartmann et al., 2014). Evidence from global climate models place Crater Greg as one 

of two locations of high ice accumulation when Mars’ orbital obliquity exceeds 45o, and 

a water source exists at the south polar region (e.g. Forget et al., 2006). 

 

The particular GLF modelled herein (Figure 5.1d) extends downslope at a general angle 

of ~10o (Hubbard et al., 2011) and appears to converge from a wide upper basin down 

to a narrow elongate tongue bounded by a sequence of at least three raised arcuate 

ridges (Figure 5.1e). Based on detailed geomorphological characterisation of the GLF’s 

surface terrain, Hubbard et al. (2011) concluded that the upper basin contained a now 

degraded and relict GLF and the lower basin zone corresponded to deglaciated terrain. 

The raised arcuate ridges were interpreted as latero-terminal moraines, thus revealing 

that the GLF has been subjected to apparently punctuated mass loss and recession since 

attaining its former maximum extent (Hubbard et al., 2011; Hartmann et al., 2014). 

Brough et al. (2016a) built on this earlier work and reconstructed a range of former 

three-dimensional palaeo-ice surfaces of the GLF using Nye’s (1951) perfect-plasticity 

approximation of glacier flow combined with detailed geomorphological mapping.  This 

analysis reveals that the  GLF at its maximum  extent covered an area of 9.67 km2, had a 



CHAPTER 5.   NUMERICAL ICE FLOW MODELLING OF GLACIER-LIKE FORMS 171 

	  

 
Figure 5.1: Location of Crater Greg and glacial history of the investigated GLF. (a) – 

(b) Global and regional context map indicating the location of Crater Greg. 

Background image is MOLA elevation transparency overlain on a THEMIS-IR day 

mosaic. (c) Local context of the GLF and landforms of Crater Greg’s northern wall, 

where several GLFs are located (CTX image G05_020121_1412_XN_38S247W). (d) 

The subject GLF to our modelling reconstruction including the outlines of Brough et al. 

(2016a) that demarcated the interpreted current (blue line) and former maximum (green 

line) extent of the GLF (HiRISE image PSP_002320_1415_RED). (e) Schematic 

illustration of the moraine sequence (black and white lines) recorded in the 

geomorphological record. 
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maximum length and width of 5.2 and 3.5 km, and covered an altitudinal range from 

110 to 1040 m above Mars datum. Given the GLF presently has a length and width of 

2.3 and 2.5 km, with an area of 2.81 km2 the GLF has experienced  a  loss  of  6.86 km2  

or  ~70 %  of  its  area. Coupling this area loss with differences in elevation between the 

current surface and reconstructed palaeo-ice surfaces indicates that the GLF had lost 

between 0.18 and 0.52 km3 based on the lower (12 kPa) and upper (38 kPa) 

reconstruction scenarios of Brough et al. (2016a). The preserved geomorphological 

record hence provides an empirical basis by which applied ice flow modelling can be 

used to investigate the GLF’s former vertical and horizontal limits, ots rheology and the 

associated climate forcing (Figure 5.1). 

 

 

5.3. Numerical model 

 

5.3.1. Model description 

 

A time-evolving, plane-strain model of ice flow that is based on a finite-difference, 

first-order solution of the ice-flow equations (Blatter, 1995; Blatter et al., 1998; 

Hubbard, 2006) is adapted for the martian environment. The model is based on a first-

order approximation of the stokes equations governing ice flow, thereby including 

longitudinal stress coupling effects, and has been benchmark tested in various synthetic 

and applied settings under both steady-state and transient conditions (Hubbard, 1997b, 

2000, 2006; Hubbard et al., 1998, 2003; Patton et al., 2013). Although such schemes are 

more elaborate than the often used driving stress approximation, the inclusion of 

longitudinal stresses demonstrated to be a critical component of valley glacier 

modelling on Earth (e.g. van der Veen, 1999; Hubbard, 2000), and more recently on 

Mars (Brough et al., 2016b; Parsons and Holt, 2016), where tensile and compressive 

forces can be induced as a result of changes in gradients at the glacier bed and surface, 

or through variability in basal and lateral friction. The numerical scheme has been 

successfully applied to glaciers on Earth (e.g. Hubbard et al., 1998; Hubbard, 2000; 

Hubbard et al., 2003) and is fully described in Blatter (1995) and Hubbard (2000).  

 

The boundary conditions required are the glacier (or GLF) bed along a central flowline, 

down-glacier width distribution, ice rheology, subglacial conditions, and mass balance. 
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Apart from the bed and the width distribution, these inputs are only poorly constrained 

for Mars and thus can introduce uncertainty into the modelling process. Nonetheless, 

choosing reasonable values for these input parameters yield realistic results (e.g. 

Fastook et al., 2008, 2011). We discuss these requirements in more detail and outline 

assumptions made in our approach in Section 5.3.2.  

 

 

5.3.2. Model input  

 

5.3.2.1. Bed profile and width distribution 

 

To constrain the central flowline and corresponding width distribution, the glacial 

catchment needs to be defined and delineated (Hubbard, 1997b; Parson and Holt, 2016). 

The catchment was delineated by manual digitisation in ESRI’s ArcMap v10.1, using a 

~0.25 m per pixel High Resolution Imaging Science Experiment (HiRISE) image 

(Figure 5.2). The catchment was mapped based on the location of the constraining 

valley side walls and associated geomorphological evidence (e.g. moraines) and was 

extended beyond the GLFs headwall and outermost moraine ridge in order to provide a 

modelling domain greater than the maximum horizontal extent of the former GLF. The 

central flowline was digitised on screen and converted to nodes at 100 m intervals. Bed 

elevations were extracted from a 2 m per pixel HiRISE digital elevation model (DEM 

[stereo pair PSP_002320_1415_RED and PSP_003243_1415_RED]). The DEM was 

created by Hubbard et al. (2011) and subsequently adapted by Brough et al. (2016a) to 

remove an inner set of moraine ridges nested behind the outermost moraine limit (e.g. 

Figure 5.1). The present ice distribution – assumed to not exceed metres to tens of 

metres thick (Hubbard et al., 2011; Hartmann et al., 2014) – contained within the GLF 

was not removed. As the exact distribution of this remant ice/debris mass is unknown, 

we follow Brough et al. (2016a) and assume that the present-day topography with the 

inner moraine ridges removed represents the former GLF bed. Finally, the width 

distribution of the modelling domain was calculated orthogonal to each node of the bed 

profile. The bed topography was fixed for the duration of the experiments.  
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Figure 5.2: Glacial catchment, bed topography and width distribution of model 

flowline. (a) Illustration of the delineated ice drainage catchment and flowline used in 

the model. (b) Topographic profile and width distribution along the flowline. Black 

arrows indicate the upper and lower marginal extents of the GLF in the 

geomorphological record. Key indicators of vertical thickness provided by moraine 

heights are also provided.   
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5.3.2.2. Ice rheology 

 

The relationship between stress and strain is determined by Glen’s non-linear flow law 

for ice (Glen, 1955; van der Veen, 1999) that requires definition of a flow-law exponent 

(n) and a rate factor that equates to bulk viscosity (A [a-1 bar-3]), primarily influenced 

by temperature but also water and debris content. We set the flow-law exponent to the 

generally used value n = 3 (Glen, 1955) and the rate factor is held constant (i.e. 

isothermal conditions in the interior of the ice). An explanation of the rate factors 

applied in our experiments is provided in Section 5.4. Although more complex 

rheologies could be implemented that account for variations in dust and ice grain size 

(e.g. Goldsby and Kohlstedt, 2001), present understanding of their distribution and 

influence on martian ice masses is unknown (Parson and Holt, 2016). 

 

 

5.3.2.3. Basal sliding 

 

The basal boundary condition is assumed frozen and motion is prescribed as zero (i.e. 

ice is below the pressure melting point); an assumption used in virtually all modelling 

studies (e.g. Fastook et al., 2008, 2011; Parsons et al., 2011; Parsons and Holt, 2016). 

This assumption has a physical basis given the lack of liquid water, coupled with low 

temperatures predicted during climatic periods that favour ice accumulation (e.g. 

Madeleine et al., 2009; Hartmann et al., 2014) and from results of modelling 

experiments conducted on VFFs (e.g. Fastook et al., 2011).  

  

 

5.3.2.4. Mass balance  

 

We used a mass balance function based on the altitudinal-derived mass balance 

parameterisation of Fastook et al. (2008). The component of their mass balance curve 

(their Figure 5b) that corresponded to the altitudinal range (-244 to 1075 m) was applied 

to our modelling domain through a linear regression (R2 = 0.99) to yield a mass balance 

gradient (i.e. the rate of change in precipitation per metre of elevation) of 0.005 mm 

water equivalent per m of elevation. We fix the upper limit of accumulation to the upper 

marginal extent of the GLF and preclude accumulation above this limit.  
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For the applied model simulations, the maximum distance along the flowline where 

accumulation occurs is 4.0 km which corresponds to a maximum accumulation rate of 

~2.5 mm a-1. Although this accumulation rate is within the range reported from 

analogous debris-covered glaciers in the Antarctic Dry Valleys (e.g. Kowalewski et al., 

2001) and used in modelling studies elsewhere on Mars (e.g. Fastook et al., 2011; 

Parsons and Holt, 2016), it is substantially lower than those predicted by matrian 

climate models, which estimate net accumulation rates between ~30 and 70 mm a-1 for 

the regions surrounding Crater Greg during periods of high (>45o) obliquity (Forget et 

al., 2006). 

 

 

5.4. Modelling approach and results  

 

Our modelling aims to investigate: (i) the long-term ELA and temperature required to 

reproduce the GLF’s maximum frontal position and vertical extent recorded in the 

geomorphological record; and (ii) the effect and response of the GLF to transient 

climatic forcing. All model simulations are initiated from ice-free conditions with a 

forward integration time-step of one year. Results are output on a 2500-year interval. 

 

To address Aim (i) we simulate climatic change through a stepped ELA lowering from 

the present-day altitude (nominally set at 1100 m – i.e. above present-day topography). 

Each of these equilibrium experiments uses a rate factor (A) corresponding to 263 K and 

were run for 1 Ma until a steady-state was achieved. A collection of equilibrium glacier 

surface profiles was assembled relating to ELA depressions ranging from 1100 m to 600 

m in 50 m intervals (Figure 5.3a). These experiments indicate that an ELA depression to 

900 m was required before ice accumulates and persists, and that the maximum frontal 

position recorded in the geomorphological record lies between an ELA of 650 and 600 

m. An ELA of 615 m yields a glacier profile that optiammly corresponds to the 

available geomorphological evidence (Figure 5.3b).  

 

In the next experiment, the effects of long-term ice temperature on the sensitivity and 

response of the GLF are assessed. We ran a new suite of model experiments varying the 

rate factor (A) according to a range of temperatures. The equilibrium sensitivity 
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experiments commence from an initial temperature of 263 K and were applied under 

five different ELAs (650, 640, 630, 620, and 615 m). Englacial ice temperature was 

subsequently reduced in 10 K steps to 233 K and each experiment was run for 1 Ma, 

until a stead-state glacier profile was obtained.  

 

 

 
Figure 5.3: Equilibrium surface profiles of the modelled GLF as a function of stepped 

ELA lowering. (a) Incremental ELA lowering (coloured lines in metres) from 900 to 600 

m. (b) Refined ELA lowering, showing ELA required to match the maximum frontal 

position from the geomorphological record.  
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A collection of steady-state surface profiles showing the effect of temperature is given 

in Figure 5.4 and summarised in Table 5.1. All modelled GLFs show broadly the same 

response to decreasing temperature in that they increase: (i) the length of the maximum 

frontal position; (ii) ice thickness; and (iii) time required to reach steady-state. 

 

 

 
Figure 5.4: Equilibrium surface profiles of the modelled GLF as a function of stepped 

temperature and ELA lowering (coloured lines in metres). (a) 263 K. (b) 253 K. (c) 243 

K. (d) 233 K. The vertical constraints given by moraine heights are shown by the 

dashed grey lines. 
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Figure 5.4 continued 
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Table 5.1: Steady-state terminus position and formation time of the modelled GLF as a 

function of stepped temperature lowering. Highlighted in bold are the simulations that 

‘best fit’ the observed terminus position. 

Temperature 

(K) 

ELA 

(m) 

Terminus position 
relative to moraine 

(km) 

Formation time 

(ka) 

263 650 -1.0 295 
 640 -0.6 335 
 630 -0.4 285 
 620 -0.2 263 
 615 0.0 285 
    

253 650 -1.0 410 
 640 -0.6 415 
 630 -0.3 415 
 620 0.0 405 
 615 +0.2 385 
    

243 650 -0.7 750 
 640 -0.4 638 
 630 -0.1 590 
 620 +0.2 530 
 615 +0.4 515 
    

233 650 -0.5 995 
 640 0.0 905 
 630 +0.4 895 
 620 +0.5 733 
 615 +0.5 685 

 

 

Comparing modelled results with empirical evidence reveals that the maximum frontal 

position was attained by one GLF for all temperatures apart from at 243 K where the 

closest simulation, with an ELA of 630, was 0.1 km short (Figure 5.4). Broadly, a 10 K 

decrease in temperature equated to a 10 m increase in the ELA required to match the 

maximum frontal position of the GLF. Comparing the steady-state surface profiles for 

each temperature to the vertical limits provided by the moraine heights shows that no 

simulation could satisfy both vertical constraints. At temperatures of 263 and 253 K, the 

surface profiles fall below the elevation of the upper moraine height and above the 

lower moraine height (Figure 5.4a – b). For a temperature of 243 K, the steady-state 

surface profile appears to correspond to the upper moraine height, but is too thick and is 

raised above the lower moraine (Figure 5.4c). For a temperature of 233 K (Figure 5.4d), 

the steady-state surface is raised above both vertical constraints – hence, no experiments 

were applied beyond this temperature.  
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The formation time required for the simulations that ‘best fit’ the observed terminus 

position to reach steady state places an upper and lower formation time of 285 to 905 

ka, for our maximum and minimum temperatures of 263 and 233 K, respectively (Table 

5.1). 

 

To address Aim (ii) a set of dynamic experiments was conducted to assess the 

sensitivity and response of the GLF to transient climatic forcing. This was implemented 

through a series of stepped ELA changes, similar to the approach of Fastook and Head 

(2014), reflecting known changes in obliquity. Three ELA parameters were imposed: 

one for obliquity <30o; one for obliquity between 30 and 40o; and one for obliquity 

>40o. These boundaries were based on the observations that: (i) present day climate is 

unfavourable for ice accumulation; (ii) ice deposition in mid latitude regions is likely 

during periods of obliquity >30o (e.g. Head et al., 2003); and (iii) general circulation 

models place Crater Greg as a foci for ice accumulation during periods of obliquity 

>45o (Forget et al, 2006), relaxed to >40o here. The duration of each of these obliquity 

periods is taken from simulation La2004 of Laskar et al. (2004). Based on the upper 

limit of the best estimate age of 9 Ma (see Section 5.1 [Hartmann et al., 2014]), we 

commence the experiment prior to this at which obliquity last transitioned from a period 

below to above 30o (i.e. the transition from an unfavourable to a favourable climate for 

ice accumulation) and run it through one full obliquity cycle of 2.5 Ma. This 

corresponds to the period between 10 and 7.5 Ma BP (Figure 5.5). An example of the 

parameters required to generate a simulation with a maximum extent that corresponds to 

the geomorphological record is provided in Figure 5.6. The parameters used were an A 

value equal to 263 K and ELAs of 1100, 750, 515 for the <30o, 30 – 40o, and >40o 

obliquity periods, respectively. 

 

Inspection of Figure 5.6 reveals that from initial ice-free conditions, the GLF grows and 

advances via a series of stepped cycles, before attaining its maximum extent after 697.5 

ka, where there is a 7.5 ka of terminus standstill. This modelled limit collocates nicely 

with the maximum extent recorded in the geomorphological record. At 802.5 ka, there is 

a second, 27.5 ka, standstill, which also terminates near to the maximum recorded 

extent. Significant glacier recession of ~3 km coincides with a change to a climate 

unfavourable for ice accumulation at 925 ka. From this time onwards, the GLF 

undergoes further fluctuations in its frontal position, but does not again attain ite 
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maximum extent – even during a second extended period of >30o obliquity between 

1282 and 1624 ka (Figure 5.6). 

 

 

 
Figure 5.5: Obliquity scenario La2004 of Laskar et al. (2004). (a) Variations in 

obliquity over the last 20 Ma. The time period utilised in our transient experiment is 

highlighted in grey. (b) Obliquity for the period -10.0 to -7.5 Ma BP. The blue and red 

horizontal lines correspond to the 30 and 40o obliquity thresholds that correspond with 

an ELA transition. 
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Figure 5.6: Modelled GLF frontal position as a function of obliquity driven ELA 

changes. The dashed line gives the limit of the moraine, indicating the maximum-

recorded extent of the GLF. 

 

 

5.5. Discussion 

 

5.5.1. Crater Greg GLF formation  

 

Our application of a plane-strain ice flow model yields a range of glacier profiles (e.g. 

Figure 5.4) that match the GLF’s maximum frontal position recorded in the 

geomorphological record (e.g. Hubbard et al., 2011; Brough et al., 2016a). For a 

temperature of 263 K an ELA of 615 m was required to attain the maximum frontal 

position and an increased ELA of 640 m was required for a temperature of 233 K. 

However, no single experiment was able to simultaneously satisfy both of the upper and 

lower vertical constraints imposed by the mapped moraine heights. At warmer 

temperatures (263 and 253 K) equilibrium surface profiles appear more consistent with 

moraine height constraints in the lower sector, but are too thin in the upper sector 

(Figure 5.4a – b). Conversely, increased ice thickening – due to a more viscous ice mass 

– associated with colder temperatures (243 K), increases the thickness of the modelled 

glacier to match the moraine heights in the upper sector, but then raises the glacier 

surface well above constraining moraine heights in the lower sector (Figure 5.4c). For 
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the lowest temperature in our simulations (233 K) both the upper or lower moraine 

height elevations were both exceeded. These experiments tentatively bracket the long-

term temperature requirement for GLF formation to be between 263 and 243 k, with a 

corresponding ELA of between 615 and 630 m. Under these conditions, our modelling 

indicates a minimum genesis time for GLF formation of between 285 and 590 ka (Table 

5.1). 

 

Two principle assumptions of the model are that the ice mass rheology is homogeneous 

and it has a frozen subglaical condition with no basal motion. However, considering the 

experiments conducted, then it is quite plausible that these assumptions do not hold. 

Indeed, it may be quite likely that the englacial/basal thermal regime, debris content and 

associated impact on ice rheology and basal motion vary both spatially and temporally. 

One possibility is that thinner ice is achieved through basal motion in the lower sector 

of the GLF. In such a scenario part of the GLF may have experienced enhanced flow as 

a result of viscous heat dissipation or geothermal heat flux yielding liquid water at the 

ice-bed interface. Basal sliding could be related to increased ice thickness in the interior 

of the ice mass warming the ice above the pressure melting point (e.g. Palli et al., 2003), 

or through ice strain and friction heating of deformation causing temperate ice to exist 

near the bed in the ablation area (e.g. Blatter and Hutter, 1991) – both of these 

conditions occur at high-latitude polythermal glaciers on Earth (see Irvine-Fynn et al., 

2011). Enhanced motion as a result of water at the ice-bed interface has also been 

reported from purely cold-based glaciers (e.g. Echelmeyer and Zhongxiang, 1987; 

Cuffey et al., 1999). Cuffey et al. (1999) reported glacier sliding over basal boulders at 

temperatures as low as 256 K from beneath Meserve Glacier in the Dry Valleys of 

Antarctica – a much used analogue in martian research (e.g. Marchant and Head, 2007; 

Fastook et al., 2011; Mackay and Marchant 2017). This sliding was reportedly enhanced 

by high solute concentrations in the interfacial water (Cuffey et al., 1999). Such an 

interpretation of enhanced flow in the lower portion of the GLF as the result of 

lubrication at the ice-bed interface is supported by the interpretation of Hubbard et al. 

(2011) who noted two surface terrains types in the GLFs lower basin that were 

consistent with, but not definitively from, formation/modification under partial wet-

based glacial conditions. Although the spatial and temporal distribution of any such 

basal motion remains poorly constrained, it is an interesting and important future 

research avenue to explore and could explain the discrepancy between the upper and 
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lower vertical constraints noted here. It is also worth noting that the lower moraine ridge 

appears to have had a proportion of material (~5 m) removed from its crest (Figure 5.1e) 

which could also account for some of the surface lowering, but not sufficient to explain 

the elevation difference between the moraine crest and modelled surface profiles 

(Figure 5.4). 

 

 

5.5.2. GLF response to climatic forcing 

 

To assess the response and sensitivity of the GLF to long-term transient climate change 

on Mars we initiated a simple experiment – under conditions favourable to those in the 

geomorphological record – where such forcing was simulated by obliquity driven ELA 

changes (Figures 5.5 and 5.6). These experiments revealed several noteworthy points. 

Firstly, the GLF reaches the maximum extent only during a period of early (0.0 – 0.9 

Ma) extended conditions favourable for ice accumulation (i.e. >30o obliquity). Once the 

obliquity cycle enters into larger amplitude fluctuations that include short-term periods 

that are unfavourable for ice accumulation (i.e. <30o obliquity), the GLF does not 

extend as far as its maximum limit throughout the rest of the simulation – even during a 

second 342 ka period of conditions favourable for ice accumulation. This suggests that 

the length of this initial extended period of ice accumulation is critical in defining the 

maximum length of the GLF during the 2.5 Ma obliquity cycle (assuming there is no 

inherited ice and that the moraine relates to the same depositional sequence). A second 

point of interest is that given the input forcing, the model demonstrates various terminus 

standstills particularly when obliquity changes from >40o to <40o. This behaviour can 

explain the multiple occurrences of moraines noted in the geomorphological record 

(Figure 5.1 [Hubbard et al., 2011; Brough et al., 2016a]). The configurations that lead to 

actual moraine formation are likely to be more complex given the range of processes 

and environments in which they can form (see Barr and Lovell, 2014).  However, the 

transient experiment conducted does yield some encouraging results that resonate nicely 

with the geomorphological record and give some tentative basis for future investigation. 

 

In addition the long-term behaviour of the GLF will also be influenced by the inclusion 

of debris, particularly surface debris. Although a thin (<2 cm) layer of debris can 

increase ablation (Ostrem, 1959), ablation on glaciers is significantly decreased, by 
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orders of magnitude, under a thicker (10s cm) debris layer (e.g. Kowalewski et al., 

2006). Under sufficient debris cover glaciers can become virtually stagnant (Rignot et 

al., 2002), and the core of glacier ice may persist for millions of years under this 

protective armouring, as seen in the Dry Valleys of Antarctica (e.g. Sugden et al., 1995; 

Marchant et al., 2002). The effects of such processes on Mars are of obvious 

importance, giving a possible scenario for the long-term preservation of ice, but our 

understanding of these mechanisms and how they affect ice dynamics are still being 

developed on both Earth (e.g. Rowan et al., 2015) and Mars (e.g. Fastook et al., 2014). 

Given that the current GLF surface in the upper basin appears to conform to this 

scenario, with now relict ice persisting under a layer of debris (Section 5.2 [Hubbard et 

al., 2011]), the incorporation of debris into the long-term cycle needs to be considered 

(e.g. Fastook et al., 2014; Parsons and Holt, 2016). 

 

 

5.5.3. Modelling considerations 

 

Although the above discussion offers plausible explanations for the observations and 

discrepancies in this study, our understanding of many of the processes that affect 

glaciers in similar settings even on Earth remains poorly constrained. Furthermore, it is 

prudent to point out the possibility that equifinality could prevail and that several 

combinations of parameters and values – including some not included in this study – 

may yield similar results. This issue is difficult to avoid given the limited empirical data 

available. However, these findings can provide useful insights that can be refined in 

future studies particularly when new data or evidence becomes available, for example, 

through constraining geophysical evidence (i.e. radar [Karlsson et al., 2015; Parsons and 

Holt, 2016]). 

 

 

5.6. Conclusions 

 

We applied a two-dimensional numerical ice flow model to investigate the conditions 

under which a GLF formed in Crater Greg, eastern Hellas Planitia. Model results were 

compared to geomorphogical evidence of current and former GLF geometries. Initial 

experiments reveal that the model successfully replicated the maximum horizontal 
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extent of the GLF under an ELA forcing of between 615 and 640 m for our upper (263 

K) and lower (233 K) temperature scenarios. However, no single experiment was able 

to fully reproduce surface profiles that corresponded to both vertical limits provided by 

moraine heights across the upper and lower glacier simultaneously. Colder temperatures 

(243 K) were required to match with the upper vertical constraint and conversely 

warmer temperatures (263 K) were required to match with the lower vertical constraint. 

This suggests that a spatially and/or temporally varying ice rheology or basal regime 

may have acted upon the GLF. Based on the interpretation of Hubbard et al. (2011), 

who described terrain in the lower basin of the GLF that was potentially formed under 

wet-based conditions, we consider it a possibility that the GLF experienced a period of 

enhanced flow through basal motion. This represents a potentially important avenue for 

future research. 

 

The modelled GLF’s response to a transient climate, forced by obliquity variations, 

indicates that its maximum frontal position was related to an initial extended period of 

climate favourable to ice accumulation. Several prolonged GLF terminus standstills 

occurred during the advance and retreat of the GLF terminus throughout the obliquity 

cycle, allowing the formation of multiple moraines. Although the experiment is simple 

in its approach, the model nicely matches and explains the moraine sequence observed 

in the geomorphological record.  
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Summary to manuscript ‘Palaeo-glaciers on Mars: modelling 
their formation and evolution’ 

 

Chapter 5 has presented a numerical modelling investigation in to the climates under 

which a GLF in Crater Greg, eastern Hellas Planitia may have formed. The key 

outcomes to carry forward are as such: 

 

1. A suite of model experiments were run to investigate the long-term ELA and 

temperature required to reproduce the GLF’s maximum frontal position and 

vertical extent recorded in the geomorphological record. Results from these 

experiments can summarised as follows:	

	

• The maximum horizontal extent of the GLF was replicated under an 

ELA forcing of between 615 and 640 m for our upper (263 K) and 

lower (233 K) temperature scenarios. 	

	

• The formation time required for the simulations that ‘best fit’ the 

observed terminus position to reach steady state places an upper and 

lower formation time of 285 to 905 ka, for our maximum and 

minimum temperatures of 263 and 233 K, respectively.	

	

• No single experiment was able to fully reproduce surface profiles that 

corresponded to both vertical limits provided by moraine heights 

across the upper and lower glacier simultaneously. Colder 

temperatures (243 K) were required to match with the upper vertical 

constraint and conversely warmer temperatures (263 K) were 

required to match with the lower vertical constraint.	

	

2. Given point (1) above, it is suggested that a spatially and/or temporally varying 

ice rheology or basal regime may have acted upon the GLF, and it is considered 

a possibility that the GLF experienced a period of enhanced flow through basal 

motion.  
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3. A further set of dynamic experiments was conducted to assess the sensitivity and 

response of the GLF to transient climatic forcing. This was implemented 

through a series of stepped ELA changes reflecting known changes in obliquity 

through one full obliquity cycle of 2.5 Ma. Results from this experiment can 

summarised as follows: 

 

• The GLF reaches the maximum frontal extent as recorded in the 

geomorphological record only during a period of early (0.0 – 0.9 Ma) 

extended conditions favourable for ice accumulation (i.e. >30o 

obliquity). 

 

• Once the obliquity cycle enters into larger amplitude fluctuations that 

include short-term periods that are unfavourable for ice accumulation 

(i.e. <30o obliquity), the GLF does not extend as far as its maximum 

frontal limit throughout the rest of the simulation. This suggests that 

the length of this initial extended period of ice accumulation is 

critical in defining the maximum length of the GLF during the 2.5 

Ma obliquity cycle. 

 

• Several terminus standstills were noted during the advance/retreat 

fluctuations of the GLF terminus throughout the obliquity cycle, 

thereby providing a plausible transient reconstruction that facilitates 

the formation of multiple moraines as recorded in the 

geomorphological record. 
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One never notices what has been done; 

one can only see what remains to be done 

Marie Curie 
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6.1. Conclusions  

 

6.1.1. Summary and contribution of works 

 

6.1.1.1. Chapter 2.   Landscapes of polyphase glaciation: eastern Hellas Planitia, Mars 

 

This manuscript presented a geomorphic and structural assessment of a landscape in 

eastern Hellas Planitia, which is interpreted to be of glacial origin. Mapping, conducted 

using a combination of Context Camera (CTX) and High Resolution Imaging Science 

Experiment (HiRISE) imagery, revealed that the landscape was composed of four 

distinct geomorphic units, and 16 structures. Two units showed significant evidence of 

glacial flow: (i) at the broad scale the lobate debris apron (LDA) preserved a convex-up 

profile and numerous arcuate and longitudinal structures indicative of the downslope 

flow of ice; and (ii) at the more localised scale the glacier-like form (GLF) also 

preserved several structures indicative of flow and transport of ice downslope, including 

surface crevassing. A third terrain, degraded glacial material, also showed evidence for 

the downslope flow of mass, but structures lacked clear indication of a significant ice 

core and are more akin to slope processes of periglacial environments. Surrounding both 

the LDA and GLF were numerous moraine-like ridges indicating that mass loss had 

occurred. Taken together, these observations led to the hypothesis that not only was the 

landscape glacial in origin but that it had experienced at least two phases of glaciation, 

with a wider more extensive glacial period being recorded in the LDA, and a secondary, 

more localised glaciation recorded in the GLF. Analysis of several surface structures, 

for example the identification of fractures and arcuate transverse ridges, also provided 

insights into the dynamics of these ice masses suggesting that, much like terrestrial 

glaciers (e.g. Vaughan, 1993; Goodsell et al., 2005), Mars’ viscous flow features 

(VFFs) have experienced variable flow regimes. Given the above, work presented in 

Chapter 2 addressed Objectives (1) and (2) of this thesis. 

 

These observations provided further evidence for the hypothesis that Mars’ mid-

latitudes preserve evidence of multiple phases of glaciation, but extends the spatial scale 

at which these observations have been reported – until now much of this evidence has 

been derived in the northern hemisphere (Levy et al., 2007; Dickson et al., 2008; 

Morgan et al., 2009; Baker al., 2010; Dickson et al., 2010; Sinha and Murty, 2013). 
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Furthermore, the published manuscript (Brough et al., 2016) provided other researchers 

with a framework to interpret similar landscapes and features in contemporaneous ice 

masses, as evidenced in the recent publications of Sinha and Vijayan (2017) and Sinha 

et al. (2017).    

 

 

6.1.1.2. Chapter 3.   Area and volume of mid-latitude glacier-like forms on Mars  

 

This manuscript presented a population-scale assessment of the area and volume of 

water stored in present day GLFs. CTX images were used to directly map the outlines 

of all GLFs in order to derive their current area. From this area, volumetric analysis was 

conducted using a volume-area scaling approach. These results were subsequently 

coupled with topographic data from the Mars Orbiter Laser Altimeter (MOLA) to assess 

potential controlling environmental variables over variations in GLF area and volume. 

In total 1243 unique GLFs were identified and the main findings were that: (i) GLFs 

cover an area of 11344 ± 393 km2, or ~0.01% of the total surface area of Mars; (ii) 

GLFs have an ice volume between 523 ± 132 km3 (480 ± 121 Gt) and 1570 ± 397 km3 

(1439 ± 364 Gt). This is equivalent to a global water layer of between 3 ± 1 and 10 ± 3 

mm thick; (iii) at the global scale, GLFs are larger at higher latitudes and on shallower 

slopes; (iv) in the northern hemisphere, GLFs with elevations between 500 and 2500 m, 

and in the southern hemisphere, GLFs with a northern aspect are also larger on average; 

and (v) smaller GLFs were located on a wider range of slopes than larger GLFs. 

 

These observations led to a number of broad conclusions being drawn, namely that: (i) 

GLFs contributed to the present day surface/near-surface water budget, but contained a 

water equivalent of between one and two orders of magnitude less than other mid-

latitude ice deposits; (ii) GLF size is sensitive to insolation and to local meteorological 

and topographical conditions; (iii) GLF size appeared particularly sensitive to slope, 

therefore suggesting that like glaciers on Earth, slope process play(ed) an important role 

in driving GLF motion; and (iv) smaller GLFs are less sensitive to their topographic 

setting, and as such small GLFs of comparable size are likely to show a heterogeneous 

response to the same climatic perturbation. Given the above, work presented in Chapter 

3 addressed Objectives (1), (2), (3) and (5) of this thesis.     
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Chapter 3 provided several advances into our understanding of Mars’ GLFs. First, 

present day estimates of the mid-latitude contribution to the surface/near-surface water 

inventory of Mars (e.g. Levy et al., 2014; Carr and Head, 2015; Karlsson et al., 2015) 

do not include GLFs. Therefore, these estimate can now be revised upwards to account 

for the volume of water contained within GLFs. Such information is important to 

improving our understanding of how the water budget of Mars has evolved over time 

(e.g. Baker, 2001) and can help to constrain the magnitude and extent of the climatic 

excursions that are responsible for their formation. Second, although GLFs appeared to 

show a sensitivity to insolation, for example through preferential poleward facing 

orientation (Souness et al., 2012), their size is also strongly influenced by variations in 

their physical environment which act in providing microclimates favourable for the 

accumulation and/or preservation of ice – some of which (e.g. slope) share a direct 

relationship with their terrestrial analogues. Finally, the GLF inventory that is provided 

as part of the supporting material (and will be included with any future publication), 

presented the most comprehensive and detailed GLF inventory to date in a ready-to-use 

format with a geographic information system. The production of digital vector outlines 

are a critical component of analogous studies of glacierised terrains on Earth, where 

such products are essential for change detection and for the modelling of climatic 

change (e.g. Huss et al., 2009; Paul et al., 2011).  

  

 

6.1.1.3. Chapter 4.   Former extent of glacier-like forms on Mars  

 

This manuscript built upon the observations of ice mass loss made in Chapter 2 (and 

Appendix A). It presented a population-scale inventory detailing the locations of GLFs 

that showed evidence of ice mass loss and recession. Coupled with this inventory, a 

glacial reconstruction of a typical GLF (located in Crater Greg, eastern Hellas Planitia) 

was completed, using the perfect plastic approximation for ice flow, in order to quantify 

its area and volumetric change since its former maximum extent. The main findings 

were that: (i) 436 GLFs were identified that showed evidence of recession; (ii) relative 

to the parent population, recessional GLFs were over-represented at latitudes <40o and 

in areas of high relief in both hemispheres; (iii) the reconstructed GLF had lost an area 

of 6.86 km2 and a volume of 0.31 km3; and (iv) scaling this ice loss to all recessional 

GLFs yielded a potential planetary volume loss of 135 km3 from Mars’ GLFs. Given the 
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above, work presented in Chapter 4 addressed Objectives (1), (2), (4) and (5) of this 

thesis. 

   

The observations reported in Chapter 4 addressed a number of knowledge gaps in 

relation to the distribution and evolution of GLFs and more broadly mid-latitude ice. 

Firstly, although several instances of ice mass loss from GLFs had been reported (e.g. 

Appendix A; Hartmann et al., 2003; Dickson et al., 2008; Hubbard et al., 2011), no such 

study had identified the extent to which recession had occurred at the global scale. The 

identification of approximately one third of all GLFs showing evidence of recession 

indicated that mass loss within the GLF population was not isolated or localised and 

thus was indicative of changes in global climate. Secondly, analysis of the 

environmental settings of recessional GLFs showed that latitude and relief exerted some 

control over GLF sensitivity and response to climatic forcing. These results provided 

the first quantification of the controls over GLF recession and ice mass loss and showed 

that GLFs are particularly sensitive to the planetary limit of shallow ground ice stability 

(e.g. Mellon et al. 2004; Bryne et al., 2009; Schorghofer and Forget, 2012) and that 

GLFs in areas of higher relief (rougher topography) likely have a shorter response time 

to climatic perturbations than GLFs in areas of lower relief (smoother topography). 

Finally, since initial deposition, some GLFs have experienced significant mass loss. Our 

glacial reconstruction provided the first quantification of both volume and area change 

and showed that the ice mass had lost ~70 % of its area and a volume of 0.31 km3 

through a combination of vertical thinning and terminus recession. 

  

 

6.1.1.4. Chapter 5.   Palaeo-glaciers on Mars: modelling their formation and evolution 

 

This manuscript extended the investigations into the glacial history of the GLF 

reconstructed in Chapter 4 and as discussed by previous authors (e.g. Hubbard et al., 

2011; Hartmann et al., 2014). It presented initial results from numerical modelling 

experiments that aimed at investigating the long-term climate that could have led to the 

formation of the former maximum GLF extent recorded in the geomorphological 

record. The model is driven by a mass balance term that is forced by altering the 

equilibrium line altitude (ELA) over time and was applied to steady-state ice 

temperatures between 263 and 233 K. The ice rheology used in the model followed 
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Glen’s flow law (n = 3), the basal sliding distribution was set to zero (i.e. ice below the 

pressure melting point), and the mass balance input was derived from the altitudinal 

parameterisation of Fastook et al. (2008).  

 

Results showed that the numerical model was able to successfully simulate the 

maximum horizontal extent of the GLF as indicated in the geomorphological record for 

all ice temperatures, but no simulation was successful in producing a surface profile that 

was in agreement with both vertical limits, as defined by the moraine heights. A 

possible explanation for this discrepancy was presented, in that the GLF may have 

experienced spatially and/or temporally varying ice rheology and/or basal motion. The 

latter explanation is consistent with the interpretation of Hubbard et al. (2011) who 

suggested that this GLF might have experienced wet-based conditions at the ice-bed 

interface. More broadly, this raised an interesting point as to the thermal-regime of 

GLFs and Mars’ wider ice masses and clearly warrants further investigation and 

research (see Section 6.2). Further experiments invested the response of the GLF to a 

transient climate that was forced by variations in obliquity. Although simplistic in its 

approach it highlighted two key points: (i) the length of the initial extended period of ice 

accumulation is critical in defining the maximum length of the GLF during the 2.5 Ma 

obliquity cycle; and (ii) several terminus standstills were noticed during the advance 

and retreat of the GLF throughout the obliquity cycle. These two observations provided 

a scenario that could facilitate the formation of multiple moraines as recorded in the 

geomorphological record (e.g. Hartmann et al., 2003; Hubbard et al., 2011). Given the 

above, work presented in Chapter 5 addressed Objectives (2) and (6) of this thesis.  

 

 

6.1.2. Overall synthesis 

 

The overall aim of this thesis was to assess the current and former volume and dynamics 

of mid-latitude GLFs, in order to advance our understanding of the planet’s recent 

glacial history.  

 

At the broadest level Mars’ mid-latitudes appear to preserve a complex and spatially 

heterogeneous record of glaciation (Chapters 2, 3 and 4). GLFs appear to be the 

manifestation of a more localised, and likely less intense, period of glaciation than that 
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recorded in the more extensive VFFs (Chapters 2 and 3). Nonetheless, GLFs represent 

an active component of the near-surface water budget of Mars, locking away an 

estimated global equivalent water layer of between 3 ± 1 and 10 ± 3 mm (Chapter 3). 

Furthermore, it has been shown that Mars’ GLF population has undergone widespread 

recession and mass loss since a former maximum extent (Chapters 4), suggesting that 

these landforms: (i) once contributed a larger volume of water to the near-surface water 

budget of Mars; and (ii) are sensitive indicators of recent climatic change. 

 

Although our understanding of the origins and subsequent evolution of GLFs is far from 

complete (see Section 6.2 below), heterogeneity in their distribution and size reveals 

that they are not purely controlled by insolation forcing that is related to latitudinal 

position. It is, therefore, likely that regional to local meteorological and topographical 

conditions also play an important role in GLF ice accumulation and/or preservation, 

with variation in physical environments providing microclimates favourable for the 

accumulation and/or preservation of ice (Chapters 3 and 4). 

 

The mechanisms by which GLFs and the wider VFFs flow, suggests that they operate, 

or have operated, under similar stress and strain regimes as glaciers on Earth and at least 

some GLFs have experienced variable flow regimes (Chapters 2, 4 and 5). Indeed, the 

emerging picture shows that Mars GLFs appear to have been dynamically active, and 

that they have played an important role in altering the surface landscape of Mars 

through erosion, transport and deposition of material (Chapters 2 and 4). 

 

 

6.2. Avenues for future work  

 

Despite efforts made in this thesis and more broadly by the research community a 

number of fundamental glaciological aspects of GLFs remain unknown (see Chapter 1 

and Appendix A.4). This is hindered by the overall lack of empirical evidence that has 

thus far been acquired from Mars’s GLFs and associated landscapes that can directly 

address these knowledge gaps. Nonetheless, with an increasing array of remotely sensed 

data being acquired, via a variety of techniques (i.e. high-resolution imagery, radar, 

spectroscopy), it provides us with the opportunity to generate more accurate and 
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spatially extensive empirical datasets, and should be a priority for future research. For 

example:  

 

• High-resolution CTX and HiRISE imagery could be used to extend the work 

performed in Chapter 4 and target/search for local to regional evidence for 

former ice extents/limits (e.g. moraines, trimlines or kame terraces) or indicators 

of wet-based glacial conditions/subglacial drainage (e.g. mega-scale glacial 

lineations or eskers [e.g. Gallagher and Balme, 2015]). Mapping of such 

landforms when combined with a digital elevation model of sufficient resolution 

(e.g. CTX or High Resolution Stereo Camera) could allow regional ice loss to be 

quantified. Studies of this kind have been undertaken on many glaciated and 

glacierised environments on Earth (e.g. Glasser et al., 2011).  

 

• The continued acquisition of repeat HiRISE imagery raises the possibility that 

contemporary GLF motion could be measured through feature/speckle tracking. 

Such endeavours have already proved successful for monitoring sand and dune 

migration on Mars (Bridges et al., 2012). In this vein, several request have been 

made by the author of this thesis – and collaborators – to the HiWISH program 

(https://www.uahirise.org/hiwish/) in a bid to obtain repeat imagery from GLFs 

where crevassing has been identified (e.g. Appendix A).    

 

• Although hindered by the spatial scale and often steep topographic settings, 

Shallow Radar (SHARAD) could be used to provide constraints on the ice 

thickness and bed geometry of GLFs. Several studies have successfully 

identified the basal interface in VFFs (e.g. Holt et al., 2008; Plaut et al., 2009; 

Karlsson et al., 2015). Such data would also provide a means to refine the ice 

volume estimates presented in Chapter 3 and to provide much needed boundary 

conditions for numerical modelling studies (e.g. Chapter 5). 

 

All of these data sets would provide much needed insights/constraints on the processes 

and properties of GLF including: ice mass loss; thermal regime; motion; ice thickness; 

and bed geometry. In this regard the GLF inventory and recessional GLF inventory 
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presented in Chapters 3 and 4, respectively, could be used to target candidate regions of 

interest and for cross-checking data availability.  

 

To build upon the work of Chapter 5 efforts should be made to constrain the parameter 

space that is capable of matching the geomorphological evidence of GLF former extent 

and change. An initial modelling step would be to include the effects of a spatially 

and/or temporally varying ice rheology and/or basal regime and the numerical model 

utilised in this study can include such effects. Moreover, this model incorporated a 

number of assumptions for parameters that were used to drive the model simulations. 

Future work should seek to better constrain these parameters for the specific study site; 

for example, temperature and ice accumulation rates could be incorporated from climate 

simulations from general circulation models (e.g. Forget et al., 2006), although these 

endeavours may be hindered by the resolution differences in modelling domains. Such 

efforts have proven insightful for better understanding the climatic conditions required 

for VFFs to form (e.g. Fastook et al. 2011) and in reconstructing palaeo-ice sheets in 

Mars’ low-latitudes (e.g. Fastook et al., 2008; Soueck et al., 2015).  

 

More broadly, numerical modelling could help us to improve our understanding of GLF 

ice rheology. By combining a spatially-distributed, higher-order, ice-flow model with 

SHARAD-derived geometry or crevasse location/morphology, that act as calibration 

data, it would be possible to use an iterative approach to test a range of values for 

properties that influence ice rheology (e.g. temperature, flow-law exponent, ice grain 

size) in an effort to constrain the range of values that best-fits with the observations (e.g. 

Hubbard and Hubbard, 2000; Parson and Holt, 2016). Overall it is clear that the biggest 

limiting factor in the use of numerical modelling studies of Mars’ GLFs, and by 

extraction VFFs, is the acquisition of sufficient boundary conditions for the modelling 

domain – again pointing us towards the need for empirical data. 
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Abstract: Over 1300 glacier-like forms (GLFs) are located in Mars’ mid-latitudes. 

These GLFs are predominantly composed of ice-dust mixtures and are visually similar 

to terrestrial valley glaciers, showing signs of downhill viscous deformation and an 

expanded former extent. However, several fundamental aspects of their behaviour are 

virtually unknown, including temporal and spatial variations in mass balance, ice 

motion, landscape erosion and deposition, and hydrology. Here, we investigate the 

physical glaciology of martian GLFs. We use satellite-based images of specific 

examples and case studies to build on existing knowledge relating to: (i) GLF current 

and former extent, exemplified via a GLF located in Phlegra Montes; (ii) indicators of 

GLF motion, focusing on the presence of surface crevasses on several GLFs; (iii) 

processes of GLF debris transfer, focusing on mapping and interpreting boulder trains 

on one GLF located in Protonilus Mensae, the analysis of which suggests a best 

estimate GLF flow speed of 7.5 mm a-1 over the past 2 Ma; and (iv) GLF hydrology, 

focusing on possible supraglacial gulley networks on GLFs. On the basis of this 

information we summarise the current state of knowledge of the glaciology of martian 

GLFs and identify future research avenues. 

 

 

A.1. Introduction 

 

Numerous similarities exist between ice-rich landforms on Mars and Earth (e.g. 

Colaprete and Jakosky, 1998; Marchant and Head, 2003, Forget et al., 2006). Glacier-

like forms (GLFs), which comprise one particular sub-group of these features, are 

strikingly similar in planform appearance to terrestrial valley glaciers (Figure A.1). 

However, despite this similarity, the fundamental glaciology of martian GLFs remains 

largely unknown. Improving this knowledge would enhance our understanding both of 

the specific landforms concerned and of broader planetary issues such as: (i) how Mars’ 

present-day landscape was formed; (ii) the presence and phase state of H2O on Mars’ 

surface; and (iii) how Mars’ climate has changed in geologically recent times. The aim 

of this paper is to summarize and develop our understanding of the fundamental 

physical glaciology of Mars’ GLFs. As well as summarising existing knowledge, we 

provide new observations and interpretations of glacial landforms on Mars and outline 

potential avenues for future research. Although, in common with other interpretations of 
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Mars’ surface features, we adopt a model based on terrestrial analogues, several 

fundamental controls over martian glaciation contrast sharply with those on Earth. For 

example, Mars’ gravity, at ~3.7 m s-2, is less than 40% of Earth’s. Mars’ surface 

temperature varies between ~-130 and +27 °C, with a mean of ~-60 °C (Read and 

Lewis, 2004), ~75 °C lower than on Earth. Finally, the partial pressure of H2O in Mars’ 

near-surface atmosphere is ~1 µbar, making the planet’s surface ~1000 times drier than 

Earth’s.  

 

 

 
Figure A.1: A three-dimensional image of a typical martian GLF (#948 in the inventory 

of Souness et al., 2012), which is ~4 km long and ~600 m in altitudinal range. The GLF 

shows evidence, through deformed chevron-like surface ridges, of down-slope flow, is 

longer than it is wide and is bounded on all sides. This particular, well-studied GLF is 

also bounded by a series of well-defined moraine-like ridges. Image reproduced after 

Hubbard et al. (2011). 
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Since this paper is primarily intended for readers who are primarily interested in the 

terrestrial cryosphere, and who may not therefore be familiar with the literature relating 

to the martian cryosphere, a list of the acronyms used herein is given in Table A.1. 

 

 

Table A.1: List of commonly used terms and corresponding acronyms 

Term Acronym 

Glacier-like form GLF 

Viscous flow feature VFF 

Lobate debris apron LDA 

Lineated valley fill LVF 

Moraine-like ridge MLR 

Mars Reconnaissance Orbiter MRO 

Context (Camera) CTX 

High Resolution Imaging Science Experiment HiRISE 

Shallow Radar SHARAD 

 

 

A.1.1. Background 

 

A.1.1.1. GLF classification, location and form 

 

Mars’ mid-latitude regions, between ~20 and ~60° N and S, host numerous landforms 

and surface deposits that bear a striking resemblance to small-scale terrestrial ice masses 

(e.g. Souness et al., 2012). These landforms, being composed predominantly of H2O ice 

(Holt et al., 2008; Plaut et al., 2009) and exhibiting surface morphologies consistent 

with viscous flow (Marchant and Head, 2003; Head et al., 2010), have come to be 

known collectively as viscous flow features or VFFs (Milliken et al., 2003; Souness and 

Hubbard, 2012). Glacier-like forms, or GLFs, are a distinctive sub-type of VFF that are 

elongate and similar in appearance and overall morphology to terrestrial valley glaciers. 

GLFs thereby generally form in small cirque-like alcoves or valleys, appear to flow 

downslope between bounding sidewalls, and terminate in a distinctive tongue which 

may or may not feed into a higher order ice-rich terrain type. GLFs thereby represent 

the lowest-order  component of  what Head et al. (2010) referred  to as Mars’  integrated  
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glacial landsystem. According to this model, GLFs flow and may merge downslope to 

form broad, rampart-like lobate debris aprons (LDAs [Squyres, 1978; Squyres, 1979]). 

LDAs may, in turn, coalesce, typically from opposing valley walls, to form lineated 

valley fills (LVFs), which take the form of complex and contorted surfaces that often 

exhibit no obvious flow direction. 

 

In their inventory of Mars’ GLFs, Souness et al. (2012) inspected >8,000 CTX images, 

covering ~25% of the martian surface, and identified 1309 individual forms, reporting 

the location (Figure A.2) and basic morphometry of each. Hereafter, we refer to specific 

GLFs through their classification number in this inventory, available as a supplement 

accompanying Souness et al. (2012). Of the total population, 727 GLFs (56%) were 

found in the northern hemisphere and 582 (44%) in the southern hemisphere, with GLFs 

showing a preference for the mid-latitudes (centred on a mean latitude of 39.3o in the 

north and -40.7o in the south). Although Souness et al. (2012) did not normalise their 

GLF count to (spatially variable) image coverage, inspection of Figure A.2 strongly 

suggests that GLFs are locally clustered in both hemispheres, for example along the so-

called “fretted terrains” (Sharp, 1973) of Deuteronilus Mensae, Protonilus Mensae and 

Nili Fossae in the north and around the Hellas Planitia impact crater in the south (Figure 

A.2). GLF morphometry was found to be remarkably similar between the two 

hemispheres, with a mean GLF length of 4.91 km in the north and 4.35 km in the south, 

and a mean GLF width of 1.26 km in the north and 1.34 km in the south. Similar to on 

Earth, a pronounced preference for a poleward orientation was also found, with GLFs 

having a mean bearing of 26.6° (NNE) in the northern hemisphere and 173.1° (SSE) in 

the southern hemisphere – indicating a strong sensitivity to insolation. These inter-

hemispheric similarities in distribution and morphometry indicate that all martian GLFs 

share a high degree of commonality in terms of composition and formation. These are 

considered below. 
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Figure A.2: The spatial distribution of Mars’ 1,309 GLFs as identified by Souness et al. 

(2012). 

 

 

A.1.1.2. GLF composition 

 

The precise composition of GLFs is still unknown due to the fact that they are almost 

ubiquitously covered in a layer of fine-grained regolith. Debate surrounding the amount 

of water ice involved in VFF composition (including GLFs) has led to varying feature-

scale interpretations being proposed, including as ice assisted talus flows (~20 – 30% 

ice [Squyres 1978; 1979]), rock-glaciers (~30 – 80% ice [Colaprete and Jakosky, 1998; 
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Mangold, 2003]), and debris-covered glaciers (>80% ice [Head et al., 2005; Li et al., 

2005]). Since the distinctions between these forms, and between them and ‘standard’ 

glaciers, is not sharply defined even on Earth, we are not yet in a position to definitively 

attribute martian equivalents. We therefore follow the convention of much of the 

published literature and refer to these forms as ‘glacier-like’, accepting that they may 

eventually, when more information becomes available, be more accurately sub- or re-

classified as related forms such as rock glaciers or mass flows. That said, the latter is 

unlikely to hold universally on Mars since many GLFs do not show distinctive source 

areas for their mass, many have lost substantial mass since their formation, and many 

appear from radar data to be composed largely of water ice. Hubbard et al. (2011) noted 

that boulder incisions into the unconsolidated surface of GLF #948 located in the north 

wall of Crater Greg, Eastern Hellas, were some decimetres deep, representing a 

minimum surface dust thickness at this location. There have been very few direct 

observations of the interior of GLFs, but Dundas and Byrne (2010) reported the capture 

of very recent meteorite strikes that indicated the presence of relatively clean (i.e., 

debris poor) massive ice at a depth of some centimetres to metres below the surface. 

Furthermore, data from the shallow radar (SHARAD) sensor, mounted on the Mars 

Reconnaissance Orbiter (MRO), suggest that many VFFs (including GLFs) may well be 

composed of massive H2O ice with minimal lithic content (Holt et al., 2008; Plaut et al., 

2009). These findings led to the widespread acceptance that H2O ice accounts for the 

dominant portion of GLF mass. However, the presence of a lithic component has been 

demonstrated by ice fade through sublimation following recent impact exposures 

(Dundas and Byrne, 2010), and the precise proportions of ice-rock mixture, particularly 

at depth, are still unknown. 

 

 

A.1.1.3. GLF formation  

 

A continuing point of discussion relates to precisely how and when GLFs formed. It is 

generally agreed that GLFs are now largely relict forms dating to a past, but relatively 

recent, martian ice age (see Kargel, 2004). While it is thought that Mars’ last major ice 

age ceased when the planet’s obliquity changed from ~35 to ~25o between four and six 

million years ago (Laskar et al., 2004), evidence of a subsequent, late-Amazonian ice 

age has been proposed (e.g. Head et al., 2003). It is thought that during periods of short-
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term obliquity cycles (~100 ka) between ~2 and ~0.5 Ma BP, obliquity still 

intermittently exceeded 30o. During these periods, increased high-latitude solar 

radiation led to the melting of Mars’ polar caps, the release of moisture into the 

atmosphere and its precipitation as snow or condensation above or within the ground at 

lower latitudes (e.g. Forget et al., 2006; Hudson et al., 2009; Schon et al., 2009). This 

ice deposition extends well into Mars’ mid-latitudes, where it appears to have survived, 

preserved beneath surface regolith, until the present day. Still, the mechanisms by which 

GLFs first accumulated sufficient ice-rich mass to flow downslope and acquire their 

distinctive surface morphologies remain uncertain. 

 

 

A.2. The glaciological characteristics of martian GLFs 

 

A.2.1. Approach and methods 

 

Each of the following sections both summarizes published information and supplements 

that information with new data from the analysis of images acquired by MRO’s Context 

Camera (CTX), at a resolution of ~6 m per pixel, or High Resolution Imaging Science 

Experiment (HiRISE) camera, at a resolution of ~0.3 m per pixel. Maps were 

constructed from these images using ArcMap Geographic Information System software 

and interpretations additionally drew on elevation data produced by the Mars Orbiter 

Laser Altimeter (MOLA), at a typical resolution of 128 pixels per degree, mounted on 

the Mars Global Surveyor spacecraft. 

 

 

A.2.2. GLF extent 

 

Recent observations suggest that current GLFs are the remnants of a once far larger ice 

mass (e.g. Dickson et al., 2010; Sinha and Murty, 2013) that was most extensive during 

a hypothesised last martian glacial maximum, or LMGM (Souness and Hubbard, 2013). 

Such an expanded former extent has been inferred from detailed regional 

geomorphological reconstructions, for example identifying former ice limits from 

variations in surface texture and the existence of distal moraine-like ridges, or MLR. 
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Allied to local topography, such reconstructions have allowed the recreation of both 

former ice extent and local ice-flow directions (e.g. Dickson et al., 2010). However, 

debate persists concerning both the precise timing of the LMGM and the extent and 

volume of ice coverage at the time. The complexity of this issue is compounded by the 

timescales involved, with best estimates currently placing the LMGM at ~5 – 6 Ma BP, 

but possibly continuing closer to the present day (Section A.1.1.3 above [Touma and 

Wisdom, 1993; Head et al., 2003]). 

 

The outlines of many GLFs are clearly demarcated by the presence along their margins 

and front of bounding MLRs (Arfstrom and Hartmann, 2005). These landforms are 

commonly raised above the present GLF surface and are texturally distinct from their 

surroundings. One particular Amazonian-aged (~10 Ma BP) GLF located in Crater 

Greg, Eastern Hellas (246.84°E, -38.15°N [#948]) has been the focus of much study 

(e.g. Hartmann et al., 2003; Kargel, 2004; Hubbard et al., 2011; Hartmann et al., 2014). 

In an analysis of this particular GLF, Hubbard et al. (2011) described a sequence of up 

to four distinct raised bounding ridges located along the GLF’s margins. The authors 

also described two surface terrain types in the GLF’s lower tongue, ‘linear terrain’ and 

‘mound and tail terrain’, as being possible exposed subglacial bedforms. Overall, this 

led these authors to suggest the GLF’s moraine-bounded outline presently represents a 

glacial basin in which the lower zone now comprises an exposed former glacier bed, 

while the basin’s upper zone still hosts a degraded ice mass. In this case, therefore, the 

present day GLF outline incorporates both an ice mass and its immediate proglacial 

area. This particular GLF’s multiple bounding moraines were also interpreted in terms 

of a general recession punctuated by several (at least three) episodes of minor re-

advance or still-stand.  

 

At a larger scale, GLFs form the first-order of the martian glacial landsystem (Section 

A.1.1 above [Head et al., 2010]), which is present throughout substantial parts of the 

planet’s northern and southern mid-latitudes (Milliken et al., 2003; Souness and 

Hubbard, 2012). Many of the ice masses forming this landsystem are thought to have 

been substantially more advanced and thicker in the past, having important implications 

for reconstructions of climatic variability on Mars. For example, Dickson et al. (2008) 

reconstructed former glacial limits in the Protonilus Mensae region (54.55oE, 40.80oN) 

based on the identification and mapping of former glacial high-stands. The analysis 
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indicated a maximum ice thickness of >2 km at LMGM and a downwasting of at least 

920 m since then. Although reconstructed flow directions were questioned in detail by 

Souness and Hubbard (2013), this analysis indicates substantially thicker ice in the 

geologically-recent martian past. 

 

Several studies have also pointed out that GLFs appear to be distinctive from the 

underlying ice-rich (LDA or LVF) material onto which they appear to have flowed (e.g. 

Levy et al., 2007; Baker et al., 2010; Sinha and Murty, 2013). This material contrast has 

been interpreted as signifying the possibility of a marked age difference between the 

two surfaces, suggesting two or more glacial events with at least one small-scale or 

‘local’ glacial phase advancing over an earlier ‘regional’ glaciation (e.g. Head et al., 

2003; Levy et al., 2007; Dickson et al., 2008; Sinha and Murty, 2013).  

 

Glacial activity has also been identified outside of the mid-latitude regions. As well as 

the well-studied polar ice caps (e.g. Seu et al., 2007; Phillips et al., 2008), degraded 

glacier-like features have been described surrounding the shield volcano of Arsia Mons 

(239.00oE, -0.31oN [Head and Marchant, 2003]) and in high latitude craters (266.45oE, 

70.32oN [Garvin et al., 2006]). The identification of features and landforms of glacial 

origin across vast areas of Mars’ present surface has also led to suggestions that 

continental glaciation may once have occurred on Mars (Kargel and Strom, 1992; 

Kargel et al., 1995; Fastook et al., 2014; Hobley et al., 2014).  

 

 

A.2.2.1. Case study: reconstructing former GLF extent 

 

GLF #146 (164.48oE, 34.13oN) is ~12 km long, ~5 km wide and located in the Phlegra 

Montes region of Mars’ northern hemisphere (Figure A.3). This region is largely 

formed from several massifs that stretch from the north-eastern section of the Elysium 

Volcanic Province to the dichotomy lowlands. GLF #146 is located on the southern tip 

of a massif range and converges from a wide upper basin between two rock outcrops in 

to an elongate lower tongue. The main tongue of this GLF shows distinctive surface 

lineations and textures that indicate the presence of three separate major flow units. 

Several arcuate linear raised features or MLRs are located in the foreground of the 
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current GLF. This particular case is of interest because these MLRs are located some 

distance from the GLF’s current margin, indicating formation at some time in the past 

when the GLF was at a more advanced position than at present. 

 

 

 
Figure A.3: Case study illustrations of the former extent of martian GLF #146 showing 

background MOLA elevation images (a and b), and a CTX image expansion (c). The 

forefield of terrestrial Midre Lovénbreen, Svalbard, is shown for comparison (d). 

 

 

The geomorphological interpretation of GLF #146 (Figure A.4), reconstructed from 

CTX images alone, reveals that the region in front of the current GLF is characterised 

by two distinctive terrain types. At the broadest scale, both terrains are clearly part of 

the ice-rich, fretted terrain found throughout Mars’ mid-latitudes but particularly 

characteristic of Deuteronilus Mensae, Protonilus Mensae and Nili Fossae (Sharp, 

1973). However, both terrains also differ in several important details, indicating 

distinctive mechanisms of formation and/or subsequent history. The first terrain type, 
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‘arcuate terrain’, forms a ~3.3 km-wide band around the GLF’s current margin. This 

terrain is characterised by arcuate ridges whose shadows indicate that they are raised 

above the adjacent ground, forming distinct local topographic highs ~0.1 – 1.7 km long 

and 5 – 10 m wide. These ridges show distinct similarities in morphology and spatial 

relationships to MLRs identified elsewhere on Mars (Arfstrom and Hartmann, 2005), 

which are the martian equivalent of terminal moraines on Earth (e.g. Figure A.3d). The 

arcuate ridges forming this terrain increase in size and coherence away from the GLF’s 

margin (Figure A.4) such that they are almost unbroken along the terrain’s full distal 

edge. The ridges are smaller and more fragmented nearer to the GLF’s margin. The 

second terrain type, ‘smooth terrain’, extends beyond the arcuate terrain for 100s of km 

into the forefield’s lower plains. This terrain appears at the broadest scale to be visually 

smooth with few undulations relative to the arcuate terrain. Close inspection also 

indicates irregular mottling and a greater concentration of impact craters on the smooth 

terrain than on either the arcuate terrain or the GLF proper (Figure A.4).   

 

The location and characteristics of the two proglacial terrain types outlined above 

provide some basis for their interpretation. We infer that the arcuate area directly in 

front of the GLF represents the geologically-recent former extent of the GLF. Like on 

Earth, the MLRs represent the former locations of the GLF’s terminus, with the 

outermost MLR representing the maximum former extent of the GLF and each 

subsequent ridge representing a former terminal position (of minor advance or 

slowdown) during a period of general GLF recession. The sequence of multiple terminal 

MLRs thereby implies that the GLF has undergone a cyclic or punctuated recession. 

The lower density of craters on the GLF and its encompassing arcuate terrain relative to 

the outer smooth terrain is consistent with the younger age for the deposition or 

exposure of the former. Indeed, the general lack of resolvable craters on the arcuate 

terrain and on the GLF itself, although insufficient in number to analyse formally, 

suggests that the feature is of a geologically very young age. On a regional scale, other 

degraded ice-related features have been reported in the north western region of Phlegra 

Montes (Dickson et al., 2010), suggesting that this region may also have been subject to 

large-scale glaciation in the recent past and that it now hosts only diminished remains. 
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Figure A.4: GLF #146 CTX image expansion (a) and geomorphological interpretation 

(b). 

 

 

Overall, we interpret the GLF located in Phlegra Montes as an ice-rich mass that was 

once much larger than its current extent, with the outer MLR marking its former 

maximum extent. The continuity of the smooth plains to the east, combined with a lack 

of further evidence of ice-related processes suggests that the GLF reported here marks 

the outer limit of glacial activity of the Phlegra Montes region. It appears that the GLF 

coalesced from a wide upper basin into a narrow tongue before spreading out onto the 

flatter plains, much like a piedmont glacier on Earth. Subsequently the GLF’s terminus 

has retreated ~3.3 km to its current position, apparently through periods of cyclic or 

punctuated standstill, particularly early on during the period of general recession. 

Similar evidence for GLFs representing degraded landforms has been presented 

elsewhere in Mars’ mid-latitudes (e.g. Hubbard et al., 2011; Souness and Hubbard, 

2013) indicating it is possible that GLFs were once a much larger feature on Mars’ 

surface. Further, the appearance of deposits indicating the GLFs former extent would 

also imply that GLFs have been active and dynamic in the past. 



APPENDIX A.   GLACIER-LIKE FORMS ON MARS 225 

 

 

A.2.3. GLF motion 

 

While no data have yet been obtained that reveal either rates of GLF movement or the 

mechanisms responsible for that movement, GLF motion has been both modelled and 

inferred from their overall lobate shape and the presence of flow structures on their 

surface. These flow structures are typically shaped like chevrons (e.g. Figure A.1) 

consistent with a transverse surface velocity profile similar to that measured at 

terrestrial glaciers, i.e. increasing inwards from the glacier’s lateral margins towards the 

centreline, where velocity is highest above the thickest ice. There is therefore little 

doubt that GLFs have moved, at least through viscous deformation. However, there is 

no evidence that mass is continuing to accumulate on present day GLFs, nor that they 

are still moving. In an effort to shed some light on the likelihood of GLF motion, 

Milliken et al. (2003) applied the multi-component constitutive relation of Goldsby and 

Kohlstedt (2001) to typical ranges of VFF temperature, slope and (assumed) ice grain 

size. For a 10 m thick VFF deposit, Milliken et al. (2003) estimated shear stresses of 10-

1.5 – 10-2.5 MPa and consequent strain rates on the order of 10-11 – 10-16 s-1
.  Based on 

these rates, the authors estimated it would take between 3 ka and 300 Ma, respectively, 

to produce a shear strain of 100%, which was in broad agreement with age estimates of 

the VFF (105 – 107 a). Although the application of this stress-strain relationship to 

martian VFF conditions represented a major advance, the model was not distributed 

spatially and was not therefore applied to, nor considered, any particular VFF geometry. 

Moreover, the possible presence of liquid water within or below VFFs was (and still is) 

also unknown. All VFF motion was therefore assumed to occur through deformation of 

a spatially homogeneous ice-dust mixture. 

 

 

A.2.3.1. Crevassing as an indicator of GLF motion 

 

Fracturing is a universal diagnostic indicator of high tensile strain rates within terrestrial 

ice masses. Further, the orientation of individual crevasses and the size and shape of 

crevasse fields reflect the strain rate, and strain history, of specific parcels of ice (e.g. 

Herzfeld and Clarke, 2001). Crevasses have been reported on a variety of ice-rich 

surfaces on Mars. For example, fractures observed on the floor of certain craters in 
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Xanthe Terra formed part of what Sato et al. (2010) described as ‘chaotic’ terrain. 

Pierce and Crown (2003) also reported transverse cracks in debris apron deposits in 

eastern Hellas, and interpreted them specifically as brittle extensional crevasses. 

Fractures have also been observed at the edge of high (>800 m) icy scarps on Mars’ 

north and south polar ice caps (Byrne et al., 2013). These fractures appear to act as 

planes of weakness for occasional collapse events that have been observed in repeat 

satellite images (Russell et al., 2008). Kargel (2004) made specific reference to the 

presence of crevassing on martian GLFs, where the varying size, morphology and 

overall state of preservation of crevasses were interpreted in terms of formation over a 

considerable period of time, possibly continuing to the present day. This indicates that 

Mars’ GLFs do appear to be, at least in some cases, still actively flowing.  

 

Below, we present an analysis, based on new data, of the extent and nature of crevasses 

visible on the surface of martian GLFs. 

 

 

A.2.3.2. Concentration and location of crevassed GLFs 

 

From an overall population of ~1300 GLFs (Souness et al., 2012), surface crevasses are 

present on 64 individual forms (~5% of the total population). Of these crevassed GLFs, 

37 (57.8%) are located in the northern hemisphere and 27 (42.2%) in the southern 

hemisphere (Figure A.5a). While this inter-hemispheric division mirrors that of the 

overall GLF population of 55.5% on the northern hemisphere and 44.5% in the southern 

hemisphere (Figure A.2), crevassed GLFs are preferentially clustered in certain regions 

relative to their parent GLFs populations. These clusters are particularly notable in 

northwest Argyre in the southern hemisphere and in Deuteronilus Mensae and 

Protonilus Mensae in the northern hemisphere (Figure A.5). Crevassing therefore 

occurs, or is at least more readily visible (i.e. exposed by the absence or excavation of 

supraglacial regolith), in these specific areas. 

 

Crevassing occurs where tensile strain rate of ice exceeds a critical threshold (Vaughan, 

1993). Such high strain rates can result from several factors including local changes in 

mass balance, ice surface and/or bed slope, ice thickness, and basal traction. Similar to 

crevassed ice masses on Earth, many of the crevasse fields identified on Martian GLFs 
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fall into one of a small number of repeated patterns, illustrated below through examples 

of four sets of crevasses from two martian GLFs. 

 

 

 
Figure A.5: The distribution of crevassed GLFs on Mars (a), with expansions of case 

study GLF locations in Deuteronilus Mensae (b) and western Hellas Planitia (c). 

4.2.3.3. Examples of GLF crevasse morphologies and their interpretation 

 

 

Example crevasse set #1 (ECS1 [Figure A.6]) is on GLF #1054, located to the east of 

the large Hellas Planitia impact crater in Mars’ southern hemisphere (102.65°E, -

40.85°N). This particular GLF exhibits two crevasse sets. ECS1 (Figure A.6c), 

comprises a dense cluster of transverse linear crevasses, typically 100 – 250 m long and 

up to 50 m wide, that coincide with an abrupt increase in slope, just down-flow of the 
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point at which the GLF flows out of a cirque-like alcove. The location and transverse 

orientation of ECS1 conforms to longitudinal extension associated with the acceleration 

of GLF #1054 as it flows over its cirque lip and moves down a steeper slope. The 

physical setting, strain regime and pattern of these crevasses are similar to icefalls, 

which are commonplace on terrestrial valley glaciers. 

 

ECS2 (Figure A.6d) is also located on GLF #1054, but in its upper reaches. This set of 

linear crevasses forms a discontinuous band aligned adjacent and parallel to the GLF’s 

headwall contact, similar to glacier bergschrunds in Earth. On Earth, bergschrunds 

indicate gravity-driven ice flow away from the headwall of a glacier where the ice 

surface slope is locally sufficiently steep to induce brittle fracture (Mair and Kuhn, 

1994). 

 

 

 
Figure A.6: CTX image of crevassed GLF #1054, located in eastern Hellas (Figure 

A.5a) (a), along with its geomorphological interpretation (b) and expansions of two 

crevasse sets (c and d). 
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ECS3 (Figure A.7) is on GLF #541, located in Deuteronilus Mensae in Mars’ northern 

hemisphere (38.18°E, 45.14°N). This crevasse field is located along the GLF’s western 

flank (Figure A.7b) and consists of multiple, highly-degraded fractures that extend 

towards the GLF’s centreline from its lateral margin. These crevasses are aligned 

slightly up-valley, and progressively rotate towards a more transverse alignment 

towards the GLF’s terminus. On Earth, such a crevasse pattern indicates the presence of 

extensional lateral shear within a glacier, caused by friction between the ice and the 

valley walls. Once formed, the crevasses rotate in accordance with a general increase in 

longitudinal ice velocity away from the valley-sides and towards a glacier’s centreline. 

The similar morphology of the crevasses observed on GLF #541 (Figure A.7b) and the 

lateral crevasses on terrestrial glaciers indicate that martian GLFs are, or have been, 

characterized by a similar geometry and velocity field to terrestrial valley glaciers. This 

particular case provides evidence that GLFs both thicken towards their centreline 

(where on Earth such valleys are typically parabolic in cross section; Harbor 1995), and 

that the associated increase in ice thickness causes a corresponding increase in ice 

velocity. 

 

ECS4 (Figure A.7c) is located near the terminus of GLF #541. This crevasse field 

comprises longitudinally-orientated crevasses that are located along the approximate 

centreline of the GLF and diverge laterally as the terminus of the glacier spreads to form 

a piedmont lobe (Figure A.7c). A series of major ridges is also present in this zone, 

located just up-flow of an apparent bedrock protuberance. These ridges are aligned 

orthogonal to the GLF’s flow direction and to ECS4. The crevasses forming ECS4 are 

virtually identical in context and shape to longitudinal crevasses on Earth’s glaciers, 

formed by transverse extension. In this case, we interpret ECS4 as forming through a 

combination of transverse extension, associated with the spreading of the piedmont 

lobe, and longitudinal compression as the terminus of the GLF abuts the bedrock 

protuberance. This interpretation is consistent with the transverse ridges in front of GLF 

#541, which are similar to compressional ridges, or push moraines, commonly found in 

the proglacial areas of valley glaciers on Earth. It is also apparent from Figure A.7 that 

the edges of the crevasses forming ECS4 are particularly sharply-defined, suggesting 

that they are young and have been subjected to minimal degradation relative to other 

examples (e.g. ECS2 [Figure A.6d]). 
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Figure A.7: CTX image of crevassed GLF #541, located in Deuteronilus Mensae 

(Figure A.5b) (a), along with expansions of two crevasse sets (b and c). 

 

 

The presence of crevasses on martian GLFs indicates that their deformation can be 

achieved through brittle fracture as well as ductile flow. The interpretations of such 

crevasse fields presented above indicates that high GLF strain rates can be caused by 

several factors that are similar to terrestrial ice masses, including: (i) variable bed slope; 

(ii) lateral drag at shear margins (e.g. along valley sides), and (iii) spatial variations in 

traction at the ice-bed interface. These case studies also suggest that GLFs share certain 

geometrical and dynamic characteristics with Earth’s glaciers, such as a parabolic cross-

section and its associated transverse velocity profile, characterized by faster motion 

along the centreline than along the margins. These observations also show that 

crevasses on Mars’ GLFs range from highly degraded to sharp-edged, suggesting that 
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crevasses have been formed over a considerable length of time, possibly continuing to 

the present day. 

 

 

A.2.4. GLF debris transfer and deposition 

 

The presence of MLRs on Mars’ GLFs (Section A.2.2 above), implies the entrainment, 

transport and deposition of substantial volumes of debris. While very little research has 

been directed specifically at evaluating how and to what extent GLFs (or VFFs more 

broadly) have shaped Mars’ landscape, some relevant information is available. For 

example, lithic debris can be supplied to the uppermost reaches of GLFs from steep 

bounding headwalls that appear to be composed of weathered bedrock and unstable 

boulder-rich deposits (Hubbard et al., 2011). These authors likened this ‘incised 

headwall terrain’ to ice-marginal lateral moraines on valley glaciers on Earth. The base 

of this headwall was composed of a strip of boulder-rich deposits, some tens of metres 

wide, into which closely-spaced parallel incisions had been cut, similar in appearance to 

water-related erosional gullies on Earth. Below this incised headwall terrain, several 

boulders appeared to have rolled downslope and come to rest on the surface of the GLF 

(their Figure 4.7b). Such headwalls thereby supply both coarse-scale rock-fall and, if the 

headwall gullies are eroded fluvially, fine-scale washed debris to the GLF surface. 

 

Many GLFs also appear to host medial moraines, present as raised linear deposits, 

typically metres to tens of metres wide and up to some kilometres long, which are 

aligned parallel to the direction of flow. Moreover, these lineations occasionally 

correspond to the common edge of two adjoining adjacent source flow units such as a 

tributary flow unit joining a glacier’s trunk or flow re-converging after splitting around 

a bedrock protrusion or nunatak. Both situations closely correspond to the most 

common mechanism of medial moraine formation on Earth – as coalesced lateral 

moraines.  
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A.2.4.1. Case study: supra-GLF boulder trains 

 

Substantial coarse debris appears to be present on the surface of GLF #498 (Figure 

A.8), located on the inner edge of the southern rim of Moreaux Crater in Protonilus 

Mensae (44.06ºE, 40.82ºN). GLF #498 is ~2 km wide and ~12 km long from terminus 

to confluence where two major source areas converge into a single north-flowing trunk. 

Surface landforms and textures indicate the presence of numerous smaller source areas 

along the GLF’s flanks. This GLF is unusual and interesting because it exhibits 

extensive surface boulder deposits that are not confined to the GLF’s margins but are 

located throughout the GLF, extending right to its centre. This supra-GLF debris is 

largely formed of boulder-sized material that protrudes conspicuously above the host 

terrain, making them clearly visible on the high-resolution HiRISE images used to map 

the feature. Indeed, hundreds of individual boulders, which are commonly 1 – 5 m 

across, can readily be identified in the images (Figure A.8d – e). A geomorphological 

map of this GLF (Figure A.9) reveals that much of this debris appears to belong to one 

of nine clusters or populations, labelled A – I on Figure A.9. Here, Populations A, B and 

C represent 1 – 2 km long, elongate boulder trains located in a medial supra-GLF 

position as one major tributary enters the principal tongue from the west. All three 

populations are conformable with surface lineations and raised textured areas as they 

together bend northwards as they join the GLF’s main channel. Approximately 3 km 

down-flow of Population C, Population G is notably elongate, extending for more than 

2 km along the GLF but attaining a width of no more than ~20 m. This boulder train 

rests on the west-facing flank of a raised supra-GLF MLR and appears as a continuation 

of Population C. In contrast, Populations D and H to the east and E, F and I to the west 

all appear to extend over ~50 – 100 m away from steep and rocky valley-side walls. 
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Figure A.8: GLF #498, located in Protonilus Mensae showing background MOLA 

elevation images (a and b), a HiRISE image expansion (c), along with two examples of 

surface boulder exposures (d and e). Arrows marked I. and II. on (c) indicate likely 

source areas for supra-GLF boulders illustrated on Figure A.9 and discussed in the 

text. The dashed box is expanded in Figure A.9. 
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Figure A.9: Geomorphological map and interpretation of boulder clusters A – I located 

on the surface of GLF #498, illustrated in Figure A.8. 

 



APPENDIX A.   GLACIER-LIKE FORMS ON MARS 235 

 

 

It is apparent from Figure A.9 that boulders have been supplied to several locations on 

the surface of GLF #498 and that they have subsequently moved across the GLF. Some 

of this movement may have been by active rolling, particularly away from immediate 

valley-side supply areas and towards the GLF’s centreline, such as in the cases of 

Populations D, E, F, H and I. However, some or all of these populations may also have 

experienced passive redistribution, with boulders being advected with GLF motion. 

Without knowledge of the precise source area and maximum reach of individual 

boulders it is not possible to determine the component of passive advection in these 

cases, but it could have been anything up to the maximum dimension of these 

populations, ~2 km. In contrast, there appears to be no local source area for the boulders 

forming trains A, B, C and G; the boulders comprising these elongate trains are almost 

certainly sourced from further up-GLF. Inspection of Figure A.8c indicates that the 

closest likely source areas for these trains are from along the steep northern margin of 

the GLF’s trunk for Populations A and B (marked ‘II.’ on Figure A.8c) and as a medial 

moraine extending from a promontory separating the GLF trunk from a tributary 

flowing into it from the south for Population C (marked ‘I.’ on Figure A.8c). Both of 

these likely source areas are at least 8 km up-flow of their corresponding supra-GLF 

boulder populations. In this case, and assuming that Populations C and G are part of the 

same feature, then the boulders at the far end of Population G appear to have been 

transported at least 15 km (8 km from the head of the tributary flow unit to Population C 

and a further 7 km to the distal end of Population G). In the absence of any firm age 

constraint on this particular GLF, we adopt a ‘best estimate’ age for its formation of 2 

Ma, at the onset of the proposed ‘late Amazonian’ ice age, and a likely age range from 5 

Ma, the middle of the last major ice age on Mars, to 0.5 Ma, the end of the proposed 

‘late Amazonian’ ice age (Section A.1.1.3 above). Thus, if boulder transport was 

initiated at the time of GLF formation from point “I.” on Figure A.8c it follows that, for 

those boulders to have been transported passively to the distal end of Population G, 

GLF #498’s minimum centreline velocity was within the range of 3 – 30 mm a-1, with a 

best estimate value of 7.5 mm a-1. 

 

Finally, the nature of boulder train elongation on the surface of GLF #498 is consistent 

with more rapid motion along the approximate centreline of the GLF (Populations A, B, 

C and G, which are highly elongate) than at its margins (Populations D, E, F, H and I, 
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which are less elongate), providing independent support for the normal, plan-form flow 

pattern reconstructed from crevasse patterns on other GLFs (Section A.2.3 above). 

 

 

A.3. GLF hydrology 

 

A.3.1. Present day GLF hydrology 

 

Although still debated in detail (e.g. Ehlmann, 2014; Haberle, 2014), early Mars appears 

to have been both warmer and wetter than at present (Kargel, 2004). Current surface 

conditions are relatively cold and dry (see Section A.1 above), and are consequently no 

longer conductive to the survival of surface water. Nonetheless, seasonal variations in 

temperature are sufficient to induce occasional melting as evidenced, for example, by 

the intermittent discolouration of surface slope deposits in the southern mid-latitudes, 

inferred by McEwen et al. (2011) to indicate the effects of occasional near-surface 

moisture. Further, the presence of gullies incised into unconsolidated sediments has 

been interpreted as the result of intermittent fluvial erosion (Balme et al., 2006, 2013; 

Dickson and Head, 2009;  Soare et al., 2014), as were similar gullies incised into pro-

GLF headwall materials on the well-studied GLF #948 located in Crater Greg, Eastern 

Hellas (Hubbard et al., 2011).  

 

 

A.3.1.1. Case study: supra-GLF channel networks 

 

Despite evidence, summarized above, pointing to the intermittent melting of near-

surface ice in Mars’ mid and low-latitudes, such melting has, to our knowledge, in only 

one case been associated with GLFs. Hubbard et al. (2011) reported the presence of 

numerous incisions, typically ~1 m wide and tens of metres long, linking the edges of 

frost or contraction polygons (their ‘polygonized terrain’) on the surface of GLF #948 

(their Figure 9). These were preferentially aligned sub-parallel to the ~10° local slope 

and they were interpreted as gullies formed by fluvial erosion resulting from the 

occasional melting of ice located immediately below the GLF’s unconsolidated dust 

mantle. This interpretation, however, was proposed only tentatively because the incised 

segments were short and did not link up to form a coherent network; also, because 
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liquid water is not stable on Mars’ cold, dry and low-pressure surface. Here, we extend 

this analysis to other GLFs to evaluate the nature and degree of recurrence of this 

landform in other, similar settings. 

 

Because of the small scale of the polygons and incisions involved, target GLFs for the 

present study were restricted to those with high-resolution, HiRISE coverage, revealing 

at least six with extensive areas of surface incision. While four of these are located 

within or near to Hellas Planitia’s Crater Greg (GLF #930, 947, 948 and 951) the other 

two are located on the dichotomy boundary in Protonilus Mensae (GLF #13101 and 

390). Examination of these incised supra-GLF zones, one of which is presented for 

illustration in Figure A.10, reveals similar dimensions and slope-parallel orientation to 

those observed on GLF #948. Individual incised segments are also, in all cases, limited 

in length to a maximum of some tens of metres, while none of the cases identified 

develops a coherent tributary-based drainage network (e.g. Figure A.10). These 

similarities strongly indicate that all such incised terrains have been formed and 

subsequently influenced by a similar process set, operating widely in Mars’ mid-

latitudes. These characteristics are consistent with the formation of incisions by 

occasional surface melting, perhaps beneath a thin layer of surface dust, enhancing 

albedo and local energy transfer (e.g. Nicholson and Benn, 2006), on the relatively steep 

edges of surface periglacial patterned ground (Gallagher et al., 2011). The short reach 

length and absence of a coherent channel network is also consistent with the short-lived 

nature of any such liquid water, evaporating away before sufficient discharge can 

develop to form a supra-GLF drainage network. 

 

 

A.3.2. Former GLF hydrology 

 

With the notable exception of the proposed intermittent small-scale surface melting 

proposed above (Section A.3.1 above), present-day GLFs show little or no sign of the 

presence  or  influence  of  liquid  water. For  example, no evidence of  pro-GLF  fluvial 

                                                
1 This particular GLF is visible in HiRISE image ESP_019213_2210, which was acquired after the 
inventory of Souness et al. (2012). We therefore give it the next-available designation of #1310.  
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Figure A.10: Surface incisions on GLF #947 (a) imaged by HiRISE to supplement 

those reported on GLF #948 by Hubbard et al. (2011), with an expansion of the incised 

terrain (b) and trace of incised segments (c). 

 

 

activity has been reported, and flow is almost certainly achieved solely through ice 

deformation, whether ductile or brittle (Section A.2.3 above). Current martian GLFs 

therefore appear to be cold throughout. However, this may not have always been the 

case, even up to the recent geological past. Indeed, the recently-expanded extent and 

thickness of GLFs during the LMGM (Section A.2.2 above) makes insulation of the bed 

beneath thick ice more likely than at present. Although former ice thicknesses are not 

known, precluding thermal modelling, large-scale regional glaciation has been proposed 

(Kargel and Strom, 1992; Kargel et al., 1995; Fastook et al., 2014) and several 
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landforms have been interpreted as indicative of, or consistent with, former wet-based 

glaciation. These include, for example, MLRs, the formation of which was proposed by 

Arfstrom and Hartmann (2005) possibly to involve subglacial squeezing. At the larger 

scale (and longer time span), sinuous and anastomosing ridge networks, elongate 

bedforms and large-scale grooves located in southern Argyre Planitia (~30 – 55 °S) 

were interpreted by Banks and Pelletier (2008) and Banks et al. (2009) as subglacial 

eskers, mega-scale glacial lineations (MSGL) and glacial erosional grooving 

respectively. The formation of these features would have required the area to have been 

covered by a large, wet-based ice mass (e.g. Bernhardt et al., 2013). To form MSGL, 

this ice mass would also have to have been, for some period of time, sliding rapidly 

over its substrate, almost certainly lubricated by subglacial water (e.g. Clark, 1994). 

Although these features are undated, Banks and co-workers (2008; 2009) considered 

them to have been formed in pre-Amazonian times. 

 

More recently, Hubbard et al. (2011) interpreted the basin of GLF #948 in terms of an 

upper zone occupied by a remnant dust-mantled ice mass, and a lower zone now 

exhibiting relict bedforms. These bedforms were classified as ‘mound and tail’ terrain 

and ‘linear’ terrain and were likened to terrestrial drumlins and MSGL respectively. 

Since both of these landforms are predominantly associated with wet-based glacial 

conditions on Earth, these authors proposed that such conditions may have prevailed 

beneath GLF #948 at a time in the past when it had expanded and thickened to fill its 

moraine-bounded basin. This interpretation, however, was considered side-by-side with 

an alternative - not involving wet-based glaciation - based on the mound and tail and 

linear terrains representing degraded supra-GLF forms, in this case wind-blown dune 

deposits and exposed longitudinal foliation respectively. Finally, Hubbard et al. (2011) 

also reported the presence of ‘rectilinear ridge’ terrain located outside the current GLF 

basin, as enclosed by the well-defined MLRs. This terrain was likened to moraine-

mound complexes on Earth, the formation of which again suggests either the direct 

presence of water, if formed as outwash deposits (Lukas, 2005) or crevasse fills (Sharp, 

1985), or of polythermal glaciation if formed by glacial thrusting (Hambrey et al., 

2005). However, the possibility of cold-based formation, in this case as proglacial 

thrust-blocks, was not entirely discounted. 
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A.4. Summary 

 

With the aid of high-resolution imagery, particularly from the CTX and HiRISE 

cameras, several major advances have been made in a short period of time concerning 

Mars’ mid-latitude GLFs. Thus, it is now known with some certainty that: 

 

• Many GLFs were previously more extensive and thicker than at present, 

possibly now representing the remnants of former large ice sheets. In Section 

A.2.2.1 above we identify a distinctive proglacial zone ~3 km wide surrounding 

a GLF located in Phlegra Montes. This zone, bounded along its distal edge by 

MLRs is interpreted as having been recently deglaciated and is likened to a 

similar proglacial region bounding Midre Lovénbreen, Svalbard, on Earth. 

 

• GLFs flow slowly downslope through a combination of ductile and (less 

common) brittle deformation. In Section A.2.3.3 above we identify and interpret 

four contrasting sets of crevasses located on two martian GLFs in terms of 

variable strain regimes. These crevasses are also shown to range from being 

relatively fresh in appearance, implying a correspondingly young age, to 

appearing blunt and degraded, implying earlier formation and possibly a relict 

current condition. 

  

• GLFs have the ability to transport debris, forming large bounding moraines and 

depositing boulder trains extending for several kilometres along-GLF. In Section 

A.2.4.1 above we identify an extensive supra-GLF debris train which we 

interpret in terms of passive transport from specific ice-marginal supply points. 

Reconstructing boulder transport distances since GLF formation (over the range 

5.0 to 0.5 Ma ago, with a best estimate age of 2.0 Ma BP) yields a corresponding 

provisional GLF surface velocity range of 3 - 30 mm a-1, with a best estimate of 

∼7.5 mm a-1. 

 

• GLFs currently show little influence of liquid water, confined to postulated 

intermittent surface melting which is insufficient to form coherent supra-GLF 

drainage. In Section A.3.1.1 above we illustrate that such supra-GLF incised 
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channels occur on several GLFs and are not confined to the single instance at 

which they have hitherto been reported. However, more extensive former GLFs, 

and/or their predecessor ice masses, may have been partially wet-based.  

 

Despite this information, many of the most fundamental glaciological aspects of GLFs 

remain unknown. These include the following: 

 

• It is not known whether GLFs are currently active or whether they are decaying 

relics of previously active forms. Diagnostic indicators of such activity would 

include any evidence of motion (addressed below) and for a GLF to have a 

surface profile that is in balance – as indicated by a spatially-distributed 

numerical model of GLF flow - with current climatic conditions. 

 

• The previous extent of GLFs, and their putative parent ice sheets, is still only 

poorly understood. This requirement could be addressed through additional field 

mapping at a variety of spatial scales, based on CTX or High Resolution Stereo 

Camera images at the regional scale to HiRISE images at a local scale. Such 

mapping could be targeted at identifying markers of former ice extent such as 

specific surface terrains, subglacial deposits and ice-marginal moraines. 

 

• The thermal regime of former GLFs is unknown, and the possibility of partial 

wet-based conditions remains unproven and their extent unevaluated. These 

issues could be evaluated empirically or theoretically, ideally through a 

combination of both. Empirical evidence might include the identification of 

indicators diagnostic of wet-based conditions (e.g. bedforms such as MSGL) or 

of subglacial drainage (e.g. meltwater channels or eskers). Theoretically, former 

thermal regime could be estimated from the application of a 

thermomechanically-coupled ice-flow model to reconstructed former ice mass 

geometries under realistic climatic conditions for the time. 

 

• The basic mass-balance regime of GLFs is unknown. Whatever the spatial 

expression of this regime, there is no compelling climatological reason for it to 

comply with the common terrestrial valley-glacier model of net accumulation at 
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high elevations gradually giving way to net ablation at low elevations. This is 

possibly the most challenging unknown GLF property to elucidate, and would 

likely require several lines of evidence to be combined. Central to these might 

be a regional evaluation of GLF extent in the light of corresponding regional 

variations in meteorological conditions. A modelling approach may also shed 

some light of the mass-balance regime of GLFs, for example, through 

comparing modelled GLF geometries and flow with empirical data under a 

variety of modelled mass-balance patterns. 

 

• The 3-D geometry and internal structure of GLFs is unknown. Although 

SHARAD radar data are available and capable of mapping ice thickness, the 

data are of fairly coarse resolution and have limited spatial coverage. Very little 

information is therefore available to allow the basal interface of GLFs to be 

identified and mapped. This property is also critically important because 

spatially-distributed models of ice mass flow depend sensitively on accurate bed 

geometry. In this case, new and existing SHARAD data could usefully be mined 

to locate intersections with known GLFs, providing a first approximation of bed 

profiles. Further to that, modelling-based sensitivity analyses (to GLF depth) 

could also be used to constrain likely bed geometries. 

 

• Mechanisms of GLF motion are poorly known and, apart from the estimate of 3 

– 30 mm a-1 presented herein (Section A.2.4.1 above), it has not yet been 

possible to measure surface velocities on any martian GLF. Further research 

based on indicators of surface displacement – such as the boulder analysis 

presented herein – could usefully be used to refine the range we propose. As the 

period of time between repeat HiRISE images of certain GLFs increases it may 

also become possible to identify contemporary GLF motion on the basis of 

feature or speckle tracking. Indeed, a single such measurement would provide a 

major advance in our understanding of the dynamic glaciology of martian GLFs, 

particularly if the GLF concerned could also be modelled.  

 

• GLF-related landforms such as lineations, drumlin-like forms, surface 

cracks/gullies and possible eskers remain largely unexplored and their basic 
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morphometric characteristics are unreported. Targeted mapping from HiRISE 

images remains the best way to identify and evaluate such landforms. The online 

inventory accompanying Souness et al. (2012) would provide a suitable starting 

point for identifying candidate regions of interest. 

 

• Although considered to be rich in water-ice, the internal composition of GLFs 

remains unknown, despite these material properties having important 

implications for GLF dynamics and our ability to model GLF behaviour 

accurately. Apart from direct sampling in the future, which is unlikely in the 

medium-term, SHARAD data analysis may be combined with numerical 

modelling to further constrain the internal composition of GLFs. Opportunistic 

images, for example shortly following a meteorite impact, may also continue to 

yield information relevant to GLF sub-surface conditions. 

 

These issues deserve research attention to improve our understanding of the surface 

features of Mars and, glaciers being effective recorders of climate change, the planet’s 

past environmental conditions. It is also worth noting that the well-insulated base of 

thick ice masses represents one of the most likely geologically-recent environments on 

Mars for the existence of the wet and relatively warm conditions that are conducive to 

life. 
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